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Examples of inf-transforms in optimization

I Perturbation of constraints Y  Y(x) gives

inf
y∈Y

g(y) inf
y∈Y(x)

g(y)

and value function

f (x) = inf
y

(
δY(x)(y)
︸ ︷︷ ︸
K(x ,y)

ug(y)

)

I Two-stage linear stochastic programming

fs(x) = inf
y

(
〈cs , x〉u 〈ps , y〉u δ{y≥0 , Asx+bs+y≥0}

)



Examples of inf-transforms in optimization (continued)

I Product from the left by a (linear) operator L

(Lg)(x) = inf
y

(
δLy=x︸ ︷︷ ︸
K(x ,y)

ug(y)
)

I Moreau-Yosida approximation of g

f (x) = inf
y

( 1

α
‖x − y‖2

︸ ︷︷ ︸
K(x ,y)

ug(y)
)

I Inf-convolution of g1 and g2

f (x) = inf
y

(
g1(x − y)︸ ︷︷ ︸
K(x ,y)

ug2(y)

)



Examples of inf-transforms in optimization (continued)

I Lasso problem

f (x) = inf
y

(1

2
‖x − Ay‖2

2 u λ‖y‖1︸ ︷︷ ︸
sparsity, regularization

)

I Supervised learning and sparsity

f (x) = inf
y

(
l(x ,Ay)︸ ︷︷ ︸

loss function

u λ‖y‖0︸ ︷︷ ︸
l0 pseudo-norm

)

I Bregman “distance”

f (x) = inf
y

(
H(x)− H(y)− 〈∇H(x) , x − y〉︸ ︷︷ ︸

Bregman “distance” K(x ,y)

ug(y)
)



Examples of inf-transforms in optimization (continued)

I Upper envelope representations

V (τ, ξ) = inf
ξ′

(
E (τ, ξ, ξ′) + g(ξ′)

)

and Hamilton-Jacobi equation

Question: what about their Fenchel conjugate

f ?(x ]) = sup
x∈X

(〈
x , x ]

〉
·+
(
− f (x)

))
?

(hence what about dual problems?)



Main result
Two couplings c and d , and an inf-operation with kernel K

X X♯

f(x) ≥ infy∈Y
(
K(x, y)∔ g(y)

)

⇒

f c(x♯) ≤ infy♯∈Y♯

(
Kc ·+d(x♯, y♯)∔ g−d(y♯)

)

Y Y♯

c

d

K Kc ·+d
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Basic spaces

I We introduce a first couple of spaces in bilinear duality

X = RnX and X] = RnX

I and a second couple of spaces in bilinear duality

Y = Lp
(
(Ω,F ,P),RnX

)
and Y] = Lq

(
(Ω,F ,P),RnX

)

p and q-integrable random variables with values in RnX , where

I (Ω,F ,P) is a probability space
I 1 ≤ p < +∞ and q are such that 1/p + 1/q = 1

I Random variables, elements of Y = Lp
(
(Ω,F ,P),RnX

)

will be denoted by bold letters like X
and elements of Y] = Lq

(
(Ω,F ,P),RnX

)
by X]

I All Fenchel conjugates will be denoted by

g? , g (−?)



Ingredients for a stochastic optimal control problem

I Let time t = 0, 1, . . . ,T be discrete, with T ∈ N∗
I Consider a stochastic optimal control problem with

I state space X = RnX

I control space U = RnU

I white noise process {Wt}t=1,...,T

taking values in uncertainty space W = RnW

and defined over the probability space (Ω,F ,P)

I For each time t = 0, 1, . . . ,T − 1, we have
I dynamics Ft : X× U×W→ X
I instantaneous costs Lt : X× U×W→ [0,+∞]
I final cost K : X→ [0,+∞]



We introduce the Bellman functions

I We define Bellman functions by,
for all x ∈ X and t = T − 1, . . . , 0,

VT (x) = K (x)

Vt(x) = inf
X,U

E
[ T−1∑

s=t

Ls(Xs ,Us ,Ws+1)u K (XT )
]

where Xt = x ∈ X, Xs+1 = Fs(Xs ,Us ,Ws+1) and
σ(Us) ⊂ σ(Xs), for s = t, . . . ,T − 1

I If the Bellman functions are measurable, they satisfy
the backward Bellman inequation, for t = T − 1, . . . , 0

Bellman
function︷ ︸︸ ︷
Vt(x) ≥ inf

u∈U
E
[
Lt(x , u,Wt+1)︸ ︷︷ ︸

instantaneous
cost

uVt+1

(
Ft(x , u,Wt+1)︸ ︷︷ ︸

dynamics

)]



Fenchel conjugates of the Bellman functions

Theorem
The Bellman functions satisfy the backward inequalities

Vt(x) ≥ inf
X

(
inf
u∈U

((
−H(x , u, ·)

)(−?)
(X)
)
u E

[
Vt+1(X)

])

for t = T − 1, . . . , 0, where the Hamiltonian H is defined by

H(x , u,X]) = E
[
Lt(x , u,Wt+1)u

〈
Ft(x , u,Wt+1) ,X]

〉 ]

Moreover, letting
{
V ?
t

}
t=0,1,...,T

be the Fenchel conjugates of the

Bellman functions, we have, for all x ] ∈ X] and t = T − 1, . . . , 0,

V ?
t (x ]) ≤ inf

X]

(
sup
u∈U

(
H(·, u,X])?(x ])

)
u E

[
V ?
t+1(X])

])



Outline of the presentation

Fenchel conjugates of Bellman functions and application to SDDP
Fenchel conjugates of Bellman functions
Application to SDDP

Background on couplings and Fenchel-Moreau conjugacy
Background on couplings and Fenchel-Moreau conjugacies
Couplings for discrete convexity
Couplings for optimal transport

Fenchel-Moreau conjugation inequality with three couplings

Complements
The duality equality case
Design of dual problems
Fenchel-Moreau conjugate of generalized inf-convolution

Conclusion



Obtaining upper and lower estimates
in approximations of Bellman functions (I)

I Suppose that the Bellman functions
{Vt}t=0,1,...,T satisfy the Bellman equation
and are convex l.s.c. and proper, that is,

Vt = V ??
t , ∀t = 0, 1, . . . ,T

I This is the case in Stochastic Dual Dynamic Programming
(SDDP), when

I the dynamics Ft are jointly linear in state and control
I the instantaneous costs Lt are

jointly convex in state and control
I the final cost K is convex
I together with technical assumptions



Obtaining upper and lower estimates
in approximations of Bellman functions (II)

I The Fenchel conjugates {V ?
t }t=0,1,...,T

of the Bellman functions
are convex l.s.c. and proper, by construction

I Suppose that they satisfy a “Bellman like” equation

V ?
t (x ]) = inf

X]

(
sup
u∈U

(
H(·, u,X])?(x ])

)
u E

[
V ?
t+1(X])

])

for t = T − 1, . . . , 0



Obtaining upper and lower estimates
in approximations of Bellman functions (III)

I With the Bellman operators deduced from the Bellman
equation and “Bellman like” equation, one can produce
(by an adequate algorithm like the SDDP algorithm)
lower bound functions

∀k ∈ N

{
V t,(k) ≤ V t,(k+1) ≤ Vt

Ṽ t,(k) ≤ Ṽ t,(k+1) ≤ V ?
t

that are piecewise affine

I Since the Bellman functions {Vt}t=0,1,...,T

are convex l.s.c. and proper, we deduce that

V t,(k) ≤ V t,(k+1) ≤ Vt = V ??
t ≤ Ṽ

?

t,(k+1) ≤ Ṽ
?

t,(k)

I Thus, we can control the evolution of the SDDP algorithm
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Main result
Two couplings c and d , and an inf-operation with kernel K

X X♯

f(x) ≥ infy∈Y
(
K(x, y)∔ g(y)

)

⇒

f c(x♯) ≤ infy♯∈Y♯

(
Kc ·+d(x♯, y♯)∔ g−d(y♯)

)

Y Y♯

c

d

K Kc ·+d



The Fenchel conjugacy

Definition
Two vector spaces X and X], paired by a bilinear product 〈 , 〉,
(in the sense of convex analysis),
give rise to the classic Fenchel conjugacy

f ?(x ]) = sup
x∈X

(〈
x , x ]

〉
·+
(
− f (x)

))
, ∀x ] ∈ X]

for any function f : X→ R

Fenchel conjugate Fourier transform
sup→ +
+→ ×

supx∈X
( 〈

x , x ]
〉
·+
(
− f (x)

)) ∫
x∈X exp(

〈
x , x ]

〉
)f (x)dx
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Moreau lower and upper additions

I The Moreau lower addition extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

I The Moreau upper addition extends the usual addition with

(+∞)u (−∞) = (−∞)u (+∞) = +∞



Background on couplings and Fenchel-Moreau conjugacies

I Let be given two sets X (“primal”) and X] (“dual”)

I Consider a coupling function c : X× X] → R = [−∞,+∞]

I We also use the notation X c↔ X] for a coupling

Definition
The c-Fenchel-Moreau conjugate of a function f : X→ R,
with respect to the coupling c ,
is the function f c : X] → R defined by

f c(x ]) = sup
x∈X

(
c(x , x ]) ·+

(
− f (x)

))
, ∀x ] ∈ X]

Fenchel-Moreau conjugate (max,+) Kernel transform (+,×)

supx∈X
(
c(x , x ]) ·+

(
− f (x)

)) ∫
x∈X c(x , x ])f (x)dx



Background on couplings and Fenchel-Moreau conjugacies
With the coupling c , we associate the reverse coupling c ′

c ′ : X] × X→ R , c ′(x ], x) = c(x , x ]) , ∀(x ], x) ∈ X] × X

I The c ′-Fenchel-Moreau conjugate of a function g : X] → R,
with respect to the coupling c ′, is the function g c ′ : X→ R

g c ′(x) = sup
x]∈X]

(
c(x , x ]) ·+

(
− g(x ])

))
, ∀x ∈ X

I The c-Fenchel-Moreau biconjugate f cc : X→ R
of a function f : X→ R is given by

f cc(x) = sup
x]∈X]

(
c(x , x ]) ·+

(
− f c(x ])

))
, ∀x ∈ X

The (−c)-Fenchel-Moreau conjugate of g : X→ R is given by

g−c(x ]) = sup
x∈X

((
− c(x , x ])

)
·+
(
− g(x)

))
, ∀x ] ∈ X]



Fenchel inequality with a general coupling

I Conjugacies are special cases of dualites,
that make it possible to obtain dual problems

sup
x]∈X]

((
− f c(x ])

)
·+
(
− g−c(x ])

))
≤ inf

x∈X

(
f (x)u g(x)

)

I In particular, optimization under constraints x ∈ X gives

sup
x]∈X]

((
− f c(x ])

)
·+
(
− δ−cX (x ])

))
≤ inf

x∈X

(
f (x)u δX (x)

)

where δX (x) =

{
0 if x ∈ X

+∞ if x 6∈ X

I Hence, the issue is to find a coupling c
that gives nice expressions for f c and δ−cX
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Couplings for discrete convexity
A present for Kazuo Murota

“Primal” “Dual” Coupling

Rn Rn ?(x , x ]) =
〈
x , x ]

〉

Zn Zn •(z , p) = 〈z , p〉
Zn Rn (?)(z , x ]) =

〈
z , x ]

〉

Zn Rn × Rn c
(
z , (x , x ])

)
=
〈
z , x ]

〉
·+
(
− δN (x)(z)

)

where integer neighbours N (x) of x ∈ Rn are such that

{z} ⊂ N (z) ⊂ Zn , ∀z ∈ Zn



Conjugacies for discrete convexity

I For any function f : Zn → R, we define

f •(p) = sup
z∈Zn

(
〈z , p〉 ·+

(
− f (z)

))
∀p ∈ Zn

f (?)(x ]) = sup
z∈Zn

(〈
z , x ]

〉
·+
(
− f (z)

))
∀x ] ∈ Rn

f c(x , x ]) = sup
z∈N (x)

(〈
z , x ]

〉
·+
(
− f (z)

))
∀(x , x ]) ∈ Rn × Rn

I and we have the following relations

f • = f (?) on Zn

f (?) =
(
f u δZn

)?
on Rn

sup
x∈Rn

f c(x , ·) = f (?) on Rn



Biconjugacies for discrete convexity

I For any function f : Zn → R, we define

f ••(z) = sup
p∈Zn

(
〈z , p〉 ·+

(
− f •(p)

))
∀z ∈ Zn

f (?)(?)(z) = sup
x]∈Rn

(〈
z , x ]

〉
·+
(
− f (?)(x ])

))
∀z ∈ Zn

f cc(z) = sup
x∈N−1(z)

sup
x]∈Rn

(〈
z , x ]

〉
·+
(
− f c(x , x ])

))
∀z ∈ Zn

I and we have the following relations

f •• =
((

f u δZn

)? u δZn

)?′
on Zn

f (?)(?) = f (?)?′ =
(
f u δZn

)?? ≥ f •• on Zn

f cc ≥ f •• on Zn



Convex extensible functions

I For any function f : Zn → R, we define
the convex closure f : Rn → R by

f (x) = sup
x]∈Rn,α∈R

{〈
x , x ]

〉
+ α

∣∣∣
〈
z , x ]

〉
+ α ≤ f (z) , ∀z ∈ Zn

}

I Convex closure and Fenchel biconjugate are related by

f (x) =
(
f u δZn

)??
(x) = f (?)?′(x) , ∀x ∈ Rn

Definition
We say that the function f : Zn → R is convex extensible if

f (z) = f (z) , ∀z ∈ Zn



We introduce a suitable coupling (?) for which
convex extensible functions = (?)-convex functions

I Integer space Zn coupled with real space Rn

by the bilinear coupling (?) = 〈· , ·〉
I The conjugate f (?) : Rn → R of f : Zn → R is given by

f (?)(x ]) =
(
fuδZn

)?
(x ]) = sup

z∈Zn

(〈
z , x ]

〉
·+
(
−f (z)

))
, ∀x ] ∈ Rn

I The biconjugate f (?)(?) : Zn → R is given by

f (?)(?)(z) = sup
x]∈Rn

(〈
z , x ]

〉
·+
(
− f (?)(x ])

))
, ∀z ∈ Zn

Proposition

f is convex extensible ⇐⇒ f = f (?)(?)



Local convex extension

I For any function f : Zn → R, we define
the local convex extension f̃ : Rn → R by

f̃ (x) = sup
x]∈Rn,α∈R

{〈
x , x ]

〉
+ α

∣∣∣
〈
z , x ]

〉
+ α ≤ f (z) , ∀z ∈ N (x)

}

where integer neighbours N (x) of x ∈ Rn are such that

{z} ⊂ N (z) ⊂ Zn , ∀z ∈ Zn

I The local convex extension is larger than the convex extension:

f̃ (x) ≥ f (x) , ∀x ∈ Rn

I When integer neighbours are few, the local convex extension
coincides with the original function on the integers:

{z} = N (z) , ∀z ∈ Zn ⇒ f̃ (z) = f (z) , ∀z ∈ Zn



We introduce a suitable coupling

I Integer space Zn coupled with real space Rn × Rn

by localization of the bilinear coupling 〈· , ·〉
w.r.t. neighbours N (x) ⊂ Zn:

c
(
z , (x , x ])

)
=
〈
z , x ]

〉
·+
(
−δN (x)(z)

)
=
〈
z , x ]

〉
·+
(
−δN−1(z)(x)

)

I The c-conjugate f c : Rn × Rn → R of f : Zn → R is

f c(x , x ]) = sup
z∈N (x)

(〈
z , x ]

〉
·+
(
−f (z)

))
, ∀(x , x ]) ∈ Rn×Rn

I The c-biconjugate f cc : Zn → R is

f cc(z) = sup
x∈N−1(z)

sup
x]∈Rn

(〈
z , x ]

〉
·+
(
−f c(x , x ])

))
, ∀z ∈ Zn



Integrally convex functions

I We have that
f c(x , x ]) ≤ f (?)(x ])

I The local convex extension satisfies

f̃ (x) = sup
x]∈Rn

(〈
x , x ]

〉
·+
(
− f c(x , x ])

))
≥ f (?)?′(x) = f (x)

I The c-biconjugate f cc : Zn → R satisfies

f cc(z) = sup
x∈N−1(z)

f̃ (x) , ∀z ∈ Zn

Definition
We say that the function f : Zn → R is integrally convex if

f̃ (x) = f (x) = f (?)?′(x) , ∀x ∈ Rn



When integer neighbours are few,
all functions are c-convex functions!

I From {z} = N (z) , ∀z ∈ Zn and

f̃ (z) ≤ sup
x∈N−1(z)

f̃ (x) = f cc(z) ≤ f (z) = f̃ (z) , ∀z ∈ Zn

we deduce that

f̃ (z) = sup
x∈N−1(z)

f̃ (x) = f cc(z) = f (z) , ∀z ∈ Zn

I Therefore, if the function f : Zn → R is integrally convex:

f (z) = f̃ (z) = sup
x∈N−1(z)

f̃ (x) = f (z) , ∀z ∈ Rn
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Optimal transport

The optimal transport problem is

inf
π∈Π(µ,ν)

∫

X×Y
c(x , y)dπ(x , y)

where

I the sets X and Y are two Polish spaces

I we denote by P(X × Y), P(X ) and P(Y)
the corresponding probability spaces (rectangle and marginals)

I the set Π(µ, ν) is made of
probabilities π ∈ P(X × Y) on the rectangle,
whose marginals are µ ∈ P(X ) and ν ∈ P(Y)

I the measurable cost function c : X × Y → [0,+∞],
where c(x , y) represents
the cost to move from x ∈ X towards y ∈ Y



We introduce a suitable coupling
between probabilities and functions

I We denote by C 0
b (X ) and C 0

b (Y)
the spaces of continuous bounded functions

I We introduce the bilinear coupling

P(X )× P(Y)
β←→ C 0

b (X )× C 0
b (Y)

β
(
(µ, ν); (ψ, φ)

)
=

∫

Y
φ(y)dν(y)−

∫

X
ψ(x)dµ(x)



Conjugacy properties in optimal transport

C (µ, ν) = inf
π∈Π(µ,ν)

∫

X×Y
c(x , y)dπ(x , y)

D(ψ, φ) = sup
x∈X ,y∈Y

[
φ(y)− ψ(x)− c(x , y)

]
= sup

y∈Y

(
φ(y) + ψ−c(y)

)

We have the following conjugacy equalities and inequalities

Cβ(ψ, φ) = D(ψ, φ) = Dβ′β(ψ, φ)

C (µ, ν) ≥ Cββ
′
(µ, ν) = Dβ′(µ, ν)

= sup
ψ,φ

(∫

Y
φ(y)dν(y)−

∫

X
ψ(x)dµ(x)− D(ψ, φ)

)

≥ sup
φ−ψ≤c

(∫

Y
φ(y)dν(y)−

∫

X
ψ(x)dµ(x)

)
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We introduce a sum coupling

I Let be given two “primal” sets X, Y
I and two “dual” sets X], Y],
I together with two coupling functions

c : X× X] → R , d : Y× Y] → R

We define the sum coupling c ·+ d — coupling the “primal”
product set X× Y with the “dual” product set X] × Y] — by

c ·+ d :
(
X× Y

)
×
(
X] × Y]

)
→ R ,

(
(x , y), (x ], y ])

)
7→ c(x , x ]) ·+ d(y , y ])



A kernel K, two couplings c and d
and a new kernel Kc ·+d

X X♯

Y Y♯

c

d

K Kc ·+d



We introduce the conjugate of a kernel
bivariate function w.r.t. a sum coupling

With any kernel bivariate function

K : X× Y→ R ,

defined on the “primal” product set X× Y,
we associate the conjugate, with respect to the coupling c ·+ d ,
defined on the “dual” product set X] × Y], by

Kc ·+d(x ], y ]) = sup
x∈X,y∈Y

(
c(x , x ]) ·+ d(y , y ]) ·+

(
−K(x , y)

))

∀(x ], y ]) ∈ X] × Y]



Main result: Fenchel-Moreau conjugation inequalities
with three couplings

Theorem
For any bivariate function K : X× Y→ R
and univariate functions
f : X→ R and g : Y→ R,
all defined on the “primal” sets, we have that

f (x) ≥ inf
y∈Y

(
K(x , y)u g(y)

)
, ∀x ∈ X⇒

f c(x ]) ≤ inf
y]∈Y]

(
Kc ·+d(x ], y ])u g−d(y ])

)
, ∀x ] ∈ X]



Main result
Two couplings c and d , and an inf-operation with kernel K

f (x) ≥ inf
y∈Y

(
K(x , y)u g(y)

)
⇒

f c(x ])︸ ︷︷ ︸
c−Fenchel-

Moreau conjugate
of f

≤ inf
y]∈Y]

(
Kc ·+d(x ], y ])︸ ︷︷ ︸
c ·+d−Fenchel-

Moreau conjugate
of K

)
u g−d(y ])︸ ︷︷ ︸

(−d)−Fenchel-
Moreau conjugate

of g

I The left hand side assumption is a primal inequality,
which is rather weak (upper bound for an infimum)

I whereas the right hand side conclusion is a dual inequality,
which is rather strong (lower bound for an infimum)



Main result
Two couplings c and d , and an inf-operation with kernel K

f (x) ≥ inf
y∈Y

(
K(x , y)u g(y)

)
⇒

f c(x ])︸ ︷︷ ︸
c−Fenchel-

Moreau conjugate
of f

≤ inf
y]∈Y]

(
Kc ·+d(x ], y ])︸ ︷︷ ︸
c ·+d−Fenchel-

Moreau conjugate
of K

)
u g−d(y ])︸ ︷︷ ︸

(−d)−Fenchel-
Moreau conjugate

of g

I The left hand side assumption is a primal inequality,
which is rather weak (upper bound for an infimum)

I whereas the right hand side conclusion is a dual inequality,
which is rather strong (lower bound for an infimum)



Main result (second formulation)
Three couplings c, d and K

f u g−K︸︷︷︸
(−K)−Fenchel-

Moreau conjugate
of g

≥ 0 ⇒

f c︸︷︷︸
c−Fenchel-

Moreau conjugate
of f

·+ (g−d)−K
c ·+d

︸ ︷︷ ︸
(−Kc ·+d )−Fenchel-

Moreau conjugate
of g−d

≤ 0
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The duality equality case

The duality equality case is the property that

f (x) = inf
y∈Y

(
K(x , y)u g(y)

)
, ∀x ∈ X⇒

f c(x ]) = inf
y]∈Y]

(
Kc ·+d(x ], y ])u g−d(y ])

)
, ∀x ] ∈ X]



Sufficient conditions for the duality equality case

Corollary

Consider any bivariate function K : X× Y→ R
and univariate functions f : X→ R and g : Y→ R,
all defined on the “primal” sets.
The equality case holds true when

1. g (−d)(−d) = g

2. the following function has a saddle point (or no duality gap)

(
(x , y), y ]

)
∈ (X× Y)× Y] 7→

(
c(x , x ]) ·+

(
−K(x , y)

)
·+ d(y , y ])

)
u g−d(y ])

3. the two coupling functions c : X× X] → R and
d : Y× Y] → R, and the kernel K : X× Y→ R
all take finite values



Sufficient conditions for the duality equality case

Corollary

Consider any bivariate function K : X× Y→ R
and univariate functions f : X→ R and g : Y→ R,
all defined on the “primal” sets. We define

Kx](y) = −
(
K(·, y)c(x ])

)
= inf

x∈X

((
− c(x , x ])

)
uK(x , y)

)

The equality case holds true when

sup
y∈Y

((
−Kx](y)

)
·+
(
− g(y)

))
= inf

y]∈Y]

(
Kd

x](y ])u g−d(y ])

)



Sufficient conditions for the duality equality case

Corollary

Consider any bivariate function K : X× Y→ R
and univariate functions f : X→ R and g : Y→]−∞,+∞],
all defined on the “primal” sets.
The equality case holds true when

1. the coupling d : Y× Y] → R is the duality bilinear form 〈 , 〉
between Y and its algebraic dual Y]

2. the function g is a proper convex function
(the function g never takes the value −∞
and is not identically equal to +∞),

3. for any x ] ∈ X], the function Kx] is a proper convex function

4. for any x ] ∈ X], the function g is continuous at some point
where Kx] is finite
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Perturbation + Fenchel-Moreau duality
I To design a dual problem to the original problem

inf
y∈Y

(
h(y)u g(y)

)

I take a bivariate function K : X× Y→ R ,
where X is a perturbation set, such that K(0, y) = h(y)

I then define f (x) = infy∈Y
(
K(x , y)u g(y)

)
, ∀x ∈ X

I then take two couplings c and d , and obtain

f c(x ]) ≤ inf
y]∈Y]

(
Kc ·+d(x ], y ])u g−d(y ])

)
, ∀x ] ∈ X]

I and finally obtain the dual problem

inf
y∈Y

(
h(y)u g(y)

)
= f (0) ≥

f cc(0) ≥ sup
y]∈Y]

(
Kc ·+d(·, y ])c(0)u

(
− g−d(y ])

))

︸ ︷︷ ︸
dual problem
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Fenchel conjugate of inf-convolution

The classic inf-convolution

(
g1�g2

)
(x) = inf

y1+y2=x

(
g1(y1)u g2(y2)

)

satisfies (
g1�g2

)?
= g?1 ·+ g?2



Definition of generalized inf-convolution

Definition

I Let be given three sets X, Y1 and Y2

I For any trivariate convoluting function

I : Y1 × X× Y2 → R ,

we define the I-inf-convolution
of two functions g1 : Y1 → R and g2 : Y2 → R by

(
g1

I
�g2

)
(x) = inf

y1∈Y1,y2∈Y2

(
g1(y1)u I(y1, x , y2)︸ ︷︷ ︸

convoluting
function

ug2(y2)

)

The classic inf-convolution corresponds to
I(y1, x , y2) = δx(y1 + y2):

(
g1�g2

)
(x) = infy1+y2=x

(
g1(y1)u g2(y2)

)



Definition of generalized inf-convolution

Definition
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Fenchel-Moreau conjugate of generalized inf-convolution

Proposition

Let be given three “primal” sets X, Y1, Y2 and three “dual” sets
X], Y]1, Y]2, together with three coupling functions

X c↔ X] , Y1
d1↔ Y]1 , Y2

d2↔ Y]2

For any univariate functions f : X→ R,
g1 : Y1 → R and g2 : Y2 → R,
all defined on the “primal” sets, we have that

f (x) ≥
(
g1

I
�g2

)
(x) , ∀x ∈ X⇒

f c(x ]) ≤
(
g

(−d1)
1

I]
�g (−d2)

2

)
(x ]) , ∀x ] ∈ X] ,

where the convoluting function I] on the “dual” sets is given by

I] = Ic ·+d1 ·+d2



The I-inf-convolution is minus
the Fenchel-Moreau conjugate of a sum

Proposition

The I-inf-convolution is given by

g1

I
�g2 = −(g1 u g2)I



Fenchel-Moreau conjugate of generalized inf-convolution

Proposition

If there exist two coupling functions

Γ1 : X] × Y1 → R , Γ2 : X] × Y2 → R ,

such that the partial c-Fenchel-Moreau conjugate
of the convoluting function I splits as

I(y1, ·, y2)c(x ]) = Γ1(x ], y1) ·+ Γ2(x ], y2) ,

then the c-Fenchel-Moreau conjugate of the inf-convolution

g1

I
�g2 is given by a sum as

(
g1

I
�g2

)c
= gΓ1

1 ·+ gΓ2
2

This generalizes
(
g1�g2

)?
= g?1 ·+ g?2
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Conclusion

I We have proven a new
Fenchel-Moreau conjugation inequality with three couplings
(and given sufficient conditions for the equality case)

I We have provided a general method to design dual problems
by means of one kernel and two couplings

I We have introduced a generalized inf-convolution,
and have provided formulas for Fenchel-Moreau conjugates

I We have shown that Fenchel conjugates of Bellman functions
satisfy a “Bellman like” inequation,
and we have sketched an application to the SDDP algorithm



Thank you:-)

X X♯

f(x) ≥ infy∈Y
(
K(x, y)∔ g(y)

)

⇒

f c(x♯) ≤ infy♯∈Y♯

(
Kc ·+d(x♯, y♯)∔ g−d(y♯)

)

Y Y♯

c

d

K Kc ·+d
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