Fenchel-Moreau Conjugates of Inf-Transforms and Application to the Stochastic Bellman Equation

Jean-Philippe Chancelier and Michel De Lara CERMICS, Ecole des Ponts ParisTech ´

Sociedad Matemática Peruana XXXV Coloquio SMP2018 IMCA, Lima, 20 de Diciembre de 2018

KORK ERKER ADE YOUR

Examples of inf-transforms in optimization

Perturbation of constraints $\mathcal{Y} \rightsquigarrow \mathcal{Y}(x)$ gives

$$
\inf_{y\in\mathcal{Y}} g(y) \rightsquigarrow \inf_{y\in\mathcal{Y}(x)} g(y)
$$

and value function

$$
f(x) = \inf_{y} \left(\underbrace{\delta_{\mathcal{Y}(x)}(y)}_{\mathcal{K}(x,y)} \dot{+} g(y) \right)
$$

 \blacktriangleright Two-stage linear stochastic programming

$$
f_s(x)=\inf_y \bigg(\left\langle c_s\,,x\right\rangle + \left\langle \rho_s\,,y\right\rangle + \delta_{\{y\geq 0\,,\ A_s x + b_s + y \geq 0\}}\bigg)
$$

Examples of inf-transforms in optimization (continued)

 \triangleright Product from the left by a (linear) operator L

$$
(Lg)(x) = \inf_{y} \left(\underbrace{\delta_{Ly=x}}_{\mathcal{K}(x,y)} \dot{+} g(y) \right)
$$

 \blacktriangleright Moreau-Yosida approximation of g

$$
f(x) = \inf_{y} \left(\frac{1}{\underbrace{\alpha}} \|x - y\|^2 + g(y) \right)
$$

Inf-convolution of g_1 and g_2

$$
f(x) = \inf_{y} \left(\underbrace{g_1(x-y)}_{\mathcal{K}(x,y)} \dot{+} g_2(y) \right)
$$

KORK ERKER ADE YOUR

Examples of inf-transforms in optimization (continued)

 \blacktriangleright Lasso problem

$$
f(x) = \inf_{y} \left(\frac{1}{2} ||x - Ay||_2^2 + \frac{\lambda ||y||_1}{\lambda ||y||_1} \right)
$$

sparsity, regularization

KORK ERKER ADE YOUR

 \triangleright Supervised learning and sparsity

$$
f(x) = \inf_{y} \left(\underbrace{I(x, Ay)}_{\text{loss function}} + \underbrace{\lambda ||y||_0}_{\text{Des. norm}} \right)
$$

 \blacktriangleright Bregman "distance"

$$
f(x) = \inf_{y} \left(\underbrace{H(x) - H(y) - \langle \nabla H(x), x - y \rangle}_{\text{Bregman "distance" } \mathcal{K}(x, y)} + g(y) \right)
$$

Examples of inf-transforms in optimization (continued)

 \blacktriangleright Upper envelope representations

$$
V(\tau,\xi) = \inf_{\xi'} \left(E(\tau,\xi,\xi') + g(\xi') \right)
$$

and Hamilton-Jacobi equation

Question: what about their Fenchel conjugate

$$
f^{\star}(x^{\sharp}) = \sup_{x \in \mathbb{X}} \left(\left\langle x \, , x^{\sharp} \right\rangle + (-f(x)) \right) \, ?
$$

KORK ERKER ADE YOUR

(hence what about dual problems?)

Main result

Two couplings c and d, and an inf-operation with kernel K

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[Conclusion](#page-63-0)

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[Conclusion](#page-63-0)

KORK ERKER ADE YOUR

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0) [Fenchel conjugates of Bellman functions](#page-8-0) [Application to SDDP](#page-13-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

- [Background on couplings and Fenchel-Moreau conjugacies](#page-20-0) [Couplings for discrete convexity](#page-25-0)
- [Couplings for optimal transport](#page-35-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[The duality equality case](#page-48-0) [Design of dual problems](#page-53-0) [Fenchel-Moreau conjugate of generalized inf-convolution](#page-55-0)

KORK ERKER ADE YOUR

[Conclusion](#page-63-0)

Basic spaces

 \triangleright We introduce a first couple of spaces in bilinear duality

 $\mathbb{X} = \mathbb{R}^{n_{\mathbb{X}}}$ and $\mathbb{X}^{\sharp} = \mathbb{R}^{n_{\mathbb{X}}}$

 \triangleright and a second couple of spaces in bilinear duality

 $\mathbb{Y}=\mathbb{L}^p\big((\Omega,\mathcal{F},\mathbb{P}),\mathbb{R}^{n_{\mathbb{X}}}\big)$ and $\mathbb{Y}^{\sharp}=\mathbb{L}^q\big((\Omega,\mathcal{F},\mathbb{P}),\mathbb{R}^{n_{\mathbb{X}}}\big)$

 p and q -integrable random variables with values in $\mathbb{R}^{n_{\mathbb{X}}}$, where

- \blacktriangleright $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space
- ▶ $1 \le p < +\infty$ and q are such that $1/p + 1/q = 1$
- ► Random variables, elements of $\mathbb{Y} = \mathbb{L}^p((\Omega, \mathcal{F}, \mathbb{P}), \mathbb{R}^{n_{\mathbb{X}}})$ will be denoted by bold letters like X and elements of $\mathbb{Y}^{\sharp}=\mathbb{L}^{q}\big((\Omega,\mathcal{F},\mathbb{P}),\mathbb{R}^{n_{\mathbb{X}}}\big)$ by X^{\sharp}
- \triangleright All Fenchel conjugates will be denoted by

$$
g^{\star} , g^{(-\star)}
$$

KORKAR KERKER EL VOLO

Ingredients for a stochastic optimal control problem

- ► Let time $t = 0, 1, ..., T$ be discrete, with $T \in \mathbb{N}^*$
- \triangleright Consider a stochastic optimal control problem with
	- **State space** $\mathbb{X} = \mathbb{R}^{n_{\mathbb{X}}}$
	- control space $\mathbb{U} = \mathbb{R}^{n_{\mathbb{U}}}$
	- \triangleright white noise process $\{W_t\}_{t=1,\ldots,T}$ taking values in uncertainty space $\mathbb{W} = \mathbb{R}^{n_{\mathbb{W}}}$ and defined over the probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- ► For each time $t = 0, 1, \ldots, T-1$, we have
	- ► dynamics $F_t : \mathbb{X} \times \mathbb{U} \times \mathbb{W} \rightarrow \mathbb{X}$
	- ► instantaneous costs $L_t : \mathbb{X} \times \mathbb{U} \times \mathbb{W} \rightarrow [0, +\infty]$

KORK ERKER ADE YOUR

 \triangleright final cost $K : \mathbb{X} \to [0, +\infty]$

We introduce the Bellman functions

 \triangleright We define Bellman functions by, for all $x \in \mathbb{X}$ and $t = \mathcal{T} - 1, \ldots, 0$,

$$
V_T(x) = K(x)
$$

$$
V_t(x) = \inf_{\mathbf{X}, \mathbf{U}} \mathbb{E} \Big[\sum_{s=t}^{T-1} L_s(\mathbf{X}_s, \mathbf{U}_s, \mathbf{W}_{s+1}) + K(\mathbf{X}_T) \Big]
$$

where
$$
\mathbf{X}_t = x \in \mathbb{X}
$$
, $\mathbf{X}_{s+1} = F_s(\mathbf{X}_s, \mathbf{U}_s, \mathbf{W}_{s+1})$ and
\n $\sigma(\mathbf{U}_s) \subset \sigma(\mathbf{X}_s)$, for $s = t, ..., T - 1$

If the Bellman functions are measurable, they satisfy the backward Bellman inequation, for $t = T - 1, \ldots, 0$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

Fenchel conjugates of the Bellman functions

Theorem

The Bellman functions satisfy the backward inequalities

$$
V_t(x) \geq \inf_{\mathbf{X}} \left(\inf_{u \in \mathbb{U}} \left(\left(-\mathcal{H}(x, u, \cdot) \right)^{(-\star)}(\mathbf{X}) \right) + \mathbb{E} \big[V_{t+1}(\mathbf{X}) \big] \right)
$$

for $t = T - 1, \ldots, 0$, where the Hamiltonian $\mathcal H$ is defined by

$$
\mathcal{H}(x, u, \mathbf{X}^{\sharp}) = \mathbb{E}\big[L_t(x, u, \mathbf{W}_{t+1}) + \langle F_t(x, u, \mathbf{W}_{t+1}), \mathbf{X}^{\sharp}\rangle\big]
$$

Moreover, letting $\left\{V^\star_t\right\}_{t=0,1,...,T}$ be the Fenchel conjugates of the Bellman functions, we have, for all $x^{\sharp} \in \mathbb{X}^{\sharp}$ and $t = T - 1, \ldots, 0$,

$$
V_t^\star(x^\sharp) \leq \inf_{\mathbf{X}^\sharp} \bigg(\sup_{u \in \mathbb{U}} \Big(\mathcal{H}(\cdot, u, \mathbf{X}^\sharp)^\star(x^\sharp) \Big) + \mathbb{E} \big[V_{t+1}^\star(\mathbf{X}^\sharp) \big] \bigg)
$$

KID KA KERKER E VOOR

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0) [Fenchel conjugates of Bellman functions](#page-8-0) [Application to SDDP](#page-13-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-20-0) [Couplings for discrete convexity](#page-25-0)

[Couplings for optimal transport](#page-35-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[The duality equality case](#page-48-0) [Design of dual problems](#page-53-0) [Fenchel-Moreau conjugate of generalized inf-convolution](#page-55-0)

KORK ERKER ADE YOUR

[Conclusion](#page-63-0)

Obtaining upper and lower estimates in approximations of Bellman functions (I)

> \blacktriangleright Suppose that the Bellman functions $\{V_t\}_{t=0,1,\dots,T}$ satisfy the Bellman equation and are convex l.s.c. and proper, that is,

> > $V_t = V_t^{\star\star}$, $\forall t = 0, 1, \ldots, T$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \triangleright This is the case in Stochastic Dual Dynamic Programming (SDDP), when
	- \triangleright the dynamics F_t are jointly linear in state and control
	- \blacktriangleright the instantaneous costs L_t are jointly convex in state and control
	- \triangleright the final cost K is convex
	- \triangleright together with technical assumptions

Obtaining upper and lower estimates in approximations of Bellman functions (II)

- The Fenchel conjugates $\{V_t^{\star}\}_{t=0,1,\dots,T}$ of the Bellman functions are convex l.s.c. and proper, by construction
- \triangleright Suppose that they satisfy a "Bellman like" equation

$$
V_t^{\star}(x^{\sharp}) = \inf_{\mathbf{X}^{\sharp}} \left(\sup_{u \in \mathbb{U}} \left(\mathcal{H}(\cdot, u, \mathbf{X}^{\sharp})^{\star}(x^{\sharp}) \right) + \mathbb{E} \big[V_{t+1}^{\star}(\mathbf{X}^{\sharp}) \big] \right)
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

for $t = T - 1, \ldots, 0$

Obtaining upper and lower estimates in approximations of Bellman functions (III)

 \triangleright With the Bellman operators deduced from the Bellman equation and "Bellman like" equation, one can produce (by an adequate algorithm like the SDDP algorithm) lower bound functions

$$
\forall k \in \mathbb{N} \qquad \begin{cases} \underline{V}_{t,(k)} \leq \underline{V}_{t,(k+1)} \leq V_t \\ \widetilde{\underline{V}}_{t,(k)} \leq \widetilde{\underline{V}}_{t,(k+1)} \leq V_t^{\star} \end{cases}
$$

that are piecewise affine

Since the Bellman functions $\{V_t\}_{t=0,1,\ldots,T}$ are convex l.s.c. and proper, we deduce that

$$
\underline{V}_{t,(k)} \leq \underline{V}_{t,(k+1)} \leq V_t = V_t^{\star\star} \leq \underline{\widetilde{V}}_{t,(k+1)}^{\star} \leq \underline{\widetilde{V}}_{t,(k)}^{\star}
$$

 \triangleright Thus, we can control the evolution of the SDDP algorithm

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[Conclusion](#page-63-0)

KORKA SERKER ORA

Main result

Two couplings c and d, and an inf-operation with kernel K

KOD KAR KED KED E YORA

The Fenchel conjugacy

Definition

Two vector spaces $\mathbb X$ and $\mathbb X^{\sharp},$ paired by a bilinear product $\langle\, , \rangle,$ (in the sense of convex analysis), give rise to the classic Fenchel conjugacy

$$
f^{\star}(x^{\sharp}) = \sup_{x \in \mathbb{X}} \left(\left\langle x \, , x^{\sharp} \right\rangle + (-f(x)) \right), \ \ \forall x^{\sharp} \in \mathbb{X}^{\sharp}
$$

for any function $f : \mathbb{X} \to \overline{\mathbb{R}}$

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0) [Fenchel conjugates of Bellman functions](#page-8-0) [Application to SDDP](#page-13-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0) [Background on couplings and Fenchel-Moreau conjugacies](#page-20-0) [Couplings for discrete convexity](#page-25-0) [Couplings for optimal transport](#page-35-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[The duality equality case](#page-48-0) [Design of dual problems](#page-53-0) [Fenchel-Moreau conjugate of generalized inf-convolution](#page-55-0)

KORK ERKER ADE YOUR

[Conclusion](#page-63-0)

Moreau lower and upper additions

 \triangleright The Moreau lower addition extends the usual addition with

 $(+\infty)+(-\infty)=(-\infty)+(+\infty)=-\infty$ · ·

 \triangleright The Moreau upper addition extends the usual addition with

 $(+\infty) + (-\infty) = (-\infty) + (+\infty) = +\infty$

Background on couplings and Fenchel-Moreau conjugacies

- \blacktriangleright Let be given two sets $\mathbb X$ ("primal") and $\mathbb X^{\sharp}$ ("dual")
- ► Consider a coupling function $c : \mathbb{X} \times \mathbb{X}^{\sharp} \to \overline{\mathbb{R}} = [-\infty, +\infty]$
- ► We also use the notation $\mathbb{X} \overset{c}{\leftrightarrow} \mathbb{X}^\sharp$ for a coupling

Definition

The c-Fenchel-Moreau conjugate of a function $f : \mathbb{X} \to \overline{\mathbb{R}}$, with respect to the coupling c , is the function $f^c: \mathbb{X}^{\sharp} \to \overline{\mathbb{R}}$ defined by

$$
f^{c}(x^{\sharp}) = \sup_{x \in \mathbb{X}} \left(c(x, x^{\sharp}) + (-f(x)) \right), \ \forall x^{\sharp} \in \mathbb{X}^{\sharp}
$$

Fenchel-Moreau conjugate (max, +) | Kernel transform $(+, \times)$ $\overline{\mathsf{sup}_{\mathsf{x}\in\mathbb{X}}\left(c(\mathsf{x},\mathsf{x}^\sharp)\right)}$ · $+(-f(x))$ $\sqrt{1}$ $\int_{x \in \mathbb{X}} c(x, x^{\sharp}) f(x) dx$

Background on couplings and Fenchel-Moreau conjugacies With the coupling $\it c$, we associate the reverse coupling $\it c'$

$$
c':\mathbb{X}^{\sharp}\times\mathbb{X}\to\overline{\mathbb{R}}\;,\;\;c'(x^{\sharp},x)=c(x,x^{\sharp})\;,\;\;\forall(x^{\sharp},x)\in\mathbb{X}^{\sharp}\times\mathbb{X}
$$

The c'-Fenchel-Moreau conjugate of a function $g: \mathbb{X}^{\sharp} \to \overline{\mathbb{R}}$, with respect to the coupling c' , is the function $g^{c'} : \mathbb{X} \to \overline{\mathbb{R}}$

$$
g^{c'}(x) = \sup_{x^{\sharp} \in \mathbb{X}^{\sharp}} \left(c(x, x^{\sharp}) + (-g(x^{\sharp})) \right), \ \forall x \in \mathbb{X}
$$

► The c-Fenchel-Moreau biconjugate $f^{cc}: \mathbb{X} \to \overline{\mathbb{R}}$ of a function $f : \mathbb{X} \to \overline{\mathbb{R}}$ is given by

$$
f^{cc}(x) = \sup_{x^{\sharp} \in \mathbb{X}^{\sharp}} \left(c(x, x^{\sharp}) + \left(-f^{c}(x^{\sharp}) \right) \right), \ \forall x \in \mathbb{X}
$$

The $(-c)$ -Fenchel-Moreau conjugate of $g : \mathbb{X} \to \overline{\mathbb{R}}$ is given by $((-c(x, x^{\sharp}))$ $\frac{1}{2} \cdot (- g(x)) \Big)$, $\forall x^{\sharp} \in \mathbb{X}^{\sharp}$ $g^{-c}(x^\sharp)=\mathsf{sup}$ · x∈X KID KA KERKER KID KO

Fenchel inequality with a general coupling

 \triangleright Conjugacies are special cases of dualites, that make it possible to obtain dual problems

$$
\sup_{x^{\sharp} \in \mathbb{X}^{\sharp}} \left(\left(-f^c(x^{\sharp}) \right) + \left(-g^{-c}(x^{\sharp}) \right) \right) \leq \inf_{x \in \mathbb{X}} \left(f(x) + g(x) \right)
$$

In particular, optimization under constraints $x \in X$ gives

$$
\sup_{x^{\sharp}\in\mathbb{X}^{\sharp}}\left(\left(-f^{c}(x^{\sharp})\right)+\left(-\delta_{X}^{-c}(x^{\sharp})\right)\right)\leq \inf_{x\in\mathbb{X}}\left(f(x)+\delta_{X}(x)\right)
$$

KORK ERKER ADE YOUR

where
$$
\delta_X(x) = \begin{cases} 0 & \text{if } x \in X \\ +\infty & \text{if } x \notin X \end{cases}
$$

 \blacktriangleright Hence, the issue is to find a coupling c that gives nice expressions for f^c and δ_X^{-c}

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0) [Fenchel conjugates of Bellman functions](#page-8-0) [Application to SDDP](#page-13-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0) [Background on couplings and Fenchel-Moreau conjugacies](#page-20-0) [Couplings for discrete convexity](#page-25-0) [Couplings for optimal transport](#page-35-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[The duality equality case](#page-48-0) [Design of dual problems](#page-53-0) [Fenchel-Moreau conjugate of generalized inf-convolution](#page-55-0)

KORK ERKER ADE YOUR

[Conclusion](#page-63-0)

Couplings for discrete convexity

A present for Kazuo Murota

where integer neighbours $\mathcal{N}(x)$ of $x\in\mathbb{R}^n$ are such that

 $\{z\} \subset \mathcal{N}(z) \subset \mathbb{Z}^n$, $\forall z \in \mathbb{Z}^n$

Conjugacies for discrete convexity

▶ For any function $f : \mathbb{Z}^n \to \overline{\mathbb{R}}$, we define

$$
f^{\bullet}(p) = \sup_{z \in \mathbb{Z}^n} \left(\langle z, p \rangle + (-f(z)) \right) \qquad \forall p \in \mathbb{Z}^n
$$

$$
f^{(\star)}(x^{\sharp}) = \sup_{z \in \mathbb{Z}^n} \left(\langle z, x^{\sharp} \rangle + (-f(z)) \right) \qquad \forall x^{\sharp} \in \mathbb{R}^n
$$

$$
f^{c}(x, x^{\sharp}) = \sup_{z \in \mathcal{N}(x)} \left(\langle z, x^{\sharp} \rangle + (-f(z)) \right) \quad \forall (x, x^{\sharp}) \in \mathbb{R}^n \times \mathbb{R}^n
$$

 \blacktriangleright and we have the following relations

 $z \in \mathcal{N}(x)$

$$
f^{\bullet} = f^{(\star)} \qquad \text{on } \mathbb{Z}^n
$$

$$
f^{(\star)} = (f + \delta_{\mathbb{Z}^n})^{\star} \qquad \text{on } \mathbb{R}^n
$$

$$
\sup_{x \in \mathbb{R}^n} f^c(x, \cdot) = f^{(\star)} \qquad \text{on } \mathbb{R}^n
$$

Biconjugacies for discrete convexity

▶ For any function $f : \mathbb{Z}^n \to \overline{\mathbb{R}}$, we define

$$
f^{\bullet \bullet}(z) = \sup_{p \in \mathbb{Z}^n} \left(\langle z, p \rangle + (-f^{\bullet}(p)) \right) \qquad \forall z \in \mathbb{Z}^n
$$

$$
f^{(\star)(\star)}(z) = \sup_{x^{\sharp} \in \mathbb{R}^n} \left(\left\langle z, x^{\sharp} \right\rangle + (-f^{(\star)}(x^{\sharp})) \right) \qquad \forall z \in \mathbb{Z}^n
$$

$$
f^{cc}(z) = \sup_{x \in \mathcal{N}^{-1}(z)} \sup_{x^{\sharp} \in \mathbb{R}^n} \left(\left\langle z, x^{\sharp} \right\rangle + (-f^{c}(x, x^{\sharp})) \right) \quad \forall z \in \mathbb{Z}^n
$$

 \blacktriangleright and we have the following relations

$$
f^{\bullet \bullet} = ((f \dot{+} \delta_{\mathbb{Z}^n})^{\star} \dot{+} \delta_{\mathbb{Z}^n})^{\star'} \qquad \text{on } \mathbb{Z}^n
$$

$$
f^{(\star)(\star)} = f^{(\star)\star'} = (f \dotplus \delta_{\mathbb{Z}^n})^{\star\star} \geq f^{\bullet \bullet} \quad \text{on } \mathbb{Z}^n
$$

$$
f^{cc} \ge f^{\bullet \bullet} \qquad \qquad \text{on } \mathbb{Z}^n
$$

Convex extensible functions

For any function $f: \mathbb{Z}^n \to \overline{\mathbb{R}}$, we define the convex closure $\overline{f} : \mathbb{R}^n \to \overline{\mathbb{R}}$ by

$$
\overline{f}(x) = \sup_{x^{\sharp} \in \mathbb{R}^n, \alpha \in \mathbb{R}} \left\{ \left\langle x \, , x^{\sharp} \right\rangle + \alpha \, \left| \, \left\langle z \, , x^{\sharp} \right\rangle + \alpha \leq f(z) \, , \, \, \forall z \in \mathbb{Z}^n \right\} \right\}
$$

 \triangleright Convex closure and Fenchel biconjugate are related by

$$
\overline{f}(x) = (f + \delta_{\mathbb{Z}^n})^{\star\star}(x) = f^{(\star)\star'}(x), \ \forall x \in \mathbb{R}^n
$$

Definition

We say that the function $f:\mathbb{Z}^n\to\overline{\mathbb{R}}$ is convex extensible if

$$
f(z)=\overline{f}(z),\ \forall z\in\mathbb{Z}^n
$$

KORK ERKER ADE YOUR

We introduce a suitable coupling $(*)$ for which convex extensible functions $=$ (\star)-convex functions

- \blacktriangleright Integer space \mathbb{Z}^n coupled with real space \mathbb{R}^n by the bilinear coupling $(\star) = \langle \cdot , \cdot \rangle$
- ▶ The conjugate $f^{(\star)}: \mathbb{R}^n \to \overline{\mathbb{R}}$ of $f: \mathbb{Z}^n \to \overline{\mathbb{R}}$ is given by

$$
f^{(\star)}(x^{\sharp}) = (f + \delta_{\mathbb{Z}^n})^{\star}(x^{\sharp}) = \sup_{z \in \mathbb{Z}^n} \left(\left\langle z \, , x^{\sharp} \right\rangle + (-f(z)) \right), \ \ \forall x^{\sharp} \in \mathbb{R}^n
$$

▶ The biconjugate $f^{(\star)(\star)}: \mathbb{Z}^n \to \overline{\mathbb{R}}$ is given by

$$
f^{(\star)(\star)}(z) = \sup_{x^{\sharp} \in \mathbb{R}^n} \left(\left\langle z \, , x^{\sharp} \right\rangle + (-f^{(\star)}(x^{\sharp})) \right), \ \ \forall z \in \mathbb{Z}^n
$$

KORKAR KERKER EL VOLO

Proposition

f is convex extensible \iff $f = f^{(\star)(\star)}$

Local convex extension

For any function $f : \mathbb{Z}^n \to \overline{\mathbb{R}}$, we define the local convex extension $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ by

$$
\widetilde{f}(x) = \sup_{x^{\sharp} \in \mathbb{R}^n, \alpha \in \mathbb{R}} \left\{ \left\langle x \, , x^{\sharp} \right\rangle + \alpha \, \left| \, \left\langle z \, , x^{\sharp} \right\rangle + \alpha \leq f(z) \, , \, \, \forall z \in \mathcal{N}(x) \, \right\}
$$

where integer neighbours $\mathcal{N}(x)$ of $x\in\mathbb{R}^n$ are such that

 $\{z\} \subset \mathcal{N}(z) \subset \mathbb{Z}^n$, $\forall z \in \mathbb{Z}^n$

 \triangleright The local convex extension is larger than the convex extension:

 $\widetilde{f}(x) \geq \overline{f}(x)$, $\forall x \in \mathbb{R}^n$

 \triangleright When integer neighbours are few, the local convex extension coincides with the original function on the integers:

 ${z} = \mathcal{N}(z)$, $\forall z \in \mathbb{Z}^n \Rightarrow \widetilde{f}(z) = f(z)$, $\forall z \in \mathbb{Z}^n$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

We introduce a suitable coupling

Integer space \mathbb{Z}^n coupled with real space $\mathbb{R}^n \times \mathbb{R}^n$ by localization of the bilinear coupling $\langle \cdot , \cdot \rangle$ w.r.t. neighbours $\mathcal{N}(x) \subset \mathbb{Z}^n$:

$$
c(z,(x,x^{\sharp})) = \langle z,x^{\sharp} \rangle + (-\delta_{\mathcal{N}(x)}(z)) = \langle z,x^{\sharp} \rangle + (-\delta_{\mathcal{N}^{-1}(z)}(x))
$$

▶ The c-conjugate $f^c : \mathbb{R}^n \times \mathbb{R}^n \to \overline{\mathbb{R}}$ of $f : \mathbb{Z}^n \to \overline{\mathbb{R}}$ is

$$
f^{c}(x, x^{\sharp}) = \sup_{z \in \mathcal{N}(x)} \left(\left\langle z \, , x^{\sharp} \right\rangle + (-f(z)) \right), \ \ \forall (x, x^{\sharp}) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

 \blacktriangleright The *c*-biconjugate $f^{cc}: \mathbb{Z}^n \to \overline{\mathbb{R}}$ is

$$
f^{cc}(z) = \sup_{x \in \mathcal{N}^{-1}(z)} \sup_{x^{\sharp} \in \mathbb{R}^n} \left(\left\langle z \, , x^{\sharp} \right\rangle + \left(-f^c(x, x^{\sharp}) \right) \right), \ \ \forall z \in \mathbb{Z}^n
$$

KORK ERKER ADE YOUR

Integrally convex functions

 \triangleright We have that

$$
f^c(x,x^\sharp) \leq f^{(\star)}(x^\sharp)
$$

 \blacktriangleright The local convex extension satisfies

$$
\widetilde{f}(x) = \sup_{x^{\sharp} \in \mathbb{R}^n} \left(\left\langle x \, , x^{\sharp} \right\rangle + \left(-f^c(x, x^{\sharp}) \right) \right) \geq f^{(\star) \star'}(x) = \overline{f}(x)
$$

 \blacktriangleright The *c*-biconjugate $f^{cc}: \mathbb{Z}^n \to \mathbb{\overline R}$ satisfies

$$
f^{cc}(z) = \sup_{x \in \mathcal{N}^{-1}(z)} \widetilde{f}(x), \ \forall z \in \mathbb{Z}^n
$$

Definition

We say that the function $f:\mathbb{Z}^n\to\overline{\mathbb{R}}$ is integrally convex if

$$
\widetilde{f}(x) = \overline{f}(x) = f^{(\star)\star'}(x) , \ \ \forall x \in \mathbb{R}^n
$$

When integer neighbours are few, all functions are c-convex functions!

$$
\blacktriangleright \text{ From } \{z\} = \mathcal{N}(z) , \ \ \forall z \in \mathbb{Z}^n \text{ and}
$$

$$
\widetilde{f}(z) \leq \sup_{x \in \mathcal{N}^{-1}(z)} \widetilde{f}(x) = f^{cc}(z) \leq f(z) = \widetilde{f}(z), \ \ \forall z \in \mathbb{Z}^n
$$

we deduce that

$$
\widetilde{f}(z) = \sup_{x \in \mathcal{N}^{-1}(z)} \widetilde{f}(x) = f^{cc}(z) = f(z), \ \ \forall z \in \mathbb{Z}^n
$$

▶ Therefore, if the function $f : \mathbb{Z}^n \to \overline{\mathbb{R}}$ is integrally convex:

$$
\overline{f}(z) = \widetilde{f}(z) = \sup_{x \in \mathcal{N}^{-1}(z)} \widetilde{f}(x) = f(z), \ \ \forall z \in \mathbb{R}^n
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0) [Fenchel conjugates of Bellman functions](#page-8-0) [Application to SDDP](#page-13-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-20-0) [Couplings for discrete convexity](#page-25-0)

[Couplings for optimal transport](#page-35-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[The duality equality case](#page-48-0) [Design of dual problems](#page-53-0) [Fenchel-Moreau conjugate of generalized inf-convolution](#page-55-0)

KORK ERKER ADE YOUR

[Conclusion](#page-63-0)

Optimal transport

The optimal transport problem is

$$
\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y)
$$

where

- In the sets X and Y are two Polish spaces
- \triangleright we denote by $\mathcal{P}(\mathcal{X} \times \mathcal{Y})$, $\mathcal{P}(\mathcal{X})$ and $\mathcal{P}(\mathcal{Y})$ the corresponding probability spaces (rectangle and marginals)

KORK ERKER ADE YOUR

- ightharpoontanallerightharpoont the set $\Pi(\mu, \nu)$ is made of probabilities $\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ on the rectangle, whose marginals are $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$
- **►** the measurable cost function $c : \mathcal{X} \times \mathcal{Y} \rightarrow [0, +\infty]$, where $c(x, y)$ represents the cost to move from $x \in \mathcal{X}$ towards $y \in \mathcal{Y}$

We introduce a suitable coupling between probabilities and functions

- \blacktriangleright We denote by $C_b^0(\mathcal{X})$ and $C_b^0(\mathcal{Y})$ the spaces of continuous bounded functions
- \triangleright We introduce the bilinear coupling

$$
\mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{Y}) \stackrel{\beta}{\longleftrightarrow} C_b^0(\mathcal{X}) \times C_b^0(\mathcal{Y})
$$

$$
\beta((\mu, \nu); (\psi, \phi)) = \int_{\mathcal{Y}} \phi(y) d\nu(y) - \int_{\mathcal{X}} \psi(x) d\mu(x)
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Conjugacy properties in optimal transport

$$
C(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)
$$

$$
D(\psi, \phi) = \sup_{x \in \mathcal{X}, y \in \mathcal{Y}} [\phi(y) - \psi(x) - c(x, y)] = \sup_{y \in \mathcal{Y}} (\phi(y) + \psi^{-c}(y))
$$

We have the following conjugacy equalities and inequalities

$$
C^{\beta}(\psi, \phi) = D(\psi, \phi) = D^{\beta'\beta}(\psi, \phi)
$$

\n
$$
C(\mu, \nu) \ge C^{\beta\beta'}(\mu, \nu) = D^{\beta'}(\mu, \nu)
$$

\n
$$
= \sup_{\psi, \phi} \left(\int_{\mathcal{Y}} \phi(y) d\nu(y) - \int_{\mathcal{X}} \psi(x) d\mu(x) - D(\psi, \phi) \right)
$$

\n
$$
\ge \sup_{\phi - \psi \le c} \left(\int_{\mathcal{Y}} \phi(y) d\nu(y) - \int_{\mathcal{X}} \psi(x) d\mu(x) \right)
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[Conclusion](#page-63-0)

KORK ERKER ADE YOUR

We introduce a sum coupling

- In Let be given two "primal" sets X, Y
- and two "dual" sets \mathbb{X}^{\sharp} , \mathbb{Y}^{\sharp} ,
- \triangleright together with two coupling functions

$$
c: \mathbb{X} \times \mathbb{X}^{\sharp} \to \overline{\mathbb{R}} , d: \mathbb{Y} \times \mathbb{Y}^{\sharp} \to \overline{\mathbb{R}}
$$

We define the sum coupling $c+d$ — coupling the "primal" product set $\mathbb{X} \times \mathbb{Y}$ with the "dual" product set $\mathbb{X}^{\sharp} \times \mathbb{Y}^{\sharp}$ — by

$$
c + d : (\mathbb{X} \times \mathbb{Y}) \times (\mathbb{X}^{\sharp} \times \mathbb{Y}^{\sharp}) \to \overline{\mathbb{R}} ,((x,y),(x^{\sharp},y^{\sharp})) \qquad \mapsto c(x,x^{\sharp}) + d(y,y^{\sharp})
$$

KORK ERKER ADE YOUR

A kernel K , two couplings c and d and a new kernel K^{c+1} $+$ d

K ロンス 御 > ス 할 > ス 할 > 이 할 2990 We introduce the conjugate of a kernel bivariate function w.r.t. a sum coupling

With any kernel bivariate function

 $\mathcal{K}: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$.

defined on the "primal" product set $X \times Y$, we associate the conjugate, with respect to the coupling $\mathit{c} + \mathit{d}$, · defined on the "dual" product set $\mathbb{X}^{\sharp} \times \mathbb{Y}^{\sharp}$, by

$$
\mathcal{K}^{c+ d}(x^{\sharp}, y^{\sharp}) = \sup_{x \in \mathbb{X}, y \in \mathbb{Y}} \left(c(x, x^{\sharp}) + d(y, y^{\sharp}) + (-\mathcal{K}(x, y)) \right)
$$

$$
\forall (x^{\sharp}, y^{\sharp}) \in \mathbb{X}^{\sharp} \times \mathbb{Y}^{\sharp}
$$

KORKARYKERKE POLO

Main result: Fenchel-Moreau conjugation inequalities with three couplings

Theorem

For any bivariate function $\mathcal{K} : \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$ and univariate functions $f: \mathbb{X} \to \overline{\mathbb{R}}$ and $g: \mathbb{Y} \to \overline{\mathbb{R}}$, all defined on the "primal" sets, we have that

 $f(x) \ge \inf_{y \in \mathbb{Y}}$ $(\mathcal{K}(x,y) \dotplus g(y)), \forall x \in \mathbb{X} \Rightarrow$

$$
f^c(x^{\sharp}) \leq \inf_{y^{\sharp} \in \mathbb{Y}^{\sharp}} \left(\mathcal{K}^{c \div d}(x^{\sharp}, y^{\sharp}) + g^{-d}(y^{\sharp}) \right), \ \ \forall x^{\sharp} \in \mathbb{X}^{\sharp}
$$

KORKARYKERKE POLO

Main result

Two couplings c and d, and an inf-operation with kernel K

 $f(x) \ge \inf_{y \in \mathbb{Y}}$ $\Bigl(\mathcal{K}(x,y) + g(y)\Bigr)$ ⇒ $\frac{f^c(x^{\sharp})}{e^{\int \psi^{\sharp} \in \mathbb{Y}^{\sharp}}}$ $\leq \inf_{y^{\sharp} \in \mathbb{Y}^{\sharp}}$ $c-$ Fenchel-Moreau conjugate of f $\sqrt{ }$ $\underbrace{\mathcal{K}^{\mathsf{c}\pm}}$ $\overline{f}^{\pm d}(x^{\sharp},y^{\sharp})$ + $g^{-d}(y^{\sharp})$ e +d−Fenchel-
Majoru conjurate de la de la constantin Moreau conjugate of K Moreau conjugate of g

KORK STRAIN A BAR SHOP

Main result

Two couplings c and d, and an inf-operation with kernel K

$$
f(x) \ge \inf_{y \in \mathbb{Y}} \left(\mathcal{K}(x, y) + g(y) \right) \Rightarrow
$$
\n
$$
\underbrace{f^c(x^{\sharp})}_{\text{Moreau conjugate}} \le \inf_{\substack{c + d = \text{Fenchel} \\ c + d - \text{Fenchel} \\ \text{Moreau conjugate} \\ \text{of } f} \left(\underbrace{\mathcal{K}^{c + d}(x^{\sharp}, y^{\sharp})}_{\text{Moreau conjugate}} \right) + \underbrace{g^{-d}(y^{\sharp})}_{\text{Moreau conjugate}}
$$

- \triangleright The left hand side assumption is a primal inequality, which is rather weak (upper bound for an infimum)
- \triangleright whereas the right hand side conclusion is a dual inequality, which is rather strong (lower bound for an infimum)

Main result (second formulation) Three couplings c , d and K

 $f + g^{-\lambda} \geq 0 \Rightarrow$ |{z} (−K)−Fenchel-Moreau conjugate of g

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0)

KORK ERKER ADE YOUR

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[Conclusion](#page-63-0)

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0) [Fenchel conjugates of Bellman functions](#page-8-0) [Application to SDDP](#page-13-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-20-0) [Couplings for discrete convexity](#page-25-0)

[Couplings for optimal transport](#page-35-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[The duality equality case](#page-48-0)

[Design of dual problems](#page-53-0) [Fenchel-Moreau conjugate of generalized inf-convolution](#page-55-0)

KORK ERKER ADE YOUR

[Conclusion](#page-63-0)

The duality equality case

The duality equality case is the property that

$$
f(x) = \inf_{y \in \mathbb{Y}} \left(\mathcal{K}(x, y) \dot{+} g(y) \right), \ \forall x \in \mathbb{X} \Rightarrow
$$

$$
f^c(x^{\sharp}) = \inf_{y^{\sharp} \in \mathbb{Y}^{\sharp}} \left(\mathcal{K}^{c \div d}(x^{\sharp}, y^{\sharp}) + g^{-d}(y^{\sharp}) \right), \ \ \forall x^{\sharp} \in \mathbb{X}^{\sharp}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Sufficient conditions for the duality equality case

Corollary

Consider any bivariate function $K : \mathbb{X} \times \mathbb{Y} \to \mathbb{R}$ and univariate functions $f : \mathbb{X} \to \overline{\mathbb{R}}$ and $g : \mathbb{Y} \to \overline{\mathbb{R}}$, all defined on the "primal" sets. The equality case holds true when 1. $g^{(-d)(-d)} = g$

2. the following function has a saddle point (or no duality gap)

$$
((x,y),y^{\sharp}) \in (\mathbb{X} \times \mathbb{Y}) \times \mathbb{Y}^{\sharp} \mapsto
$$

$$
\left(c(x,x^{\sharp}) + (-\mathcal{K}(x,y)) + d(y,y^{\sharp})\right) + g^{-d}(y^{\sharp})
$$

KORKAR KERKER EL VOLO

3. the two coupling functions $c: \mathbb{X} \times \mathbb{X}^{\sharp} \to \mathbb{R}$ and $d: \mathbb{Y} \times \mathbb{Y}^{\sharp} \to \mathbb{R}$, and the kernel $\mathcal{K}: \mathbb{X} \times \mathbb{Y} \to \mathbb{R}$ all take finite values

Sufficient conditions for the duality equality case

Corollary

Consider any bivariate function $K : \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$ and univariate functions $f : \mathbb{X} \to \overline{\mathbb{R}}$ and $g : \mathbb{Y} \to \overline{\mathbb{R}}$, all defined on the "primal" sets. We define

$$
\mathcal{K}_{x^{\sharp}}(y) = -(\mathcal{K}(\cdot,y)^{c}(x^{\sharp})) = \inf_{x \in \mathbb{X}} ((-c(x,x^{\sharp})) + \mathcal{K}(x,y))
$$

The equality case holds true when

$$
\sup_{y\in\mathbb{Y}}\left(\big(-\mathcal{K}_{x^{\sharp}}(y)\big)+\big(-g(y)\big)\right)=\inf_{y^{\sharp}\in\mathbb{Y}^{\sharp}}\left(\mathcal{K}_{x^{\sharp}}^{d}(y^{\sharp})+g^{-d}(y^{\sharp})\right)
$$

KORK STRAIN A BAR SHOP

Sufficient conditions for the duality equality case

Corollary

Consider any bivariate function $K : \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$ and univariate functions $f : \mathbb{X} \to \overline{\mathbb{R}}$ and $g : \mathbb{Y} \to]-\infty, +\infty]$, all defined on the "primal" sets.

The equality case holds true when

- 1. the coupling $d: \mathbb{Y} \times \mathbb{Y}^{\sharp} \to \mathbb{R}$ is the duality bilinear form \langle , \rangle between $\mathbb {Y}$ and its algebraic dual $\mathbb {Y}^{\sharp}$
- 2. the function g is a proper convex function (the function g never takes the value $-\infty$ and is not identically equal to $+\infty$),
- 3. for any $x^{\sharp} \in \mathbb{X}^{\sharp}$, the function $\mathcal{K}_{x^{\sharp}}$ is a proper convex function
- 4. for any $x^{\sharp} \in \mathbb{X}^{\sharp}$, the function g is continuous at some point where $\mathcal{K}_{\mathsf{x}^\sharp}$ is finite

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0) [Fenchel conjugates of Bellman functions](#page-8-0) [Application to SDDP](#page-13-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0) [Background on couplings and Fenchel-Moreau conjugacies](#page-20-0) [Couplings for discrete convexity](#page-25-0)

[Couplings for optimal transport](#page-35-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[The duality equality case](#page-48-0)

[Design of dual problems](#page-53-0)

[Fenchel-Moreau conjugate of generalized inf-convolution](#page-55-0)

KORK ERKER ADE YOUR

[Conclusion](#page-63-0)

Perturbation $+$ Fenchel-Moreau duality

 \triangleright To design a dual problem to the original problem

inf y∈Y $(h(y) \dotplus g(y))$

- ► take a bivariate function $K : \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$. where X is a perturbation set, such that $\mathcal{K}(0, y) = h(y)$
- ► then define $f(x) = \inf_{y \in \mathbb{Y}} (\mathcal{K}(x, y) \dotplus g(y)), \forall x \in \mathbb{X}$
- \triangleright then take two couplings c and d, and obtain

$$
f^c(x^{\sharp}) \leq \inf_{y^{\sharp} \in \mathbb{Y}^{\sharp}} \left(\mathcal{K}^{c \div d}(x^{\sharp}, y^{\sharp}) + g^{-d}(y^{\sharp}) \right), \ \ \forall x^{\sharp} \in \mathbb{X}^{\sharp}
$$

 \blacktriangleright and finally obtain the dual problem

$$
\inf_{y \in \mathbb{Y}} (h(y) \dotplus g(y)) = f(0) \ge
$$
\n
$$
f^{cc}(0) \ge \sup_{y^{\sharp} \in \mathbb{Y}^{\sharp}} \left(\mathcal{K}^{c \dotplus d}(\cdot, y^{\sharp})^{c}(0) \dotplus (-g^{-d}(y^{\sharp})) \right)
$$
\n
$$
\xrightarrow{\text{dual problem}}
$$

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0) [Fenchel conjugates of Bellman functions](#page-8-0) [Application to SDDP](#page-13-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0) [Background on couplings and Fenchel-Moreau conjugacies](#page-20-0) [Couplings for discrete convexity](#page-25-0)

[Couplings for optimal transport](#page-35-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[The duality equality case](#page-48-0) [Design of dual problems](#page-53-0)

[Fenchel-Moreau conjugate of generalized inf-convolution](#page-55-0)

KORK ERKER ADE YOUR

[Conclusion](#page-63-0)

Fenchel conjugate of inf-convolution

The classic inf-convolution

$$
(g_1 \square g_2)(x) = \inf_{y_1+y_2=x} \left(g_1(y_1) + g_2(y_2) \right)
$$

satisfies

 $(g_1 \Box g_2)^* = g_1^* + g_2^*$

Definition of generalized inf-convolution Definition

- In Let be given three sets X, Y_1 and Y_2
- \blacktriangleright For any trivariate convoluting function

 $\mathcal{I}: \mathbb{Y}_1 \times \mathbb{X} \times \mathbb{Y}_2 \rightarrow \overline{\mathbb{R}}$.

we define the $\mathcal{I}\text{-inf-convolution}$ of two functions $g_1 : \mathbb{Y}_1 \to \overline{\mathbb{R}}$ and $g_2 : \mathbb{Y}_2 \to \overline{\mathbb{R}}$ by

$$
(g_1 \overset{\mathcal{I}}{\Box} g_2)(x) = \inf_{y_1 \in \mathbb{Y}_1, y_2 \in \mathbb{Y}_2} \left(g_1(y_1) + \underbrace{\mathcal{I}(y_1, x, y_2)}_{\substack{\text{convoluting} \\ \text{function}}} + g_2(y_2) \right)
$$

KORK ERKER ADE YOUR

Definition of generalized inf-convolution **Definition**

- In Let be given three sets X, Y_1 and Y_2
- \blacktriangleright For any trivariate convoluting function

 $\mathcal{I}: \mathbb{Y}_1 \times \mathbb{X} \times \mathbb{Y}_2 \rightarrow \overline{\mathbb{R}}$.

we define the $\mathcal{I}\text{-inf-convolution}$ of two functions $g_1 : \mathbb{Y}_1 \to \overline{\mathbb{R}}$ and $g_2 : \mathbb{Y}_2 \to \overline{\mathbb{R}}$ by

$$
(g_1 \overline{\Box} g_2)(x) = \inf_{y_1 \in \mathbb{Y}_1, y_2 \in \mathbb{Y}_2} \left(g_1(y_1) + \underbrace{\mathcal{I}(y_1, x, y_2)}_{\substack{\text{convoluting} \\ \text{function}}} + g_2(y_2) \right)
$$

The classic inf-convolution corresponds to
\n
$$
\mathcal{I}(y_1, x, y_2) = \delta_x(y_1 + y_2):
$$
\n
$$
(g_1 \Box g_2)(x) = \inf_{y_1 + y_2 = x} \left(g_1(y_1) + g_2(y_2) \right)
$$

Fenchel-Moreau conjugate of generalized inf-convolution

Proposition

Let be given three "primal" sets $\mathbb{X}, \mathbb{Y}_1, \mathbb{Y}_2$ and three "dual" sets $\mathbb{X}^{\sharp},\ \mathbb{Y}^{\sharp}_{1}$ $_{1}^{\sharp}$, \mathbb{Y}_{2}^{\sharp} 2^{μ}_{2} , together with three coupling functions

$$
\mathbb{X} \stackrel{c}{\leftrightarrow} \mathbb{X}^{\sharp} , \ \mathbb{Y}_1 \stackrel{d_1}{\leftrightarrow} \mathbb{Y}_1^{\sharp} , \ \mathbb{Y}_2 \stackrel{d_2}{\leftrightarrow} \mathbb{Y}_2^{\sharp}
$$

For any univariate functions $f : \mathbb{X} \to \overline{\mathbb{R}}$. $g_1 : \mathbb{Y}_1 \to \overline{\mathbb{R}}$ and $g_2 : \mathbb{Y}_2 \to \overline{\mathbb{R}}$, all defined on the "primal" sets, we have that

$$
f(x) \ge (g_1 \overline{\Box} g_2)(x) , \ \ \forall x \in \mathbb{X} \Rightarrow
$$

$$
f^c(x^{\sharp}) \le (g_1^{(-d_1)} \overline{\Box} g_2^{(-d_2)})(x^{\sharp}) , \ \ \forall x^{\sharp} \in \mathbb{X}^{\sharp} ,
$$

where the convoluting function \mathcal{I}^\sharp on the "dual" sets is given by

 $\mathcal{I}^{\sharp} = \underline{\mathcal{I}}^{c+1}$ $+d_1$ · $+d_2$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

The $\mathcal{I}\text{-inf-convolution}$ is minus the Fenchel-Moreau conjugate of a sum

Proposition The I -inf-convolution is given by

$$
g_1\overset{\mathcal{I}}{\Box} g_2 = -(g_1 \dotplus g_2)^\mathcal{I}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Fenchel-Moreau conjugate of generalized inf-convolution

Proposition

If there exist two coupling functions

$$
\Gamma_1: \mathbb{X}^{\sharp} \times \mathbb{Y}_1 \to \overline{\mathbb{R}} , \ \Gamma_2: \mathbb{X}^{\sharp} \times \mathbb{Y}_2 \to \overline{\mathbb{R}} ,
$$

such that the partial c-Fenchel-Moreau conjugate of the convoluting function I splits as

$$
\mathcal{I}(y_1, \cdot, y_2)^c(x^{\sharp}) = \Gamma_1(x^{\sharp}, y_1) + \Gamma_2(x^{\sharp}, y_2) ,
$$

then the c-Fenchel-Moreau conjugate of the inf-convolution $g_1 \overset{\scriptscriptstyle L}{\Box} g_2$ is given by a sum as

$$
\left(g_1 \overline{\square} g_2\right)^c = g_1^{\Gamma_1} + g_2^{\Gamma_2}
$$

KORK ERKER ADE YOUR

Fenchel-Moreau conjugate of generalized inf-convolution

Proposition

If there exist two coupling functions

$$
\Gamma_1: \mathbb{X}^{\sharp} \times \mathbb{Y}_1 \to \overline{\mathbb{R}} , \ \Gamma_2: \mathbb{X}^{\sharp} \times \mathbb{Y}_2 \to \overline{\mathbb{R}} ,
$$

such that the partial c-Fenchel-Moreau conjugate of the convoluting function I splits as

$$
\mathcal{I}(y_1, \cdot, y_2)^c(x^{\sharp}) = \Gamma_1(x^{\sharp}, y_1) + \Gamma_2(x^{\sharp}, y_2) ,
$$

then the c-Fenchel-Moreau conjugate of the inf-convolution $g_1 \overset{\scriptscriptstyle L}{\Box} g_2$ is given by a sum as

$$
\left(g_1 \overline{\square} g_2\right)^c = g_1^{\Gamma_1} + g_2^{\Gamma_2}
$$

KORK ERKER ADE YOUR

This generalizes $(g_1 \Box g_2)^* = g_1^* + g_2^*$

[Fenchel conjugates of Bellman functions and application to SDDP](#page-7-0)

[Background on couplings and Fenchel-Moreau conjugacy](#page-17-0)

[Fenchel-Moreau conjugation inequality with three couplings](#page-39-0)

[Complements](#page-47-0)

[Conclusion](#page-63-0)

KORK ERKER ADE YOUR

Conclusion

 \triangleright We have proven a new

Fenchel-Moreau conjugation inequality with three couplings (and given sufficient conditions for the equality case)

- \triangleright We have provided a general method to design dual problems by means of one kernel and two couplings
- \triangleright We have introduced a generalized inf-convolution, and have provided formulas for Fenchel-Moreau conjugates
- \triangleright We have shown that Fenchel conjugates of Bellman functions satisfy a "Bellman like" inequation, and we have sketched an application to the SDDP algorithm

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Thank you:-)

K ロ X K 個 X K 결 X K 결 X (결) 299