\mathcal{H}_0 -Conjugacies and the ℓ_0 Pseudonorm

Jean-Philippe Chancelier, Michel De Lara

Cermics École nationale des ponts et chaussées IP Paris, France

PGMO Days, 19-20 November 2024

KORK ERKER ADAM ADA

Support and the ℓ_0 pseudonorm

Let $n \in \mathbb{N}^*$ be a natural number and

$$
[\![0,n]\!]=\big\{0,1,\ldots,n\big\}\;,\;\;[\![1,n]\!]=\big\{1,\ldots,n\big\}
$$

For any vector $x \in \mathbb{R}^n$, we define

its support by $\text{supp}(x) = \{j \in [\![1,n]\!]\, | \, x_j \neq 0\}$ $supp((0, *, 0, *, *, 0)) = \{2, 4, 5\} \subset [1, 6]$

 \blacktriangleright its ℓ_0 pseudonorm by

$$
\ell_0(x) = \overbrace{\left[\text{supp}(x)\right]}^{\text{number of}} = \sum_{i=1}^n \mathbf{1}_{\{x_i \neq 0\}}
$$

 $\ell_0((0,*,0,*,*,0)) = |\{2,4,5\}| = 3 \in [0,6]$

KORKARYKERKER OQO

The ℓ_0 pseudonorm is not a norm

The function ℓ_0 pseudonorm : $\mathbb{R}^n \to [0, n]$
catisfies 3 out of 4 axioms of a norm satisfies 3 out of 4 axioms of a norm

$$
\begin{array}{c}\n\blacktriangleright \ell_0(x) \geq 0 \qquad \checkmark \\
\blacktriangleright \left(\ell_0(x) = 0 \iff x = 0 \right) \qquad \checkmark \\
\blacktriangleright \ell_0(x + x') \leq \ell_0(x) + \ell_0(x') \qquad \checkmark\n\end{array}
$$

 \triangleright But... instead of absolute 1-homogeneity, it is absolute 0-homogeneity that holds true

> $\ell_0(\lambda x) = \ell_0(x)$, $\forall \lambda \neq 0$ $\text{supp}(\lambda x) = \text{supp}(x)$, $\forall \lambda \neq 0$

> > **KORKARYKERKER OQO**

The ℓ_0 pseudonorm is used in typical sparse optimization problems

 \blacktriangleright Spark of a matrix A

 $\mathrm{spark}(A)=\min\big\{\ell_0(x)\,\big\vert\, Ax=0\,,\;\;x\neq 0\big\}$

▶ Compressed sensing: recovery of a sparse signal $x \in \mathbb{R}^n$ from a measurement $b = Ax$

> $\min_{x \in \mathbb{R}^n} \ell_0(x)$ $Ax = b$

 \blacktriangleright Least squares sparse regression (best subset selection):

$$
\text{for } k \in [\![1,n]\!]\qquad \min_{\substack{x \in \mathbb{R}^n \\ \ell_0(x) \leq k}} \|Ax - b\|^2
$$

KORKARYKERKER OQO

"explaining" the output b by at most k components of x

SNAPSHOTS OF OUR MAIN RESULTS

K ロ K K 日 K K ミ K X E K Y B K Y Q Q C

A menagerie of couplings (and two more)

KORK ERKER ADAM ADA

Fenchel conjugacy (\star) versus E-Capra conjugacy (\circ) for the ℓ_0 pseudonorm

 \blacktriangleright Fenchel conjugacy (\star)

$$
\ell_0^{\star\star'}=0
$$

 \blacktriangleright E-Capra conjugacy (c)

$$
\boxed{\ell_0^{\dot{C}\dot{C}'}=\ell_0}
$$

[\[Chancelier and De Lara, 2021\]](#page-72-0)

KORKARYKERKER OQO

The ℓ_0 pseudonorm coincides, on the unit sphere, with the proper convex lower semicontinuous ℓ_0 -cup function $\mathcal{L}_0 = \ell_0^{\dot{\text{C}} \star'}$ 0

KORKARYKERKER OQO

Variational formulas for the ℓ_0 pseudonorm

Proposition [\[Chancelier and De Lara, 2021\]](#page-72-0) $\ell_0(x) = \frac{1}{\ln x}$ $\frac{1}{\|x\|_2}$ _{x⁽¹⁾∈ℝⁿ,...,} $\mathsf{x}^{(1)}\mathsf{\in}\mathbb{R}^{n},\scriptstyle\ldots,\scriptstyle\mathsf{x}^{(d)}\mathsf{\in}\mathbb{R}^{n}$ $\sum_{l=1}^{d} ||x^{(l)}||_{(l)}^{\top\star}$ $\sum_{(I)}^{\infty} \leq ||x||_2$ $\sum_{l=1}^{d} x^{(l)} = x$ \sum d $l=1$ \mathbf{E} $x^{(l)}\Big\|$ ⊤⋆ $\overrightarrow{(l)}$, $\forall x \in \mathbb{R}^n$ $\ell_0(\mathsf{x}) = \sup_{\mathsf{y} \in \mathbb{R}^n}$ inf l=1,...,d $\left(\frac{\langle x | y \rangle}{\langle x | y \rangle}\right)$ $\frac{X \mid y}{\|x\|_2} - \left[\|y\|_{2,I}^\top - I \right]_+ \right), \quad \forall x \in \mathbb{R}^n \setminus \{0\}$

KORKAR KERKER ST VOOR

Talk outline

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) \mathcal{H}_0 -couplings [Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings [Conjugacies and](#page-29-0) H_0 -conjugacies [Biconjugates and duality,](#page-34-0) \mathcal{H}_0 -biconjugates [Subdifferentials and](#page-42-0) \mathcal{H}_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) H_0 -convexity of ℓ_0 [10 min] [Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

[Conclusion](#page-71-0)

Outline of the presentation

 \mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Orthant-strict monotonicity and](#page-47-0) H_0 -convexity of ℓ_0 [10 min]

[Conclusion](#page-71-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Outline of the presentation

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) \mathcal{H}_0 -couplings

[Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings [Conjugacies and](#page-29-0) \mathcal{H}_0 -conjugacies [Biconjugates and duality,](#page-34-0) H_0 -biconjugates [Subdifferentials and](#page-42-0) H_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) \mathcal{H}_0 -convexity of ℓ_0 [10 min] [Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

[Conclusion](#page-71-0)

KORKARYKERKER OQO

Couplings

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Motivation: Legendre transform and Fenchel conjugacy in convex analysis

Definition

Two vector spaces ${\mathcal X}$ and ${\mathcal Y}$, paired by a bilinear form $\langle\ ,\rangle,$ (in the sense of convex analysis [\[Rockafellar, 1974,](#page-72-1) p. 13])) give rise to the classic Fenchel conjugacy

$$
f\in\overline{\mathbb{R}}^\mathcal{X}\mapsto f^\star\in\overline{\mathbb{R}}^\mathcal{Y}
$$

given by the Legendre transform

$$
f^{\star}(y) = \sup_{x \in \mathcal{X}} \left(\underbrace{\langle x, y \rangle}_{\text{coupling}} + \bigl(-f(x) \bigr) \right), \ \ \forall y \in \mathcal{Y}
$$

KORKARYKERKER OQO

Coupling function between sets

- Exect be given two sets \mathcal{U} ("primal") and \mathcal{V} ("dual") not necessarily paired vector spaces (nodes and arcs, etc.)
- \blacktriangleright We consider a coupling function

 $c: \mathcal{U} \times \mathcal{V} \rightarrow \overline{\mathbb{R}}$

KORKAR KERKER SAGA

We also use the notation $\mathcal{U} \stackrel{c}{\leftrightarrow} \mathcal{V}$ for a coupling [\[Moreau, 1966-1967,](#page-72-2) [1970\]](#page-72-3)

H_0 -couplings

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Background on homogeneous functions and mappings

Let X be a vector space We denote $\mathbb{R}_{+} = [0, +\infty[$, $\mathbb{R}_{++} =]0, +\infty[$ A set $C \subset \mathcal{X}$ is a cone if $\mathbb{R}_{++} C \subset C$

Definition

Let $\alpha \in \mathbb{R}$ and let $C \subset \mathcal{X}$ be a nonempty cone of \mathcal{X} We say that a function $f: C \to \overline{\mathbb{R}}$ or a mapping $f: C \to \mathcal{X}$ is

1. (strictly positively) α -homogeneous (on the cone C) if

 $f(\lambda x) = \lambda^{\alpha} f(x)$, $\forall \lambda \in \mathbb{R}_{++}$, $\forall x \in C$

2. absolutely α -homogeneous (on the cone C) if

 $f(\lambda x) = |\lambda|^{\alpha} f(x) , \forall \lambda \in \mathbb{R} \setminus \{0\} , \forall x \in C$

KORKAR KERKER SAGA

We use the convention $\lambda^0=1\ ,\ \ \forall \lambda \in \mathbb{R}_{++}$

Examples of homogeneous functions

Examples

- \blacktriangleright The ℓ_0 pseudonorm is absolutely 0-homogeneous on \mathbb{R}^n
- ▶ Any norm $\|\cdot\|$ on $\mathcal X$ is absolutely 1-homogeneous on $\mathcal X$, and the radial projection $R_{\|\cdot\|}$, defined by

$$
R_{\|\cdot\|} \colon \mathcal{X} \to \mathcal{X} \;, \;\; R_{\|\cdot\|}(x) = \begin{cases} \frac{x}{\|x\|} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
$$

KORKARYKERKER POLO

is a 0-homogeneous mapping

Definition of \mathcal{H}_0 -couplings

Definition

Let two vector spaces ${\mathcal X}$ and ${\mathcal Y}$ be paired by a bilinear form $\langle\ ,\rangle,$ and let $C \subset \mathcal{X}$ be a nonempty cone of \mathcal{X}

A \mathcal{H}_0 -coupling^a between C and Y is a function $c: C \times Y \rightarrow \mathbb{R}$ which is

- 1. 0-homogeneous in the first variable (on the cone C)
- 2. linear continuous in the second variable (on the vector space \mathcal{Y})

^aWe thank Prof. David L. Donoho for his suggestion to call such couplings H_0 , standing for homogeneous of degree 0

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

\mathcal{H}_0 -couplings are left-sided 0-homogeneous and right-sided linear

The H_0 -couplings are a special case of a one-sided linear couplings [\[Chancelier and De Lara, 2021\]](#page-72-0)

Proposition

Let two vector spaces $\mathcal X$ and $\mathcal Y$ be paired by a bilinear form $\langle\ ,\rangle,$ and let $C \subset \mathcal{X}$ be a nonempty cone of \mathcal{X}

The function $c: C \times \mathcal{Y} \to \mathbb{R}$ is a \mathcal{H}_0 -coupling if and only if there exists a 0-homogeneous mapping $\rho: C \rightarrow \mathcal{X}$

such that

$$
\mathcal{C}(x,y)=\langle \varrho(x), y \rangle, \forall x \in C, \forall y \in \mathcal{Y}
$$

KORKARYKERKER POLO

and we denote

$$
c = \star_{\varrho}
$$

Outline of the presentation

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) H_0 -couplings

[Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings

[Conjugacies and](#page-29-0) H_0 -conjugacies [Biconjugates and duality,](#page-34-0) H_0 -biconjugates [Subdifferentials and](#page-42-0) H_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) \mathcal{H}_0 -convexity of ℓ_0 [10 min] [Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

KORKARYKERKER POLO

[Conclusion](#page-71-0)

Capra \subsetneq radial \mathcal{H}_0 $\subsetneq \mathcal{H}_0$ norms \subsetneq 1-homogeneous functions

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Examples of H_0 -couplings: Capra-couplings [Chancelier and De Lara \[2022a\]](#page-72-4)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Constant Along Primal RAys (Capra) couplings are \mathcal{H}_0 -couplings

[\[Chancelier and De Lara, 2022a,](#page-72-4) Definition 8]

Definition

Let $\|\cdot\|$ be a (source) norm on $\mathcal X$

The Capra coupling (Capra) $\mathcal{X} \overset{\smile}{\longleftrightarrow} \mathcal{Y}$ is given by

$$
\forall y \in \mathcal{Y}, \begin{cases} \phi(x, y) &= \frac{\langle x, y \rangle}{\|x\|}, \forall x \in \mathcal{X} \setminus \{0\} \\ \phi(0, y) &= 0 \end{cases}
$$

The coupling Capra is a \mathcal{H}_0 -coupling between X and Y itself, as $\dot{\varsigma} = \star_{R_{\parallel,\parallel}}$ since

$$
\varphi(x, y) = \langle \underbrace{R_{\|\cdot\|}(x)}_{\substack{\text{radial} \\ \text{projection}}} , y \rangle \,, \ \forall x \in \mathcal{X} \,, \ \forall y \in \mathcal{X}
$$

KORKARYKERKER POLO

Examples of H_0 -couplings: radial H_0 -couplings

Kロトメ部トメミトメミト ミニのQC

For any function $f: \mathcal{X} \to \overline{\mathbb{R}}$, we introduce

the level sets the strict level sets and the level curves

 $\leq r = \{x \in \mathcal{X} \mid f(x) \leq r\}, \forall r \in \overline{\mathbb{R}}$ $\mathcal{F}^{< r} = \{x \in \mathcal{X} \mid f(x) < r\}, \forall r \in \overline{\mathbb{R}}$ $r = \{x \in \mathcal{X} \mid f(x) = r\}, \forall r \in \overline{\mathbb{R}}$

KORKARYKERKER POLO

Radial H_0 -couplings

Definition

We call normalization function a 1-homogeneous nonnegative function $\nu\colon{\mathcal X}\to[0,+\infty]$ such that $\nu^{=1}\neq\emptyset$

With any normalization function ν , we associate the primal normalization mapping $\varrho_{\nu}\colon{\mathcal X}\setminus\nu^{\pm 0}\to{\mathcal X}$

defined by
$$
\mathcal{X} \setminus \nu^{=0} \ni x \mapsto \phi(x) = \frac{1}{\nu(x)}x
$$

as well as the radial \mathcal{H}_{0} -coupling $\star_{\varrho_{\nu}}$, between $\mathcal{X}\setminus\nu^{\pm 0}$ and $\mathcal{Y},$

as the function
$$
\star_{\varrho_{\nu}}: (\mathcal{X} \setminus \nu^{\equiv 0}) \times \mathcal{Y} \to \mathbb{R}
$$

defined by $\star_{\varrho_{\nu}}(x, y) = \frac{1}{\nu(x)} \langle x, y \rangle = \langle \varrho_{\nu}(x), y \rangle$
 $\forall x \in \mathcal{X} \setminus \nu^{\equiv 0}, \forall y \in \mathcal{Y}$

KORKARYKERKER POLO

Capra-couplings are radial \mathcal{H}_0 -couplings

Proposition

Regarding classes of couplings, we have the following strict inclusions

Capra ⊊ radial $\mathcal{H}_{0} \subset \mathcal{H}_{0}$

For the proof that $\text{Capra} \subsetneq \text{radial } \mathcal{H}_0$, we will need the following

Definition

The Minkowski functional associated with the subset $X \subset \mathcal{X}$ is the function $m_X: \mathcal{X} \to [0, +\infty]$ defined by (with the convention that inf $\emptyset = +\infty$)

 $m_X(x) = \inf \{ \lambda > 0 \, \big| \, x \in \lambda X \}$, $\forall x \in \mathcal{X}$

KORKAR KERKER SAGA

The Minkowski functional m_X is a 1-homogeneous (nonnegative) function Proof that Capra-couplings are radial \mathcal{H}_0 -couplings

Proof.

- \triangleright Let S denote the unit sphere of the norm $\|\cdot\|$ and let $\nu = m_S$ be the Minkowski functional of S
- \blacktriangleright Thus defined, ν is a normalization function, as an easy calculation shows that

$$
\nu = m_S = \|\cdot\| + \iota_{\mathcal{X}\setminus\{0\}} , \ \ \nu^{=0} = \emptyset
$$

(Capra)
$$
\phi = \star_{\varrho_{\nu}}
$$
 (radial \mathcal{H}_0)

Notice that the norm $\lVert \cdot \rVert$ is also a normalization function, but that, as $\|\cdot\| = 0 = \{0\}$, $\|\cdot\|$ leads to the \mathcal{H}_0 -coupling between $\mathcal{X}\setminus\{0\}$ and $\mathcal Y$ defined by $\star_{\varrho_{\parallel,\parallel}}(x,y) = \langle x, y \rangle / ||x||$ when $x \neq 0$, which is not a Capra-coupling – as Capra-couplings are defined between X and \mathcal{Y} — so that $\phi \neq \star_{\rho_{\parallel,\parallel}}$

Outline of the presentation

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) \mathcal{H}_0 -couplings [Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings [Conjugacies and](#page-29-0) H_0 -conjugacies [Biconjugates and duality,](#page-34-0) H_0 -biconjugates [Subdifferentials and](#page-42-0) H_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) \mathcal{H}_0 -convexity of ℓ_0 [10 min] [Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

[Conclusion](#page-71-0)

KORKARYKERKER POLO

Fenchel-Moreau conjugate of a function

$$
f \in \overline{\mathbb{R}}^{\mathcal{U}} \mapsto f^c \in \overline{\mathbb{R}}^{\mathcal{V}}
$$

Definition

The c -Fenchel-Moreau conjugate $f^c \colon \mathcal{V} \to \overline{\mathbb{R}}$ of a function $f: U \to \overline{\mathbb{R}}$ is defined by

$$
f^{c}(v) = \sup_{u \in U} (c(u, v) + (-f(u))) , \ \forall v \in V
$$

We use the Moreau lower and upper additions on $\overline{\mathbb{R}}$ that extend the usual addition with

$$
(+\infty) + (-\infty) = (-\infty) + (+\infty) = -\infty
$$

$$
(+\infty) + (-\infty) = (-\infty) + (+\infty) = +\infty
$$

KORKARYKERKER POLO

Blanket assumptions

- 1. Let two vector spaces X and Y be paired by a bilinear form \langle , \rangle , and let $C \subset \mathcal{X}$ be a nonempty cone of \mathcal{X}
- 2. Let \star_o be a \mathcal{H}_0 -coupling with associated 0-homogeneous mapping $\rho: C \rightarrow \mathcal{X}$, satisfying

 $\text{im}\rho = \rho(C) \subset C$

3. Let $f: C \to \overline{\mathbb{R}}$ be a function satisfying

 $f \circ \rho = f$

KORKAR KERKER SAGA

(hence, necessarily, $f: C \to \overline{\mathbb{R}}$ is 0-homogeneous)

H_0 -conjugates of 0-homogeneous functions

Proposition

Under the blanket assumptions, we have that

$$
\underbrace{f^{\star_{\varrho}}}_{\star_{\varrho}-\text{conjugate}} = \underbrace{(f + \iota_{\text{im}\varrho})^{\star}}_{\text{Fenchel conjugate}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Capra-conjugate of the ℓ_0 pseudonorm

 $S \subset \mathbb{R}^n$ unit sphere, $\nu = m_S$, $\phi = \star_{\varrho_\nu}, \varrho_\nu(x) = \frac{1}{\nu(x)} x$, $\forall x \in \mathbb{R}^n$, $\lim_{\varrho_{\nu}}=S\cup\{0\}\,\,(1/\nu(0)=0),\,\,C=\mathbb{R}^n,\,f=\ell_0$

$$
\ell_0^{\zeta}(y) = \ell_0^{*_{\varrho\nu}}(y) = (\ell_0 + \iota_{\text{im}\varrho_{\nu}})^*
$$

\n
$$
= (\ell_0 + \iota_{\text{SU}\{0\}})^*
$$

\n
$$
= \sup \left\{ 0, \sup_{s \in S} \left\{ \langle s | y \rangle - \ell_0(s) \right\} \right\}
$$

\n
$$
= \sup \left\{ 0, \sup_{i \in [1, n]} \left\{ \sup_{\substack{s \in S \\ \ell_0(s) = i}} \langle s | y \rangle - i \right\} \right\}
$$

\n
$$
= \sup_{i \in [1, n]} \left[||y||_{(i)}^{\mathcal{R}} - i \right]_{+}
$$

[\[Chancelier and De Lara, 2021,](#page-72-0) [2022a\]](#page-72-4)

Outline of the presentation

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) \mathcal{H}_0 -couplings [Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings [Conjugacies and](#page-29-0) \mathcal{H}_0 -conjugacies [Biconjugates and duality,](#page-34-0) \mathcal{H}_0 -biconjugates [Subdifferentials and](#page-42-0) H_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) \mathcal{H}_0 -convexity of ℓ_0 [10 min] [Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

KORKARYKERKER POLO

[Conclusion](#page-71-0)

Motivation: duality in convex analysis

重 2990
Reverse coupling and Fenchel-Moreau biconjugate

With the coupling c , we associate the reverse coupling c^\prime

 $c': \mathcal{V} \times \mathcal{U} \rightarrow \overline{\mathbb{R}} , \ \ c'(\nu, u) = c(u, v) , \ \ \forall (\nu, u) \in \mathcal{V} \times \mathcal{U}$

$$
f \in \overline{\mathbb{R}}^{\mathcal{U}} \mapsto f^c \in \overline{\mathbb{R}}^{\mathcal{V}}
$$

$$
g \in \overline{\mathbb{R}}^{\mathcal{V}} \mapsto g^{c'} \in \overline{\mathbb{R}}^{\mathcal{U}}
$$

KID KA KERKER KID KO

Reverse coupling and Fenchel-Moreau biconjugate

With the coupling c , we associate the reverse coupling c^\prime

 $c': \mathcal{V} \times \mathcal{U} \rightarrow \overline{\mathbb{R}} , \ \ c'(\nu, u) = c(u, v) , \ \ \forall (\nu, u) \in \mathcal{V} \times \mathcal{U}$

$$
f \in \overline{\mathbb{R}}^{\mathcal{U}} \mapsto f^c \in \overline{\mathbb{R}}^{\mathcal{V}}
$$

$$
g \in \overline{\mathbb{R}}^{\mathcal{V}} \mapsto g^{c'} \in \overline{\mathbb{R}}^{\mathcal{U}}
$$

$$
g^{c'}(u) = \sup_{v \in \mathcal{V}} \left(c(u, v) + (-g(v)) \right), \ \forall u \in \mathcal{U}
$$

$$
f^{cc'}(u) = (f^c)^{c'}(u) = \sup_{v \in \mathcal{V}} \left(c(u, v) + (-f^c(v)) \right), \ \forall u \in \mathcal{U}
$$

H_0 -biconjugates of 0-homogeneous functions

Proposition

Under the blanket assumptions, we have that

$$
f^{\star_{\varrho}\star'_{\varrho}} = \underbrace{f^{\star_{\varrho}\star'}}_{f^{\star_{\varrho}\star'}} \circ \varrho = (f \dot{+} \iota_{\text{im}\varrho})^{\star \star'} \circ \varrho
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

In generalized convexity, one defines so-called c-convex functions

$$
f \in \overline{\mathbb{R}}^{\mathcal{U}} \mapsto f^c \in \overline{\mathbb{R}}^{\mathcal{V}} \mapsto f^{cc'} \in \overline{\mathbb{R}}^{\mathcal{U}}
$$

For any function $f: \mathcal{U} \to \overline{\mathbb{R}}$, one has that

 $f^{cc'} \leq f$

Definition

The function $f: U \to \overline{\mathbb{R}}$ is said to be c-convex if

 $f^{cc'}=f$

KORKARYKERKER POLO

c-convex functions have dual representations as suprema of elementary functions (abstract convexity)

If the function $f: U \to \overline{\mathbb{R}}$ is c-convex, we have that

$$
f(u) = \sup_{v \in \mathcal{V}} \underbrace{\left(c(u, v) + \left(-f^c(v) \right) \right)}_{\text{elementary function of } u}, \ \ \forall u \in \mathcal{U}
$$

Example: \star -convex functions $= closed convex functions$ $=$ proper convex lsc or $\equiv -\infty$ or $\equiv +\infty$ $=$ suprema of affine functions

KORK EXTERNE PROVIDE

\star_{ρ} -convex functions

If the function $f: C \to \overline{\mathbb{R}}$ is \star_{ϱ} -convex, we have that

$$
f(x) = \sup_{y \in \mathcal{Y}} \underbrace{\left(\langle \varrho(x), y \rangle + \left(-f^{\star_{\varrho}}(y) \right) \right)}_{\text{affine function of } \varrho(x)}, \forall x \in C
$$

メロトメ 御 トメ 差 トメ 差 トッ 差

 299

Outline of the presentation

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) \mathcal{H}_0 -couplings [Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings [Conjugacies and](#page-29-0) \mathcal{H}_0 -conjugacies [Biconjugates and duality,](#page-34-0) H_0 -biconjugates [Subdifferentials and](#page-42-0) \mathcal{H}_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) \mathcal{H}_0 -convexity of ℓ_0 [10 min] [Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

KORKARYKERKER POLO

[Conclusion](#page-71-0)

Motivation: subgradients in convex analysis

Subdifferentials of a conjugacy

For any function
$$
f: \mathcal{U} \to \overline{\mathbb{R}}
$$
 and $u \in \mathcal{U}$, $v \in \mathcal{V}$

Definition

Upper subdifferential (following [\[Martinez-Legaz and Singer, 1995\]](#page-72-0))

$$
v \in \partial^c f(u) \iff f(u) = c(u, v) + (-f^c(v))
$$

The upper subdifferential $\partial^{\sigma} f$ has the property that

$$
\partial^c f(u) \neq \emptyset \implies \underbrace{f(u) = f^{cc'}(u)}_{\text{the function } f \text{ is } c\text{-convex at } u}
$$

Definition

Lower subdifferential

$$
v \in \partial_c f(u) \iff f^c(v) = c(u,v) + (-f(u))
$$

KORK EXTERNE PROVIDE

H_0 -subdifferential of 0-homogeneous functions

Proposition

Under the blanket assumptions, we have that

$$
\boxed{\underbrace{\partial_{\star_{\varrho}} f}_{\star_{\varrho}\text{-subdifferential}} = \underbrace{\underbrace{\partial (f + \iota_{\text{im}\varrho})}_{\text{Moreau-Rockafellar}}} \circ \varrho}_{\text{subdifferential}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Roadmap: convex factorization of the ℓ_0 pseudonorm

Find

- **Exercise 1** a normalization function $\nu : \mathbb{R}^n \to [0, +\infty]$
- ▶ a nonempty cone $C \subset \mathbb{R}^n \setminus \nu^{=0}$

such that

$$
\partial_{\star_{\varrho_{\nu}}}(\ell_0+\iota_C)(x)=\partial(\ell_0+\iota_{\text{im}\varrho_{\nu}})(\varrho_{\nu}(x))\neq\emptyset, \ \forall x\in C
$$

hence that $\ell_0+\iota_C=\widetilde{(\ell_0+\iota_C)^{\star_{\varrho_\nu\star'}}}\circ \varrho_\nu=\big(\ell_0+\iota_{\text{im} \varrho_\nu}\big)^{\star\star'}\circ \varrho_\nu$ convex lsc and, in particular, when $C = \mathbb{R}^n$,

$$
\ell_0 = \underbrace{\ell_0^{\star_{\varrho_{\nu}} \star'}}_{\text{convex loc } \mathcal{L}_0^{\nu}} \circ \varrho_{\nu} = (\ell_0 + \iota_{\text{im} \varrho_{\nu}})^{\star \star'} \circ \varrho_{\nu}
$$

KORKARYKERKER POLO

Outline of the presentation

 H_0 [-conjugacies \[10 min\]](#page-10-0)

[Orthant-strict monotonicity and](#page-47-0) H_0 -convexity of ℓ_0 [10 min]

[Conclusion](#page-71-0)

KO K K Ø K K E K K E K V K K K K K K K K K

Outline of the presentation

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) \mathcal{H}_0 -couplings [Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings [Conjugacies and](#page-29-0) H_0 -conjugacies [Biconjugates and duality,](#page-34-0) H_0 -biconjugates [Subdifferentials and](#page-42-0) H_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) \mathcal{H}_0 -convexity of ℓ_0 [10 min] [Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

KORKARYKERKER POLO

[Conclusion](#page-71-0)

Polar transform of a function

The polar set X^\odot of the subset $X\subset \mathbb{R}^n$ is the closed convex set

 $X^{\odot} = \{ y \in \mathbb{R}^n \mid \langle x \mid y \rangle \leq 1, \forall x \in X \}$

The bipolar theorem states that $X^{\odot \odot} = \overline{\mathrm{co}}(X \cup \{0\})$

Definition

For any function $f: \mathbb{R}^n \to \overline{\mathbb{R}}_+$, we introduce the polar transform $f^{\circ} : \mathbb{R}^n \to \overline{\mathbb{R}}_+$ defined by

$$
f^{\circ}(y) = \sup_{x \in \mathbb{R}^n} \left(\langle x, y \rangle_+ \times (f(x))^{-1} \right), \ \forall y \in \mathbb{R}^n
$$

KORKAR KERKER SAGA

where $0 \times (+\infty) = +\infty$

Polar transform of Minkowski and support functions

If $\nu: \mathbb{R}^n \to [0, +\infty]$ is 1-homogeneous, we have that

$$
\nu = m_{\nu \le 1}
$$

\n
$$
\nu^{\circ} = m_{(\nu \le 1)^{\circ}} = \sigma_{(\nu \le 1)^{\circ \circ}}
$$
 convex lsc
\n
$$
\nu^{\circ \circ} = m_{(\nu \le 1)^{\circ \circ}} = \sigma_{(\nu \le 1)^{\circ}}
$$
 convex lsc

Example

When $\lVert \cdot \rVert$ is norm on \mathbb{R}^n , with unit sphere S , unit ball B and dual norm $\|\cdot\|_{\star}$

$$
\nu = m_S = ||\cdot|| + \iota_{\mathcal{X}\backslash\{0\}}\n\nu^{\leq 1} = B \backslash \{0\}, \quad (\nu^{\leq 1})^{\odot} = B^{\odot}, \quad (\nu^{\leq 1})^{\odot\circ} = B\n\nu^{\circ} = m_{B^{\odot}} = \sigma_B = ||\cdot||_*\n\nu^{\circ\circ} = m_B = \sigma_{B^{\odot}} = ||\cdot||
$$

Convex factorization of the ℓ_0 pseudonorm

Theorem

Let $Y \subset \mathbb{R}^n$ be a compact subset such that $Y^{\odot \odot} = Y$ and that the sets Y and Y^\odot are orthant-strictly monotonic Let us define

> the function $v = m_{Y^{\odot}\setminus\{0\}}$ the cone $C = \{0\} \cup \mathbb{R}^n \setminus Y^{\ominus}$

Then, ν is a normalization function, and

 $\partial_{\star_{\varrho_\nu}}(\ell_0+\iota_{\mathcal{C}})(x)\neq\emptyset$, $\forall x\in\mathcal{C}$

hence

$$
\boxed{\ell_0(x) = \frac{\text{convex } \text{lsc}}{\mathcal{L}_0^{\nu}} \left(\frac{x}{\nu(x)} \right)}, \ \forall x \in C
$$

KORKARYKERKER OQO

Outline of the presentation

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) \mathcal{H}_0 -couplings [Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings [Conjugacies and](#page-29-0) H_0 -conjugacies [Biconjugates and duality,](#page-34-0) H_0 -biconjugates [Subdifferentials and](#page-42-0) H_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) \mathcal{H}_0 -convexity of ℓ_0 [10 min] [Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

KORKARYKERKER OQO

[Conclusion](#page-71-0)

Graph of the Euclidean ℓ_0 -cup function \mathcal{L}_0

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Orthant-strictly monotonic norms and hidden convexity in the ℓ_0 pseudonorm

[\[Chancelier and De Lara, 2022b\]](#page-72-1)

Theorem

If both the norm $\|\cdot\|$ and the dual norm $\|\cdot\|_{\star}$ are orthant-strictly monotonic, there exists a proper convex lsc function \mathcal{L}_0 , the ℓ_0 -cup function, with domain the unit ball B, such that

$$
\ell_0(x) = \underbrace{\mathcal{L}_0}_{\substack{\text{convex Isc} \\ \text{function}}} \left(\frac{x}{\|x\|}\right), \ \ \forall x \in \mathbb{R}^n \setminus \{0\}
$$

and, as a consequence, the ℓ_0 pseudonorm coincides, on the unit sphere S, with the proper convex lsc function \mathcal{L}_0

 $\ell_0(x) = \mathcal{L}_0(x)$, $\forall x \in S$

The ℓ_0 -cup function as a convex envelope

Proposition

The proper convex lsc function \mathcal{L}_0 is the convex envelope of the following piecewise constant function

$$
L_0(x) = \begin{cases} 0 & \text{if } x = 0, \\ \ell & \text{if } x \in B_{(\ell)}^{\top x} \setminus B_{(\ell-1)}^{\top x} \\ +\infty & \text{if } x \notin B_{(n)}^{\top x} = B \end{cases}, \quad \ell \in [\![1, n]\!]
$$

The ℓ_0 -cup function as best proper convex lsc lower approximation of the ℓ_0 pseudonorm on the unit ball

Theorem

The ℓ_0 -cup function \mathcal{L}_0 is the best convex lsc lower approximation of the ℓ_0 pseudonorm on the unit ball B

best convex lsc function $\mathcal{L}_0(x) \leq \ell_0(x)$, $\forall x \in B$

and, as seen above, coincides with the ℓ_0 pseudonorm

on the unit sphere S

 $\ell_0(x) = \mathcal{L}_0(x)$, $\forall x \in S$

KORKARYKERKER OQO

Tightest closed convex function below the ℓ_0 pseudonorm on the ℓ_p -unit balls on \mathbb{R}^2 for $p \in \{1, 1.1, 2, 4, 300, \infty\}$

The Capra-convex functions are 0-homogeneous and coincide, on the unit sphere, with a closed convex function

Proposition

 ϕ -convexity of the function $h: \mathbb{R}^n \to \overline{\mathbb{R}}$ $\Longleftrightarrow h=h^{\dot{\mathcal{C}}}\dot{\mathcal{C}}'$ $\Leftrightarrow h =$ $(h^{\dot{\mathcal{C}}})^{\star'}$ o $R_{\|\cdot\|}$ convex lsc function \iff hidden convexity in the function $h: \mathbb{R}^n \to \overline{\mathbb{R}}$ there exists a closed convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ such that $h = f \circ R_{\|\cdot\|}$, that is, $h(x) = f\left(\frac{x}{\|\cdot\|}\right)$ $\|x\|$ \mathcal{E}

KORKARYKERKER OQO

[\[Chancelier and De Lara, 2022b\]](#page-72-1)

Theorem

If both the norm $\|\cdot\|$ and the dual norm $\|\cdot\|_{\star}$ are orthant-strictly monotonic, we have that

$$
\partial_{\dot{C}}\ell_0(x)\neq\emptyset\;,\;\;\forall x\in\mathbb{R}^n\;,
$$

and, as a consequence,

$$
\ell_0^{\dot{C}\dot{C}'}=\ell_0
$$

and thus

$$
\ell_0 = \ell_0^{\dot{C}\dot{C}'} = \ell_0^{\dot{C}\star'} \circ \mathcal{R}_{\|\cdot\|} = \underbrace{(\ell_0^{\dot{C}})^\star}_{\substack{\text{convex loc} \\ \text{function } \mathcal{L}_0}} \circ \overbrace{\mathcal{R}_{\|\cdot\|}}^{\text{radial}} \\
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Variational formulas for the ℓ_0 pseudonorm

[\[Chancelier and De Lara, 2022b\]](#page-72-1) Proposition If both the norm $\|\cdot\|$ and the dual norm $\|\cdot\|_{\star}$ are orthant-strictly monotonic, we have that $\ell_0(\mathsf{x}) = \frac{1}{\|\mathsf{x}\|} \min_{\mathsf{x}^{(1)} \in \mathbb{R}^n, \dots, \mathsf{x}^{(n)} \in \mathbb{R}^n}$ $\sum_{\ell=1}^n \|x^{(\ell)}\|_{(\ell)}^{\top\star} \leq \|x\|$ $\sum_{\ell=1}^n x^{(\ell)} = x$ $\sum_{n=1}^{n}$ $_{\ell=1}$ $\ell \|x^{(\ell)}\|_{(\ell)}^{\top\star}, \;\; \forall x \in \mathbb{R}^n$ $\ell_0(\mathsf{x}) = \sup_{\mathsf{y} \in \mathbb{R}^n}$ inf $\ell \in \llbracket 1,n \rrbracket$ $\left(\frac{\langle x | y \rangle}{\|x\|} - \left[\|y\|_{(\ell)}^{\top} - \ell\right]\right]$ + $\Big\}$, $\forall x \in \mathbb{R}^n \setminus \{0\}$

KOD KARD KED KED A GAA

Outline of the presentation

\mathcal{H}_0 [-conjugacies \[10 min\]](#page-10-0)

[Couplings and](#page-11-0) \mathcal{H}_0 -couplings [Capra-couplings and radial](#page-20-0) \mathcal{H}_0 -couplings [Conjugacies and](#page-29-0) H_0 -conjugacies [Biconjugates and duality,](#page-34-0) H_0 -biconjugates [Subdifferentials and](#page-42-0) H_0 -subdifferentials

[Orthant-strict monotonicity and](#page-47-0) \mathcal{H}_0 -convexity of ℓ_0 [10 min]

[Orthant-strict monotonicity and](#page-48-0) \mathcal{H}_0 -convexity of ℓ_0 [Orthant-strict monotonicity and Capra-convexity of](#page-52-0) ℓ_0 [Orthant-strict monotonicity](#page-61-0)

KORKARYKERKER OQO

[Conclusion](#page-71-0)

We reformulate sparsity in terms of coordinate subspaces

$$
y=(*,*,*,*,*,*)\rightarrow \pi_{\{2,4,5\}}(y)=(0,*,0,*,*,0)\in \mathcal{R}_{\{2,4,5\}}
$$

▶ For any subset $K \subset [1, n]$ of indices, we set

$$
\mathcal{R}_K = \left\{ y \in \mathbb{R}^n \, \middle| \, y_j = 0 \, , \ \forall j \notin K \right\} \subset \mathbb{R}^n
$$

 \triangleright The connection with the level sets of the ℓ_0 pseudonorm is

$$
\ell_0^{\leq k} = \underbrace{\{x \in \mathbb{R}^n \mid \ell_0(x) \leq k\}}_{k\text{-sparse vectors}} = \bigcup_{|K| \leq k} \mathcal{R}_K, \ \ \forall k \in [0, n]
$$

 \blacktriangleright We denote by $\pi_K : \mathbb{R}^n \to \mathcal{R}_K$ the orthogonal projection

For any vector $y \in \mathbb{R}^n$, $\pi_K(y) = y_K \in \mathcal{R}_K \subset \mathbb{R}^n$ is the vector whose entries coincide with those of v . except for those outside of K that vanish

KORKAR KERKER SAGA

Orthant-monotonic norms and sets

Orthant-monotonic norms

For any $x \in \mathbb{R}^n$, we denote by $|x|$ the vector of \mathbb{R}^n with components $|x_i|, i \in [\![1, n]\!]$

Definition

A norm $\lVert \cdot \rVert$ on the space \mathbb{R}^n is called orthant-monotonic [\[Gries, 1967\]](#page-72-2) if, for all x , x' in \mathbb{R}^n , we have

$$
|x| \le |x'| \text{ and } x \circ x' \ge 0 \implies ||x|| \le ||x'||
$$

where $x \circ x' = (x_1x'_1, \ldots, x_nx'_n)$ is the Hadamard (entrywise) product

$$
|x_1| \le |x'_1|, \ldots, |x_n| \le |x'_n|
$$

and

$$
x_1x'_1 \ge 0, \ldots, x_nx'_n \ge 0 \qquad \qquad \Longrightarrow \|x\| \le \|x'\|
$$

KORKARYKERKER OQO

Example of unit sphere of a non orthant-monotonic norm

In the bottom right orthant, consider $|(0, -1)| \leq |(0.5, -1)|$ and $(0, -1) \circ (0.5, -1) > (0, 0)$ but $1 = ||(0, -1)|| > ||(0.5, -1)||$

KORKARYKERKER OQO

We define orthant-monotonic sets

Definition

The closed convex subset $X \subset \mathbb{R}^n$ is said to be orthant-monotonic if it satisfies any one of the equivalent conditions

KORK EXTERNE PROVIDE

1.
$$
\sigma_X \circ \pi_K \leq \sigma_X
$$
, for all $K \subset [1, n]$

2.
$$
\pi_K(X) \subset X
$$
, for all $K \subset [1, n]$

3.
$$
\pi_K(X) \subset X \cap \mathcal{R}_K
$$
, for all $K \subset [1, n]$

4.
$$
\pi_K(X) = X \cap \mathcal{R}_K
$$
, for all $K \subset [1, n]$

[\[Chancelier and De Lara, 2023\]](#page-72-3)

Orthant-strictly monotonic (OSM) norms and sets

K ロ K K 레 K K B K X B K Y A C K H C H D A C K

Orthant-strictly monotonic norms

[\[Chancelier and De Lara, 2023\]](#page-72-3)

Definition

A norm $\lVert \cdot \rVert$ on the space \mathbb{R}^n is called orthant-strictly monotonic if, for all x , x' in \mathbb{R}^n , we have

 $|x| < |x'|$ and $x \circ x' \ge 0 \implies ||x|| < ||x'||$

where $|x| < |x'|$ means that there exists $j \in [\![1,n]\!]$ such that $|x_j| < |x'_j|$ j |

Intuition: $\epsilon \neq 0 \implies ||(0,*,0,*,*,0)|| < ||(0,*,\epsilon,*,*,0)||$

An orthant-strictly monotonic norm is orthant-monotonic

KORKAR KERKER SAGA

Examples of orthant-strictly monotonic norms

$$
\|x\|_{\infty} = \sup_{i \in [\![1,n]\!]} |x_i| \text{ and } \|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \text{ for } p \in [\![1,\infty[\![
$$

with unit ball B_p and unit sphere S_p

▶ All the ℓ_p -norms $\lVert \cdot \rVert_p$ on the space \mathbb{R}^n , for $p \in [1, \infty]$, are monotonic, hence orthant-monotonic

$$
\ell_1,\ell_2,\ell_\infty
$$

▶ All the ℓ_p -norms $\lVert \cdot \rVert_p$ on the space \mathbb{R}^n , for $p \in [1, \infty[,$ are orthant-strictly monotonic

$$
\ell_1, \ell_2, \cancel{\mathscr{C}_\infty}
$$

 $\|\epsilon| < 1 \implies \|(1,0)\|_{\infty} = 1 = \|(1,\epsilon)\|_{\infty}$

We define orthant-strictly monotonic sets

Definition

The closed convex subset $X \subset \mathbb{R}^n$ is said to be orthant-strictly monotonic (OSM) if it satisfies

 $\sigma_X(y)$ < $+\infty$ and $y \neq \pi_K y \implies \sigma_X(\pi_K y)$ < $\sigma_X(y)$

KELK KØLK VELKEN EL 1990

An orthant-strictly monotonic set is orthant-monotonic

Conclusion

- \triangleright We have introduced \mathcal{H}_0 -couplings, and indicated in what they are suitable tool for convex factorization of 0-homogeneous functions
- \triangleright We have recalled Capra-couplings, induced by a norm, and how they reveal convex factorization of the ℓ_0 pseudonorm on the unit ball, when both the norm and the dual norm are orthant-strictly monotonic (OSM)
- ▶ We have generalized the notion of OSM and, using radial \mathcal{H}_0 -couplings, we expect to display convex factorization of ℓ_0 on bipolar subsets (closed convex sets that contain 0) that are more general than unit balls (not necessarily symmetric, 0 is not necessarily in the interior)

KORKAR KERKER SAGA
- Jean-Philippe Chancelier and Michel De Lara. Hidden convexity in the l_0 pseudonorm. Journal of Convex Analysis, 28(1):203–236, 2021.
- Jean-Philippe Chancelier and Michel De Lara. Constant along primal rays conjugacies and the l0 pseudonorm. Optimization, 71(2):355–386, 2022a. doi: 10.1080/02331934.2020.1822836.
- Jean-Philippe Chancelier and Michel De Lara. Capra-convexity, convex factorization and variational formulations for the ℓ_0 pseudonorm. Set-Valued and Variational Analysis, 30:597-619, 2022b.
- Jean-Philippe Chancelier and Michel De Lara. Orthant-strictly monotonic norms, generalized top-k and k-support norms and the ℓ0 pseudonorm. Journal of Convex Analysis, 30(3):743–769, 2023.
- D. Gries. Characterization of certain classes of norms. Numerische Mathematik, 10:30–41, 1967.
- Juan-Enrique Martinez-Legaz and Ivan Singer. Subdifferentials with respect to dualities. Mathematical Methods of Operations Research, 42(1):109–125, February 1995.
- J. J. Moreau. Fonctionnelles convexes. Séminaire Jean Leray, 2:1–108, 1966-1967.
- Jean Jacques Moreau. Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl. (9), 49:109–154, 1970.
- R. Tyrrell Rockafellar. Conjugate Duality and Optimization. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, 1974.

KORKARYKERKER OQO

Thank you :-)

Kロトメ部トメミトメミト ミニのQC