Rank-Based Norms, Capra-Conjugacies and the Rank Function

Paul Barbier, Jean-Philippe Chancelier, Michel De Lara, Valentin Paravy

CERMICS, Ecole des Ponts ParisTech, Marne-la-Vallée, France

October 12, 2021

KO K K Ø K K E K K E K V K K K K K K K K K

Some examples about matrix rank

We denote by rk the rank function,

defined on $M_{m,n}$, the space of real matrices with m rows and n columns, which gives the number of independent columns of a matrix and satisfies

 $0 \leq \text{rk}(M) \leq \min(m, n)$ and $\text{rk}(M) = 0 \Longleftrightarrow M = 0$

Rank of some matrices

The rank function is a discontinuous function

$$
\mathsf{rk}\begin{pmatrix} \varepsilon & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = 1, \forall \varepsilon \neq 0 \quad \text{ whereas } \quad \mathsf{rk}\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = 0
$$

KORK EXTERNE PROVIDE

Background on norms

Definition

A function $\|\cdot\|: E \to \mathbb{R}_+$ is a norm on a vector space E if it satisfies

- 1. $||x|| = 0 \iff x = 0, \forall x \in E$ (point-separating)
- 2. $\|\lambda x\| = |\lambda|$ ||| $x\|$, $\forall x \in E$, $\forall \lambda \in \mathbb{R}$ (homogeneity)
- 3. $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in E$ (triangle inequality)

Some matrix norms

$$
\|\begin{pmatrix} a & b \\ c & d \end{pmatrix}\| = \sqrt{a^2 + b^2 + c^2 + d^2}, \qquad \|\begin{pmatrix} a & b \\ c & d \end{pmatrix}\| = |a| + 2|b| + 3|c| + 4|d|
$$

How do we define a dual norm We would like to write

and a solution is to define

$$
\|N\|_{\star} \equiv \sup_{\|M\| \le 1} \text{Tr}(MN^{\mathrm{T}}), \ \forall N \in \mathcal{M}_{m,n}
$$

KORKARYKERKER POLO

An optimization problem using the rank function

Image completion

(a) initial image M^* (b) area to modify Ω (c) final result

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A way to solve it

 M s.t. $M_{i,j} = M^*_{i,j}, ∀(i,j) \notin Ω$ **rk(M)**

Main result: variational lower bound of the rank function

 \blacktriangleright We denote by $\mathcal{M}_{m,n}$ the space of real matrices with m rows and n columns, and $d = min(m, n)$

Theorem

Let $\|\cdot\|$ be a (source) norm on the space $\mathcal{M}_{m,n}$ of matrices We have the following variational lower bound of the rank function

$$
\mathsf{rk}(M) \ge \frac{1}{\|M\|} \min_{\substack{M^{(1)} \in \mathcal{M}_{m, n}, \dots, M^{(d)} \in \mathcal{M}_{m, n} \\ \sum_{r=1}^d \|M^{(r)}\|_{(r)}^{\text{rk}} \le \|M\|}} \sum_{r=1}^d r \underbrace{\|M^{(r)}\|_{(r)}^{\text{rk}}}_{\text{rank based norms}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

for all matrix $M \in \mathcal{M}_{m,n} \setminus \{0\}$

[Rank-based norms](#page-5-0)

[The general case](#page-5-0)

[Rank-based norms in the case of unitarily invariant source matrix norms](#page-8-0) [Examples](#page-15-0)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

[CAPRA-conjugacies and variational formulas for the rank](#page-20-0)

[Classical Fenchel coupling](#page-20-0) CAPRA[-couplings](#page-22-0) [Variational formula for the rank function](#page-25-0)

Let $\|\cdot\|$ be a norm on the space $\mathcal{M}_{m,n}$ of matrices, that we call source (matrix) norm Proposition The following expression

 $|\|N\|_{(r),\star}^{ \mathrm{rk}} = \sup_{\mathsf{rk}(M)\leq r, \|\|M\|\leq 1} \mathrm{Tr}(MN^{\mathrm{T}})\;,\;\;\forall N\in\mathcal{M}_{m,n}\;,\;\;\forall r\in \llbracket 1,d\rrbracket.$

KOD KAD KED KED E VOOR

define a nondecreasing sequence $\left\{\|\|\cdot\|\|_{(r),\star}^{\mathrm{rk}}\right\}_{r\in\llbracket 1,d\rrbracket}$ of norms on $\mathcal{M}_{m,n}$

IDENT FRACT THE matrix norms in the nondecreasing sequence $\{\|\cdot\|\|_{l}^{rk}, \}$ **,** $r \in [1, d]$
are called generalized dual r-rank matrix norms and satisfy are called generalized dual r-rank matrix norms and satisfy

$$
\|\!\!\|{\cdot}\|\|_{(1),\star}^{\mathrm{rk}} \leq \cdots \leq \|\!\!\|{\cdot}\|\|_{(d),\star}^{\mathrm{rk}} = \|\!\!\|{\cdot}\|\!\!\|_{\star}
$$

By taking their dual norms $\|\cdot\|_{(r)}^{\text{rk}} = (\|\cdot\|_{(r),\star}^{\text{rk}})_{\star}$, we obtain a nonincreasing sequence $\left\{\|\cdot\|_{(r)}^{\mathrm{rk}}\right\}_{r\in\llbracket 1/d\rrbracket}$ of norms on $\mathcal{M}_{m,n}$ called generalized *r*-rank matrix norms which satisfy

$$
\lVert \cdot \rVert_{(1)}^{\mathrm{rk}} \geq \cdots \geq \lVert \cdot \rVert_{(d)}^{\mathrm{rk}} = \lVert \cdot \rVert
$$

KORKARYKERKER POLO

[Rank-based norms](#page-5-0)

[The general case](#page-5-0) [Rank-based norms in the case of unitarily invariant source matrix norms](#page-8-0) [Examples](#page-15-0)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

[CAPRA-conjugacies and variational formulas for the rank](#page-20-0)

[Classical Fenchel coupling](#page-20-0) CAPRA[-couplings](#page-22-0) [Variational formula for the rank function](#page-25-0)

Preliminaries for unitarily invariant source norms

A very common class of norms consists of the unitarily invariant norms, such as the Frobenius norm

 $\|M\| = \sqrt{\text{Tr}(M^{\text{T}}M)}$

Definition

A square matrix $M \in \mathcal{M}_{n,n}$ is orthogonal if, by definition, $M^{T}M = MM^{T} = I_{n}$ We denote by \mathcal{O}_n the set of orthogonal matrices of size n

$$
\mathcal{O}_n = \left\{ M \in \mathcal{M}_{n,n} \, \middle| \, M^{\mathrm{T}}M = MM^{\mathrm{T}} = I_m \right\}
$$

Some examples

$$
I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\in\mathcal{O}_2,\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\in\mathcal{O}_3,\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\in\mathcal{O}_4
$$

KORKARYKERKER POLO

The Singular Value Decomposition (SVD)

Theorem

For any matrix $M \in \mathcal{M}_{m,n}$, there exists two orthogonal matrices $U \in \mathcal{O}_m$, $V \in \mathcal{O}_n$ and a diagonal matrix diag(s_1, \ldots, s_d) with $s_1 \geq \ldots \geq s_d \geq 0$ such that

 $M = U \text{diag}(s_1, \ldots, s_d) V^{\text{T}}$

The s_1, \ldots, s_d are called the singular values of the matrix M

An example

$$
\begin{pmatrix} 3 & 2 & 2 \ 2 & 3 & -2 \end{pmatrix} = \underbrace{\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}}_{U} \underbrace{\begin{pmatrix} 5 & 0 & 0 \ 0 & 3 & 0 \end{pmatrix}}_{\text{diag}(s_1,\ldots,s_d)} \underbrace{\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \ 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \ 2/3 & -2/3 & -1/3 \end{pmatrix}}_{V^T}
$$

KORKARYKERKER POLO

Main result for unitarily invariant source norm

 \triangleright We recall that the vector $s(M)$ of singular values of a matrix M consists of the square roots of the eigenvalues of the square positive matrix M^TM arranged in nonincreasing order

$$
s_1(M) \geq s_2(M) \geq \cdots \geq s_d(M) \geq 0
$$

 \blacktriangleright In the case of an unitarily invariant source norm, the generalized *r*-rank matrix norms $|\!|\!|\cdot|\!|\!|_{(r)}^{\mathrm{rk}}$ are given by

that is,

$$
\|M\|_{(r)}^{\text{rk}}=\left\|(s_1(M),\ldots,s_d(M))\right\|_{(r)}^{\mathcal{R}},\ \ \forall M\in\mathcal{M}_{m,n}
$$

KORKAR KERKER SAGA

where $\lVert \cdot \rVert_{(r)}^{\mathcal{R}}$ denotes the coordinate vector norms on \mathbb{R}^d , recently introduced in relation to the l_0 function

Background on unitarily invariant source matrix norms Preliminaries

Unitarily invariant norm

We recall that a unitarily invariant norm on $\mathcal{M}_{m,n}$ is a matrix norm such that

$$
\|UMV\| = \|M\|, \ \forall M \in \mathcal{M}_{m,n}, \forall U \in \mathcal{O}_m, \forall V \in \mathcal{O}_n
$$

KORKARYKERKER POLO

We recall that a symmetric absolute norm is a vector norm $\lVert \cdot \rVert$ on \mathbb{R}^d which satisfies the following properties

- ▶ ||⋅|| is absolute in the sense that $||x|| = ||x||$, for any $x \in \mathbb{R}^d$, where $|x| = (|x_1|, \ldots, |x_d|)$
- \blacktriangleright $\|\cdot\|$ is symmetric (or permutation invariant), that is, $\|(x_{\nu(1)}, \ldots, x_{\nu(d)})\| = \|(x_1, \ldots, x_d)\|,$ for any $x \in \mathbb{R}^d$ and for any permutation ν of the indices in $\llbracket 1,d \rrbracket$

Case of unitarily invariant source matrix norms

Preliminaries

Proposition (Von Neumann)

A norm $\| \cdot \|$ on the space $\mathcal{M}_{m,n}$ of matrices is unitarily invariant if and only if there exists a symmetric absolute norm $\lVert \cdot \rVert$ on \mathbb{R}^d such that

$$
\|\hspace{0.02cm}\| \cdot \|\hspace{0.02cm}\| = \|\hspace{0.02cm}\| \circ s \hspace{0.1cm} \text{that is,} \hspace{0.1cm} \|M\| \hspace{0.02cm}\| = \Big\|\Big(s_1(M),\ldots,s_d(M)\Big)\Big\|\hspace{0.1cm}, \forall M \in \mathcal{M}_{m,n}
$$

In that case, one has the following relation between dual norms

$$
\|\hspace{-0.04cm} \cdot \|\hspace{-0
$$

KORK ERKER ADAM ADA

We connect rank-based matrix norms and coordinate vector norms

Back to the main proposition

Proposition

When the source norm $\|\cdot\|$ on $\mathcal{M}_{m,n}$ is unitarily invariant, with associated symmetric absolute norm $\lVert \cdot \rVert$ on \mathbb{R}^d , then both the generalized dual r-rank matrix norms $\{ \| \|_{l}^{r} \}$, $\}$ _{r∈ \mathbb{I} 1,d \mathbb{I}} and the generalized r-rank matrix norms $\left\{\|\hspace{-0.04cm}|\hspace{-0.04cm}|\hspace{-0.04cm}|_{(r)}^{\mathrm{rk}}\right\}$ $r ∈ \llbracket 1,d \rrbracket$ are unitarily invariant, with

 $\|\cdot\|_{(r)}^{\text{rk}} = \|\cdot\|_{(r)}^{\mathcal{R}} \circ s, \ \ \forall r \in [\![1, d]\!]$

 $||\!\!|| \cdot ||\!\!||_{(r),\star}^{\text{rk}} = ||\cdot||_{(r),\star}^{\mathcal{R}} \circ s, \ \ \forall r \in [\![1,d]\!]$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

[Rank-based norms](#page-5-0)

[The general case](#page-5-0) [Rank-based norms in the case of unitarily invariant source matrix norms](#page-8-0) [Examples](#page-15-0)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

[CAPRA-conjugacies and variational formulas for the rank](#page-20-0)

[Classical Fenchel coupling](#page-20-0) CAPRA[-couplings](#page-22-0) [Variational formula for the rank function](#page-25-0)

Examples of unitarily invariant source norms

For any $p \in [1, \infty]$ **, we define the** ℓ_p **norm on** \mathbb{R}^d **by**

$$
||x||_{\ell_p} = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}
$$

as well as $||x||_{\ell_{\infty}} = \max_{i \in [\![1, d]\!]} |x_i|$, for any vector $x \in \mathbb{R}^d$

The Schatten *p*-norm on the space $M_{m,n}$ as the unitarily invariant norm

$$
\|M\|_{s_p}=\|s(M)\|_{\ell_p} \ \ , \ \ \forall M \in \mathcal{M}_{m,n} \ , \ \ \forall p \in [1,\infty]
$$

Examples of unitarily invariant source norms

 \blacktriangleright The Schatten 1-norm is the nuclear norm

$$
\|M\|_{s_1} = \|s(M)\|_{\ell_1} = \sum_{i=1}^d s_i(M), \ \ \forall M \in \mathcal{M}_{m,n}
$$

 \blacktriangleright The Schatten 2-norm is the Frobenius norm

$$
\sqrt{\text{Tr}(MM^{\text{T}})} = |||M|||_{s_2} = ||s(M)||_{\ell_2} = \sqrt{\sum_{i=1}^d s_i(M)^2}, \ \ \forall M \in \mathcal{M}_{m,n}
$$

I The Schatten ∞-norm is the spectral norm

$$
\|M\|_{s_{\infty}}=\|s(M)\|_{\ell_{\infty}}=s_1(M),\ \ \forall M\in\mathcal{M}_{m,n}
$$

In the Ky Fan k-norms on the space $M_{m,n}$ are

$$
\|s(M)\|_{1,k}^{\mathrm{tn}}=\sum_{i=1}^k s_i(M)\;,\;\;\forall M\in\mathcal{M}_{m,n}\;,\;\;\forall k\in\llbracket 1,d\rrbracket
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Case of unitarily invariant source matrix norms

source norm $\ \cdot\ $	$\overline{\ \hspace{1.5pt}\ }\hspace{1pt}\cdot\hspace{1pt}\ }^{\mathrm{rk}}_{(r)},\ r\in \llbracket 1,d\rrbracket$	$\overline{\ \hspace{-0.04cm} \hspace{-0.04cm} }\hspace{-0.04cm}\overline{\ \hspace{-0.04cm} \hspace{-0.04cm} }\hspace{-0.04cm}\overline{\ \hspace{-0.04cm} \hspace{-0.04cm} }\hspace{-0.04cm}\overline{\ \hspace{-0.04cm} \hspace{-0.04cm} }\hspace{-0.04cm}r_{(r),\star},\,r\in[\![1,d]\!]$
Schatten 1-norm	Schatten 1-norm	Schatten ∞ -norm
$=$ nuclear norm	for all $r \in [1, d]$	for all $r \in [1, d]$
Schatten 2-norm		
$=$ Frobenius norm	$ s(M) _{2,r}^{\rm sn}$	$ s(N) _{2,r}^{\text{tn}} = \sqrt{\sum_{i=1} s_i(N)^2}$
Schatten p-norm	$ s(M) _{p,r}^{\mathrm{sn}}$	$ s(N) _{q,r}^{\text{tn}} = \left(\sum_{i=1}^{r} s_i(N)^q\right)^{\frac{1}{q}}$
Schatten ∞ -norm	$ s(M) _{\infty,r}^{\text{sn}} = s_1(M)$	$ s(N) _{1,r}^{\text{tn}} = \sum s_i(N)$
$=$ spectral norm	Schatten ∞ -norm	
Ky Fan k-norm	Schatten 1-norm	Schatten ∞ -norm
$k \in \llbracket 1,d \rrbracket$	for all $r \in [1, k]$	for all $r \in [1, k]$

Table: Generalized *r*-rank matrix norms $\left\{\|\cdot\|\|_{(r)}^{rk}\right\}_{r\in\llbracket 1,d\rrbracket}$ and generalized dual *r*-rank matrix norms $\{\|\cdot\|\|_{(r),\kappa}\}_{r\in[1,d]}$ associated with by Schatten and Ky Fan source norms $\|\cdot\|$ (for $p\in[1,\infty]$, and where $1/(n+1/n-1)$ where $1/p + 1/q = 1$

Where do we stand and where are we going to

- \triangleright We have introduced a source norm
- \blacktriangleright We have defined rank-based norms
- \triangleright We now show how these rank-based norms appear in variational formulations for the rank function

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright For this purpose, we will now present the so-called Capra-couplings and conjugacies

[Rank-based norms](#page-5-0)

[The general case](#page-5-0) [Rank-based norms in the case of unitarily invariant source matrix norms](#page-8-0) [Examples](#page-15-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[CAPRA-conjugacies and variational formulas for the rank](#page-20-0) [Classical Fenchel coupling](#page-20-0)

CAPRA[-couplings](#page-22-0) [Variational formula for the rank function](#page-25-0)

Classical Fenchel coupling

 \triangleright We use the Moreau lower addition for infinite values, that is

$$
(+\infty)+(-\infty)=(-\infty)+(+\infty)=-\infty
$$

 \blacktriangleright The classical Fenchel coupling between $\mathcal{M}_{m,n}$ and $\mathcal{M}_{m,n}$ is defined as

$$
\langle M, N \rangle = \text{Tr}(MN^{\text{T}}), \ \forall M, N \in \mathcal{M}_{m,n}
$$

For any function $F: \mathcal{M}_{m,n} \to \overline{\mathbb{R}}$, the associated Fenchel conjugates are defined by

$$
F^{\star}(N) = \sup_{M \in \mathcal{M}_{m,n}} \left(\langle M, N \rangle + \left(-F(M) \right) \right)
$$

$$
F^{\star \star'}(M) = \sup_{N \in \mathcal{M}_{m,n}} \left(\langle M, N \rangle + \left(-F^{\star}(N) \right) \right)
$$

- \blacktriangleright The Fenchel conjugacy is useful for convex functions, which is not the case for the rank function though, as its Fenchel biconjugate is null
- **I** As the rank function satisfies $rk(M) = rk(\lambda M)$, $\forall \lambda \neq 0$ (0 − homogenous), the following $CAPRA - couplings$ are more adapted

[Rank-based norms](#page-5-0)

[The general case](#page-5-0) [Rank-based norms in the case of unitarily invariant source matrix norms](#page-8-0) [Examples](#page-15-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[CAPRA-conjugacies and variational formulas for the rank](#page-20-0)

[Classical Fenchel coupling](#page-20-0)

CAPRA[-couplings](#page-22-0)

[Variational formula for the rank function](#page-25-0)

CAPRA-couplings

Definition

Let $\|\cdot\|$ be a source matrix norm on $\mathcal{M}_{m,n}$ The CAPRA-coupling ϕ , between $\mathcal{M}_{m,n}$ and $\mathcal{M}_{m,n}$, associated with $\|\cdot\|$, is defined by

$$
\forall M, N \in \mathcal{M}_{m,n}, \ \ \xi(M, N) = \begin{cases} \frac{\text{Tr}(MN^{\text{T}})}{\|M\|} & \text{if } M \neq 0\\ 0 & \text{otherwise} \end{cases}
$$

The CAPRA-coupling as its name indicates, is Constant Along Primal RAys :

 $\varphi(\lambda M, N) = \varphi(M, N)$, $\forall \lambda \in \mathbb{R}^*$

KORK STRAIN A STRAIN A COMP

CAPRA-conjugates for matrices

- \blacktriangleright Here the conjugates define a function with the same domain and codomain than the source function $\overline{\mathbb{R}}^{\mathcal{M}_{m,n}} \overset{conjugacy}{\longrightarrow} \overline{\mathbb{R}}^{\mathcal{M}_{m,n}}$
- **►** For any function $F : \mathcal{M}_{m,n} \to \overline{\mathbb{R}}$, the ϕ -Fenchel-Moreau conjugate, or CAPRA-conjugate , is the function $\mathcal{F}^{\mathcal{C}}:\mathcal{M}_{m,n}\rightarrow \overline{\mathbb{R}}$ defined by

$$
\mathcal{F}^{\zeta}(N) = \sup_{M \in \mathcal{M}_{m,n}} \left(\zeta(M,N) + \left(-\mathcal{F}(M) \right) \right), \ \forall N \in \mathcal{M}_{m,n}
$$

and the c -Fenchel-Moreau biconjugate, or C_{APRA} -biconjugate, is the function $\mathcal{F}^{\zeta\zeta'}:\mathcal{M}_{m,n}\to\overline{\mathbb{R}}$ defined by

$$
\digamma^{\zeta\zeta'}(M)=\sup_{N\in\mathcal{M}_{m,n}}\left(\zeta(M,N)+\left(-\digamma^{\zeta}(N)\right)\right),\ \ \forall M\in\mathcal{M}_{m,n}
$$

 \blacktriangleright For any function F, the following inequality holds true

 $\mathsf{F}\geq\mathsf{F}^{\boldsymbol{\zeta}\boldsymbol{\zeta}'}$

KORKAR KERKER SAGA

which will bring us to the variational formula for the rank function, as we will be able to express $\mathsf{rk}^{\mathsf{C}\mathsf{C}'}(M)$ in term of the rank based norms

[Rank-based norms](#page-5-0)

[The general case](#page-5-0) [Rank-based norms in the case of unitarily invariant source matrix norms](#page-8-0) [Examples](#page-15-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[CAPRA-conjugacies and variational formulas for the rank](#page-20-0)

[Classical Fenchel coupling](#page-20-0) CAPRA[-couplings](#page-22-0) [Variational formula for the rank function](#page-25-0)

Formulas for conjugate and biconjugate of the rank function

Proposition

Let $\|\cdot\|$ be a source matrix norm on $\mathcal{M}_{m,n}$, and ϕ be the associated CAPRA-coupling For any function $\varphi : [0, d] \to \mathbb{R}$, we have that (with the convention that $\| \cdot \|_{(0), \star}^{\rm rk} = 0$)

$$
(\varphi \circ \mathsf{rk})^{\dot{\mathcal{C}}}(N) = \sup_{i \in [\![0, d]\!]} \left\{ \underbrace{\|N\| \|^{\text{rk}}_{(i), \star}}_{\text{rank matrix norm}} - \varphi(i) \right\}, \ \forall N \in \mathcal{M}_{m,n}
$$

and, for any function $\varphi : [0, d] \to \mathbb{R}_+$ (that is, with nonnegative finite values) and such that $\varphi(0) = 0$, we have that

$$
(\varphi \circ \mathsf{rk})^{\zeta \zeta'}(M) = \frac{1}{\|M\|} \min_{\substack{M^{(1)} \in \mathcal{M}_{m,n}, \dots, M^{(d)} \in \mathcal{M}_{m,n} \\ \sum_{r=1}^d \|M^{(r)}\| \le \|M\| \le \|M\| \|}} \sum_{r=1}^d \varphi(r) \underbrace{\|M^{(r)}\| \mathsf{rk}^{rk}}_{\text{rank matrix norm}},
$$

KORKARYKERKER POLO

 $\forall M \in \mathcal{M}_{m,n} \setminus \{0\}$

Back to the variational formulation (in the introduction)

The general inequality case

Theorem

Let $\|\cdot\|$ be a source norm on the space $\mathcal{M}_{m,n}$ of matrices, with associated sequence $\left\{\|\cdot\|\|_{(r)}^{ \mathrm{rk}}\right\}_{r\in \llbracket 1,d\rrbracket}$ of generalized r-rank matrix norms

Then, we have the following variational lower bound of the rank function

$$
\mathsf{rk}(M) \ge \frac{1}{\|M\|} \min_{\substack{M^{(1)} \in \mathcal{M}_{m,n}, \ldots, M^{(d)} \in \mathcal{M}_{m,n} \\ \sum_{r=1}^d \|M^{(r)}\|_{(r)}^{\mathrm{rk}} \le \|M\|}} \sum_{r=1}^d r \|M^{(r)}\|_{(r)}^{\mathrm{rk}}, \ \ \forall M \in \mathcal{M}_{m,n} \setminus \{0\} \\ \sum_{r=1}^d \|M^{(r)}\|_{(r)}^{\mathrm{rk}} \le \|M\|
$$

KORKARYKERKER POLO

Back to the variational formulation (in the introduction) Case of equality

Corollary

Moreover, if the source norm $\|\cdot\|$ is the Frobenius norm given by

$$
\|\!|\!| M |\!|\!| = \sum_{i=1}^{\mathsf{rk}(M)} s_i^2(M) = \sum_{i\leq m,j\leq n} M_{i,j}^2\,,\ \ \forall M\in \mathcal{M}_{m,n}
$$

the previous inequality is an equality, that is,

$$
\mathsf{rk}(M) = \frac{1}{\|M\|} \min_{\substack{M^{(1)} \in \mathcal{M}_{m,n}, \dots, M^{(d)} \in \mathcal{M}_{m,n} \\ \sum_{r=1}^d \|M^{(r)}\|_{(r)}^{\text{rk}} \leq \|M\|}} \sum_{r=1}^d r \|M^{(r)}\|_{(r)}^{\text{rk}}, \ \ \forall M \in \mathcal{M}_{m,n} \setminus \{0\} \\ \sum_{r=1}^d \sum_{j=1}^d M^{(r)} = M}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Rank-based norms](#page-5-0)

[CAPRA-conjugacies and variational formulas for the rank](#page-20-0)

[Conclusion](#page-29-0)

Conclusion

- \triangleright We have introduced a source norm
- \triangleright We have defined rank-based matrix norms
- \blacktriangleright We have defined CAPRA-couplings and conjugates on the space of matrices

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright We have obtained variational formulations for the rank function that involve rank-based matrix norms

Back to the image completion problem

The problem was to solve

$$
\min_{M \text{ s.t. } M_{i,j} = M_{i,j}^*, \forall (i,j) \notin \Omega} \text{rk}(M)
$$

With our result, the problem can actually be written as

$$
\min_{M \in \mathcal{M}_{m,n}, M^{(1)} \in \mathcal{M}_{m,n}, \ldots, M^{(d)} \in \mathcal{M}_{m,n}} \frac{1}{\|M\|} \sum_{r=1}^d r \|M^{(r)}\|_{(r)}^{\text{rk}} \\ \sum_{r=1}^d \|M^{(r)}\|_{(r)}^{\text{rk}} \leq \|M\| \\ \sum_{r=1}^d \frac{M^{(r)} = M}{n!} \\ M_{i,j} = M_{i,j}^{\text{rk}}, \forall (i,j) \notin \Omega
$$

Pros and cons

- \blacktriangleright A smoother formulation
- \blacktriangleright An optimization problem with many more variables

Our organization, encountered problems and what we have done

How we have worked

- 1. Background work
	- In handling of the subject (reading papers, books...)
	- \blacktriangleright review of scholar notions of analysis (norms, Hölder and Cauchy-Schwarz inequality, convexity. . .)
	- \blacktriangleright review of linear algebra (orthogonal matrices, singular values, classical properties of the rank function. . .)

KORK EXTERNE PROVIDE

- 2. Active research period and main contributions
	- \triangleright we have elaborated several proofs of the same result
	- \blacktriangleright that the rank based norms are norms.
	- \blacktriangleright the formula for unitarily invariant source norm,
	- \blacktriangleright the case of equality, etc.
- 3. Timing
	- \triangleright Soon writing of a formal paper in parallel with the research
	- \blacktriangleright followed by and intensive only writing phase

Our organization, encountered problems and what we have done

Problems we faced

- \blacktriangleright Time constraint: we had to give the abstract the 21 May, the paper the 28 May
- \blacktriangleright Hard to deal with the case of general norms: most of our results tackle the case of unitarily invariant norms
- \triangleright Difficulties with LATEX layout, as we were beginners in LATEX before this project

Work done

- ▶ Paper submitted to NeurIPS meeting (Neural Information Processing Systems)
- \triangleright We have planned to submit to others journals or conferences in optimization in case of a reject from NeurIPS, which is possible as the paper is really theoretical and specialized

KORKARYKERKER POLO

 \blacktriangleright The paper is available on HAL and arXiv websites