Sustainable Yields for Ecosystems

Eladio ${\rm OCA \tilde{N}A}~^1,$ Michel DE ${\rm LARA}^2,$ Ricardo ${\rm OLIVEROS-RAMOS}~^3$ and Jorge TAM 3

September 1, 2010

< 回 > シックへ

¹IMCA-FC, Universidad Nacional de Ingeniería, Lima-Perú
 ²CERMICS, Université Paris-Est, France
 ³Instituto del Mar del Perú, Centro de Investigaciones en Modelado
 Oceanográfico y Biológico Pesquero (CIMOBP), Callao-Perú
 E. Ocaña, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM

Outline of the presentation

2 Anchovy-hake couple in the Peruvian upwelling ecosystem

- 3 Viable states and guaranteed yields
- 4 Sustainable yields for ecosystems

Outline of the presentation

2 Anchovy-hake couple in the Peruvian upwelling ecosystem

3 Viable states and guaranteed yields

Outline of the presentation

2 Anchovy-hake couple in the Peruvian upwelling ecosystem

- 3 Viable states and guaranteed yields
 - 4 Sustainable yields for ecosystems

Outline of the presentation

2 Anchovy-hake couple in the Peruvian upwelling ecosystem

- 3 Viable states and guaranteed yields
- 4 Sustainable yields for ecosystems

How are fishing quotas fixed?

Anchovy–hake couple in the Peruvian upwelling ecosystem Viable states and guaranteed yields Sustainable yields for ecosystems

<<p>
・日・ のへで

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM Ecologie 2010, Montpellier, 2-4 septembre 2010

Sustainable yields: species by species

• Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- $\bullet\,\,\Rightarrow\,$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY

• ICES precautionary approach

- monospecific age-class dynamic model
- short term:projects abundances one year ahead
- \Rightarrow maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

Sustainable yields: species by species

• Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- $\bullet\,\,\Rightarrow\,$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY
- ICES precautionary approach
 - monospecific age-class dynamic model
 - short term:projects abundances one year ahead
 - \Rightarrow maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

Sustainable yields: species by species

• Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- $\bullet\,\,\Rightarrow\,$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY

• ICES precautionary approach

- monospecific age-class dynamic model
- short term:projects abundances one year ahead
- \Rightarrow maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

Sustainable yields: species by species

• Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- ullet \Rightarrow maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY

• ICES precautionary approach

- monospecific age-class dynamic model
- short term:projects abundances one year ahead
- ⇒ maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

Sustainable yields: species by species

• Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- $\bullet\,\,\Rightarrow\,$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY
- ICES precautionary approach
 - monospecific age-class dynamic model
 - short term:projects abundances one year ahead
 - \Rightarrow maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
 - multi-specific dynamic model (age-class or not)
 - long-term: guaranteed yields and biological indicators
 - method: computing a set of viable states (viability kernel)
 - \Rightarrow species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
 - $\bullet \ \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

<<p>
・日・ のへで

- Specific case
 - Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
 - multi-specific dynamic model (age-class or not)
 - long-term: guaranteed yields and biological indicators
 - method: computing a set of viable states (viability kernel)
 - \Rightarrow species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
 - $\bullet \ \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

< **₽** ► < < < <

- Specific case
 - Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
 - multi-specific dynamic model (age-class or not)
 - long-term: guaranteed yields and biological indicators
 - method: computing a set of viable states (viability kernel)
 - \Rightarrow species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
 - $\bullet \ \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- Specific case
 - Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
 - multi-specific dynamic model (age-class or not)
 - long-term: guaranteed yields and biological indicators
 - method: computing a set of viable states (viability kernel)
 - \Rightarrow species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
 - $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- Specific case
 - Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
 - multi-specific dynamic model (age-class or not)
 - long-term: guaranteed yields and biological indicators
 - method: computing a set of viable states (viability kernel)
 - ⇒ species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
 - ullet \Rightarrow explicit expressions for viability kernel and guaranteed yields

- Specific case
 - Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
 - multi-specific dynamic model (age-class or not)
 - long-term: guaranteed yields and biological indicators
 - method: computing a set of viable states (viability kernel)
 - ⇒ species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
 - $\bullet \ \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- Specific case
 - Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
 - multi-specific dynamic model (age-class or not)
 - long-term: guaranteed yields and biological indicators
 - method: computing a set of viable states (viability kernel)
 - \Rightarrow species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
 - $\bullet \ \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- Specific case
 - Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
 - multi-specific dynamic model (age-class or not)
 - long-term: guaranteed yields and biological indicators
 - method: computing a set of viable states (viability kernel)
 - \Rightarrow species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
 - $\bullet \ \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- Specific case
 - Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

How are fishing quotas fixed?

Anchovy–hake couple in the Peruvian upwelling ecosystem Viable states and guaranteed yields Sustainable yields for ecosystems

Credits

MIFIMA

Mathematics, Informatics and Fisheries Management

- 3 countries: Chile, Peru, France,
- 3 disciplines: research network of biologists, economists and mathematicians
- 3 years: 2007, 2008, 2009

• We thank CNRS, INRIA and the French Ministry of Foreign Affairs for their funding and support through the regional cooperation program STIC-AmSud.

How are fishing quotas fixed?

Anchovy–hake couple in the Peruvian upwelling ecosystem Viable states and guaranteed yields Sustainable yields for ecosystems

Credits

• MIFIMA

Mathematics, Informatics and Fisheries Management

- 3 countries: Chile, Peru, France,
- 3 disciplines: research network of biologists, economists and mathematicians,
- 3 years: 2007, 2008, 2009
- We thank CNRS, INRIA and the French Ministry of Foreign Affairs for their funding and support through the regional cooperation program STIC-AmSud.

Outline of the presentation

2 Anchovy-hake couple in the Peruvian upwelling ecosystem

- 3 Viable states and guaranteed yields
- ④ Sustainable yields for ecosystems

Anchoveta/Anchovy and Merluza/Hake

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM Ecologie 2010, Montpellier, 2-4 septembre 2010

Anchoveta/Anchovy and Merluza/Hake

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM

Ecologie 2010, Montpellier, 2-4 septembre 2010

11 years of data from 1971 to 1981

Instituto del Mar del Perú (IMARPE) In thousands of tonnes (10³ tons)

- anchoveta_stocks=
 [4058 3116 3461 2649 4517 1232 3727 1812 1826 8793 3418]
- merluza_stocks=
 [347 437 455 414 538 735 636 738 408 312 148]
- anchoveta_captures=
 [5797 1600 2540 3191 2299 1323 353 1154 177 202 1209]

merluza_captures=
 [27 13 133 109 85 93 107 303 93 159 69]

Conservation and catch thresholds

The following annual objectives

(IMARPE, taller internacional sobre la anchoveta peruana)

	Anchovy (prey, y)	Hake (predator, <i>z</i>)
minimal biomass		
minimal catch		

Conservation and catch thresholds

The following annual objectives

(IMARPE, taller internacional sobre la anchoveta peruana)

	Anchovy (prey, y)	Hake (predator, <i>z</i>)
minimal biomass	7 000 kt	200 kt
minimal catch	2 000 kt	5 kt

Conservation and catch thresholds

The following annual objectives

(IMARPE, taller internacional sobre la anchoveta peruana)

	Anchovy (prey, y)	Hake (predator, <i>z</i>)
minimal biomass	7 000 kt	200 kt
minimal catch	2 000 kt	5 kt

Conservation and catch thresholds

The following annual objectives

(IMARPE, taller internacional sobre la anchoveta peruana)

	Anchovy (prey, y)	Hake (predator, <i>z</i>)
minimal biomass	7 000 kt	200 kt
minimal catch	2 000 kt	5 kt

Figure: Viability kernel for minimal catches of 2 000 kt(anchovy) and 5 kt(hake)

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM Ecologie 2010, Montpellier, 2-4 septembre 2010

Sustainable yields compatible with conservation

Theoretically, one could produce, year after year,

- anchovy yield of at least 2 000 kt
- hake yield of at least 5 kt

without harming the species in the sense that, every year

- anchovy biomass is at least 7 000 kt
- hake biomass of at least 200 kt.

Sustainable yields compatible with conservation

Theoretically, one could produce, year after year,

- anchovy yield of at least 2 000 kt
- hake yield of at least 5 kt

without harming the species in the sense that, every year

- anchovy biomass is at least 7 000 kt
- hake biomass of at least 200 kt.

Sustainable yields compatible with conservation

Theoretically, one could produce, year after year,

- anchovy yield of at least 2 000 kt
- hake yield of at least 5 kt

without harming the species in the sense that, every year

- anchovy biomass is at least 7 000 kt
- hake biomass of at least 200 kt.

Sustainable yields compatible with conservation

Theoretically, one could produce, year after year,

- anchovy yield of at least 2 000 kt
- hake yield of at least 5 kt

without harming the species in the sense that, every year

- anchovy biomass is at least 7 000 kt
- hake biomass of at least 200 kt.

Hake-anchovy Peruvian fisheries between 1971 and 1981: a Lotka-Volterra model

Figure: Comparison of observed and simulated biomasses of anchovy and hake using a Lotka–Volterra model with density-dependence in the prey. Model parameters are R = 2.24, L = 0.98, $\kappa = 64~672~\times 10^3$ t ($K = 35~800~\times 10^3$ t), $\alpha = 1.230 \times 10^{-6} t^{-1}$, $\beta = 4.326 \times 10^{-8} t^{-1}$, $\kappa = 64~672 \times 10^{-8} t^{-1}$

Lotka–Volterra model with density–dependence

$$\begin{cases} y(t+1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right) \\ z(t+1) &= z(t) \underbrace{\left(L + \beta y(t) - w(t) \right)}_{R_z}, \end{cases}$$

- state vector (y, z) represents biomasses,
 - *y* prey biomass: anchovy
 - z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- catches are vy and wz (measured in biomass),
- R_y and R_z are annual growth factors.

< 回 > シックへ
Lotka–Volterra model with density–dependence

$$\begin{cases} y(t+1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right) \\ z(t+1) &= z(t) \underbrace{\left(L + \beta y(t) - w(t) \right)}_{R_z}, \end{cases}$$

- state vector (y, z) represents biomasses,
 - y prey biomass: anchovy
 - z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- catches are vy and wz (measured in biomass),
- R_y and R_z are annual growth factors.

Lotka–Volterra model with density–dependence

$$\begin{cases} y(t+1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right) \\ z(t+1) &= z(t) \underbrace{\left(L + \beta y(t) - w(t) \right)}_{R_z}, \end{cases}$$

- state vector (y, z) represents biomasses,
 - y prey biomass: anchovy
 - z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- catches are vy and wz (measured in biomass),
- R_y and R_z are annual growth factors.

Lotka–Volterra model with density–dependence

$$\begin{cases} y(t+1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right) \\ z(t+1) &= z(t) \underbrace{\left(L + \beta y(t) - w(t) \right)}_{R_z}, \end{cases}$$

- state vector (y, z) represents biomasses,
 - y prey biomass: anchovy
 - z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- catches are vy and wz (measured in biomass),
- R_y and R_z are annual growth factors.

Lotka–Volterra model with density–dependence

$$\begin{cases} y(t+1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right) \\ z(t+1) &= z(t) \underbrace{\left(L + \beta y(t) - w(t) \right)}_{R_z}, \end{cases}$$

- state vector (y, z) represents biomasses,
 - y prey biomass: anchovy
 - z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- catches are vy and wz (measured in biomass),
- R_y and R_z are annual growth factors.

Outline of the presentation

2 Anchovy-hake couple in the Peruvian upwelling ecosystem

3 Viable states and guaranteed yields

4 Sustainable yields for ecosystems

Generic nonlinear ecosystem models

For simplicity, we consider a two-dimensional state model

$$\begin{cases} y(t+1) = y(t) \overbrace{R_y(y(t), z(t), v(t))}^{\text{growth factor}} \\ z(t+1) = z(t) \underbrace{R_z(y(t), z(t), w(t))}_{\text{growth factor}} \end{cases}$$

where

- state vector (y(t), z(t)) represents biomasses,
- control vector (v(t), w(t)) is fishing effort of each species, respectively.

The catches are thus v(t)y(t) and w(t)z(t) (measured in biomass).

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM Ecologie 2010, Montpellier, 2-4 septembre 2010

Generic nonlinear ecosystem models

For simplicity, we consider a two-dimensional state model

$$\begin{cases} y(t+1) = y(t) \overbrace{R_y(y(t), z(t), v(t))}^{\text{growth factor}} \\ z(t+1) = z(t) \underbrace{R_z(y(t), z(t), w(t))}_{\text{growth factor}} \end{cases}$$

where

- state vector (y(t), z(t)) represents biomasses,
- control vector (v(t), w(t)) is fishing effort of each species, respectively.

The catches are thus v(t)y(t) and w(t)z(t)(measured in biomass).

Generic nonlinear ecosystem models

For simplicity, we consider a two-dimensional state model

$$\begin{cases} y(t+1) = y(t) \overbrace{R_y(y(t), z(t), v(t))}^{\text{growth factor}} \\ z(t+1) = z(t) \underbrace{R_z(y(t), z(t), w(t))}_{\text{growth factor}} \end{cases}$$

where

- state vector (y(t), z(t)) represents biomasses,
- control vector (v(t), w(t)) is fishing effort of each species, respectively.

The catches are thus v(t)y(t) and w(t)z(t) (measured in biomass).

Trade-offs biology-economy

<**₽** ▶ _ • • • •

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM

Ecologie 2010, Montpellier, 2-4 septembre 2010

Viability kernel

C. Béné, L. Doyen, and D. Gabay. *A viability analysis for a bio-economic model.* Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $(y(t_0), z(t_0))$ from which appropriate controls (v(t), w(t)), $t = t_0, t_0 + 1, ...$ produce a trajectory (y(t), z(t)), $t = t_0, t_0 + 1, ...$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

 $\mathsf{stocks}: \qquad y(t) \geq \mathsf{S}^{\flat}_{y} \;, \quad z(t) \geq \mathsf{S}^{\flat}_{z}$

and economic/social requirements (minimal catch thresholds)

atches: $v(t)y(t) \geq C_y^{lat} \ , \quad w(t)z(t) \geq C_z^{lat} \ .$

Viability kernel

C. Béné, L. Doyen, and D. Gabay. *A viability analysis for a bio-economic model.* Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $(y(t_0), z(t_0))$ from which appropriate controls (v(t), w(t)), $t = t_0, t_0 + 1, ...$ produce a trajectory (y(t), z(t)), $t = t_0, t_0 + 1, ...$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

 $\mathsf{stocks}: \qquad y(t) \geq \mathsf{S}^{\flat}_{y} \;, \quad z(t) \geq \mathsf{S}^{\flat}_{z}$

and economic/social requirements (minimal catch thresholds)

atches: $extsf{v}(t)y(t)\geq C_y^{lat}\,,\quad w(t)z(t)\geq C_z^{lat}\,.$

Viability kernel

C. Béné, L. Doyen, and D. Gabay. *A viability analysis for a bio-economic model.* Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $(y(t_0), z(t_0))$ from which appropriate controls (v(t), w(t)), $t = t_0, t_0 + 1, ...$ produce a trajectory (y(t), z(t)), $t = t_0, t_0 + 1, ...$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

 $\mathsf{stocks}: \qquad y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat}$

and economic/social requirements (minimal catch thresholds)

atches: $oldsymbol{v}(t)y(t)\geq C_y^{lat}\,,\quad w(t)z(t)\geq C_z^{lat}\,.$

Viability kernel

C. Béné, L. Doyen, and D. Gabay. *A viability analysis for a bio-economic model.* Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $(y(t_0), z(t_0))$ from which appropriate controls (v(t), w(t)), $t = t_0, t_0 + 1, ...$ produce a trajectory (y(t), z(t)), $t = t_0, t_0 + 1, ...$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

 $\mathsf{stocks}: \qquad y(t) \geq \mathsf{S}^{\flat}_{y} \;, \quad z(t) \geq \mathsf{S}^{\flat}_{z}$

• and economic/social requirements (minimal catch thresholds)

witches: $extsf{v}(t)y(t)\geq C_y^{lat}\,,\quad w(t)z(t)\geq C_z^{lat}\,.$

Viability kernel

C. Béné, L. Doyen, and D. Gabay. *A viability analysis for a bio-economic model.* Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $(y(t_0), z(t_0))$ from which appropriate controls (v(t), w(t)), $t = t_0, t_0 + 1, ...$ produce a trajectory (y(t), z(t)), $t = t_0, t_0 + 1, ...$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{lat} \ , \ \ z(t) \geq S_z^{lat}$

• and economic/social requirements (minimal catch thresholds)

witches: $extsf{v}(t)y(t) \geq C_y^{lat} \ , \quad w(t)z(t) \geq C_z^{lat} \ .$

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $(y(t_0), z(t_0))$ from which appropriate controls (v(t), w(t)), $t = t_0, t_0 + 1, ...$ produce a trajectory (y(t), z(t)), $t = t_0, t_0 + 1, ...$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^\flat$, $z(t) \geq S_z^\flat$

and economic/social requirements (minimal catch thresholds)

 $ext{tches:} ext{ } v(t)y(t) \geq C_y^{lat} \ , ext{ } w(t)z(t) \geq C_z^{lat} \ .$

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $(y(t_0), z(t_0))$ from which appropriate controls (v(t), w(t)), $t = t_0, t_0 + 1, ...$ produce a trajectory (y(t), z(t)), $t = t_0, t_0 + 1, ...$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{\flat}, \quad z(t) \geq S_z^{\flat}$

• and economic/social requirements (minimal catch thresholds) catches: $v(t)y(t) \ge C_y^{\flat}$, $w(t)z(t) \ge C_z^{\flat}$.

State constraint set and viability kernel

Viability kernel

Figure: Viability kernel for minimal biomass thresholds $S_y^{\flat} = 7\ 000\ kt$ (anchovy) and $S_z^{\flat} = 200\ kt$ (hake), and minimal catches thresholds $C_y^{\flat} = 2\ 000\ kt$ (anchovy) and $C_z^{\flat} = 5\ kt$ (hake)

Explicit expression for the viability kernel

Proposition

- If the growth factors are decreasing in the fishing effort
- and if the thresholds S^b_y, S^b_z, C^b_y, C^b_z are such that the following growth factors are greater than one

$$R_y(S_y^{lat},S_z^{lat},rac{C_y^{lat}}{S_y^{lat}})\geq 1$$
 and $R_z(S_y^{lat},S_z^{lat},rac{C_z^{lat}}{S_z^{lat}})\geq 1$

the viability kernel is given by

$$\left\{(y,z)\mid y\geq S_y^\flat,\; z\geq S_z^\flat,\; yR_y(y,z,\frac{C_y^\flat}{y})\geq S_y^\flat,\; zR_z(y,z,\frac{C_z^\flat}{z})\geq S_z^\flat\right\}$$

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM Ecologie 2010, Montpellier, 2-4 septembre 2010

Explicit expression for the viability kernel

Proposition

- If the growth factors are decreasing in the fishing effort
- and if the thresholds S^b_y, S^b_z, C^b_y, C^b_z are such that the following growth factors are greater than one

$$R_y(S_y^{\flat},S_z^{\flat},rac{C_y^{\flat}}{S_y^{\flat}}) \geq 1$$
 and $R_z(S_y^{\flat},S_z^{\flat},rac{C_z^{\flat}}{S_z^{\flat}}) \geq 1$

the viability kernel is given by

$$\left\{(y,z)\mid y\geq S_y^\flat,\; z\geq S_z^\flat,\; yR_y(y,z,\frac{C_y^\flat}{y})\geq S_y^\flat,\; zR_z(y,z,\frac{C_z^\flat}{z})\geq S_z^\flat\right\}$$

Explicit expression for the viability kernel

Proposition

- If the growth factors are decreasing in the fishing effort
- and if the thresholds S^b_y, S^b_z, C^b_y, C^b_z are such that the following growth factors are greater than one

$$R_y(S_y^{\flat},S_z^{\flat},rac{C_y^{\flat}}{S_y^{\flat}}) \geq 1$$
 and $R_z(S_y^{\flat},S_z^{\flat},rac{C_z^{\flat}}{S_z^{\flat}}) \geq 1$

the viability kernel is given by

$$\left\{(y,z)\mid y\geq S_y^\flat,\; z\geq S_z^\flat,\; yR_y(y,z,\frac{C_y^\flat}{y})\geq S_y^\flat,\; zR_z(y,z,\frac{C_z^\flat}{z})\geq S_z^\flat\right\}$$

< 合型

From thresholds to initial states

- Given a priori conflicting requirements
 - ecological thresholds $S_{\nu}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
 - economic/social thresholds C_y^{\flat} , C_z^{\flat} (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

• preservation (minimal biomass thresholds)

stocks:
$$y(t) \geq S_y^{lat} \ , \ \ z(t) \geq S_z^{lat} \ ,$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_y^{\flat}$, $w(t)z(t) \ge C_z^{\flat}$.

▲ □ ▶ り へ ()

From thresholds to initial states

• Given a priori conflicting requirements

- ecological thresholds $S_{v}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
- economic/social thresholds C_y^{\flat} , C_z^{\flat} (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

• preservation (minimal biomass thresholds)

stocks:
$$y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_y^{\flat}$, $w(t)z(t) \ge C_z^{\flat}$.

ৰ∄ ▶় গ৭ে ি

From thresholds to initial states

• Given a priori conflicting requirements

- ecological thresholds $S_{\gamma}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
- economic/social thresholds C_y^{\flat} , C_z^{\flat} (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

• preservation (minimal biomass thresholds)

stocks:
$$y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_y^{\flat}$, $w(t)z(t) \ge C_z^{\flat}$.

▲ □ ▶ り へ ()

From thresholds to initial states

• Given a priori conflicting requirements

- ecological thresholds $S_{\gamma}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
- economic/social thresholds C_y^{\flat} , C_z^{\flat} (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses y(t₀) and z(t₀):

• preservation (minimal biomass thresholds)

stocks:
$$y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$$

• and economic/social requirements (minimal catch thresholds)

 $\mathsf{catches:} \qquad v(t)y(t) \geq C_y^\flat \;, \quad w(t)z(t) \geq C_z^\flat \;.$

From thresholds to initial states

- Given a priori conflicting requirements
 - ecological thresholds $S_{y}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
 - economic/social thresholds C_y^{\flat}, C_z^{\flat} (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

• preservation (minimal biomass thresholds)

 $ext{stocks:} \hspace{0.5cm} y(t) \geq S_y^{lat} \hspace{0.5cm}, \hspace{0.5cm} z(t) \geq S_z^{lat} \hspace{0.5cm},$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{lat} \ , \ w(t)z(t) \geq C_z^{lat}$.

▲ □ ▶ り へ ()

From thresholds to initial states

- Given a priori conflicting requirements
 - ecological thresholds $S_{y}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
 - economic/social thresholds C_y^{\flat}, C_z^{\flat} (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:
 - preservation (minimal biomass thresholds)

 $ext{stocks:} \quad y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$

• and economic/social requirements (minimal catch thresholds)

 $\mathsf{catches:} \qquad v(t)y(t) \geq \mathsf{C}^{\flat}_y \;, \quad w(t)z(t) \geq \mathsf{C}^{\flat}_z \;.$

▲ □ ▶ り へ ()

From thresholds to initial states

- Given a priori conflicting requirements
 - ecological thresholds $S_{\gamma}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
 - economic/social thresholds C_y^{\flat}, C_z^{\flat} (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:
 - preservation (minimal biomass thresholds)

stocks:
$$y(t) \ge S_y^{\flat}$$
, $z(t) \ge S_z^{\flat}$,

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_y^{\flat}$, $w(t)z(t) \ge C_z^{\flat}$.

Outline of the presentation

2 Anchovy-hake couple in the Peruvian upwelling ecosystem

- 3 Viable states and guaranteed yields
- 4 Sustainable yields for ecosystems

The other way round: from initial state to thresholds

Given

- ecological thresholds $S_{\nu}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
- initial biomasses $y(t_0) \ge S_y^{\flat}$ and $z(t_0) \ge S_z^{\flat}$
- we can characterize economic/social thresholds C^b_y, C^b_z (minimal captures) such that:
 - preservation (minimal biomass thresholds)

stocks:
$$y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{lat} \ , \ w(t)z(t) \geq C_z^{lat}$.

The other way round: from initial state to thresholds

• Given

- ecological thresholds S_v^{\flat}, S_z^{\flat} (minimal stocks),
- initial biomasses $y(t_0) \ge S_y^{\flat}$ and $z(t_0) \ge S_z^{\flat}$
- we can characterize economic/social thresholds C^b_y, C^b_z (minimal captures) such that:
 - preservation (minimal biomass thresholds)

stocks:
$$y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{lat} \ , \ \ w(t)z(t) \geq C_z^{lat}$.

The other way round: from initial state to thresholds

• Given

- ecological thresholds $S_{\gamma}^{\flat}, S_{z}^{\flat}$ (minimal stocks),
- initial biomasses $y(t_0) \geq S_y^{\flat}$ and $z(t_0) \geq S_z^{\flat}$
- we can characterize economic/social thresholds C^b_y, C^b_z (minimal captures) such that:
 - preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$

• and economic/social requirements (minimal catch thresholds)

 $\mathsf{catches:} \qquad v(t)y(t) \geq \mathsf{C}^{\flat}_y \;, \quad w(t)z(t) \geq \mathsf{C}^{\flat}_z \;.$

The other way round: from initial state to thresholds

• Given

- ecological thresholds S_y^{\flat}, S_z^{\flat} (minimal stocks),
- initial biomasses $y(t_0) \ge S_y^{\flat}$ and $z(t_0) \ge S_z^{\flat}$
- we can characterize economic/social thresholds C^b_y, C^b_z (minimal captures) such that:

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{lat} \ , \ \ w(t)z(t) \geq C_z^{lat}$.

The other way round: from initial state to thresholds

- Given
 - ecological thresholds S_y^{\flat}, S_z^{\flat} (minimal stocks),
 - initial biomasses $y(t_0) \ge S_y^{\flat}$ and $z(t_0) \ge S_z^{\flat}$
- we can characterize economic/social thresholds C^b_y, C^b_z (minimal captures) such that:

• preservation (minimal biomass thresholds)

 $\mathsf{stocks}: \hspace{0.5cm} y(t) \geq S_y^{lat} \ , \hspace{0.5cm} z(t) \geq S_z^{lat} \ ,$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{lat} \ , \ \ w(t)z(t) \geq C_z^{lat}$.

The other way round: from initial state to thresholds

- Given
 - ecological thresholds S_y^{\flat}, S_z^{\flat} (minimal stocks),
 - initial biomasses $y(t_0) \ge S_y^{\flat}$ and $z(t_0) \ge S_z^{\flat}$
- we can characterize economic/social thresholds C^b_y, C^b_z (minimal captures) such that:
 - preservation (minimal biomass thresholds)

 $ext{stocks:} \quad y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{lat} \ , \ \ w(t)z(t) \geq C_z^{lat}$.

▲ □ ▶ り へ ()

The other way round: from initial state to thresholds

- Given
 - ecological thresholds S_y^{\flat}, S_z^{\flat} (minimal stocks),
 - initial biomasses $y(t_0) \ge S_y^{\flat}$ and $z(t_0) \ge S_z^{\flat}$
- we can characterize economic/social thresholds C^b_y, C^b_z (minimal captures) such that:
 - preservation (minimal biomass thresholds)

$$ext{stocks:} \quad y(t) \geq S_y^{lat} \ , \quad z(t) \geq S_z^{lat} \ ,$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_y^{\flat}$, $w(t)z(t) \ge C_z^{\flat}$.
Ecosystem sustainable yields

- Considering that first are given minimal biomass conservation thresholds $S_y^\flat \ge 0$, $S_z^\flat \ge 0$
- ② with initial biomasses $y(t_0) \geq S_y^{lat}$ and $z(t_0) \geq S_z^{lat}$
- the following catches levels can be sustainably maintained

$$\begin{array}{ll} C_{y}^{\flat,\star} = & \min \left\{ C_{y} \geq 0 \mid & R_{y}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{y}}{S_{y}^{\flat}}) \geq 1 \ \text{and} \\ & & y(t_{0})R_{y}(y(t_{0}),z(t_{0}),\frac{C_{y}}{y(t_{0})}) \geq S_{y}^{\flat} \right\} \\ C_{z}^{\flat,\star} = & \min \left\{ C_{z} \geq 0 \mid & R_{z}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{z}^{\flat}}{S_{z}^{\flat}}) \geq 1 \ \text{and} \\ & & zR_{z}(y(t_{0}),z(t_{0}),\frac{C_{z}^{\flat}}{z(t_{0})}) \geq S_{z}^{\flat} \right\} \end{array}$$

Ecosystem sustainable yields

- Considering that first are given minimal biomass conservation thresholds S^b_y ≥ 0, S^b_z ≥ 0
 with initial biomasses y(t₀) ≥ S^b_y and z(t₀) ≥ S^b_z
- the following catches levels can be sustainably maintained

$$\begin{array}{ll} C_{y}^{\flat,\star} = & \min\left\{C_{y} \geq 0 \mid & R_{y}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{y}}{S_{y}^{\flat}}) \geq 1 \text{ and} \\ & & y(t_{0})R_{y}(y(t_{0}),z(t_{0}),\frac{C_{y}}{y(t_{0})}) \geq S_{y}^{\flat}\right\} \\ C_{z}^{\flat,\star} = & \min\left\{C_{z} \geq 0 \mid & R_{z}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{z}^{\flat}}{S_{z}^{\flat}}) \geq 1 \text{ and} \\ & & zR_{z}(y(t_{0}),z(t_{0}),\frac{C_{z}^{\flat}}{z(t_{0})}) \geq S_{z}^{\flat}\right\} \end{array}$$

< 一 一 、 の の の の の

Ecosystem sustainable yields

- Considering that first are given minimal biomass conservation thresholds $S_y^\flat \ge 0$, $S_z^\flat \ge 0$
- (2) with initial biomasses $y(t_0) \ge S_y^\flat$ and $z(t_0) \ge S_z^\flat$
- Ithe following catches levels can be sustainably maintained

$$\begin{array}{ll} C_{y}^{\flat,\star} = & \min \left\{ C_{y} \geq 0 \mid & R_{y}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{y}}{S_{y}^{\flat}}) \geq 1 \ \text{and} \\ & y(t_{0})R_{y}(y(t_{0}),z(t_{0}),\frac{C_{y}}{y(t_{0})}) \geq S_{y}^{\flat} \right\} \\ C_{z}^{\flat,\star} = & \min \left\{ C_{z} \geq 0 \mid & R_{z}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{z}^{\flat}}{S_{z}^{\flat}}) \geq 1 \ \text{and} \\ & zR_{z}(y(t_{0}),z(t_{0}),\frac{C_{z}^{\flat}}{z(t_{0})}) \geq S_{z}^{\flat} \right\} \end{array}$$

Ecosystem sustainable yields

- Considering that first are given minimal biomass conservation thresholds $S_y^{\flat} \ge 0$, $S_z^{\flat} \ge 0$
- 2 with initial biomasses $y(t_0) \geq S_y^{\flat}$ and $z(t_0) \geq S_z^{\flat}$
- the following catches levels can be sustainably maintained

$$egin{aligned} C_y^{lat,\star} &= &\min\left\{C_y \ge 0 \mid & R_y(S_y^{lat}, S_z^{lat}, rac{C_y}{S_y^{lat}}) \ge 1 ext{ and } \ & y(t_0)R_y(y(t_0), z(t_0), rac{C_y}{y(t_0)}) \ge S_y^{lat}
ight\} \ & C_z^{lat,\star} &= &\min\left\{C_z \ge 0 \mid & R_z(S_y^{lat}, S_z^{lat}, rac{C_z^{lat}}{S_z^{lat}}) \ge 1 ext{ and } \ & zR_z(y(t_0), z(t_0), rac{C_z^{lat}}{z(t_0)}) \ge S_z^{lat}
ight\} \end{aligned}$$

<<p>A 目 > シックへ

Ecosystem sustainable yields

- Considering that first are given minimal biomass conservation thresholds $S_y^{\flat} \ge 0$, $S_z^{\flat} \ge 0$
- 2 with initial biomasses $y(t_0) \geq S_y^{\flat}$ and $z(t_0) \geq S_z^{\flat}$
- the following catches levels can be sustainably maintained

$$C_{y}^{\flat,\star} = \min \{ C_{y} \ge 0 \mid R_{y}(S_{y}^{\flat}, S_{z}^{\flat}, \frac{C_{y}}{S_{y}^{\flat}}) \ge 1 \text{ and} \\ y(t_{0})R_{y}(y(t_{0}), z(t_{0}), \frac{C_{y}}{y(t_{0})}) \ge S_{y}^{\flat} \} \\ C_{z}^{\flat,\star} = \min \{ C_{z} \ge 0 \mid R_{z}(S_{y}^{\flat}, S_{z}^{\flat}, \frac{C_{z}^{\flat}}{S_{z}^{\flat}}) \ge 1 \text{ and} \\ zR_{z}(y(t_{0}), z(t_{0}), \frac{C_{z}^{\flat}}{z(t_{0})}) \ge S_{z}^{\flat} \}$$

Ecosystem sustainable yields

- Considering that first are given minimal biomass conservation thresholds $S_y^{\flat} \ge 0$, $S_z^{\flat} \ge 0$
- 2 with initial biomasses $y(t_0) \geq S_y^{\flat}$ and $z(t_0) \geq S_z^{\flat}$
- the following catches levels can be sustainably maintained

$$\begin{array}{ll} C_{y}^{\flat,\star} = & \min\left\{C_{y} \geq 0 \mid & R_{y}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{y}}{S_{y}^{\flat}}) \geq 1 \text{ and} \\ & & y(t_{0})R_{y}(y(t_{0}),z(t_{0}),\frac{C_{y}}{y(t_{0})}) \geq S_{y}^{\flat}\right\} \\ C_{z}^{\flat,\star} = & \min\left\{C_{z} \geq 0 \mid & R_{z}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{z}^{\flat}}{S_{z}^{\flat}}) \geq 1 \text{ and} \\ & & zR_{z}(y(t_{0}),z(t_{0}),\frac{C_{z}^{\flat}}{z(t_{0})}) \geq S_{z}^{\flat}\right\} \end{array}$$

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0), z(t_0))$ and $C_z^{\flat}(y(t_0), z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S_{v}^{\flat} \geq 0$, $S_{z}^{\flat} \geq 0$.

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0), z(t_0))$ and $C_z^{\flat}(y(t_0), z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S_y^{\flat} \ge 0$, $S_z^{\flat} \ge 0$.

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0), z(t_0))$ and $C_z^{\flat}(y(t_0), z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S_v^{\flat} \ge 0$, $S_z^{\flat} \ge 0$.

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0), z(t_0))$ and $C_z^{\flat}(y(t_0), z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S_{\gamma}^{\flat} \geq 0$, $S_{z}^{\flat} \geq 0$.

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0), z(t_0))$ and $C_z^{\flat}(y(t_0), z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S_{\gamma}^{\flat} \geq 0$, $S_{z}^{\flat} \geq 0$.

A conceptual method towards ecosystem sustainable yields?

Hake-anchovy Peruvian fishery: Peru official quotas and sustainable yields given by the viability approach

	Sustainable yields (kt)		Peru official quotas (kt)	
	Model 1	Model 2	2006	2007
Anchovy	5 152	5 399	4 250	5 300
Hake				

Instituto del Mar del Perú shows interest for this rather transparent method

<<p>A 目 > シックへ

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM Ecologie 2010, Montpellier, 2-4 septembre 2010

Hake-anchovy Peruvian fishery: Peru official quotas and sustainable yields given by the viability approach

	Sustainable yields (kt)		Peru official quotas (kt)	
	Model 1	Model 2	2006	2007
Anchovy	5 152	5 399	4 250	5 300
Hake			55	

Instituto del Mar del Perú shows interest for this rather transparent method

<<p>A 目 > シックへ

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM Ecologie 2010, Montpellier, 2-4 septembre 2010

Hake-anchovy Peruvian fishery: Peru official quotas and sustainable yields given by the viability approach

	Sustainable yields (kt)		Peru official quotas (kt)		
	Model 1	Model 2	2006	2007	
Anchovy	5 152	5 399	4 250	5 300	
Hake	49	56,8	55	35	

Instituto del Mar del Perú shows interest for this rather transparent method

<<p>A 目 > シックへ

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM Ecologie 2010, Montpellier, 2-4 septembre 2010

Hake-anchovy Peruvian fishery: Peru official quotas and sustainable yields given by the viability approach

	Sustainable yields (kt)		Peru official quotas (kt)	
	Model 1	Model 2	2006	2007
Anchovy	5 152	5 399	4 250	5 300
Hake	49	56,8	55	35

Instituto del Mar del Perú shows interest for this rather transparent method

<<p>A 目 > シックへ

- Conceptual framework for quantitative sustainable management
- Managing ecological and economic conflicting objectives
- Sustainable yields for an ecosystem: can be generalized to multiple species
- Risk and sustainable management

Contribution to quantitative sustainable management

• Conceptual framework for quantitative sustainable management

- Managing ecological and economic conflicting objectives
- Sustainable yields for an ecosystem: can be generalized to multiple species
- Risk and sustainable management

- Conceptual framework for quantitative sustainable management
- Managing ecological and economic conflicting objectives
- Sustainable yields for an ecosystem: can be generalized to multiple species
- Risk and sustainable management

- Conceptual framework for quantitative sustainable management
- Managing ecological and economic conflicting objectives
- Sustainable yields for an ecosystem: can be generalized to multiple species
- Risk and sustainable management

- Conceptual framework for quantitative sustainable management
- Managing ecological and economic conflicting objectives
- Sustainable yields for an ecosystem: can be generalized to multiple species
- Risk and sustainable management

Credits

M. De Lara, L. Doyen, Sustainable Management of Natural Resources. Mathematical Models and Methods, *Springer*, 2008.

Ecologie 2010, Montpellier, 2-4 septembre 2010