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Binary relations (definition and exemples)

Let V be a nonempty set (finite or not)
e We recall that a (binary) relation R on V is a subset
RCVxV

and that
TR < (7,\) €R

e For any subset ' C V, the (sub)diagonal relation is

Ar = {(1,\) eV x V

y=A€eT

and the diagonal relation is A = Ay,



Binary relations (follow up)

e A foreset of a relation R is any set of the form

RA={yeV|yRA}

e An afterset of a relation R is any set of the form

TR={AeV|yRA}

e The opposite or complementary R of a binary relation R is the
relation R¢ =V x V \ R, that is, defined by

TR <= (7R )

e The converse %! of a binary relation R is defined by

YR\ =

- AR

and a relation R is symmetric if R~ =R



Binary relations (composition)

e The composition RR’ of two binary relations R, R’ on V is
the binary relation on V' defined by

YRR < €V, yRdand §R' A

By induction we define R""t = RR" for n € N,
with the convention R® = A
e The transitive closure of a binary relation R is

R,fOR*
k=1

and R is transitive if RT™ =R
e The reflexive and transitive closure is

x
R*=RTUA=|JR
k=0
e A partial equivalence relation is
a symmetric and transitive binary relation
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Graphs defined by a binary relation

e Let )V be a nonempty set (finite or not),
whose elements are called vertices
e Let &£ C V x V be a relation on V, whose elements are ordered pairs
(that is, couples) of vertices called edges
e the first element of an edge is the tail of the edge
e whereas the second one is the head of the edge
e both tail and head are called endpoints of the edge,
and we say that the edge connects its endpoints
e We define a loop as an element of ANE,
that is, a loop is an edge that connects a vertex to itself

Definition

A graph, as we use it, is a couple (V, &) where £ C )V x V



Graphs (comments)

As we define a graph,

e it may hold a finite or infinite number of vertices

e there is at most one edge that has a couple of ordered vertices as
single endpoints, hence a graph (in our sense) is not a multigraph
(in graph theory)

e loops are not excluded (since we do not impose AN E = ()

Hence, what we call a graph would be called, in graph theory,
a directed simple graph permitting loops
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Let (V,€) be a graph, thatis, Visasetand & C V x V

Proposition

The following set
T.={0cV|0¢c 0}

is an Alexandrov topology on V),
with the property that open subsets are characterized by

O€eT, — 0ECO < 0T CO < 0&* C O < 0O&*

In the Alexandrov topology T,
the topological closure [ ofasubsetT CVis given by

I =&T,vrcy

that is, is the £*-foreset of [
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Conditional parental relation

Let (V. &) be a graph, thatis, Visasetand & C V x V),
and let W C V be a subset of (conditioning) vertices

Definition

We define the conditional parental relation £% as

EY = Aw€, thatis, €Y\ < ~v& W and vEA (V%)\ € V)
and the conditional ascendent relation B as

BY = E(AwE)" = EEY where £Y* = (EY)*

which relates descendent with ascendent by means of elements in W*¢

We define their converses £~ and B~ as

5—W _ (EW)fl _ EflAWc
BV = (BW)*1 = (EAW) EL=E""ETL where £ = (E7Y)*



Conditional common cause, cousinhood and active relations

With these elementary binary relations, we define the
conditional common cause relation " as the symmetric relation

the conditional cousinhood relation C" as the partial equivalence relation
C" = (:AW/\‘,“AW) UAw
and the conditional active relation A" as the symmetric relation

AV =AUBYUB UK U (BYUK")CY (BT UK")

10
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d-separation between vertices

Let (V.&) be a graph, thatis, Visasetand £ C )V x )/,
and let W C V be a subset of (conditioning) vertices
Definition (“a la Pearl”)

The vertices v and A are (conditionally) directionally separated
(w.r.t. the subset W)

YA W = Du[{(7,M)} | V,€] C ur(v,¢) Vv, A eV)
a ——
all “paths” blocked “paths”

e The vertices v and \ are (conditionally) directionally separated
if and only if all the extended-oriented paths,
having them as endpoints, are blocked

e This definition mimics Pearl’s d-separation, but
the separation is between vertices and not between disjoint subsets

11



d-separation as a binary relation

Theorem (d-separation as a binary relation)

For any vertices v, A € V,

YL W = =(3A"))

e The proof of this theorem (d-separation as a binary relation)
is quite technical, but involving simple mathematical objects,
like paths in graphs and relations

e Pearl’s d-separation between disjoint subsets is now expressed as

FCLAIW = Yy el, VAEA, =(7A")

12



YUAANW = <

cU¥(v,§)
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Conditional topological separation between vertices,

t-separation

—eW
We recall that T = €T denotes
the T.w-topological closure of a subset ' C W

Definition
We set
GY =AUCY(BYUKY)

For any vertices v, A € V, we denote

YAA|W = &% n&"Ax" =0
t

and we say that the vertices v and \ are
conditionally topologically separated (w.r.t. W)
or, shortly, t-separated

14
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Topological separation is equivalent to d-separation

Theorem

We have the equivalence

YLAW = v Lafw (v, he W)

Proof We have that

Awe(AUBY UKY)CY)EEV-CYETEY(AUCH (BT UKY)) Awe
= AweE W EV T EEY Ay (by developing)
U AggeE N CY E W (VB UK Ay
U B (B UK )CV)E 70 - Ay
U Ae (B UK )CV )& 87 E g% (Y (B U KY)) A
= AweE W EV T EEY Ay

UAwE €W CY (B UKY)Awe  (as CYEWEV"CY = C¥ by (34c))
UAe(BY UK™)CWEWEY Ayye (also by (34c))
U Awe(BY UK™)CY (B UK™) Ay (also by (34c) applied twice)
= Awe(BY UKY)C (B UKY) Aye (by (34d) and (34¢))
UAwe(BY UKY) (B~ UKY) A (by (34¢))
UAwe(BY UK™)CY (B UKY) Ay (by (34d))

U Awe(BY UK™)CY (B UK™) Ay
= Awe(BY UK™)CH (B UK™) Awe .

This ends the proof. []

e We have started to check all the mathematical results
with the help of the Coq proof assistant 15



Topological separation (t-separation) between subsets

Definition

We define t-separation between subsets ,A C W by

W, Vyel, VAeA

I_JF/\ W «— iJ}L/\

and we say that I and A are (conditionally) topologically separated

(w.r.t.W)

Theorem

\
The disjoint subsets ', A C W are (conditionally) topologically separated

(w.r.t. W) if and only if there exists Wi, W) C W such that

W

Wi U Wy = W and A AT =0
—

T.w topological closure

16
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Prove that Y; J,tL Yo | Wousing W = Wy, LI

Figure 1: The split of W is a piece of information that can be insightful
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(a) Original graph. (b) Let Wx, = Y;, for i = 1,2. The
closure of X1 U Y; (resp. Xo U Y2),
with the edges followed to build the
closure, is in red (resp. blue).

Figure 2: Topological separation is easy to check: nonrecursive system
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Figure 3: X3 and X; are independent conditioned on (X, X1, X2) but not
independent if we only condition on (Xo, X1). The visual proof of topological
separation is obtained by considering the splitting Wx, = {X1, X2} and

Wx, = {Xo} and observing that the topological closure of X3 U Wy, in blue
does not intersect the topological closure of X3 U WX, in red
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