Robust Decarbonization Policies 12th FAERE Thematic Workshop Economics and Management of Climate Change: Linking Adaptation and Mitigation

Michel De Lara – Nicolas Schlegel

Cermics, École des Ponts ParisTech, France

April 21-22, 2022

1 / 8

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ 『唐

Introduction

❖ Adaptation and mitigation to climate change require to make decisions "here and now", considering future uncertainties (market, climate, technologies, policies)

❖ Stochastic optimization allows to design decisions now, that are prepared for an array of future uncertainties weighted by their probabilities

❖ We present here a case about decarbonization of the economy, and compare — on a toy problem — solutions given

- \triangleright either by a single future uncertainty (deterministic)
- \triangleright or by an array of future uncertainties (stochastic)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ 『唐

A linear problem in a deterministic framework

Two (normalized) actions x_1, x_2 of decarbonization, with

- \diamond (x₁, x₂) ∈ Δ = {(x₁, x₂) | 0 ≤ x₁, x₂, x₁ + x₂ ≤ 1} (simplex) (third action $x_3 > 0$ corresponds to the statu quo, with $x_1 + x_2 + x_3 = 1$
- \bullet respective unitary costs c_1 , c_2
- \bullet respective unitary emissions reductions e_1, e_2
- \triangleleft emissions reduction target $e^{\#}$

min $c_1x_1 + c_2x_2$
(x₁,x₂)∈∆ s.t. $e_1x_1 + e_2x_2 \ge e^{\#}$ (emissions reductions)

For instance, in a taxi company, x_1 and x_2 represent fractions of vehicles switched from thermal to electric or hybrid

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q (

Solutions (extreme) of the deterministic approach

Figure: Variables domain and solutions of the deterministic approach

Fomulation of the multi-scenario approach

- \blacktriangleright We consider
	- \triangleright a finite set \triangleright of scenarios (future uncertainties)
	- ▶ a family $\{e_1^s, e_2^s, c_1^s, c_2^s, p^s\}_{s\in\mathcal{S}}$ of possible values for unitary emissions reduction factors e_1^s, e_2^s , unitary costs c_1^s, c_2^s , and for the price p^s of CO_2 emission rights
	- ▶ a family $\{\pi^s\}_{s\in S}$ of nonnegative numbers summing to one, where π^s represents the probability of the scenario s
- \triangleright and we set the stochastic optimization problem, with a new recourse decision variable q^s , representing buying emission rights after uncertainty is resolved

$$
\min_{(x_1, x_2) \in \Delta, \{q^s\}_{s \in S} \in \mathbb{R}_+^S} \quad \sum_{s \in \mathbb{S}} \pi^s [c_1^s x_1 + c_2^s x_2 + p^s \overbrace{q^s}^{\text{emission rights}}
$$
\ns.t.
$$
e_1^s x_1 + e_2^s x_2 + q^s \ge e^{\#}, \ \forall s \in \mathbb{S}
$$

5 / 8

Fomulation of the multi-scenario approach

- \blacktriangleright We consider
	- \triangleright a finite set \triangleright of scenarios (future uncertainties)
	- ▶ a family $\{e_1^s, e_2^s, c_1^s, c_2^s, p^s\}_{s\in\mathcal{S}}$ of possible values for unitary emissions reduction factors e_1^s, e_2^s , unitary costs c_1^s, c_2^s , and for the price p^s of CO_2 emission rights
	- ▶ a family $\{\pi^s\}_{s\in S}$ of nonnegative numbers summing to one, where π^s represents the probability of the scenario s
- \triangleright and we set the stochastic optimization problem, with a new recourse decision variable q^s , representing buying emission rights after uncertainty is resolved

$$
\min_{(x_1, x_2) \in \Delta, \{q^s\}_{s \in S}} \sum_{\varsigma \in \mathbb{S}} \pi^s [c_1^s x_1 + c_2^s x_2 + p^s \overbrace{q^s}]
$$
\ns.t.\n
$$
e_1^s x_1 + e_2^s x_2 + q^s \ge e^{\#}, \forall s \in \mathbb{S}
$$
\n
$$
\min_{(x_1, x_2) \in \Delta} \bar{c}_1 x_1 + \bar{c}_2 x_2 + \sum_{s \in \mathbb{S}} \pi^s p^s [e^{\#} - e_1^s x_1 - e_2^s x_2]_{+}
$$
\n
$$
\lim_{(x_1, x_2) \in \Delta} \bar{c}_1 x_1 + \bar{c}_2 x_2 + \sum_{s \in \mathbb{S}} \pi^s p^s [e^{\#} - e_1^s x_1 - e_2^s x_2]_{+}
$$
\n
$$
\lim_{(x_1, x_2) \in \Delta} \bar{c}_1 x_1 + \bar{c}_2 x_2 + \sum_{s \in \mathbb{S}} \pi^s p^s [e^{\#} - e_1^s x_1 - e_2^s x_2]_{+}
$$

Solution (inner) of the stochastic approach

Figure: Variables domain and solution of the stochastic approach

メロメ メタメ メミメ メミメー 6 / 8

Comparison of costs histograms

Figure: Histograms of the costs for two "deterministic" solutions and the "stochastic" solution

> $(1 + 4)$ 7 / 8

Conclusion

- ❖ With solutions obtained by deterministic approach, we are not sure to satisfy the emission reduction constraints, in case of uncertainties
- ❖ By contrast, the robust/stochastic approach provides a solution which is "prepared" for multiple scenarios, and satisfies the emission reduction constraints by means of a recourse variable (buying emission rights)

Stochastic optimization appears as a suitable tool to design robust policies under uncertainty about the future, taking into account the adaptation to uncertainty

Future developments encompass

- ❖ industrial cases (decarbonization of mobility)
- ❖ multistage approaches

メロメ 大御 メメモメ 大臣 メーモ