# Introduction to One and Two-Stage Stochastic and Robust Optimization

#### Michel De Lara Cermics, École des Ponts ParisTech France

École des Ponts ParisTech

December 3, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の < @

## Outline of the presentation

In decision-making, risk and time are bedfellows, but for the fact that an uncertain outcome is revealed after the decision. The talk moves along the number of decision stages: 1,2, more

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Working out static examples

Two-stage stochastic programming problems

# Outline of the presentation

Working out static examples

Two-stage stochastic programming problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

## Working out classical examples

We will work out classical examples in Stochastic Optimization

the blood-testing problem

static, only risk

the newsvendor problem

static, only risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の < @

## Outline of the presentation

#### Working out static examples The blood-testing problem

The newsvendor problem

#### Two-stage stochastic programming problems

Moving from deterministic convex piecewise linear programs Moving from linear programs with constraints Scenario decomposition resolution methods Recalls on duality and Lagrangian decomposition Progressive Hedging

The blood-testing problem (R. Dorfman) is a static stochastic optimization problem

- Data:
  - ► A large number *N* of individuals are subjected to a blood test
  - The probability that the test is positive is p, the same for all individuals

     (a positive test means that the target individual has a specific disease; the prevalence of the disease in the population is p)
  - Individuals are stochastically independent
- Blood-testing method: the blood samples of k individuals are pooled and analyzed together
  - If the test is negative, this one test suffices for the k individuals
  - ► If the test is positive, each of the k > 1 individuals must be tested separately, and k + 1 tests are required, in all
- Optimization problem:
  - Find the value of k which minimizes the expected number of tests
  - Find the minimal expected number of tests

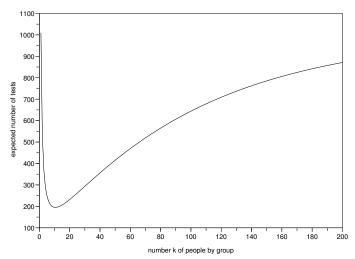
What is the optimal number of individuals in a group that minimizes the expected number of tests?

- For the first pool  $\{1, \ldots, k\}$ , the test is
  - ▶ negative with probability  $(1ho)^k$  (by independence) ightarrow 1 test
  - ▶ positive with probability  $1 (1 p)^k \rightarrow k + 1$  tests
- When the pool size k is small, compared to the number N of individuals, the blood samples {1,..., N} are split in approximately N/k groups, so that the expected number of tests is

$$J(k) \approx \frac{N}{k} [1 \times (1-p)^k + (k+1) \times (1-(1-p)^k)]$$

ション ふゆ く ビット キロ・ ト きょうめん

# The expected number of tests displays a marked hollow



Expected number of tests as a function of the number of people by group for N=1000 and p=0.01

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

In army practice, R. Dorfman achieved savings up to 80%

The expected number of tests is

$$J(k) \approx \frac{N}{k} [1 \times (1-p)^k + (k+1) \times (1-(1-p)^k)]$$

► For small *p*,

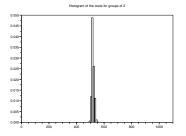
 $J(k)/N \approx 1/k + kp$ 

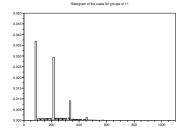
- ▶ so that the optimal number of individuals per group is  $k^* \approx 1/\sqrt{p}$
- and the minimal expected number of tests is about

$$J^{\star} \approx J(k^{\star}) \approx 2N\sqrt{p} < N$$

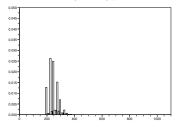
William Feller reports that, in army practice,
 R. Dorfman achieved savings up to 80%,
 compared to making N tests (the worst case solution)
 (take p = 1/100, giving k<sup>\*</sup> = 11 ≈ 1/√1/100 = 10 and J<sup>\*</sup> ≈ N/5)

#### The optimal number of tests is a random variable

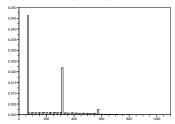




Histogram of the costs for groups of 5







æ

#### What about risk?

- ► The optimal number of individuals per group is 11 if one minimizes the mathematical expectation E of the number of tests (see also the top right histogram above)
- But if one minimizes the Tail Value at Risk at level  $\lambda = 5\%$  of the number of tests (more on  $TVaR_{\lambda}$  later), numerical calculation show that, in the range from 2 to 33, the optimal number of individuals per group is 5 (see also the bottom left histogram above)

ション ふゆ く ビット キロ・ ト きょうめん

The bottom left histogram is more tight (less spread) than the top right histogram

## Outline of the presentation

#### Working out static examples The blood-testing problem The newsvendor problem

#### Two-stage stochastic programming problems

Moving from deterministic convex piecewise linear programs Moving from linear programs with constraints Scenario decomposition resolution methods Recalls on duality and Lagrangian decomposition Progressive Hedging

The "news*boy* problem" is now coined the "news*vendor* problem" ;-)



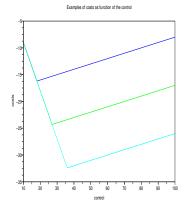
The (single-period) newsvendor problem stands as a classic in stochastic optimization

- ► Each morning, the newsvendor must decide how many copies
   u ∈ U = {0, 1, 2...} of the day's paper to order:
   u is the decision variable
- ► The newsvendor will meet a demand w ∈ W = {0,1,2...}: the variable w is the uncertainty
- > The newsvendor faces an economic tradeoff
  - she pays the unitary purchasing cost c per copy
  - she sells a copy at price p
  - ▶ if she remains with an unsold copy, it is worthless (perishable good)
- The newsvendor's costs j(u, w) depend both on the decision u and on the uncertainty w:

$$j(u,w) = \underbrace{cu}_{\text{purchasing}} - \underbrace{p\min\{u,w\}}_{\text{selling}} = \max\{cu - pu, cu - pw\}$$

ション ふゆ く ビット キロ・ ト きょうめん

### What is an "optimal" solution to the newsvendor problem?



If you solve

$$\min_{u\in\mathbb{U}}j(u,w)$$

the optimal solution is  $u^* = w...$ which depends on the unknown quantity w!

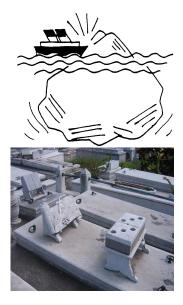
◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

So, what do you suggest an "optimal" solution?

# For you, Nature is rather random or hostile?







◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々ぐ

The newsvendor reveals her attitude towards risk in how she aggregates outcomes with respect to uncertainty

In the robust or pessimistic approach, the (paranoid?) newsvendor minimizes the worst costs



as if Nature were malevolent

► In the stochastic or expected approach, the newsvendor solves

$$\min_{u \in \mathbb{U}} \underbrace{\mathbb{E}_{\mathsf{W}}[j(u, \mathsf{W})]}_{\text{expected costs } J(u)}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

as if Nature played stochastically (casino)

#### If the newsvendor minimizes the worst costs

- We suppose that
  - the demand w belongs to a set  $\overline{\mathbb{W}} = \llbracket w^{\flat}, w^{\sharp} \rrbracket$
  - the newsvendor knows the set  $\llbracket w^{\flat}, w^{\sharp} \rrbracket$
- The worst costs are

$$J(u) = \max_{w \in \overline{W}} j(u, w) = \max_{w \in \llbracket w^{\flat}, w^{\sharp} \rrbracket} [cu - p \min\{u, w\}] = cu - p \min\{u, w^{\flat}\}$$

- Show that the order  $u^* = w^{\flat}$  minimizes the above expression J(u)
- Once the newsvendor makes the optimal order u<sup>\*</sup> = w<sup>b</sup>, the optimal costs are

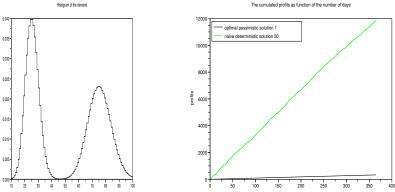
$$j(u^{\star}, \cdot): w \in \llbracket w^{\flat}, w^{\sharp} \rrbracket \mapsto -(p-c)w^{\flat}$$

ション ふゆ くち くち くち くち

which, here, are no longer uncertain

## Does it pay to be so pessimistic?

Not if demands are drawn independently from a probability distribution



The cumulated profits as function of the number of days

time

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の < @

If the newsvendor minimizes the expected costs

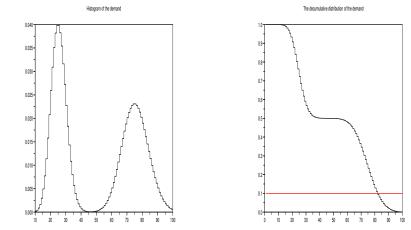
#### We suppose that

- the demand is a random variable, denoted W
- $\blacktriangleright$  the newsvendor knows the probability distribution  $\mathbb{P}_W$  of the demand W
- The expected costs are

$$J(u) = \mathbb{E}_{\mathsf{W}}[j(u, \mathsf{W})] = \mathbb{E}_{\mathsf{W}}[cu - p\min\{u, \mathsf{W}\}]$$

- Find an order  $u^*$  which minimizes the above expression J(u)
  - by calculating J(u+1) J(u)
  - ▶ then using the decumulative distribution function  $u \mapsto \mathbb{P}(W > u)$

# Here is an example of probability distribution and of decumulative distribution for the demand



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ 9 < (~)

Here stand some steps of the computation

$$J(u) = cu - p\mathbb{E}[\min\{u, \mathbf{W}\}]$$
  

$$\min\{u, \mathbf{W}\} = u\mathbf{1}_{\{u < \mathbf{W}\}} + \mathbf{W}\mathbf{1}_{\{u \ge \mathbf{W}\}}$$
  

$$\min\{u+1, \mathbf{W}\} = (u+1)\mathbf{1}_{\{u+1 \le \mathbf{W}\}} + \mathbf{W}\mathbf{1}_{\{u+1 > \mathbf{W}\}}$$
  

$$= (u+1)\mathbf{1}_{\{u < \mathbf{W}\}} + \mathbf{W}\mathbf{1}_{\{u \ge \mathbf{W}\}}$$
  

$$\min\{u+1, \mathbf{W}\} - \min\{u, \mathbf{W}\} = \mathbf{1}_{\{u < \mathbf{W}\}}$$
  

$$J(u+1) - J(u) = c - p\mathbb{E}[\mathbf{1}_{\{u < \mathbf{W}\}}] = c - p\mathbb{P}(\mathbf{W} > u) \uparrow \text{ with } u$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

If 
$$\mathbb{P}(\mathbf{W} > 0) = 1$$
, then  $J(1) - J(0) = c - p < 0$ 
J(u+1) - J(u) →<sub>u→+∞</sub> c > 0

#### Characterization of the optimal decision $u^*$

• Define the cut-off decisions  $u^{\star\flat}$  and  $u^{\star\sharp}$  by

$$u^{\star\flat} = \max\{u \ , \ \mathbb{P}(\mathbf{W} > u) > \frac{c}{p}\} \quad \left(u \le u^{\star\flat} \iff J(u+1) < J(u)\right)$$
$$u^{\star\sharp} = \min\{u \ , \ \mathbb{P}(\mathbf{W} > u) < \frac{c}{p}\} \quad \left(u \ge u^{\star\sharp} \iff J(u+1) > J(u)\right)$$

An optimal decision u<sup>\*</sup> satisfies

$$u^{\star} \in \{u^{\star \flat} + 1, \dots, u^{\star \sharp}\}$$
 and  $J(u^{\star}) = \min\{J(u^{\star \flat} + 1), J(u^{\star \sharp})\}$ 

The optimal decision u<sup>\*</sup> is unique if and only if u<sup>\*b</sup> + 1 = u<sup>\*♯</sup>, that is, if and only if

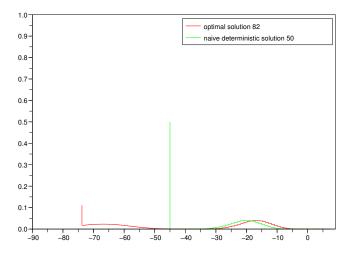
$$\mathbb{P}(\mathbf{W} > u^{\star} - 1) > \frac{c}{p} > \mathbb{P}(\mathbf{W} > u^{\star})$$

 Once the newsvendor makes the optimal order u<sup>\*</sup>, the optimal costs are the random variable

$$j(u^{\star},\mathbf{W})=cu^{\star}-p\min\{u^{\star},\mathbf{W}\}$$

The distribution of the optimal costs displays lower costs than with the naive deterministic solution  $u = \mathbb{E}[\mathbf{W}]$ 

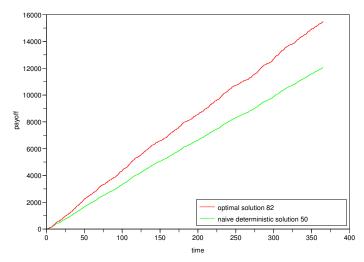
Histograms of the costs



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# The cumulated profits over 365 days reveal that it pays to do stochastic optimization

The cumulated payoffs as function of the number of days



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

#### When deterministic optimization is (wrongly) optimistic

 $\blacktriangleright$  If you plug the mean value  $\overline{\bm{W}} = \mathbb{E}_{\bm{W}}[\bm{W}]$  in the criterion

$$j(u,w) = cu - p\min\{u,w\}$$

#### instead of the random variable ${\bf W}$

you obtain a deterministic optimization problem

$$\min_{u\in\mathbb{U}}j(u,\overline{\mathbf{W}})=j(\overline{\mathbf{W}},\overline{\mathbf{W}})=(c-p)\overline{\mathbf{W}}$$

whose minimal value  $\min_{u \in \mathbb{U}} j(u, \overline{\mathbf{W}})$  is overly and wrongly optimistic

▶ because, on the proper stochastic benchmark E<sub>W</sub>[j(·, W)], the deterministic optimal solution ū = W̄ = 50 produces poorer results than the stochastic optimal solution u<sup>\*</sup> = 82

$$\underbrace{j(\overline{u}, \overline{\mathbf{W}}) = \min_{u \in \mathbb{U}} j(u, \overline{\mathbf{W}})}_{-44.968856} \leq \underbrace{\mathbb{E}_{\mathbf{W}}[j(u^*, \mathbf{W})] = \min_{u \in \mathbb{U}} \mathbb{E}_{\mathbf{W}}[j(u, \mathbf{W})]}_{-41.259519} \leq \underbrace{\mathbb{E}_{\mathbf{W}}[j(\overline{u}, \mathbf{W})]}_{-32.498824}$$

ション ふゆ くち くち くち くち

When deterministic optimization is (wrongly) optimistic

#### Proposition

Let **W** be a random variable with mean  $\overline{\mathbf{W}} = \mathbb{E}_{\mathbf{W}}[\mathbf{W}]$ . Suppose that  $w \mapsto j(u, w)$  is convex, for all decision u. Then,

$$\inf_{u \in \mathbb{U}} j(u, \mathbb{E}_{\mathsf{W}}[\mathsf{W}]) \leq \inf_{u \in \mathbb{U}} \mathbb{E}_{\mathsf{W}}[j(u, \mathsf{W})]$$

Supposing that the infima are minima

$$j(\overline{u}, \overline{\mathbf{W}}) = \min_{u \in \mathbb{U}} j(u, \overline{\mathbf{W}}) \le \mathbb{E}_{\mathbf{W}}[j(u^{\star}, \mathbf{W})] = \min_{u \in \mathbb{U}} \mathbb{E}_{\mathbf{W}}[j(u, \mathbf{W})]$$

we have

$$\underbrace{\widetilde{j(\overline{u}, \mathbf{W})}}_{\text{wrongly optimistic}} \in \mathbb{E}_{\mathbf{W}}[j(u^{\star}, \mathbf{W})] \underbrace{\leq \mathbb{E}_{\mathbf{W}}[j(\overline{u}, \mathbf{W})]}_{\text{wrongly optimistic}}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Where do we stand after having worked out two examples?

- When you move from deterministic optimization to optimization under uncertainty, you come accross the issue of risk attitudes
- Risk is in the eyes of the beholder ;-) and materializes in the a priori knowledge on the uncertainties
  - either probabilistic/stochastic
    - independence and Bernoulli distributions in the blood test example

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

- uncertain demand faced by the newsvendor modeled as a random variable
- or set-membership
  - uncertain demand faced by the newsvendor modeled by a set

#### Where have we gone till now? And what comes next

- We have seen two examples of optimization problems with a single deterministic decision variable, and with a criterion including a random variable
- Now, we will turn to optimization problems with two decision variables, the first one deterministic and the second one random

# Outline of the presentation

Working out static examples

Two-stage stochastic programming problems



#### What awaits us

- We lay out two ways to move from one-stage deterministic optimization problems to two-stage stochastic linear programs
  - in one, we start from a deterministic convex piecewise linear program (without constraints)
  - in the other, we start from a deterministic linear program with constraints
- ► We show how we can also obtain two-stage risk-averse programs, when we handle risk by means of the Tail Value at Risk
- We show a scenario decomposition resolution method adapted to two-stage stochastic programs that are strongly convex

・ロト ・ 日 ・ モー・ モー・ うへぐ

We outline the Progressive Hedging resolution method, adapted to two-stage stochastic linear programs

# Outline of the presentation

Working out static examples The blood-testing problem The newsvendor problem

#### Two-stage stochastic programming problems

#### Moving from deterministic convex piecewise linear programs

Moving from linear programs with constraints Scenario decomposition resolution methods Recalls on duality and Lagrangian decomposition Progressive Hedging We revisit the newsvendor problem

Writing the newsvendor problem as a linear program, in three steps

We consider the stochastic optimization problem

$$\min_{u\in\mathbb{U}}J(u)=\mathbb{E}_{\mathbb{P}}[j(u,\mathbf{W})]$$

where

$$j(u,w) = cu - p\min\{u,w\}$$

and we show in three steps how to rewrite this problem as a linear program

Step 1: exploiting convex piecewise linearity of the criterion

First, we write:

$$j(u, w) = cu - p \min\{u, w\}$$
  
= max{cu - pu, cu - pw}  
= min\_{v \in \mathbb{R}} \{v \mid v \ge cu - pu, v \ge cu - pw\}

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Step 2: exploiting convexity of the mathematical expectation

- We suppose that the demand W can take a finite number S of possible values w<sub>s</sub>, s ∈ S
- where s denotes a scenario in the finite set S(S=card(S))
- and we denote  $\pi_s$  the probability of scenario *s*, with

$$\sum_{s\in\mathbb{S}}\pi_s=1 ext{ and } \pi_s\geq 0 \ , \ orall s\in\mathbb{S}$$

(ロ) (型) (E) (E) (E) (C)

Step 2: exploiting convexity of the mathematical expectation

Second, we deduce

$$J(u) = \mathbb{E}_{\mathbb{P}}[j(u, \mathbf{W})]$$
  
=  $\sum_{s \in \mathbb{S}} \pi_s j(u, w_s)$   
=  $\sum_{s \in \mathbb{S}} \pi_s \min_{v_s \in \mathbb{R}} \{v_s \mid v_s \ge cu - pu, v_s \ge cu - pw_s\}$   
=  $\min_{(v_s)_{s \in \mathbb{S}} \in \mathbb{R}^s} \sum_{s \in \mathbb{S}} \pi_s v_s$   
under the constraints  
 $v_s \ge cu - pu, v_s \ge cu - pw_s, \forall s \in \mathbb{S}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

## Step 3: exploiting min min = min

Third, we minimize with respect to the original decision  $u \in \mathbb{U}$ 

$$\min_{u \in \mathbb{U}} J(u) = \min_{u \in \mathbb{U}, (v_s)_{s \in \mathbb{S}} \in \mathbb{R}^S} \sum_{s \in \mathbb{S}} \pi_s v_s$$
$$v_s \ge cu - pu , \ \forall s \in \mathbb{S}$$
$$v_s \ge cu - pw_s , \ \forall s \in \mathbb{S}$$

This is a linear program,

especially when we consider that the decision can take continuous values:  $u\in\mathbb{U}=[0,u^{\sharp}]$ 

The newsvendor problem example is a special case of a general mechanism

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

From convex piecewise linear to linear programming

The convex piecewise linear program

$$\min_{x \in \mathbb{R}^n} \max_{i=1,\ldots,m} \left\langle c^i, x \right\rangle + b^i$$

can be written as the linear program

 $\min_{x\in\mathbb{R}^n}\min_{v\in\mathbb{R}}v$ 

 $v \ge \langle c^i, x \rangle + b^i, \quad i = 1, \dots, m$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

From stochastic convex piecewise linear programming to stochastic linear programming

The stochastic convex piecewise linear program

$$\min_{x \in \mathbb{R}^n} \sum_{s \in \mathbb{S}} \pi_s \max_{i=1,...,m} \left\langle c_s^i, x \right\rangle + b_s^i$$

can be written as the stochastic linear program

$$\begin{split} \min_{x \in \mathbb{R}^n} \min_{(\mathbf{v}_s)_{s \in \mathbb{S}} \in \mathbb{R}^s} \sum_{s \in \mathbb{S}} \pi_s \mathbf{v}_s \\ \mathbf{v}_s \ge \left\langle \mathbf{c}_s^i, x \right\rangle + \mathbf{b}_s^i, \quad i = 1, \dots, m, \ s \in \mathbb{S} \end{split}$$

What happens if we want to minimize risk, not mathematical expectation?

Instead of minimizing the mathematical expectation

$$\mathbb{E}[\mathsf{C}] \quad (=\sum_{s\in\mathbb{S}}\pi_s\mathsf{C}_s)$$

▶ we want to minimize the Tail Value at Risk (at level λ ∈ [0, 1[), given by the Rockafellar-Uryasev formula

$$TVaR_{\lambda}[\mathbf{C}] = \inf_{r \in \mathbb{R}} \left\{ \frac{\mathbb{E}[(\mathbf{C} - r)_{+}]}{1 - \lambda} + r \right\}$$

whose limit cases are mean and worst case

$$TVaR_0[\mathbf{C}] = \mathbb{E}[\mathbf{C}]$$
$$TVaR_1[\mathbf{C}] = \lim_{\lambda \to 1} TVaR_{\lambda}[\mathbf{C}] = \sup_{\omega \in \Omega} \mathbf{C}(\omega)$$

Minimizing the Tail Value at Risk of costs: convex piecewise linear programming formulation

The risk-averse stochastic convex piecewise linear program

$$\min_{x \in \mathbb{R}^{n}} \min_{r \in \mathbb{R}} \left\{ r + \frac{1}{1 - \lambda} \sum_{s \in \mathbb{S}} \pi_{s} \left( \max_{i=1,...,m} \left\langle c_{s}^{i}, x \right\rangle + b_{s}^{i} - r \right)_{+} \right\}$$

can be written as the convex piecewise linear program

$$\min_{\mathbf{x}\in\mathbb{R}^{n}} \min_{r\in\mathbb{R}} \min_{(u_{s})_{s\in\mathbb{S}}\in\mathbb{R}^{S}} \quad r + \frac{1}{1-\lambda} \sum_{s\in\mathbb{S}} \pi_{s}(u_{s}-r)_{+}$$
$$u_{s} \geq \langle c_{s}^{1}, x \rangle + b_{s}^{1}, \quad \forall s\in\mathbb{S}$$
$$\vdots$$
$$u_{s} \geq \langle c_{s}^{m}, x \rangle + b_{s}^{m}, \quad \forall s\in\mathbb{S}$$

Minimizing the Tail Value at Risk of costs: linear programming formulation

The risk-averse stochastic convex piecewise linear program

$$\min_{x \in \mathbb{R}^n} \min_{r \in \mathbb{R}} \left\{ r + \frac{1}{1 - \lambda} \sum_{s \in \mathbb{S}} \pi_s \left( \max_{i=1,\ldots,m} \left\langle c_s^i, x \right\rangle + b_s^i - r \right)_+ \right\}$$

can be written as the linear program

$$\min_{x \in \mathbb{R}^n} \min_{r \in \mathbb{R}} \min_{(v_s)_{s \in \mathbb{S}} \in \mathbb{R}^s} \quad r + \frac{1}{1 - \lambda} \sum_{s \in \mathbb{S}} \pi_s v_s$$

$$v_s \ge \langle c_s^1, x \rangle + b_s^1 - r , \quad \forall s \in \mathbb{S}$$

$$\vdots$$

$$v_s \ge \langle c_s^m, x \rangle + b_s^m - r , \quad \forall s \in \mathbb{S}$$

$$v_s \ge 0 , \quad \forall s \in \mathbb{S}$$

How to use risk-averse stochastic programming in practice?

- Denote by  $x_{\lambda}^{\star}$  the (supposed unique) solution
- As  $1 \lambda$  measures the upper probability of risky events, start with  $\lambda = 0$  and display, to the decision-maker, the risk-neutral solution  $x_0^*$  and the probability distribution (histogram) of the random costs

$$s\mapsto \max_{i=1,...,m}\left\langle c_{s}^{i}\,,x_{0}^{\star}
ight
angle +b_{s}^{i}$$

- ▶ Then move to the confidence level  $\lambda = 0.99$  (only events with probability less than 1% are considered), and do the same
- For a range of possible values for λ, display, to the decision-maker, the solution x<sup>\*</sup><sub>λ</sub> and the histogram of the random costs

$$s \mapsto \max_{i=1,...,m} \left\langle \boldsymbol{c}_s^i \,, \boldsymbol{x}^{\star}_{\!\boldsymbol{\lambda}} \right\rangle + \boldsymbol{b}_s^i$$

 $\blacktriangleright$  The decision-maker should choose his confidence level  $\lambda$ 

We can also minimize the mean costs, while controlling for large costs

Instead of only minimizing the mathematical expectation

$$\mathbb{E}[\mathsf{C}] \quad (=\sum_{s\in\mathbb{S}}\pi_s\mathsf{C}_s)$$

we add the constraint that the Tail Value at Risk (at level λ ∈ [0, 1[) is not too large

$$TV_{a} \mathcal{R}_{\lambda}[\mathbf{C}] = \inf_{r \in \mathbb{R}} \left\{ \frac{\mathbb{E}[(\mathbf{C} - r)_{+}]}{1 - \lambda} + r \right\} \leq C^{\sharp}$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

We can also choose to minimize a mixture

$$\theta \mathbb{E}[\mathbf{C}] + (1-\theta) T V_{\mathbf{a}} R_{\lambda}[\mathbf{C}] = \inf_{r \in \mathbb{R}} \left\{ \theta \mathbb{E}[\mathbf{C}] + (1-\theta) \frac{\mathbb{E}[(\mathbf{C}-r)_{+}]}{1-\lambda} + (1-\theta)r \right\}$$

# Minimizing a mixture: convex piecewise linear programming formulation

▶ The risk-averse stochastic convex piecewise linear program

$$\begin{split} \min_{x \in \mathbb{R}^n} \min_{r \in \mathbb{R}} \left\{ \theta \sum_{s \in \mathbb{S}} \pi_s \max_{i=1,...,m} \left\langle c_s^i, x \right\rangle + b_s^i \right. \\ \left. + (1-\theta)r + \frac{1-\theta}{1-\lambda} \sum_{s \in \mathbb{S}} \pi_s \left( \max_{i=1,...,m} \left\langle c_s^i, x \right\rangle + b_s^i - r \right)_+ \right\} \end{split}$$

can be written as the convex piecewise linear program

$$\min_{x \in \mathbb{R}^{n}} \min_{r \in \mathbb{R}} \min_{(u_{s})_{s \in \mathbb{S}} \in \mathbb{R}^{s}} \sum_{s \in \mathbb{S}} \pi_{s} \left\{ \theta u_{s} + (1 - \theta)r + \frac{1 - \theta}{1 - \lambda}(u_{s} - r)_{+} \right\}$$
$$u_{s} \geq \langle c_{s}^{1}, x \rangle + b_{s}^{1}, \quad \forall s \in \mathbb{S}$$
$$\vdots$$
$$u_{s} \geq \langle c_{s}^{m}, x \rangle + b_{s}^{m}, \quad \forall s \in \mathbb{S}$$

# Minimizing a mixture: linear programming formulation

► The risk-averse stochastic convex piecewise linear program

$$\min_{x \in \mathbb{R}^{n}} \min_{r \in \mathbb{R}} \left\{ \theta \sum_{s \in \mathbb{S}} \pi_{s} \max_{i=1,...,m} \langle c_{s}^{i}, x \rangle + b_{s}^{i} + (1-\theta)r + \frac{1-\theta}{1-\lambda} \sum_{s \in \mathbb{S}} \pi_{s} \Big( \max_{i=1,...,m} \langle c_{s}^{i}, x \rangle + b_{s}^{i} - r \Big)_{+} \right\}$$

can be written as the linear program

$$\min_{x \in \mathbb{R}^{n}} \min_{r \in \mathbb{R}} \min_{(u_{s})_{s \in \mathbb{S}} \in \mathbb{R}^{S}} \min_{(v_{s})_{s \in \mathbb{S}} \in \mathbb{R}^{S}} \sum_{s \in \mathbb{S}} \pi_{s} \left\{ \theta u_{s} + (1 - \theta)r + \frac{1 - \theta}{1 - \lambda} v_{s} \right\}$$

$$u_{s} \geq \langle c_{s}^{1}, x \rangle + b_{s}^{1}, \quad \forall s \in \mathbb{S}$$

$$\vdots$$

$$u_{s} \geq \langle c_{s}^{m}, x \rangle + b_{s}^{m}, \quad \forall s \in \mathbb{S}$$

$$v_{s} \geq u_{s} - r, \quad \forall s \in \mathbb{S}$$

$$v_{s} \geq 0, \quad \forall s \in \mathbb{S}$$

## How to use risk-averse stochastic programming in practice?

- Denote by  $x^{\star}_{\lambda,\theta}$  the (supposed unique) solution
- As 1 λ measures the upper probability of risky events, let the decision-maker choose a confidence level λ
   -- λ = 0.99 (only events with probability less than 1% are considered), λ = 0.95, λ = 0.90, for instance
- Start with θ = 0 and display, to the decision-maker, the risk-neutral solution x<sup>\*</sup><sub>λ,0</sub> (which does not depend on λ) and the probability distribution (histogram) of the random costs

$$s\mapsto \max_{i=1,...,m}\left\langle c_{s}^{i},x_{\lambda,0}^{\star}
ight
angle +b_{s}^{i}$$

 Increase θ from 0 to 1, and display, to the decision-maker, the solution x<sup>\*</sup><sub>λ,θ</sub> and the histogram of the random costs

$$s\mapsto \max_{i=1,...,m}\left\langle c_{s}^{i}\,, \mathbf{x}_{\lambda,\theta}^{\star}
ight
angle +b_{s}^{i}$$

The decision-maker reveals his confidence level λ and his mixture (θ, 1 – θ) as he selects his prefered histogram

# Outline of the presentation

Working out static examples The blood-testing problem The newsvendor problem

#### Two-stage stochastic programming problems

Moving from deterministic convex piecewise linear programs Moving from linear programs with constraints Scenario decomposition resolution methods Recalls on duality and Lagrangian decomposition Progressive Hedging

Suppose you had to manage a day-ahead energy market You would have to fix reserves by night and adjust in the morning with recourse energies

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

### From linear to stochastic programming

► The linear program

$$egin{aligned} \min_{\mathbf{c} \in \mathbb{R}^n} \left\langle c \;, x 
ight
angle \ Ax + b &\geq 0 \quad (\in \mathbb{R}^m) \end{aligned}$$

becomes a stochastic program

$$\begin{split} \min_{x \in \mathbb{R}^n} \sum_{s \in \mathbb{S}} \pi_s \left\langle c_s \,, x \right\rangle \\ A_s x + b_s &\geq 0 \;, \; \forall s \in \mathbb{S} \end{split}$$

We observe that there are as many (vector) inequalities as there are possible scenarios s ∈ S

$$A_s x + b_s \ge 0$$
,  $\forall s \in \mathbb{S}$ 

and these inequality constraints can delineate an empty domain for optimization Recourse variables need be introduced for feasability issues

- We denote by s ∈ S any possible value of the random variable ξ, with corresponding probability π<sub>s</sub>
- ▶ and we introduce a recourse variable  $y = (y_s)_{s \in S}$  and the program

$$\begin{split} \min_{x,(y_s)_{s\in\mathbb{S}}} \sum_{s\in\mathbb{S}} \pi_s \Big( \langle c_s , x \rangle + \langle p_s , y_s \rangle \Big) \\ y_s &\geq 0 , \ \forall s\in\mathbb{S} \\ A_s x + b_s + y_s &\geq 0 , \ \forall s\in\mathbb{S} \end{split}$$

- So that the inequality A<sub>s</sub>x + b<sub>s</sub> + y<sub>s</sub> ≥ 0 is now possible, at (unitary recourse) price vector p = (p<sub>s</sub>, s ∈ S)
- Observe that such stochastic programs are huge problems, with solution (x, (y<sub>s</sub>)<sub>s∈S</sub>), but remain linear

Minimizing the Tail Value at Risk of costs: linear programming formulation

The risk-averse stochastic linear program with recourse

$$\min_{x,(y_s)_{s\in\mathbb{S}}}\min_{r\in\mathbb{R}}\left\{r+\frac{1}{1-\lambda}\sum_{s\in\mathbb{S}}\pi_s\Big(\langle c_s\,,x\rangle+\langle p_s\,,y_s\rangle\Big)_+\right\}$$

can be written as the linear program

$$\begin{array}{rl} \min_{x,(y_s)_{s\in\mathbb{S}}} \min_{r} \min_{(v_s)_{s\in\mathbb{S}}} & r + \frac{1}{1-\lambda} \sum_{s\in\mathbb{S}} \pi_s v_s \\ v_s - \langle c_s \,, x \rangle - \langle p_s \,, y_s \rangle & \geq 0 \,, \ \forall s \in \mathbb{S} \\ v_s & \geq 0 \,, \ \forall s \in \mathbb{S} \\ y_s & \geq 0 \,, \ \forall s \in \mathbb{S} \\ A_s x + b_s + y_s & \geq 0 \,, \ \forall s \in \mathbb{S} \end{array}$$

# Minimizing a mixture: linear programming formulation

▶ The risk-averse stochastic linear program with recourse

$$\begin{split} \min_{x,(y_{s})_{s\in\mathbb{S}}} \min_{r\in\mathbb{R}} &\left\{ \theta \sum_{s\in\mathbb{S}} \pi_{s} \Big( \langle \boldsymbol{c}_{s}, x \rangle + \langle \boldsymbol{p}_{s}, y_{s} \rangle \Big) \right. \\ &\left. + (1-\theta)r + \frac{1-\theta}{1-\lambda} \sum_{s\in\mathbb{S}} \pi_{s} \Big( \langle \boldsymbol{c}_{s}, x \rangle + \langle \boldsymbol{p}_{s}, y_{s} \rangle \Big)_{+} \right\} \end{split}$$

can be written as the linear program

$$\min_{x,(y_s)_{s\in\mathbb{S}}} \min_{r} \min_{(u_s,v_s)_{s\in\mathbb{S}}} \sum_{s\in\mathbb{S}} \pi_s \left\{ \theta u_s + (1-\theta)r + \frac{1-\theta}{1-\lambda}v_s \right\}$$

$$u_s - \langle c_s, x \rangle - \langle p_s, y_s \rangle \geq 0, \quad \forall s \in \mathbb{S}$$

$$v_s - u_s + r \geq 0, \quad \forall s \in \mathbb{S}$$

$$v_s \geq 0, \quad \forall s \in \mathbb{S}$$

$$y_s \geq 0, \quad \forall s \in \mathbb{S}$$

$$A_s x + b_s + y_s \geq 0, \quad \forall s \in \mathbb{S}$$

## Roger Wets example

http://cermics.enpc.fr/~delara/TEACHING/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CEA-EDF-INRIA\_2012/Roger\_Wets1.pdf

Two-step stochastic programs with recourse can become deterministic non-smooth convex problems

Define

$$\underbrace{Q_s(x)}_{\text{value function}} = \min\{\langle p_s, y \rangle, A_s x + b_s + y \ge 0\}$$

which is a convex function of x, non-smooth

so that the original two-step stochastic program with recourse

$$\begin{split} \min_{x,(y_s)_{s\in\mathbb{S}}} \sum_{s\in\mathbb{S}} \pi_s \big[ \langle c_s , x \rangle + \langle p_s , y_s \rangle \big] \\ y_s &\geq 0 , \ \forall s\in\mathbb{S} \\ A_s x + b_s + y_s &\geq 0 , \ \forall s\in\mathbb{S} \end{split}$$

now becomes the deterministic non-smooth convex problem

$$\min_{x} \sum_{s \in \mathbb{S}} \pi_{s} \big[ \langle c_{s}, x \rangle + Q_{s}(x) \big]$$

 An optimal solution is now more likely to be an inner solution (more robust)

## A quadratic toy problem

Let c > 0 ,  $d_1 \ge 0$  ,  $d_2 \ge 0$ 

Show that the (worst case) optimization problem

$$\min_{\substack{x \in \mathbb{R} \\ x \ge d_1 \\ x \ge d_2}} \frac{1}{2} c x^2$$

has (worst case) solution

$$\overline{x} = \max\{d_1, d_2\}$$

What happens if we allow room for recourse?

### A quadratic toy problem with recourse

Let  $c>0\;,\;\; d_1\geq 0\;,\;\; d_2\geq 0\;,\;\; p_1>0\;,\;\; p_2>0$ 

Show that the (stochastic) optimization problem

$$\min_{\substack{(x,y_1,y_2) \in \mathbb{R}^3 \\ x + y_1 = d_1 \\ x + y_2 = d_2}} \frac{1}{2} \left( cx^2 + p_1 y_1^2 + p_2 y_2^2 \right)$$

has a solution  $x^*$  given by

$$x^{\star} = \frac{p_1}{c + p_1 + p_2} d_1 + \frac{p_2}{c + p_1 + p_2} d_2 + \frac{c}{c + p_1 + p_2} 0$$

• Therefore,  $x^*$  belongs to the convex generated by  $\{0, d_1, d_2\}$ , that is,

 $x^{\star} \in [0, \max\{d_1, d_2\}]$ 

▶ Compare with the (worst case) solution x̄ = max{d<sub>1</sub>, d<sub>2</sub>}

Where have we gone till now? And what comes next

- We have arrived at optimization problems with two decision variables
  - a first one deterministic
  - a second one random (as it is indexed by the scenarios)
- We have handled the risk neutral case, but also the risk averse case, with risk measures displaying good mathematical properties (like the Tail Value at Risk)
- We will now present resolution methods that, somehow surprisingly, relax the assumption that the first decision variable is deterministic

ション ふゆ くち くち くち くち

# Outline of the presentation

Working out static examples The blood-testing problem The newsvendor problem

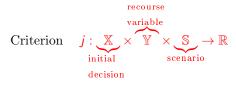
#### Two-stage stochastic programming problems

Moving from deterministic convex piecewise linear programs Moving from linear programs with constraints Scenario decomposition resolution methods Recalls on duality and Lagrangian decomposition

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Progressive Hedging

# We start with a two-stage stochastic optimization problem formulated on a tree



and set-valued mapping  $\mathcal{Y}: \mathbb{X} \times \mathbb{S} \to 2^{\mathbb{Y}}$ 

Stochastic optimization problem

$$\min_{\substack{\mathbf{x}, (\mathbf{y}_{s})_{s \in \mathbb{S}} \\ x \in \mathbb{X} \\ \mathbf{y}_{s} \in \mathcal{Y}_{s}(\mathbf{x}) , \quad \forall s \in \mathbb{S} } \pi_{s} j_{s}(\mathbf{x}, \mathbf{y}_{s})$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

▶ Solutions  $(x, (y_s)_{s \in S})$  are naturally indexed by a tree

- with one root
- ▶ and S = card S leaves

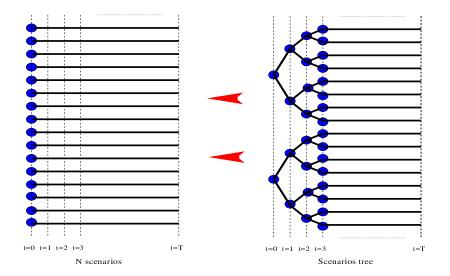
We transform the two-stage stochastic optimization problem by extending the solution space

▶ We consider initial decisions  $(x_s)_{s \in S}$  and the problem

$$\min_{\substack{x,(x_s)_{s\in\mathbb{S}},(y_s)_{s\in\mathbb{S}}\\ x_s\in\mathbb{X}, \quad \forall s\in\mathbb{S}\\ y_s\in\mathcal{Y}_s(x_s), \quad \forall s\in\mathbb{S}\\ x_s=x, \quad \forall s\in\mathbb{S}\\ x\in\mathbb{X}$$

► This problem has the same solutions (x, (y<sub>s</sub>)<sub>s∈S</sub>) as the original one

## Scenarios can be organized like a fan or like a tree



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

# We transform the two-stage stochastic optimization problem from a tree to a fan

▶ We consider initial decisions  $(x_s)_{s \in S}$  and the problem

$$\min_{\substack{(x_s)_{s\in\mathbb{S}}, (y_s)_{s\in\mathbb{S}}}} \sum_{s\in\mathbb{S}} \pi_s j_s(x_s, y_s) \\ x_s \in \mathbb{X} , \quad \forall s \in \mathbb{S} \\ y_s \in \mathcal{Y}_s(x_s) , \quad \forall s \in \mathbb{S} \\ x_s = \sum_{s'\in\mathbb{S}} \pi_{s'} x_{s'} , \quad \forall s \in \mathbb{S}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Solutions  $(x_s, y_s)_{s \in S}$  are naturally indexed by a fan

## Primal and dual problems

► The primal problem is

$$\begin{split} & \min_{(\mathsf{x}_{s}, \mathsf{y}_{s})_{s \in \mathbb{S}}} \max_{(\lambda_{s})_{s \in \mathbb{S}}} \sum_{s \in \mathbb{S}} \pi_{s} \Big( j_{s} \big( \mathsf{x}_{s}, \mathsf{y}_{s} \big) + \lambda_{s} \big( \mathsf{x}_{s} - \sum_{s' \in \mathbb{S}} \pi_{s'} \mathsf{x}_{s'} \big) \Big) \\ & \mathsf{x}_{s} \in \mathbb{X}, \quad \forall s \in \mathbb{S} \\ & \mathsf{y}_{s} \in \mathcal{Y}_{s} \big( \mathsf{x}_{s} \big), \quad \forall s \in \mathbb{S} \end{split}$$

► The dual problem is

$$\max_{\substack{(\lambda_s)_{s\in\mathbb{S}} \ (x_s, y_s)_{s\in\mathbb{S}} \ s\in\mathbb{S} \ y_s \in \mathbb{X}, \ \forall s \in \mathbb{S} \ y_s \in \mathcal{Y}_s(x_s), \ \forall s \in \mathbb{S} \ } } \min_{\substack{s \in \mathcal{Y}_s(x_s), \ \forall s \in \mathbb{S} \ s\in\mathbb{S} \ s\in\mathbb{S}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

We can translate the multipliers  $\lambda_s$  in the dual problem

▶ Denote by  $X : \mathbb{S} \to \mathbb{X}$  the random variable  $X(s) = x_s$ ,  $s \in \mathbb{S}$ 

▶ Denote by  $\Lambda$  :  $\mathbb{S} \to \mathbb{R}$  the random variable  $\Lambda(s) = \lambda_s$ ,  $s \in \mathbb{S}$ 

$$\sum_{s \in \mathbb{S}} \pi_s \lambda_s (x_s - \sum_{s' \in \mathbb{S}} \pi_{s'} x_{s'})$$
  
= $\mathbb{E} [ \mathbf{\Lambda} (\mathbf{X} - \mathbb{E} [\mathbf{X}] ) ]$   
= $\mathbb{E} [ \mathbf{\Lambda} \mathbf{X} ] - \mathbb{E} [ \mathbf{\Lambda} ] \mathbb{E} [ \mathbf{X} ]$   
= $\mathbb{E} [ ( \mathbf{\Lambda} - \mathbb{E} [ \mathbf{\Lambda} ] ) \mathbf{X} ]$   
= $\sum_{s \in \mathbb{S}} \pi_s \underbrace{(\lambda_s - \sum_{s' \in \mathbb{S}} \pi_{s'} \lambda_{s'})}_{\text{projected multiplier } \overline{\lambda}_s} x_s$ 

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

## Restricting the multiplier

Then the dual problem is

$$\begin{split} & \max_{(\lambda_s)_{s\in\mathbb{S}}} \min_{(x_s, y_s)_{s\in\mathbb{S}}} \sum_{s\in\mathbb{S}} \pi_s \Big( j_s \big( x_s, y_s \big) + \big( \lambda_s - \sum_{s'\in\mathbb{S}} \pi_{s'} \lambda_{s'} \big) x_s \Big) \\ & x_s \in \mathbb{X} , \ \forall s \in \mathbb{S} \\ & y_s \in \mathcal{Y}_s(x_s) , \ \forall s \in \mathbb{S} \end{split}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The dual problem can be decomposed scenario by scenario

► The dual problem

$$\begin{split} & \max_{(\lambda_s)_{s\in\mathbb{S}}} \min_{(x_s, y_s)_{s\in\mathbb{S}}} \sum_{s\in\mathbb{S}} \pi_s \Big( j_s \big( x_s, y_s \big) + \big( \lambda_s - \sum_{s'\in\mathbb{S}} \pi_{s'} \lambda_{s'} \big) x_s \Big) \\ & x_s \in \mathbb{X} , \ \forall s \in \mathbb{S} \\ & y_s \in \mathcal{Y}_s(x_s) , \ \forall s \in \mathbb{S} \end{split}$$

▶ is equivalent to

$$\begin{split} \max_{(\lambda_s)_{s\in\mathbb{S}}} & \sum_{s\in\mathbb{S}} \pi_s \min_{(x_s, y_s)} \left( j_s (x_s, y_s) + \left( \lambda_s - \sum_{s'\in\mathbb{S}} \pi_{s'} \lambda_{s'} \right) x_s \right) \\ & x_s \in \mathbb{X} , \ \forall s \in \mathbb{S} \\ & y_s \in \mathcal{Y}_s(x_s) , \ \forall s \in \mathbb{S} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の��

Under proper assumptions — to be seen later, as they require recalls in duality theory the dual problem can be solved by an algorithm "à la Uzawa" yielding the following scenario decomposition algorithm

# Scheme of the scenario decomposition algorithm

**Data:** step ho> 0, initial multipliers  $ig\{m{\lambda}^{(0)}_sig\}_{s\in\mathbb{N}}$  and mean first decision  $\overline{\mathbf{v}}^{(0)}$ . **Result:** optimal first decision x; repeat **forall** scenarios  $s \in \mathbb{S}$  do Solve the deterministic minimization problem for scenario s, with a penalization  $+\lambda_s^{(k)}\left(\mathbf{x}_s^{(k+1)}-\overline{\mathbf{x}}^{(k)}\right)$ , and obtain optimal first decision  $\mathbf{x}_{s}^{(k+1)}$ ; Update the mean first decisions  $\overline{\boldsymbol{x}}^{(k+1)} = \sum \pi_s \boldsymbol{x}^{(k+1)}_s$ ; Update the multiplier by  $\lambda_s^{(k+1)} = \lambda_s^{(k)} + \rho(\mathbf{x}_s^{(k+1)} - \overline{\mathbf{x}}^{(k+1)}), \ \forall s \in \mathbb{S};$ until  $\mathbf{x}_{s}^{(k+1)} - \sum_{s' \in \mathbb{S}} \pi_{s'} \mathbf{x}_{s'}^{(k+1)} = 0$ ,  $\forall s \in \mathbb{S}$ ; э

000

# Outline of the presentation

Working out static examples The blood-testing problem The newsvendor problem

#### Two-stage stochastic programming problems

Moving from deterministic convex piecewise linear programs Moving from linear programs with constraints Scenario decomposition resolution methods

#### Recalls on duality and Lagrangian decomposition

Progressive Hedging

Recalls and exercises on continuous optimization

http://cermics.enpc.fr/~delara/TEACHING/slides\_optimization.pdf

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Thanks to Pierre Carpentier (ENSTA ParisTech), we provide a geometric interpretation of Uzawa's algorithm

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

For the sake of simplicity, we consider here equality constraints:

$$u^{(k+1)} \in \underset{u \in \mathcal{U}^{ad}}{\arg \min} J(u) + \langle \lambda^{(k)}, Y(u) \rangle,$$
$$\lambda^{(k+1)} = \lambda^{(k)} + \rho \Theta(u^{(k+1)}).$$

The minimization step in u is equivalent to:

 $\min_{v\in\mathcal{V}} \min_{u\in\mathcal{U}^{ad}} J(u) + \left\langle \lambda^{(k)} , v \right\rangle \quad \text{s.t.} \quad Y(u) - v = 0 \; .$ 

Introducing the perturbation function G given by

$$G(v) = \min_{u \in \mathcal{U}^{ad}} J(u) \quad \text{s.t.} \quad Y(u) - v = 0 ,$$

the minimization step writes equivalently:

 $\min_{\boldsymbol{\nu}\in\mathcal{V}} G(\boldsymbol{\nu}) + \left\langle \lambda^{(k)} , \boldsymbol{\nu} \right\rangle.$ 

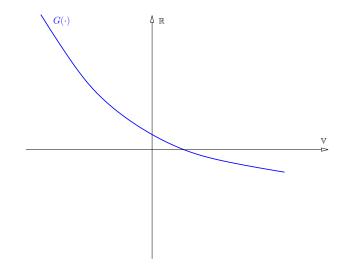
Recall that the initial problem consists in obtaining G(0)...

With the help of the function G, Uzawa's algorithm writes:

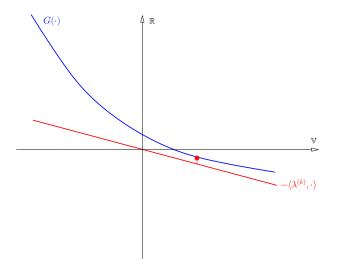
$$\begin{aligned} \mathbf{v}^{(k+1)} &\in \operatorname*{arg\,min}_{\mathbf{v} \in \mathcal{V}} G(\mathbf{v}) + \left\langle \lambda^{(k)}, \mathbf{v} \right\rangle, \\ \lambda^{(k+1)} &= \lambda^{(k)} + \rho \mathbf{v}^{(k+1)}. \end{aligned}$$

From a (conceptual) geometric point of view, it amounts to:

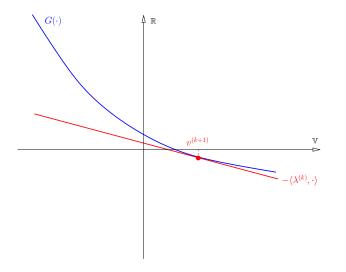
- Step (a): minimize the gap between  $G(\cdot)$  and  $\langle -\lambda^{(k)}, \cdot \rangle$ .
- Step (b): adjust the slope  $-\lambda^{(k)}$  if  $\nu^{(k+1)} \neq 0$ .



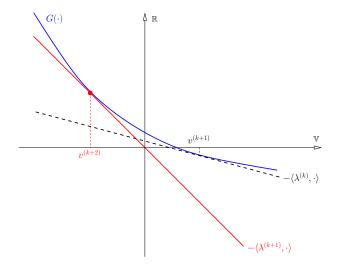
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



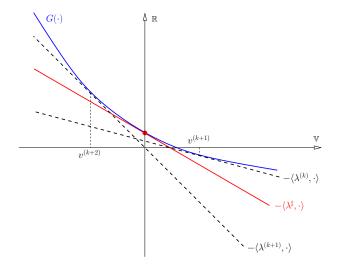
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @



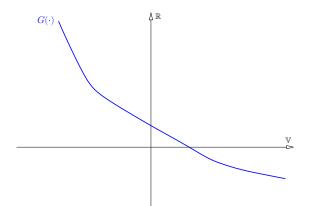
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @



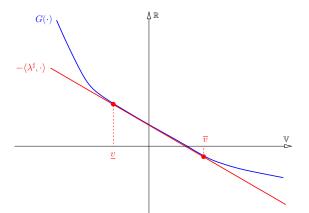
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

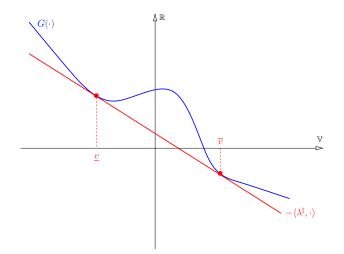


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



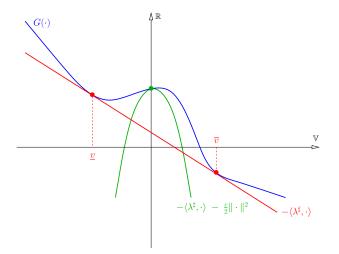
Even if  $\{\lambda^{(k)}\}_{k\in\mathbb{N}}$  converges towards  $\lambda^*$ , the constraint level  $v^{(k)}$  oscillates between  $\underline{v}$  and  $\overline{v}$ , but the value  $v^* = 0$  is never reached

IV



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

V



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In the non convex case, use an augmented Lagrangian...

## Outline of the presentation

Working out static examples The blood-testing problem The newsvendor problem

#### Two-stage stochastic programming problems

Moving from deterministic convex piecewise linear programs Moving from linear programs with constraints Scenario decomposition resolution methods Recalls on duality and Lagrangian decomposition **Progressive Hedging** 

Progressive Hedging

Rockafellar, R.T., Wets R. J-B. Scenario and policy aggregation in optimization under uncertainty, Mathematics of Operations Research, 16, pp. 119-147, 1991

http://cermics.enpc.fr/~delara/TEACHING/

CEA-EDF-INRIA\_2012/Roger\_Wets4.pdf

#### The "plus" of Progressive Hedging

- In addition to the variables x<sub>s</sub>, we introduce a new variable x̄, so that the non-anticipativity constraint becomes x<sub>s</sub> = x̄
- We dualize this constraint with an augmented Lagrangian term, yielding to an optimization problem with variables x., x̄, λ
- When the multiplier λ is fixed, we minimize the primal problem which, unfortunately, is not separable with respect to scenarios s
- Luckily, we recover separability by solving sequentially "à la Gauss-Seidel"

$$\min_{x.} \mathcal{L}(x, \overline{x}^{(k)}, \lambda^{(k)})$$
  
 $\min_{\overline{x}} \mathcal{L}(x^{(k+1)}, \overline{x}, \lambda^{(k)})$ 

ション ふゆ くち くち くち くち

because the first problem is separable with respect to scenarios s

# Scheme of the Progressive Hedging algorithm

**Data:** penalty r> 0, initial multipliers  $ig\{\lambda_s^{(0)}ig\}_{s\in\mathbb{S}}$  and mean first decision  $\overline{\mathbf{x}}^{(0)}$ . **Result:** optimal first decision x; repeat **forall** scenarios  $s \in \mathbb{S}$  do Solve the deterministic minimization problem for scenario s, with penalization  $+\lambda_s^{(k)}\left(\mathbf{x}_s^{(k+1)}-\overline{\mathbf{x}}^{(k)}\right)+\frac{r}{2}\left\|\mathbf{x}_s^{(k+1)}-\overline{\mathbf{x}}^{(k)}\right\|^2$ , and obtain optimal first decision  $\mathbf{x}_{s}^{(k+1)}$ ; Update the mean first decisions  $\overline{\boldsymbol{x}}^{(k+1)} = \sum \pi_s \boldsymbol{x}^{(k+1)}_s$ ; Update the multiplier by  $\boldsymbol{\lambda}_{s}^{(k+1)} = \boldsymbol{\lambda}_{s}^{(k)} + r(\boldsymbol{x}_{s}^{(k+1)} - \overline{\boldsymbol{x}}^{(k+1)}), \quad \forall s \in \mathbb{S};$ until  $\mathbf{x}_{s}^{(k+1)} - \sum_{c' \in \mathbb{S}} \pi_{s'} \mathbf{x}_{c'}^{(k+1)} = 0$ ,  $\forall s \in \mathbb{S}$ ; (日) (四) (三) (三)

### What land have we covered?

- We have introduced one and two-stage optimization problems under uncertainty
- Thanks to a general framework, using risk measures, stochastic and robust optimization appear as (important) special cases
- We have presented resolution methods by scenario decomposition for two-stage optimization problems

ション ふゆ くち くち くち くち

 Dealing with multi-stage optimization problems requires specific tools, as is the notion of state

# "Self-promotion, nobody will do it for you" ;-)

Probability Theory and Stochastic Modelling 75

Pierre Carpentier Jean-Philippe Chancelier Guy Cohen Michel De Lara

0 ...

# Stochastic Multi-Stage Optimization

At the Crossroads between Discrete Time Stochastic Control and Stochastic Programming

