Sustainable Yields for Ecosystems

Eladio $OCA\tilde{N}A^{-1}$, Michel DE LARA², Ricardo OLIVEROS-RAMOS³ and Jorge TAM³

September 1, 2010

 $\rm ^1IMCA\text{-}FC$, Universidad Nacional de Ingeniería, Lima–Perú 2 CERMICS, Université Paris-Est, France 3 Instituto del Mar del Perú, Centro de Investigaciones en Modelado Oceanográfico y Biológico Pesquero (CIMOBP), Callao-Perú E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM [Ecologie 2010, Montpellier, 2-4 septembre 2010](#page-92-0)

Outline of the presentation

-
-

Outline of the presentation

Outline of the presentation

- 3 [Viable states and guaranteed yields](#page-40-0)
	-

Outline of the presentation

- 3 [Viable states and guaranteed yields](#page-40-0)
- 4 [Sustainable yields for ecosystems](#page-64-0)

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0) [Viable states and guaranteed yields](#page-40-0) [Sustainable yields for ecosystems](#page-64-0)

 \leftarrow \oplus \rightarrow \circ \circ

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0) [Viable states and guaranteed yields](#page-40-0) [Sustainable yields for ecosystems](#page-64-0)

Sustainable yields: species by species

Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- $\bullet \Rightarrow$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY

• ICES precautionary approach

- monospecific age-class dynamic model
- short term: projects abundances one year ahead
- $\bullet \Rightarrow$ maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0) [Viable states and guaranteed yields](#page-40-0) [Sustainable yields for ecosystems](#page-64-0)

Sustainable yields: species by species

Maximum sustainable yield (MSY)

- **monospecific scalar dynamic model**
- steady state approach
- $\bullet \Rightarrow$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY
- ICES precautionary approach
	- monospecific age-class dynamic model
	- short term: projects abundances one year ahead
	- $\bullet \Rightarrow$ maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0) [Viable states and guaranteed yields](#page-40-0) [Sustainable yields for ecosystems](#page-64-0)

Sustainable yields: species by species

Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- $\bullet \Rightarrow$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY

• ICES precautionary approach

- monospecific age-class dynamic model
- short term: projects abundances one year ahead
- $\bullet \Rightarrow$ maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0) [Viable states and guaranteed yields](#page-40-0) [Sustainable yields for ecosystems](#page-64-0)

Sustainable yields: species by species

Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- $\bullet \Rightarrow$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY

• ICES precautionary approach

- monospecific age-class dynamic model
- short term: projects abundances one year ahead
- $\bullet \Rightarrow$ maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0) [Viable states and guaranteed yields](#page-40-0) [Sustainable yields for ecosystems](#page-64-0)

Sustainable yields: species by species

Maximum sustainable yield (MSY)

- monospecific scalar dynamic model
- steady state approach
- $\bullet \Rightarrow$ maximal yield which can be sustained at equilibrium
- Following the World Summit on Sustainable Development (Johannesburg, 2002), the signatory States undertook to restore and exploit their stocks at MSY
- ICES precautionary approach
	- monospecific age-class dynamic model
	- short term: projects abundances one year ahead
	- $\bullet \Rightarrow$ maximal yield which can be obtained without putting next year spawning stock biomass below its reference point

Sustainable yields for ecosystems?

- **The World Summit on Sustainable Development** (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
	- multi-specific dynamic model (age-class or not)
	- long-term: guaranteed yields and biological indicators
	- method: computing a set of viable states (viability kernel)
	- $\bullet \Rightarrow$ species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
	- $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

 \leftarrow \oplus \rightarrow \circ \circ \circ

- Specific case
	- Numerical results for a Lotka–Volterra model of the between the years 1971 and 1981

Sustainable yields for ecosystems?

- **The World Summit on Sustainable Development** (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
	- multi-specific dynamic model (age-class or not)
	- long-term: guaranteed yields and biological indicators
	- method: computing a set of viable states (viability kernel)
	- $\bullet \Rightarrow$ species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
	- $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

 $AB + AQ$

- Specific case
	- Numerical results for a Lotka–Volterra model of the between the years 1971 and 1981

Sustainable yields for ecosystems?

- **The World Summit on Sustainable Development** (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
	- multi-specific dynamic model (age-class or not)
	- long-term: guaranteed yields and biological indicators
	- method: computing a set of viable states (viability kernel)
	- $\bullet \Rightarrow$ species by species yields which can be guaranteed without putting biological indicators below their reference points
- **•** Generic biomass ecosystem models with harvesting
	- $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- Specific case
	- Numerical results for a Lotka–Volterra model of the between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
	- multi-specific dynamic model (age-class or not)
	- long-term: guaranteed yields and biological indicators
	- method: computing a set of viable states (viability kernel)
	- $\bullet \Rightarrow$ species by species yields which can be guaranteed without putting biological indicators below their reference points
- **•** Generic biomass ecosystem models with harvesting
	- $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

← 御 ▶ つへへ

- Specific case
	- Numerical results for a Lotka–Volterra model of the between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
	- multi-specific dynamic model (age-class or not)
	- long-term: guaranteed yields and biological indicators
	- method: computing a set of viable states (viability kernel)
	- $\bullet \Rightarrow$ species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
	- $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

← 御 ▶ つへへ

- Specific case
	- Numerical results for a Lotka–Volterra model of the between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
	- multi-specific dynamic model (age-class or not)
	- long-term: guaranteed yields and biological indicators
	- method: computing a set of viable states (viability kernel)
	- $\bullet \Rightarrow$ species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
	- $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- **•** Specific case
	- Numerical results for a Lotka–Volterra model of the between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
	- multi-specific dynamic model (age-class or not)
	- long-term: guaranteed yields and biological indicators
	- method: computing a set of viable states (viability kernel)
	- $\bullet \Rightarrow$ species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
	- $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- **•** Specific case
	- Numerical results for a Lotka–Volterra model of the between the years 1971 and 1981

Sustainable yields for ecosystems?

- The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the "ecosystem approach" by 2010
- We propose a general approach
	- multi-specific dynamic model (age-class or not)
	- long-term: guaranteed yields and biological indicators
	- method: computing a set of viable states (viability kernel)
	- $\bullet \Rightarrow$ species by species yields which can be guaranteed without putting biological indicators below their reference points
- Generic biomass ecosystem models with harvesting
	- $\bullet \Rightarrow$ explicit expressions for viability kernel and guaranteed yields

- **•** Specific case
	- Numerical results for a Lotka–Volterra model of the anchovy–hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0) [Viable states and guaranteed yields](#page-40-0) [Sustainable yields for ecosystems](#page-64-0)

Credits

MIFIMA

Mathematics, Informatics and Fisheries Management

- 3 countries: Chile, Peru, France,
- 3 disciplines: research network of
- • 3 years: 2007, 2008, 2009

We thank CNRS, INRIA and the French Ministry of Foreign Affairs for their funding and support through the regional cooperation program STIC–AmSud.

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0) [Viable states and guaranteed yields](#page-40-0) [Sustainable yields for ecosystems](#page-64-0)

Credits

MIFIMA

Mathematics, Informatics and Fisheries Management

- 3 countries: Chile, Peru, France,
- 3 disciplines: research network of biologists, economists and mathematicians,
- 3 years: 2007, 2008, 2009
- We thank CNRS, INRIA and the French Ministry of Foreign Affairs for their funding and support through the regional cooperation program STIC–AmSud.

Outline of the presentation

- [Viable states and guaranteed yields](#page-40-0)
- 4 [Sustainable yields for ecosystems](#page-64-0)

Anchoveta/Anchovy and Merluza/Hake

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM [Ecologie 2010, Montpellier, 2-4 septembre 2010](#page-0-0)

Anchoveta/Anchovy and Merluza/Hake

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM [Ecologie 2010, Montpellier, 2-4 septembre 2010](#page-0-0)

 $\overline{10}$ [,](#page-24-0) $\overline{10}$, $\overline{10}$

11 years of data from 1971 to 1981

Instituto del Mar del Perú (IMARPE) In thousands of tonnes (10^3 tons)

- \bullet anchoveta stocks= [4058 3116 3461 2649 4517 1232 3727 1812 1826 8793 3418]
- \bullet merluza_stocks= [347 437 455 414 538 735 636 738 408 312 148]
- \bullet anchoveta_captures= [5797 1600 2540 3191 2299 1323 353 1154 177 202 1209]
- o merluza_captures= [27 13 133 109 85 93 107 303 93 159 69]

Conservation and catch thresholds

The following annual objectives

(IMARPE, taller internacional sobre la anchoveta peruana)

Conservation and catch thresholds

The following annual objectives

(IMARPE, taller internacional sobre la anchoveta peruana)

Conservation and catch thresholds

The following annual objectives

(IMARPE, taller internacional sobre la anchoveta peruana)

Conservation and catch thresholds

The following annual objectives

(IMARPE, taller internacional sobre la anchoveta peruana)

 $\overline{10}$ [,](#page-30-0) $\overline{10}$, $\overline{10}$ Figure: Viability kernel for minimal catches of 2 000 kt(anchovy) and 5 kt(hake)

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM [Ecologie 2010, Montpellier, 2-4 septembre 2010](#page-0-0)

Sustainable yields compatible with conservation

Theoretically, one could produce, year after year,

- anchovy yield of at least 2000 kt
- hake yield of at least 5 kt

without harming the species in the sense that, every year

- anchovy biomass is at least 7 000 kt
- hake biomass of at least 200 kt.

Sustainable yields compatible with conservation

Theoretically, one could produce, year after year,

- anchovy yield of at least 2000 kt
- hake yield of at least 5 kt

without harming the species in the sense that, every year

- anchovy biomass is at least 7 000 kt
- hake biomass of at least 200 kt.

Sustainable yields compatible with conservation

Theoretically, one could produce, year after year,

- anchovy yield of at least 2000 kt
- hake yield of at least 5 kt

without harming the species in the sense that, every year

- anchovy biomass is at least 7 000 kt
- hake biomass of at least 200 kt.

Sustainable yields compatible with conservation

Theoretically, one could produce, year after year,

- anchovy yield of at least 2000 kt
- hake yield of at least 5 kt

without harming the species in the sense that, every year

- anchovy biomass is at least 7 000 kt
- **a** hake biomass of at least 200 kt.

Hake–anchovy Peruvian fisheries between 1971 and 1981: a Lotka–Volterra model

 $({\cal K}=35\; 800\;\times 10^3\; t)$ [,](#page-35-0) $\alpha=1.230\times 10^{-6}\; t^{-1}$ $\alpha=1.230\times 10^{-6}\; t^{-1}$ $\alpha=1.230\times 10^{-6}\; t^{-1}$, $\beta=4.326\times 10^{-8}\; t^{-1}$ Figure: Comparison of observed and simulated biomasses of anchovy and hake using a Lotka–Volterra model with density-dependence in the prey. Model parameters are $R = 2.24$, $L = 0.98$, $\kappa = 64$ 672 \times 10^3 t

Lotka–Volterra model with density–dependence

$$
\begin{cases}\ny(t+1) = y(t)\overbrace{(R-\frac{R}{\kappa}y(t)-\alpha z(t)-v(t))}^{R_y},\\z(t+1) = z(t)\underbrace{(L+\beta y(t)-w(t))}_{R_z},\n\end{cases}
$$

- \bullet state vector (y, z) represents biomasses.
	- *v* prey biomass: anchovy
	- z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- \bullet catches are vy and wz (measured in biomass),
- • R_v and R_z are annual growth factors.
Lotka–Volterra model with density–dependence

$$
\begin{cases}\ny(t+1) = y(t)\overbrace{(R-\frac{R}{\kappa}y(t)-\alpha z(t)-v(t))}^{R_y},\\z(t+1) = z(t)\underbrace{(L+\beta y(t)-w(t))}_{R_z},\n\end{cases}
$$

- state vector (y, z) represents biomasses,
	- v prey biomass: anchovy
	- z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- \bullet catches are vy and wz (measured in biomass),
- R_v and R_z are annual growth factors.

Lotka–Volterra model with density–dependence

$$
\begin{cases}\ny(t+1) = y(t)\overbrace{(R-\frac{R}{\kappa}y(t)-\alpha z(t)-v(t))}^{R_y},\\z(t+1) = z(t)\underbrace{(L+\beta y(t)-w(t))}_{R_z},\n\end{cases}
$$

- state vector (y, z) represents biomasses,
	- v prey biomass: anchovy
	- z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- \bullet catches are vy and wz (measured in biomass),
- R_v and R_z are annual growth factors.

Lotka–Volterra model with density–dependence

$$
\begin{cases}\ny(t+1) = y(t)\overbrace{(R-\frac{R}{\kappa}y(t)-\alpha z(t)-v(t))}^{R_y},\\z(t+1) = z(t)\underbrace{(L+\beta y(t)-w(t))}_{R_z},\n\end{cases}
$$

- state vector (y, z) represents biomasses,
	- v prey biomass: anchovy
	- z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- catches are vy and wz (measured in biomass),
- R_v and R_z are annual growth factors.

Lotka–Volterra model with density–dependence

$$
\begin{cases}\ny(t+1) = y(t)\overbrace{(R-\frac{R}{\kappa}y(t)-\alpha z(t)-v(t))}^{R_y},\\z(t+1) = z(t)\underbrace{(L+\beta y(t)-w(t))}_{R_z},\n\end{cases}
$$

- state vector (y, z) represents biomasses,
	- v prey biomass: anchovy
	- z predator biomass: hake
- control vector (v, w) is fishing effort of each species,
- catches are vy and wz (measured in biomass),
- R_v and R_z are annual growth factors.

Outline of the presentation

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0)

3 [Viable states and guaranteed yields](#page-40-0)

Generic nonlinear ecosystem models

For simplicity, we consider a two–dimensional state model

$$
y(t+1) = y(t) \overbrace{R_y(y(t), z(t), v(t))}^{\text{growth factor}}
$$

$$
z(t+1) = z(t) \underbrace{R_z(y(t), z(t), w(t))}_{\text{growth factor}}
$$

- state vector $(y(t), z(t))$ represents biomasses,
- control vector $(v(t), w(t))$ is fishing effort of each species, respectively.

 \overline{AB} [,](#page-44-0) Ω

The catches are thus $v(t)y(t)$ and $w(t)z(t)$ (measured in biomass).

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM [Ecologie 2010, Montpellier, 2-4 septembre 2010](#page-0-0)

Generic nonlinear ecosystem models

For simplicity, we consider a two–dimensional state model

$$
y(t+1) = y(t) \overbrace{R_y(y(t), z(t), v(t))}^{\text{growth factor}}
$$

$$
z(t+1) = z(t) \underbrace{R_z(y(t), z(t), w(t))}_{\text{growth factor}}
$$

where

- state vector $(y(t), z(t))$ represents biomasses,
- control vector $(v(t), w(t))$ is fishing effort of each species, respectively.

 \overline{AB} [,](#page-44-0) Ω

The catches are thus $v(t)y(t)$ and $w(t)z(t)$ (measured in biomass).

Generic nonlinear ecosystem models

For simplicity, we consider a two–dimensional state model

$$
\begin{cases}\ny(t+1) = y(t) \overbrace{R_y(y(t), z(t), v(t))}^{\text{growth factor}} \\
z(t+1) = z(t) \underbrace{R_z(y(t), z(t), w(t))}_{\text{growth factor}}\n\end{cases}
$$

where

- state vector $(y(t), z(t))$ represents biomasses,
- control vector $(v(t), w(t))$ is fishing effort of each species, respectively.

 \overline{AB} [,](#page-44-0) Ω

The catches are thus $v(t)y(t)$ and $w(t)z(t)$ (measured in biomass).

Trade-offs biology-economy

 $\overline{10}$ [,](#page-45-0) $\overline{10}$, $\overline{10}$

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM [Ecologie 2010, Montpellier, 2-4 septembre 2010](#page-0-0)

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $\big(y(t_0),z(t_0)\big)$ from which appropriate controls $\big(\nu(t),\nu(t)\big),\;t=t_0,t_0+1,\ldots$ produce a trajectory $\bigl(y(t),z(t)\bigr),\;t=t_0,t_0+1,\ldots$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{\flat} \; , \quad z(t) \geq S_z^{\flat}$

• and economic/social requirements (minimal catch thresholds) catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $\big(y(t_0),z(t_0)\big)$ from which appropriate controls $\big(\nu(t),\nu(t)\big),\;t=t_0,t_0+1,\ldots$ produce a trajectory $\bigl(y(t),z(t)\bigr),\;t=t_0,t_0+1,\ldots$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{\flat} \; , \quad z(t) \geq S_z^{\flat}$

• and economic/social requirements (minimal catch thresholds) catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $\big(y(t_0),z(t_0)\big)$ from which appropriate controls $\big(\nu(t),\nu(t)\big),\,\,t=t_0,t_0+1,\ldots$ produce a trajectory $\bigl(y(t),z(t)\bigr),\;t=t_0,t_0+1,\ldots$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{\flat} \; , \quad z(t) \geq S_z^{\flat}$

• and economic/social requirements (minimal catch thresholds) catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $\big(y(t_0),z(t_0)\big)$ from which appropriate controls $\big(\nu(t),\nu(t)\big),\,\,t=t_0,t_0+1,\ldots$ produce a trajectory $\big(y(t),z(t)\big),\;t=t_0,t_0+1,\ldots\big)$

such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{\flat} \; , \quad z(t) \geq S_z^{\flat}$

• and economic/social requirements (minimal catch thresholds) catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $\big(y(t_0),z(t_0)\big)$ from which appropriate controls $\big(\nu(t),\nu(t)\big),\,\,t=t_0,t_0+1,\ldots$ produce a trajectory $\big(y(t),z(t)\big),\;t=t_0,t_0+1,\ldots\big)$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{\flat} \; , \quad z(t) \geq S_z^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $\big(y(t_0),z(t_0)\big)$ from which appropriate controls $\big(\nu(t),\nu(t)\big),\,\,t=t_0,t_0+1,\ldots$ produce a trajectory $\big(y(t),z(t)\big),\;t=t_0,t_0+1,\ldots\big)$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{\flat}$, $z(t) \geq S_z^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

Viability kernel

C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001.

The viability kernel is the set of initial states $\big(y(t_0),z(t_0)\big)$ from which appropriate controls $\big(\nu(t),\nu(t)\big),\,\,t=t_0,t_0+1,\ldots$ produce a trajectory $\big(y(t),z(t)\big),\;t=t_0,t_0+1,\ldots\big)$ such that the following goals are satisfied

• preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_y^{\flat}$, $z(t) \geq S_z^{\flat}$

• and economic/social requirements (minimal catch thresholds) catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

State constraint set and viability kernel

 $\overline{16}$ [,](#page-53-0) $\overline{9}$, $\overline{9}$, $\overline{9}$

Viability kernel

Figure: Viability kernel for minimal biomass thresholds $S_y^{\flat} = 7\,000$ kt (anchovy) and $S_z^{\flat} = 200$ kt (hake), and minimal catches thresholds $\hat{C}_y^{\flat} = 2\;000$ kt (anchovy) and $\hat{C}_z^{\flat} = 5$ kt (hake)

 $\overline{16}$ [,](#page-54-0) $\overline{9}$, $\overline{9}$, $\overline{9}$

Explicit expression for the viability kernel

Proposition

- If the growth factors are decreasing in the fishing effort
- and if the thresholds $S_y^{\flat}, S_z^{\flat}, C_y^{\flat}, C_z^{\flat}$ are such that the following

$$
R_{y}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{y}^{\flat}}{S_{y}^{\flat}}) \geq 1 \text{ and } R_{z}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{z}^{\flat}}{S_{z}^{\flat}}) \geq 1
$$

the viability kernel is given by

$$
\left\{(y,z)\mid y\geq S_{y}^{\flat},\ z\geq S_{z}^{\flat},\ yR_{y}(y,z,\frac{C_{y}^{\flat}}{y})\geq S_{y}^{\flat},\ zR_{z}(y,z,\frac{C_{z}^{\flat}}{z})\geq S_{z}^{\flat}\right\}
$$

 $AB + AQ$

E. OCAÑA, M. DE LARA, R. OLIVEROS-RAMOS and J. TAM [Ecologie 2010, Montpellier, 2-4 septembre 2010](#page-0-0)

Explicit expression for the viability kernel

Proposition

- If the growth factors are decreasing in the fishing effort
- and if the thresholds $S_y^{\flat}, S_z^{\flat}, C_y^{\flat}, C_z^{\flat}$ are such that the following growth factors are greater than one

$$
R_{y}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{y}^{\flat}}{S_{y}^{\flat}}) \geq 1 \text{ and } R_{z}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{z}^{\flat}}{S_{z}^{\flat}}) \geq 1\ ,
$$

the viability kernel is given by

$$
\left\{(y,z)\mid y\geq S_{y}^{\flat},\ z\geq S_{z}^{\flat},\ yR_{y}(y,z,\frac{C_{y}^{\flat}}{y})\geq S_{y}^{\flat},\ zR_{z}(y,z,\frac{C_{z}^{\flat}}{z})\geq S_{z}^{\flat}\right\}
$$

 \overline{AB} [,](#page-57-0) Ω

 \mathbb{I}

Explicit expression for the viability kernel

Proposition

- If the growth factors are decreasing in the fishing effort
- and if the thresholds $S_y^{\flat}, S_z^{\flat}, C_y^{\flat}, C_z^{\flat}$ are such that the following growth factors are greater than one

$$
R_{y}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{y}^{\flat}}{S_{y}^{\flat}}) \geq 1 \text{ and } R_{z}(S_{y}^{\flat},S_{z}^{\flat},\frac{C_{z}^{\flat}}{S_{z}^{\flat}}) \geq 1\ ,
$$

the viability kernel is given by

$$
\left\{(y,z)\mid y\geq S_{y}^{\flat},\ z\geq S_{z}^{\flat},\ yR_{y}(y,z,\frac{C_{y}^{\flat}}{y})\geq S_{y}^{\flat},\ zR_{z}(y,z,\frac{C_{z}^{\flat}}{z})\geq S_{z}^{\flat}\right\}
$$

.

 Ω

From thresholds to initial states

- Given a priori conflicting requirements
	- ecological thresholds $S_\mathsf{y}^\flat, S_\mathsf{z}^\flat$ (minimal stocks),
	- economic/social thresholds $C^\flat_{\mathsf y},$ $C^\flat_{\mathsf z}$ (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

 $\overline{10}$ [,](#page-64-0) $\overline{10}$

From thresholds to initial states

• Given *a priori* conflicting requirements

- ecological thresholds $S_\mathsf{y}^\flat, S_\mathsf{z}^\flat$ (minimal stocks),
- economic/social thresholds $C^\flat_{\mathsf y},$ $C^\flat_{\mathsf z}$ (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

From thresholds to initial states

• Given *a priori* conflicting requirements

- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
- economic/social thresholds $C^\flat_{\mathsf y},$ $C^\flat_{\mathsf z}$ (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

From thresholds to initial states

• Given *a priori* conflicting requirements

- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
- economic/social thresholds $C_{\mathsf{y}}^{\flat}, C_{\mathsf{z}}^{\flat}$ (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

preservation (minimal biomass thresholds)

$$
\text{stocks:} \qquad y(t) \geq S_y^{\flat} \ , \quad z(t) \geq S_z^{\flat} \ ,
$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

From thresholds to initial states

- Given *a priori* conflicting requirements
	- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
	- economic/social thresholds $C_{\mathsf{y}}^{\flat}, C_{\mathsf{z}}^{\flat}$ (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

From thresholds to initial states

- Given *a priori* conflicting requirements
	- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
	- economic/social thresholds $C_{\mathsf{y}}^{\flat}, C_{\mathsf{z}}^{\flat}$ (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$ $\frac{\partial}{\partial y}$, $z(t) \geq \mathcal{S}_{z}^{\flat}$ $\frac{p}{z}$,

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

From thresholds to initial states

- Given *a priori* conflicting requirements
	- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
	- economic/social thresholds $C_{\mathsf{y}}^{\flat}, C_{\mathsf{z}}^{\flat}$ (minimal captures),
- we can tell whether or not they can be indefinitely maintained for initial biomasses $y(t_0)$ and $z(t_0)$:

preservation (minimal biomass thresholds)

$$
\text{stocks:} \qquad y(t) \geq S_y^{\flat} \ , \quad z(t) \geq S_z^{\flat} \ ,
$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \geq C_y^{\flat}$, $w(t)z(t) \geq C_z^{\flat}$.

Outline of the presentation

[Anchovy–hake couple in the Peruvian upwelling ecosystem](#page-21-0)

- [Viable states and guaranteed yields](#page-40-0)
- 4 [Sustainable yields for ecosystems](#page-64-0)

The other way round: from initial state to thresholds

Given

- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
- initial biomasses $y(t_0)\geq \c{S_y^{\flat}}$ and $z(t_0)\geq \c{S_z^{\flat}}$
- we can characterize economic/social thresholds $C^\flat_{\mathsf y}, C^\flat_{\mathsf z}$ (minimal captures) such that:
	- preservation (minimal biomass thresholds)

$$
\text{stocks:} \qquad y(t) \ge S_y^{\flat} \ , \quad z(t) \ge S_z^{\flat} \ ,
$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_v^{\flat}$

 \leftarrow \oplus \rightarrow \circ \circ \circ

The other way round: from initial state to thresholds

• Given

- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
- initial biomasses $y(t_0)\geq \c{S_y^{\flat}}$ and $z(t_0)\geq \c{S_z^{\flat}}$
- we can characterize economic/social thresholds $C^\flat_{\mathsf y}, C^\flat_{\mathsf z}$ (minimal captures) such that:
	- preservation (minimal biomass thresholds)

$$
\text{stocks:} \qquad y(t) \ge S_y^{\flat} \ , \quad z(t) \ge S_z^{\flat} \ ,
$$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_v^{\flat}$

 \leftarrow \oplus \rightarrow \circ \circ \circ

The other way round: from initial state to thresholds

• Given

- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
- initial biomasses $y(t_0)\geq \c{S_y^{\flat}}$ and $z(t_0)\geq \c{S_z^{\flat}}$
- we can characterize economic/social thresholds $C^\flat_{\mathsf y}, C^\flat_{\mathsf z}$ (minimal captures) such that:
	- preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_v^{\flat}$

The other way round: from initial state to thresholds

• Given

- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
- initial biomasses $y(t_0)\geq\mathcal{S}^\flat_\mathsf{y}$ and $z(t_0)\geq\mathcal{S}^\flat_\mathsf{z}$
- we can characterize economic/social thresholds $C^\flat_{\mathsf y}, C^\flat_{\mathsf z}$ (minimal captures) such that:

preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_v^{\flat}$

The other way round: from initial state to thresholds

- **•** Given
	- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
	- initial biomasses $y(t_0)\geq\mathcal{S}^\flat_\mathsf{y}$ and $z(t_0)\geq\mathcal{S}^\flat_\mathsf{z}$
- we can characterize economic/social thresholds $C^\flat_{\mathsf y}, C^\flat_{\mathsf z}$ (minimal captures) such that:

preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_v^{\flat}$

The other way round: from initial state to thresholds

- **•** Given
	- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
	- initial biomasses $y(t_0)\geq\mathcal{S}^\flat_\mathsf{y}$ and $z(t_0)\geq\mathcal{S}^\flat_\mathsf{z}$
- we can characterize economic/social thresholds $C^\flat_{\mathsf y}, C^\flat_{\mathsf z}$ (minimal captures) such that:
	- preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$ S_{y}^{\flat} , $z(t) \geq S_{\mathsf{z}}^{\flat}$ $\frac{1}{z}$,

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_v^{\flat}$

The other way round: from initial state to thresholds

- **•** Given
	- ecological thresholds $S_{\flat}^{\flat},S_{z}^{\flat}$ (minimal stocks),
	- initial biomasses $y(t_0)\geq\mathcal{S}^\flat_\mathsf{y}$ and $z(t_0)\geq\mathcal{S}^\flat_\mathsf{z}$
- we can characterize economic/social thresholds $C^\flat_{\mathsf y}, C^\flat_{\mathsf z}$ (minimal captures) such that:
	- preservation (minimal biomass thresholds)

stocks: $y(t) \geq S_v^{\flat}$ S_{y}^{\flat} , $z(t) \geq S_{\mathsf{z}}^{\flat}$ $\frac{1}{z}$,

• and economic/social requirements (minimal catch thresholds)

catches: $v(t)y(t) \ge C_v^{\flat}$ $\frac{\partial \psi}{\partial y}$, $w(t)z(t) \geq C_z^{\frac{1}{2}}$ $\frac{1}{z}$.
Ecosystem sustainable yields

- **1** Considering that first are given
- \mathbf{P} with initial biomasses $\mathit{y}(t_0)\geq \mathit{S}_{\mathit{y}}^{\flat}$ and $\mathit{z}(t_0)\geq \mathit{S}_{\mathit{z}}^{\flat}$
- the following catches levels can be sustainably maintained

$$
C_{y}^{b,*} = \min \{ C_{y} \ge 0 \mid R_{y}(S_{y}^{b}, S_{z}^{b}, \frac{C_{y}}{S_{y}^{b}}) \ge 1 \text{ and}
$$
\n
$$
y(t_{0})R_{y}(y(t_{0}), z(t_{0}), \frac{C_{y}}{y(t_{0})}) \ge S_{y}^{b}\}
$$
\n
$$
C_{z}^{b,*} = \min \{ C_{z} \ge 0 \mid R_{z}(S_{y}^{b}, S_{z}^{b}, \frac{C_{z}^{b}}{S_{z}^{b}}) \ge 1 \text{ and}
$$
\n
$$
zR_{z}(y(t_{0}), z(t_{0}), \frac{C_{z}^{b}}{z(t_{0})}) \ge S_{z}^{b}\}
$$

Ecosystem sustainable yields

- **1** Considering that first are given minimal biomass conservation thresholds $\mathcal{S}_{\mathsf{y}}^\flat \geq 0 \;, \quad \mathcal{S}_{\mathsf{z}}^\flat \geq 0$
- \bm{v} with initial biomasses $\bm{\mathrm{y}}(t_0) \geq \bm{S}_{\mathsf{y}}^\flat$ and $\bm{\mathrm{z}}(t_0) \geq \bm{S}_{\mathsf{z}}^\flat$
- the following catches levels can be sustainably maintained

$$
C_y^{b,*} = \min \{ C_y \ge 0 \mid R_y(S_y^b, S_z^b, \frac{C_y}{S_y^b}) \ge 1 \text{ and}
$$

$$
y(t_0)R_y(y(t_0), z(t_0), \frac{C_y}{y(t_0)}) \ge S_y^b \}
$$

$$
C_z^{b,*} = \min \{ C_z \ge 0 \mid R_z(S_y^b, S_z^b, \frac{C_z^b}{S_z^b}) \ge 1 \text{ and}
$$

$$
zR_z(y(t_0), z(t_0), \frac{C_z^b}{z(t_0)}) \ge S_z^b \}
$$

Ecosystem sustainable yields

- **1** Considering that first are given minimal biomass conservation thresholds $\mathcal{S}_{\mathsf{y}}^\flat \geq 0 \;, \quad \mathcal{S}_{\mathsf{z}}^\flat \geq 0$
- \bullet with initial biomasses $y(t_0)\geq \mathcal{S}^\flat_y$ and $z(t_0)\geq \mathcal{S}^\flat_z$
- **3** the following catches levels can be sustainably maintained

$$
C_y^{\flat,\star} = \min \{ C_y \ge 0 \mid R_y(S_y^{\flat}, S_z^{\flat}, \frac{C_y}{S_y^{\flat}}) \ge 1 \text{ and}
$$

$$
y(t_0)R_y(y(t_0), z(t_0), \frac{C_y}{y(t_0)}) \ge S_y^{\flat} \}
$$

$$
C_z^{\flat,\star} = \min \{ C_z \ge 0 \mid R_z(S_y^{\flat}, S_z^{\flat}, \frac{C_z^{\flat}}{S_z^{\flat}}) \ge 1 \text{ and}
$$

$$
zR_z(y(t_0), z(t_0), \frac{C_z^{\flat}}{z(t_0)}) \ge S_z^{\flat} \}
$$

Ecosystem sustainable yields

- **1** Considering that first are given minimal biomass conservation thresholds $\mathcal{S}_{\mathsf{y}}^\flat \geq 0 \;, \quad \mathcal{S}_{\mathsf{z}}^\flat \geq 0$
- \bullet with initial biomasses $y(t_0)\geq \mathcal{S}^\flat_y$ and $z(t_0)\geq \mathcal{S}^\flat_z$
- ³ the following catches levels can be sustainably maintained

$$
C_{y}^{b,*} = \min \{ C_{y} \ge 0 \mid R_{y}(S_{y}^{b}, S_{z}^{b}, \frac{C_{y}}{S_{y}^{b}}) \ge 1 \text{ and}
$$
\n
$$
y(t_{0})R_{y}(y(t_{0}), z(t_{0}), \frac{C_{y}}{y(t_{0})}) \ge S_{y}^{b}\}
$$
\n
$$
C_{z}^{b,*} = \min \{ C_{z} \ge 0 \mid R_{z}(S_{y}^{b}, S_{z}^{b}, \frac{C_{z}^{b}}{S_{z}^{b}}) \ge 1 \text{ and}
$$
\n
$$
zR_{z}(y(t_{0}), z(t_{0}), \frac{C_{z}^{b}}{z(t_{0})}) \ge S_{z}^{b}\}
$$

Ecosystem sustainable yields

- **1** Considering that first are given minimal biomass conservation thresholds $\mathcal{S}_{\mathsf{y}}^\flat \geq 0 \;, \quad \mathcal{S}_{\mathsf{z}}^\flat \geq 0$
- \bullet with initial biomasses $y(t_0)\geq \mathcal{S}^\flat_y$ and $z(t_0)\geq \mathcal{S}^\flat_z$
- ³ the following catches levels can be sustainably maintained

$$
C_y^{\flat,\star} = \min \{ C_y \ge 0 \mid R_y(S_y^{\flat}, S_z^{\flat}, \frac{C_y}{S_y^{\flat}}) \ge 1 \text{ and}
$$

$$
y(t_0)R_y(y(t_0), z(t_0), \frac{C_y}{y(t_0)}) \ge S_y^{\flat} \}
$$

$$
C_z^{\flat,\star} = \min \{ C_z \ge 0 \mid R_z(S_y^{\flat}, S_z^{\flat}, \frac{C_z^{\flat}}{S_z^{\flat}}) \ge 1 \text{ and}
$$

$$
zR_z(y(t_0), z(t_0), \frac{C_z^{\flat}}{z(t_0)}) \ge S_z^{\flat} \}
$$

Ecosystem sustainable yields

- **1** Considering that first are given minimal biomass conservation thresholds $\mathcal{S}_{\mathsf{y}}^\flat \geq 0 \;, \quad \mathcal{S}_{\mathsf{z}}^\flat \geq 0$
- \bullet with initial biomasses $y(t_0)\geq \mathcal{S}^\flat_y$ and $z(t_0)\geq \mathcal{S}^\flat_z$
- ³ the following catches levels can be sustainably maintained

$$
C_y^{b, \star} = \min \{ C_y \ge 0 \mid R_y(S_y^b, S_z^b, \frac{C_y}{S_y^b}) \ge 1 \text{ and}
$$

$$
y(t_0) R_y(y(t_0), z(t_0), \frac{C_y}{y(t_0)}) \ge S_y^b \}
$$

$$
C_z^{b, \star} = \min \{ C_z \ge 0 \mid R_z(S_y^b, S_z^b, \frac{C_z^b}{S_z^b}) \ge 1 \text{ and}
$$

$$
zR_z(y(t_0), z(t_0), \frac{C_z^b}{z(t_0)}) \ge S_z^b \}
$$

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0),z(t_0))$ and $C_z^{\flat}(y(t_0),z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S^\flat_{\mathsf y}\geq 0\ , \quad S^\flat_{\mathsf z}\geq 0.$

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0),z(t_0))$ and $C_z^{\flat}(y(t_0),z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S^\flat_{\mathsf y}\geq 0\ , \quad S^\flat_{\mathsf z}\geq 0.$

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0),z(t_0))$ and $C_z^{\flat}(y(t_0),z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S^\flat_{\mathsf y}\geq 0\ , \quad S^\flat_{\mathsf z}\geq 0.$

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0),z(t_0))$ and $C_z^{\flat}(y(t_0),z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S_{\mathsf{y}}^{\flat} \ge 0 \;,\quad S_{\mathsf{z}}^{\flat} \ge 0.$

Ecosystem sustainable yields

These sustainable yields $C_y^{\flat}(y(t_0),z(t_0))$ and $C_z^{\flat}(y(t_0),z(t_0))$

- are not defined species by species
- but depend on the whole ecosystem dynamics
- and on all conservation thresholds $S_{\mathsf{y}}^{\flat} \ge 0 \;,\quad S_{\mathsf{z}}^{\flat} \ge 0.$

Hake–anchovy Peruvian fishery: Peru official quotas and sustainable yields given by the viability approach

Instituto del Mar del Perú shows interest for this rather transparent method

 $AB + AQ$

Hake–anchovy Peruvian fishery: Peru official quotas and sustainable yields given by the viability approach

Instituto del Mar del Perú shows interest for this rather transparent method

 $AB + AQ$

Hake–anchovy Peruvian fishery: Peru official quotas and sustainable yields given by the viability approach

Instituto del Mar del Perú shows interest for this rather transparent method

 $AB + AQ$

Hake–anchovy Peruvian fishery: Peru official quotas and sustainable yields given by the viability approach

Instituto del Mar del Perú shows interest for this rather transparent method

- Conceptual framework for quantitative sustainable management
- Managing ecological and economic conflicting objectives \bullet
- **•** Sustainable yields for an ecosystem: can be generalized to multiple species
- Risk and sustainable management

Contribution to quantitative sustainable management

Conceptual framework for quantitative sustainable management

- Managing ecological and economic conflicting objectives \bullet
- **•** Sustainable yields for an ecosystem: can be generalized to multiple species
- **Risk and sustainable management**

- Conceptual framework for quantitative sustainable management
- Managing ecological and economic conflicting objectives
- **•** Sustainable yields for an ecosystem: can be generalized to multiple species
- **Risk and sustainable management**

- Conceptual framework for quantitative sustainable management
- Managing ecological and economic conflicting objectives
- **•** Sustainable yields for an ecosystem: can be generalized to multiple species
- **Risk and sustainable management**

- Conceptual framework for quantitative sustainable management
- Managing ecological and economic conflicting objectives
- **•** Sustainable yields for an ecosystem: can be generalized to multiple species
- Risk and sustainable management

Credits

M. De Lara, L. Doyen, Sustainable Management of Natural Resources. Mathematical Models and Methods, Springer, 2008.

