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Binary relations (definition and exemples)

Let V be a nonempty set (finite or not)

� We recall that a (binary) relation R on V is a subset

R ⊂ V × V

and that

γRλ ⇐⇒ (γ, λ) ∈ R

� For any subset Γ ⊂ V, the (sub)diagonal relation is

∆Γ =
{
(γ, λ) ∈ V × V

∣∣ γ = λ ∈ Γ
}

and the diagonal relation is ∆ = ∆V
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Binary relations (follow up)

� A foreset of a relation R is any set of the form

Rλ =
{
γ ∈ V

∣∣ γRλ
}

� An afterset of a relation R is any set of the form

γR =
{
λ ∈ V

∣∣ γRλ
}

� The opposite or complementary Rc of a binary relation R is the

relation Rc = V × V \ R, that is, defined by

γRc λ ⇐⇒ ¬(γRλ)

� The converse R−1 of a binary relation R is defined by

γR−1 λ ⇐⇒ λR γ

and a relation R is symmetric if R−1 = R
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Binary relations (composition)

� The composition RR′ of two binary relations R,R′ on V is

the binary relation on V defined by

γ(RR′)λ ⇐⇒ ∃δ ∈ V , γR δ and δR′ λ

By induction we define Rn+1 = RRn for n ∈ N,
with the convention R0 = ∆

� The transitive closure of a binary relation R is

R+ =
∞⋃
k=1

Rk

and R is transitive if R+ = R
� The reflexive and transitive closure is

R∗ = R+ ∪∆ =
∞⋃
k=0

Rk

� A partial equivalence relation is

a symmetric and transitive binary relation
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Graphs defined by a binary relation

� Let V be a nonempty set (finite or not),

whose elements are called vertices

� Let E ⊂ V × V be a relation on V, whose elements are ordered pairs

(that is, couples) of vertices called edges

� the first element of an edge is the tail of the edge

� whereas the second one is the head of the edge

� both tail and head are called endpoints of the edge,

and we say that the edge connects its endpoints

� We define a loop as an element of ∆ ∩ E ,
that is, a loop is an edge that connects a vertex to itself

Definition

A graph, as we use it, is a couple (V, E) where E ⊂ V × V
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Graphs (comments)

As we define a graph,

� it may hold a finite or infinite number of vertices

� there is at most one edge that has a couple of ordered vertices as

single endpoints, hence a graph (in our sense) is not a multigraph

(in graph theory)

� loops are not excluded (since we do not impose ∆ ∩ E = ∅)

Hence, what we call a graph would be called, in graph theory,

a directed simple graph permitting loops
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Let (V, E) be a graph, that is, V is a set and E ⊂ V × V

Proposition

The following set

TE =
{
O ⊂ V

∣∣OE ⊂ O
}

is an Alexandrov topology on V,
with the property that open subsets are characterized by

O ∈ TE ⇐⇒ OE ⊂ O ⇐⇒ OE+ ⊂ O ⇐⇒ OE∗ ⊂ O ⇐⇒ OE∗ = O

In the Alexandrov topology TE ,

the topological closure Γ
E
of a subset Γ ⊂ V is given by

Γ
E
= E∗Γ , ∀Γ ⊂ V

that is, is the E∗-foreset of Γ
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Conditional parental relation

Let (V, E) be a graph, that is, V is a set and E ⊂ V × V,
and let W ⊂ V be a subset of (conditioning) vertices

Definition

We define the conditional parental relation EW as

EW = ∆W cE , that is, γEWλ ⇐⇒ γ ∈ W c and γEλ
(
∀γ, λ ∈ V

)
and the conditional ascendent relation BW as

BW = E(∆W cE)∗ = EEW∗ where EW∗ = (EW )∗

which relates descendent with ascendent by means of elements in W c

We define their converses E−W and B−W as

E−W = (EW )−1 = E−1∆W c

B−W =
(
BW

)−1
= (E−1∆W c)∗E−1 = E−W∗E−1 where E−W∗ = (E−W )∗
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Conditional common cause, cousinhood and active relations

With these elementary binary relations, we define the

conditional common cause relation KW as the symmetric relation

KW = B−W∆W cBW = E−W+EW+

the conditional cousinhood relation CW as the partial equivalence relation

CW =
(
∆WKW∆W

)+ ∪∆W

and the conditional active relation AW as the symmetric relation

AW = ∆ ∪ BW ∪ B−W ∪ KW ∪
(
BW ∪ KW

)
CW

(
B−W ∪ KW

)
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d-separation between vertices

Let (V, E) be a graph, that is, V is a set and E ⊂ V × V,
and let W ⊂ V be a subset of (conditioning) vertices

Definition (“a la Pearl”)

The vertices γ and λ are (conditionally) directionally separated

(w.r.t. the subset W )

γ ∥
d

λ | W ⇐⇒ DU

[
{(γ, λ)} | V, E

]︸ ︷︷ ︸
all “paths”

⊂ UW
b (V, E)︸ ︷︷ ︸

blocked “paths”

(
∀γ, λ ∈ V

)

� The vertices γ and λ are (conditionally) directionally separated

if and only if all the extended-oriented paths,

having them as endpoints, are blocked

� This definition mimics Pearl’s d-separation, but

the separation is between vertices and not between disjoint subsets
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d-separation as a binary relation

Theorem (d-separation as a binary relation)

For any vertices γ, λ ∈ V,

γ ∥
d

λ | W ⇐⇒ ¬(γAWλ)

� The proof of this theorem (d-separation as a binary relation)

is quite technical, but involving simple mathematical objects,

like paths in graphs and relations

� Pearl’s d-separation between disjoint subsets is now expressed as

Γ ∥
d

Λ | W ⇐⇒ ∀γ ∈ Γ , ∀λ ∈ Λ , ¬(γAWλ)
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γ ∥
d
λ | W ⇐⇒

•
γ

•
λ

⊂ UW
b (V, E)

1
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Conditional topological separation between vertices,

t-separation

We recall that Γ
EW

= EW∗Γ denotes

the TEW -topological closure of a subset Γ ⊂ W

Definition

We set

SW = ∆ ∪ CW
(
B−W ∪ KW

)
For any vertices γ, λ ∈ V, we denote

γ ∥
t
λ | W ⇐⇒ SWγ

EW

∩SWλ
EW

= ∅

and we say that the vertices γ and λ are

conditionally topologically separated (w.r.t. W )

or, shortly, t-separated
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Topological separation is equivalent to d-separation

Theorem

We have the equivalence

γ ∥
t
λ | W ⇐⇒ γ ∥

d
λ | W

(
∀γ, λ ∈ W c

)

� We have started to check all the mathematical results

with the help of the Coq proof assistant 15



Topological separation (t-separation) between subsets

Definition

We define t-separation between subsets Γ,Λ ⊂ W by

Γ ∥
t
Λ | W ⇐⇒ γ ∥

t
λ | W , ∀γ ∈ Γ , ∀λ ∈ Λ

and we say that Γ and Λ are (conditionally) topologically separated

(w.r.t.W )

Theorem

The disjoint subsets Γ,Λ ⊂ W are (conditionally) topologically separated

(w.r.t.W ) if and only if there exists WΓ,WΛ ⊂ W such that

WΓ ⊔WΛ = W and Γ ∪WΓ
EW︸ ︷︷ ︸

TEW topological closure

⋂
Λ ∪WΛ

EW

= ∅
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Prove that Y1 ∥
t
Y2 | W using W = WY1 ⊔ ∅

W

Y1 Y2

X1

X2

X3X4

W

Y1 Y2

X1

X2

X3X4

Y1 ∪WY1

EW

Y2
EW

1

Figure 1: The split of W is a piece of information that can be insightful
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X1 X2

Y1 Y2ξ1 ξ2

(a) Original graph.

X1 X2

Y1 Y2ξ1 ξ2

(b) Let WXi
= Yi , for i = 1, 2. The

closure of X1 ∪ Y1 (resp. X2 ∪ Y2),

with the edges followed to build the

closure, is in red (resp. blue).

Figure 2: Topological separation is easy to check: nonrecursive system
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X0

X1 X2

X3

X4

Figure 3: X3 and X4 are independent conditioned on (X0,X1,X2) but not

independent if we only condition on (X0,X1). The visual proof of topological

separation is obtained by considering the splitting WX4 = {X1,X2} and

WX3 = {X0} and observing that the topological closure of X3 ∪WX3 in blue

does not intersect the topological closure of X4 ∪WX4 in red

.
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