
Dynamic Programming

Michel De Lara

Cermics, École des Ponts ParisTech
France

École des Ponts ParisTech

May 16, 2022

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)

Basic data

◮ Let (Ω,A∞,P) be a probability space

◮ Let T ∈ N∗ be the horizon

◮ For stages t = 0, . . . ,T − 1, let Ut be the control set,
a measurable set equipped with σ-field Ut

◮ For stages t = 0, . . . ,T , let Wt be the uncertainty set,
a measurable set equipped with σ-fields Wt

History space

For t = 0, . . . ,T , we define

◮ the history space Ht

Ht = W0 ×

t−1∏

s=0

(Us ×Ws+1)

equipped with the history field Ht

Ht = W0 ⊗
t−1⊗

s=0

(Us ⊗Ws+1)

◮ A generic element ht ∈ Ht is called a history

ht =(w0, u0,w1, u1,w2, . . . , ut−2,wt−1, ut−1,wt)

[ht] =
[
(w0, (us ,ws+1)s=0,...,t−1)

]
= (w0, . . . ,wt) = w[0:t]

hs:t =(ur ,wr+1)r=s−1,...,t−1 = (us−1,ws , . . . , ut−1,wt)

[hs:t] =[(ur ,wr+1)r=s−1,...,t−1] = (ws , . . . ,wt) = w[s:t]

Noise process, noise filtration and adapted processes

◮ For t = 0, . . . ,T , let
Wt : Ω → Wt

be a random variable taking values in Wt (noise)

◮ We introduce the past noises, or noise process up to stage t as

W[0:t] = (W0, . . . ,Wt) ∈ W[0:t] =
t∏

s=0

Ws

◮ We introduce the filtration A =
(
At

)

t=0,...,T
defined by

At = σ(W0, . . . ,Wt) , t = 0, . . . ,T

◮ Let L0(Ω,A,
∏T−1

s=0 Us) be the space of A-adapted processes

(U0, . . . ,UT−1) with values in
∏T−1

s=0 Us , that is, such that

σ(U0) ⊂ A0, . . . , σ(UT−1) ⊂ AT−1

Multistage stochastic optimization problem

◮ Let be given a (cost) function

j : HT →]−∞,+∞]

bounded below, and measurable with respect to the field HT

◮ We consider the multistage stochastic optimization problem

min
(U0,...,UT−1)∈L0

A
(Ω,

∏T−1
s=0 Us)

E
[
j(W0,U0,W1, . . . ,UT−1,WT)

]

◮ that is, with criterion J : L0(Ω,A,
∏T−1

s=0 Us) →]−∞,+∞] given by

J(U0, . . . ,UT−1) = E
[
j(W0,U0,W1, . . . ,UT−1,WT)

]

Doob Theorem

If every control set Ut is a separable complete metric space,
for t = 0, . . . ,T − 1, the condition

(
U0, . . . ,UT−1

)
∈ L

0
A
(Ω,

T−1∏

s=0

Us)

is equivalent to the existence of measurable mappings

λt : W0:t → Ut , t = 0, . . . ,T − 1

such that

Ut = λt(W0:t) = λt(W0, . . . ,Wt) , t = 0, . . . ,T − 1

Curse of scenario expansion

Assuming that

◮ the control ut can take Nu values

◮ the uncertainty wt can take Nw values

we obtain

◮ NT
w scenarios

◮ 1 + Nw + · · ·+ NT
w nodes in the scenario tree

◮ Nu ×
NT+1

w −1
Nw−1 ≈ NuN

T
w elements in the solution space

so that the number of possible solutions
grows exponentially with the number T of stages

Complexity of upper and lower bounds

◮ Upper bound: open loop solution

◮ Lower bound: anticipative

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)

Bellman operators

For t = 0, . . . ,T ,

◮ we define L
∞(Ht ,Ht), the space of

bounded measurable real-valued functions Ht → R

◮ We suppose that there exists a regular conditional distribution

P
W[0:t]

Wt+1
(w[0:t], dwt+1) = P

W[0:t]

Wt+1
([ht], dwt+1)

of the random variable Wt+1 knowing the random process W[0:t]

◮ we define the Bellman operators

Bt+1 : L
∞(Ht+1,Ht+1) → L

∞(Ht ,Ht) by

(
Bt+1ϕ

)
(ht) = inf

ut∈Ut

∫

Wt+1

ϕ
(
(ht , ut ,wt+1)

)
P
W[0:t]

Wt+1
([ht], dwt+1)

∀ϕ ∈ L
∞(Ht+1,Ht+1) , ∀ht ∈ Ht

Value functions and Bellman equation

◮ We define inductively value functions, or Bellman functions,

Vt : Ht → R , t = 0, . . . ,T

by
VT = j , Vt = Bt+1Vt+1 , t = 0, . . . ,T − 1

◮ that is, solution of the Bellman equation

Vt(ht) = inf
ut∈Ut

∫

Wt+1

Vt+1(ht , ut ,wt+1)P
W[0:t]

Wt+1
([ht], dwt+1)

Measurable selection

We suppose that, for all t = 0, . . . ,T , there exists a measurable selection

γt : (Ht ,Ht) → (Ut ,Ut)

such that

γt(ht) ∈ argmin
ut∈Ut

∫

Wt+1

Vt+1(ht , ut ,wt+1)P
W[0:t]

Wt+1
([ht], dwt+1)

∀ht ∈ Ht

Proposition
A solution to the multistage stochastic optimization problem

min
(U0,...,UT−1)∈L0

A
(Ω,

∏T−1
s=0 Us)

E
[
j(W0,U0,W1, . . . ,UT−1,WT)

]

is the sequence U∗

0 , . . . ,U
∗

T−1 of random variables defined inductively by

U∗

t = γt ◦ H
∗

t , t = 0, . . . ,T − 1

where H∗

0 = W0 , H∗

t+1 = (H∗

t ,U
∗

t ,Wt+1) , t = 0, . . . ,T − 1

and the minimum is

E
[
V0(W0)

]
= min

(U0,...,UT−1)∈L0
A
(Ω,

∏T−1
s=0 Us)

E
[
j(W0,U0,W1, . . . ,UT−1,WT)

]

Extension

H0 = W0 , Ht+1 = (Ht ,Ut ,Wt+1)

Constraints of the form

(Ht ,Ut) ∈ Ct ⊂ Ht × Ut , P− a.s , t = 0, . . . ,T − 1

and
HT ∈ CT ⊂ HT , P− a.s

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)

Optimal single dam management

At

St

Qt

Rt

A single dam nonlinear dynamical model in decision-hazard

We can model the dynamics of the water volume in a dam by

St+1
︸︷︷︸

future volume

= min{S♯, St
︸︷︷︸

volume

− Qt
︸︷︷︸

turbined

+ At+1
︸︷︷︸

inflow volume

}

◮ St volume (stock) of water at the beginning of period [t, t + 1[

◮ At+1 inflow water volume (rain, etc.) during [t, t + 1[

◮ decision-hazard:
At+1 is not available at the beginning of period [t, t + 1[

◮ Qt turbined outflow volume during [t, t + 1[
◮ decided at the beginning of period [t, t + 1[
◮ supposed to depend on St but not on At+1

◮ chosen such that 0 ≤ Qt ≤ St

The traditional economic problem is

maximizing the expected payoff

◮ Suppose that
◮ a probability P is given on the set RT

of water inflows scenarios (A0, . . . ,AT−1)
◮ turbined water Qt is sold at price pt ,

related to the price at which energy can be sold at time t
◮ at the horizon, the final volume ST has a value K(ST),

the “final value of water”

◮ The traditional economic problem is to maximize the intertemporal
payoff (without discounting if the horizon is short)

maxE
[T−1∑

t=0

turbined water payoff
︷︸︸︷

ptQt +

final volume utility
︷ ︸︸ ︷

K (ST)
]

State reduction and dynamics

For t = 0, . . . ,T , suppose that there exists

◮ state space Xt , a measurable set equipped with σ-field Xt

◮ reduction mappings
θt : Ht → Xt

◮ dynamics
ft : Xt × Ut ×Wt+1 → Xt+1

such that

θt+1(ht , ut ,wt+1) = ft
(
θt(ht), ut ,wt+1

)
, t = 0, . . . ,T − 1

Cost only depends on final state

Suppose that there exists

̃ : XT →]−∞,+∞]

such that the cost function j : HT →]−∞,+∞] can be factored as

j = ̃ ◦ θT

Markovian assumption

◮ Let ∆(Wt) denote the set of probabilities on (Wt ,Wt),
for t = 0, . . . ,T

◮ Suppose that, for all t = 0, . . . ,T , there exists

µt : Xt ×

t∏

s=0

Ws → ∆(Wt+1)

such that
P
W[0:t]

Wt+1

(
[ht], dwt+1

)
= µt

(
θt(ht), dwt+1

)

Bellman equation

◮ We define inductively

ṼT (xT) = ̃(xT) , ∀xT ∈ XT

Ṽt(xt) = inf
ut∈Ut

∫

Wt+1

Ṽt+1

(
ft(xt , ut ,wt+1)

)
µt(xt , dwt+1)

∀xt ∈ Xt , t = 0, . . . ,T − 1

◮ We suppose that there exists a measurable selection

γ̃∗

t : (Xt ,Xt) → (Ut ,Ut) , t = 0, . . . ,T − 1

such that

γ̃∗

t (xt) ∈ argmin
ut∈Ut

∫

Wt+1

Ṽt+1

(
ft(xt , ut ,wt+1)

)
µt(xt , dwt+1)

∀xt ∈ Xt

Proposition
A solution to the multistage stochastic optimization problem

min
U0,...,UT−1

E
[
j(W0,U0,W1, . . . ,UT−1,WT)

]

σ(U0) ⊂ σ(W0), . . . , σ(UT−1) ⊂ σ(W0, . . . ,WT−1)

is the sequence U∗

0 , . . . ,U
∗

T−1 of random variables defined inductively by

U∗

t = γ̃∗

t (X
∗

t) , t = 0, . . . ,T − 1

where X∗

0 = W0 , X∗

t+1 = ft(X
∗

t ,U
∗

t ,Wt+1) , t = 0, . . . ,T − 1

and the minimum is

E
[
Ṽ0(X

∗

0)
]
= min

(U0,...,UT−1)∈L0
A
(Ω,

∏T−1
s=0 Us)

E
[
j(W0,U0,W1, . . . ,UT−1,WT)

]

Extension

X0 = W0 , Xt+1 = ft(Xt ,Ut ,Wt+1) , t = 0, . . . ,T − 1

Constraints of the form

(Xt ,Ut) ∈ Ct ⊂ Xt × Ut , P− a.s , t = 0, . . . ,T − 1

and
XT ∈ CT ⊂ XT , P− a.s

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)

Stochatic optimal control problem formulation

min
U0,...,UT−1

E
[
T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT)
]

σ(U0) ⊂ σ(X0), . . . , σ(UT−1) ⊂ σ(X0,W1, . . . ,WT−1)

Xt+1 = ft(Xt ,Ut ,Wt+1) , t = 0, . . . ,T − 1

Ut ∈ Bt(Xt) , t = 0, . . . ,T − 1

Basic data

Let U, W, X be measurable sets, equipped with σ-fields U, W, X
and, for t = 0, . . . ,T − 1,

◮ dynamics mapping
ft : X× U×W → X

◮ instantaneous costs functions

Lt : X× U×W → R

◮ final cost function
K : X → R

◮ constraints set-valued mapping

Bt : X ⇒ U

Bellman equation

◮ We consider a stochastic process (W1, . . . ,WT), with values in W

◮ We define inductively the Bellman functions

VT (x) = K (x) , ∀x ∈ X

Vt(x) = inf
u∈Bt(x)

EWt+1

[
Lt(x , u,Wt+1) + Vt+1

(
ft(x , u,Wt+1)

)]

∀x ∈ X , t = 0, . . . ,T − 1

◮ We suppose that there exists a measurable selection

γ∗

t : (X,X) → (U,U) , t = 0, . . . ,T − 1 such that

γ∗

t (x) ∈ argmin
u∈Bt(x)

EWt+1

[
Lt(x , u,Wt+1) + Vt+1

(
ft(x , u,Wt+1)

)]

∀x ∈ X

White noise assumption

◮ We suppose that the stochastic process (W1, . . . ,WT)
is a white noise, that is,
W1, . . . ,WT are independent random variables

◮ We consider a random variable X0, with values in X,
independent of the stochastic process (W1, . . . ,WT)

Bellman result
Proposition
A solution to the multistage stochastic optimization problem

min
U0,...,UT−1

E
[
T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT)
]

σ(U0) ⊂ σ(X0), . . . , σ(UT−1) ⊂ σ(X0,W1, . . . ,WT−1)

Xt+1 = ft(Xt ,Ut ,Wt+1) , t = 0, . . . ,T − 1

Ut ∈ Bt(Xt) , t = 0, . . . ,T − 1

is the sequence U∗

0 , . . . ,U
∗

T−1 of random variables defined inductively by

U∗

t = γ∗

t (X
∗

t) , t = 0, . . . ,T − 1

where X∗

0 = X0 , X∗

t+1 = ft(X
∗

t ,U
∗

t ,Wt+1) , t = 0, . . . ,T − 1

and the minimum is

E
[
V0(X0)

]
= min

U0,...,UT−1

E
[
T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT)
]

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)
Bellman’s Principle of Optimality
Cost-to-go and Bellman equation
Backward offline / forward online
The curse of dimensionality
Hazard-decision, linear-convex, SDDP

The shortest path on a graph illustrates

Bellman’s Principle of Optimality

Los Angeles

Chicago

Boston

For an auto travel analogy,
suppose that the fastest
route from Los Angeles to
to Boston passes through
Chicago.
The principle of optimality
translates to obvious fact
that the Chicago to Boston
portion of the route is also
the fastest route for a trip
that starts from Chicago
and ends in Boston. (Dim-
itri P. Bertsekas)

Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 –
March 19, 1984)

An optimal policy has the
property that whatever the
initial state and initial deci-
sion are, the remaining de-
cisions must constitute an
optimal policy with regard
to the state resulting from
the first decision (Richard
Bellman)

What is state and what is noise?

Delineating what is state and what is noise

is a modelling issue

When the uncertainties are not independent,
a solution is to enlarge the state

◮ If the water inflows follow an auto-regressive model, we have

future stock
︷︸︸︷

St+1 = min{S♯,

stock
︷︸︸︷

St −

water release
︷︸︸︷

Qt +

water inflows
︷︸︸︷

At+1 }

At+1
︸︷︷︸

future water inflows

= α At
︸︷︷︸

water inflows

+Wt+1
︸ ︷︷ ︸

noise

where we suppose that W1, . . . ,WT−1,WT

form a sequence of independent random variables

◮ The couple xt =
(
St ,At

)
is a sufficient summary of past controls

and uncertainties to do forecasting:
knowing the state xt =

(
St ,At

)
at time t is sufficient

to forecast xt+1, given the control Qt and the uncertainty Wt+1

What is a state?

Bellman autobiography, Eye of the Hurricane

Conversely, once it was realized that the concept of policy was
fundamental in control theory, the mathematicization of the ba-
sic engineering concept of ’feedback control,’ then the emphasis
upon a state variable formulation became natural

◮ A state in optimal stochastic control problems is a sufficient
statistics for the uncertainties and past controls
(P. Whittle, Optimization over Time: Dynamic Programming and
Stochastic Control)

◮ Quoting Whittle, suppose there is a variable xt
which summarizes past history in that, given t and the value of xt ,
one can calculate the optimal ut and also xt+1 without knowledge of
the history (ω, u0, ..., ut−1), for all t, where ω represents all
uncertainties. Such a variable is termed sufficient

◮ While history takes value in an increasing space as t increases,
a sufficient variable taking values in a space independent of t
is called a state variable

A bit of history (and fun)

“Where did the name, dynamic programming, come from?”

The 1950s were not good years
for mathematical research. We
had a very interesting gentleman
in Washington named Wilson. He
was Secretary of Defense, and he
actually had a pathological fear and
hatred of the word, research. I’m
not using the term lightly; I’m us-
ing it precisely. His face would suf-
fuse, he would turn red, and he
would get violent if people used
the term, research, in his presence.
You can imagine how he felt, then,
about the term, mathematical.

“Where did the name, dynamic programming, come from?”

What title, what name, could I
choose? In the first place I was
interested in planning, in decision
making, in thinking. But planning,
is not a good word for various rea-
sons. I decided therefore to use the
word, programming.

“Where did the name, dynamic programming, come from?”

I wanted to get across the idea that
this was dynamic, this was mul-
tistage, this was time-varying. I
thought, let’s kill two birds with
one stone. Let’s take a word that
has an absolutely precise meaning,
namely dynamic, in the classical
physical sense. It also has a very in-
teresting property as an adjective,
and that is it’s impossible to use
the word, dynamic, in a pejorative
sense. Try thinking of some com-
bination that will possibly give it
a pejorative meaning. It’s impossi-
ble. Thus, I thought dynamic pro-
gramming was a good name.

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)
Bellman’s Principle of Optimality
Cost-to-go and Bellman equation
Backward offline / forward online
The curse of dimensionality
Hazard-decision, linear-convex, SDDP

The cost-to-go / value function / Bellman function

Assume that the primitive random variables W1, . . . ,WT−1,WT are
independent under the probability P

Cost-to-go / value function / Bellman function
The cost-to-go from state x at stage t is

Vt(x) = min
γt ,...,γT−1

E

[T−1∑

s=t

Ls(Xs ,Us ,Ws+1) + K (XT)

]

where Xt = x and, for s = t, . . . ,T − 1,
Xs+1 = fs

(
Xs ,Us ,Ws+1

)
and Us = γs(Xs)

◮ The function Vt : X → R is called the value function,
or the Bellman function

◮ The original minimization problem is V0(x0)

The stochastic dynamic programming equation,

or Bellman equation, is a backward equation
satisfied by the value function

Stochastic dynamic programming equation
If the primitive random variables W1, . . . ,WT−1,WT

are independent under the probability P,
the value function Vt : X → R satisfies the following backward induction,
where t runs from T − 1 down to 0

VT (x) = K (x)

Vt(x) = min
u∈Bt(x)

EWt+1

[

Lt(x , u,Wt+1) + Vt+1

(
ft(x , u,Wt+1)

)]

∀x ∈ X

Sketch of the proof in the deterministic case

Vt(x) = min
u∈Bt(x)

(

Lt(x , u)
︸ ︷︷ ︸

instantaneous cost

+

optimal cost
︷ ︸︸ ︷

Vt+1

(
ft(x , u)
︸ ︷︷ ︸

future state

))

Los Angeles

Chicago

Boston

A decision u at time t in state x
provides

◮ an instantaneous cost Lt(x , u)

◮ and a future cost for attaining
the new state ft(x , u)

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)
Bellman’s Principle of Optimality
Cost-to-go and Bellman equation
Backward offline / forward online
The curse of dimensionality
Hazard-decision, linear-convex, SDDP

Navigating between “backward offline” and “forward online”

Optimal trajectories are calculated forward online

1. Initial state x∗0 = x0

2. Plug the state x∗0 into the feedback γ0
→ initial decision u∗0 = γ∗

0 (x
∗

0)
or compute the optimal decision u∗t “on the fly” by

u∗0 ∈ argmin
u∈B0(x∗0)

EW1

[

L0(x
∗

0 , u,W1) + V1

(
f0(x

∗

0 , u,W1)
)]

3. Run the dynamics → second state x∗1 = f0(x
∗

0 , u
∗

0 ,w1)

4. Second decision

u∗1 ∈ argmin
u∈B1(x∗1)

EW2

[

L1(x
∗

1 , u,W2) + V2

(
f1(x

∗

1 , u,W2)
)]

5. And so on x∗2 = f1(x
∗

1 , u
∗

1 ,w2)

6. . . .

“Life is lived forward but understood backward”

(Søren Kierkegaard)

D. P. Bertsekas introduces his book
Dynamic Programming and Optimal Control
with a citation by Søren Kierkegaard

”Livet skal forst̊as baglaens, men leves
forlaens”

Life is to be understood backwards,
but it is lived forwards

◮ The value function and the optimal policies
are computed backward and offline
by means of the Bellman equation

◮ whereas the optimal trajectories
are computed forward and online

How optimal decisions can be computed online
Greedy one-step lookahead algorithm

◮ If we are able to store the value functions x 7→ Vt(x)

◮ we do not need to compute and store
the optimal policy γ∗

t in advance

◮ Indeed, when we are at state x at time t in real time,
we can just compute the optimal decision u∗t “on the fly” by

u∗t ∈ argmin
u∈Bt(x)

EWt+1

[

Lt(x , u,Wt+1) + Vt+1

(
ft(x , u,Wt+1)

)]

◮ In addition to sparing storage, this method makes it possible
to incorporate in the above program any new information available
at time t (on the distribution of the noise Wt+1, for instance)

So, the question is:

how can we store the value functions?

The effort can be concentrated on computing the value functions

◮ on a grid, by discretizing the Bellman equation
(but curse of dimensionality)

◮ by estimating basis coefficients,
when it is known that the value functions are quadratic
(the linear-quadratic case)

◮ by estimating lower affine approximations of the value functions,
when it is known that the value function is convex
(the linear-convex case and SDDP)

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)
Bellman’s Principle of Optimality
Cost-to-go and Bellman equation
Backward offline / forward online
The curse of dimensionality
Hazard-decision, linear-convex, SDDP

The curse of dimensionality :-(

Algorithm for the Bellman functions

initialization VT = K ;
for t = T ,T − 1, . . . , 0 do

forall x ∈ X do

forall u ∈ Bt(x) do
forall w ∈ Wt+1 do

lt(x , u,w) = Lt(x , u,w) + Vt+1

(
ft(x , u,w)

)

∑

w∈Wt+1

P{w}lt(x , u,w)

Vt(x) = min
u∈Bt(x)

∑

w∈Wt+1

P{w}lt(x , u,w) ;

B∗

t (x) = argmin
u∈Bt(x)

∑

w∈Wt+1

P{w}lt(x , u,w)

Complexity of the dynamic programming algorithm

Assuming that

◮ the state xt can take Nx values

◮ the control ut can take Nu values

◮ the uncertainty wt can take Nw values

the complexity (number of operations) of the Bellman algorithm is in

O(T × Nx × Nu × Nw)

which is linear in the number of stages :-)
but exponential in the dimension of the state
(and also control and uncertainty)

The curse of dimensionality is illustrated by the random

access memory capacity on a computer:
one, two, three, infinity (Gamov)

◮ On a computer
◮ RAM: 8 GBytes = 8(1 024)3 = 233 bytes
◮ a double-precision real: 8 bytes = 23 bytes
◮ =⇒ 230 ≈ 109 double-precision reals can be handled in RAM

◮ If a state of dimension 4 is approximated by a grid with 100 levels
by components, we need to manipulate 1004 = 108 reals and
◮ do a time loop
◮ do a control loop (after discretization)
◮ compute an expectation

The wall of dimension can be pushed beyond
if additional properties are exploited (linearity, convexity)

In the linear-quadratic case, value functions are quadratic

and optimal policies are linear

◮ When cost functions are quadratic (convex)

K (x) = x ′ST x (+affine)

Lt(x , u,w) = x ′Stx + w ′Rtw + u′Qtu (+affine)

◮ and the dynamic is affine

ft(x , u,w) = Ftx + Gtu + Htw (+constant)

◮ and primitive random variables W1, . . . ,WT−1,WT

are square integrable and independent under the probability P

◮ then, the value functions x 7→ Vt(x) are quadratic (convex),
and optimal policies are affine in the state

ut = Mtxt (+constant)

Outline of the presentation

Multistage Stochastic Optimization

Dynamic Programming Without State

Dynamic Programming With State

Dynamic Programming With State and White Noise

Dynamic Programming With State and White Noise (Complements)
Bellman’s Principle of Optimality
Cost-to-go and Bellman equation
Backward offline / forward online
The curse of dimensionality
Hazard-decision, linear-convex, SDDP

Stochatic optimal control problem formulation

(hazard-decision)

min
U0,...,UT−1

E
[
T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT)
]

σ(U0) ⊂ σ(X0,W1), . . . , σ(UT−1) ⊂ σ(X0,W1, . . . ,WT)

Xt+1 = ft(Xt ,Ut ,Wt+1) , t = 0, . . . ,T − 1

Ut ∈ Bt(Xt ,Wt+1) , t = 0, . . . ,T − 1

Bellman equation and optimal policies

in the hazard-decision information pattern

The uncertainty is observed before making the decision

initialization VT = K ;
for t = T ,T − 1, . . . , 0 do

forall x ∈ X do

forall w ∈ Wt+1 do

forall u ∈ Bt(x ,w) do
lt(x , u,w) = Lt(x , u,w) + Vt+1

(
ft(x , u,w)

)

min
u∈Bt(x)

lt(x , u,w) ;

B∗

t (x ,w) = argmin
u∈Bt(x,w)

lt(x , u,w)

Vt(x) =
∑

w∈Wt+1

P{w} min
u∈Bt(x,w)

lt(x , u,w)

When spilling decisions are made after knowing the water

inflows, we obtain a linear dynamical model

St+1
︸︷︷︸

future volume

= St
︸︷︷︸

volume

− Qt
︸︷︷︸

turbined

+ At+1
︸︷︷︸

inflow volume

− Rt+1
︸︷︷︸

spilled

◮ St volume (stock) of water at the beginning of period [t, t + 1[

◮ At+1, inflow water volume (rain, etc.) during [t, t + 1[;

◮ Qt turbined outflow volume
◮ decided at the beginning of period [t, t + 1[(hazard follows decision)
◮ supposed to depend on the stock St

◮ Rt+1 spilled volume
◮ decided at the end of period [t, t + 1[(hazard precedes decision)
◮ supposed to depend on the stock St and on the inflow water At

0 ≤ Qt ≤ St and 0 ≤ St − Qt + At+1 − Rt+1 ≤ S♯

In the linear-convex case, value functions are convex

Here, we aim at minimizing expected cumulated costs

E

[T−1∑

t=0

instantaneous cost
︷ ︸︸ ︷

Lt(Xt ,Ut ,Wt+1)+ K (XT)
︸ ︷︷ ︸

final cost

]

The value functions x 7→ Vt(x) are convex whenever

◮ the instantaneous cost functions (x , u) 7→ Lt(x , u,w)
is jointly convex in state and control (∀w)

◮ the final cost function x 7→ K (x) is convex (∀w)

◮ the dynamics mappings are affine in state and control (∀w)

ft(x , u,w) = Ft(w)x + Gt(w)u + Ht(w)

◮ The constraint sets
{
(x , u)

∣
∣ u ∈ Bt(x)

}
are convex

The minimum over one variable of a jointly convex function

is convex in the other variable

A lemma in convex analysis
Let f : X× Y → R be convex, and let C ⊂ X× Y be a convex set
Then, the so-called marginal function g : X → R defined by

g(x) = min
y∈Y,(x,y)∈C

f (x , y) , ∀x ∈ X

is a convex function

Stochastic Dual Dynamic Programming (SDDP)

◮ The dynamic programming equation associated with
the problem of minimizing the expected costs is

VT (x) =

final cost
︷ ︸︸ ︷

K (x)

Vt(x) = min
u∈Bt(x)

EWt+1

[
instantaneous cost
︷ ︸︸ ︷

Lt(x , u,Wt+1)

+Vt+1

(
Ft(Wt+1)x + Gt(Wt+1)u + Ht(Wt+1)
︸ ︷︷ ︸

future state

)]

◮ It can be shown by induction that x 7→ Vt(x) is convex

◮ A subgradient at x∗t+1 defines a hyperplane,
hence a lower affine approximation of the value function,
calculated by duality

SDDP and autoregressive noise models

The property that value functions are convex
extends to the following cases

◮ Multiple stocks interconnected by linear dynamics

Sit+1 = Sit + Ai
t +Qi−1

t − Qi
t − Ri

t+1

◮ Water inflows following an autoregressive model

Ai
t+1 =

∑

k=0,...,K i

αkA
i
t−k +Wt+1

where the random variables W1, . . . ,WT−1,WT

are independent

Summary

◮ Bellman’s Principle of Optimality breaks
an intertemporal optimization problem
into a sequence of interconnected static optimization problems

◮ The cost-to-go / value function / Bellman function
is solution of a backward dynamic programming equation,
or Bellman equation

◮ The Bellman equation provides an optimal policy,
a concept of solution adapted to uncertain case

◮ In numerical practice, the curse of dimensionality
forbids to use dynamic programming
for a state with dimension more than four or five

◮ However, special cases like the linear-quadratic or the linear-convex
ones, do not (totally) suffer from the curse of dimensionality

	Multistage Stochastic Optimization
	Dynamic Programming Without State
	Dynamic Programming With State
	Dynamic Programming With State and White Noise
	Dynamic Programming With State and White Noise (Complements)
	Bellman's Principle of Optimality
	Cost-to-go and Bellman equation
	Backward offline / forward online
	The curse of dimensionality
	Hazard-decision, linear-convex, SDDP

