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Support and the ¢y pseudonorm
Let d € N* be a fixed natural number and

[0,d] ={0,1,...,d}, [1,d]={1,...,d}

For any vector x € R, we define

P its support by

supp(x {16[1 d] ‘XJ 0}

supp((0, *,0, x,*,0)) = {2,4,5} C [1,6]

» its /o pseudonorm(x) by

number of
nonzero entries

cardmahty

lo(x) = \bupp )= Zl{x,géo}

£o((0,%,0,%,%,0)) = |{2,4,5}| =3 € [0,6]



The ¢y pseudonorm is net a rerm

The function ¢y pseudonorm : RY — [0, d]
satisfies 3 out of 4 axioms of a norm

> we have {p(x) >0 v
>Wehave(€0(x):O<:>X:0) v

> we have {o(x + x’) < lo(x) + lo(x") v

> But... instead of 1-homogeneity,
it is 0-homogeneity that holds true

lo(px) = bo(x), Vp#0
supp(px) = supp(x) , Vp #0



Talk outline

Design of sparsity-inducing unit balls [10 min]
What are sparsity-inducing norms/balls?
Exposed faces of unit balls with k-sparse extreme points
Support identification using k-sparsity inducing norms

Geometry of sparsity-inducing balls [5 min]

Orthant-strictly monotonicity and Capra-convexity of ¢y [5 min]
Orthant-strictly monotonic (OSM) norms
OSM norms and hidden convexity in the o pseudonorm
Crash course on generalized convexity
OSM norms, Capra conjugacies and the £y pseudonorm

Conclusion
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Outline of the presentation

Design of sparsity-inducing unit balls [10 min]
What are sparsity-inducing norms/balls?



Archetypal sparse optimization problems
» For X C RY a nonempty set,

minimal g pseudonorm min £op(x)
xeX
is an optimization problem for which any point in X
is a local minimizer sean-Baptiste Hiriart-Urruty and Hai Le. A variational approach of the
rank function. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 21
(2):207-240, 2013.

» For k € [1,d] and a function f : RY — R,

optimal k-sparse vector min f(x)
lo(x) < k
—_—

k-sparse vectors
» For v > 0 and a function f : RY — R,

min (f(x) + lo(x
min (F()+ 26o(x) )
sparse penalty



The intuition behind lasso

Comments of

(f(x) +7HXH1) [Tibshirani, 1996, Figu.re 21
“The lasso solution is the
first place that the contours
touch the square, and this
will sometimes occur at a
corner, corresponding to a
zero coefficient. The pic-
ture for ridge regression is
" " shown in Fig. 2(b): there
are no corners for the con-
) tours to hit and hence zero
Xng]'lgd (f(X) +7 HXHZ) solutions will rarely result.”

min
x€ERY

%

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series

B (Methodological), 58(1):267-288, 1996



Kinks stand at sparse points

T3

T1 + X2+ T3

DA



Geometric (alignment) expression of optimality condition

» We consider an optimal solution x* # 0 of
min (f(x) + v||x
min (£() + 7]

where f : R? — R is a smooth convex function,
v >0 and ||-|| is a norm with unit ball B

0-homogeneity

~ =

*

0 € VF(x") + 10 (x") = H%H

~
Fermat rule

€ Fi(B,—Vf(x"))

face of the unit ball B
exposed by —Vf(x*)

> We expect that the support of x*
can be recovered from dual information —Vf(x*)
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Design of sparsity-inducing unit balls [10 min]

Exposed faces of unit balls with k-sparse extreme points



We reformulate sparsity in terms of coordinate subspaces

y = (%, %, %, %,%, %) = Toa51(y) = (0,%,0,%,%,0) € Rias)

» For any K C [1,d], we introduce the (coordinate) subspace
Rk ={yeR|y; =0, V¢ K} CR?

» The connection with the level sets of the £y pseudonorm is

(55 ={xeR|b(x) <k} = | ) Rk, Vke[0,d]
K|<k

k-sparse vectors

» We denote by 7x : RY — Rk the orthogonal projection
For any vector y € RY, 7x(y) € Rx C RY is the vector
whose components coincide with those of y,
except for those outside of K that vanish



Design of unit ball
with k-sparse extreme points

(for example, 2-sparse points in R3)



Design of unit ball with k-sparse extreme points

For given sparsity threshold k € [1, d],
we consider a source norm |-||, with unit ball B, and we

P> project B onto €§k,
form the convex hull and get

B*Tfk) = co( U Tk(B))
|K|<k

unit ball of the generalized k-support dual norm ||||*T’Ek)
[Chancelier and De Lara, 2022b]

» the extreme points belong to U|K|§k Rk = ﬂ?k,
hence are k-sparse vectors



Generalized top-k and k-support dual norms

Chancelier and De Lara [2022b].
For any source norm |-| on RY, for any k € [1,d],

» the generalized k-support dual norm ”“I}k)

I(k))*

» of the generalized top-k dual norm ”'”I(k) defined by

is the dual norm HHI*(;() = (”

k-sparse
projection
on Rk
T d
Iyl ey = sup | 7k(y) I, Vy €R
|K|<k
—_——

exploring all
k-sparse projections



Exposed faces characterization



Exposed faces characterization

Theorem
Let k € [1,d]
Then, for any nonzero dual vector y € R9\ {0},

the exposed face of the unit ball B;'—fk) is given by

projection on Rk=
N

FL(B*T’Ek),y) = @{WK*(FJ_(B,TFK*)/)) - K* e all"gqrgiwaKyH*}

exposed face
of the original
unit ball




Exposed faces characterization

Let k € [1,d]
Suppose that the source norm |-|| is orthant-strictly monotonic

Then, for any nonzero dual vector y € R9\ {0},
the exposed face of the unit ball B;r’(*k) is given by

FL(BIfk),y) = E{FL(B,WK*y) . K* € arg max||7rKy||*}
— K|<k
exposed face IKl<
of the original
unit ball

u}
o)
I
i
it
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Design of sparsity-inducing unit balls [10 min]

Support identification using k-sparsity inducing norms



Support identification: main result

Theorem

Let f : RY — R be a smooth convex function, and v > 0

For given sparsity threshold k € [1, d],
an optimal solution x* of

generalized
k-support
dual norm

. Tx
min (FO) +7 Ixlliry )

has support
supp(x*) C U K*

K* earg max k<
Ik (=V £

u}
o)
I
i
it




Sparse support identification: corollary

Corollary
Let f : R — R be a smooth convex function and v > 0

For given sparsity threshold k € [1,d], if an optimal solution x* of

. Tx
min (F() + X1, ()
satisfies

arg max||mx(—=VF(x"))|x = K
IK|<k

is unique
then it has support

supp(x*) C K* with |K*| < k
so that the optimal solution x* is k-sparse




Support identification: Lasso

Corollary

Let f : RY — R be a smooth convex function,
v >0 and ||-||; be the ¢; norm

An optimal solution x* of
min (f(x) + v|x
XERd( ( ) ” Hl)

has support
supp(x™) C arg max|V;f(x)|
Jjelt,d]

u}

o)
I
i

it
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Geometry of sparsity-inducing balls [5 min]



The case of {;,-norms ||| ,

d
1/p
Ixllc = sup Pl and [xll, = (Dxil?) " for p € [1, 0]

ie[1,d] i—1



[ source norm [-] |

”‘Hz(k)v k€ [1,d]

lI-1 %y & € [1,d]

111, top-(q,k) norm (p,k)-support norm
T T
Iy« ) Il 7%
||y|\;rk = (Zf:ﬂyu(,)\q) q no analytic expression
I[-11 top-(oo, k) norm (1,k)-support norm
£ oo-norm £1-norm
T T
Il ok = I¥lloo. VK € [1,d] lIxlly x = lIxlly. Yk € [1,d]
[I-1l> top-(2,k) norm (2,k)-support norm
T T . -
”}’Hz,k =, /Z;‘:l|yu(,)\2 ||><H2j< no analytic expression
(computation [Argyriou et al., 2012, Prop. 2.1])
T T
lIyll2,; = lIyllos lIxll21 = lIxlly
'l oo top-(1,k) norm (o0, k)-support norm
T k T ]
liylly, e = ity lIxIl ok = max{ Z, lix|l o }
T T
liyllfa =1yllee lxllid = Il

Table: Examples of generalized top-k and k-support dual norms
generated by the £, source norms |- = |||, for p € [1,00], where

1/p+1/q=1. For y € R? v denotes a permutation of {1,...,d} such

that [y, > o)l = -+ > [¥a(a) -



When the source norm is the £,,-norm



Case k = 2 in R3 with source norm the /.-norm

(a) Unit ball B

Tx
00,2
(support norm)

(b) Unit ball B/,
(top norm)

DA



When the source norm is the #5-norm



Case k = 2 in R3 with source norm the ¢,-norm

(a) Unit ball B3 (b) Unit ball B,
(support norm) (top norm)



Geometric description

Proposition

For any k € [1,d], all the proper faces of BZT’,‘( are hypersimplices,
and the normal fan of B;—’[( refines the normal fan of Bo—l;*,k

T3

1+ T + 23




When the source norm is the #1-norm



Case k = 2 in R3 with source norm the ¢;-norm

(a) Unit ball B3 (b) Unit ball B, ,
(support norm) (top norm)



What comes next?

» What are orthant-strictly monotonic norms?
» In what are they related to the ¢y pseudonorm?

Background on the original motivation
Jean-Philippe Chancelier, Michel De Lara
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Outline of the presentation

Orthant-strictly monotonicity and Capra-convexity of ¢y [5 min]
Orthant-strictly monotonic (OSM) norms



Orthant-monotonic norms

For any x € RY, we denote by |x]|

the vector of RY with components |x;|, i € [1,d]

A norm |-|| on the space RY is called orthant-monotonic [Gries, 1967]
if, for all x, x’ in RY, we have

x| < ¢l and xox' 20 =[x < ¥
where x o x" = (x1x{, ..., Xqx})

is the Hadamard (entrywise) product

‘Xl‘SIX“, SR ‘Xd‘glxc/!‘
and
X]_X]/_ > 0 ) ) declj > 0

= Ixl < IXI




Example of unit sphere of a non orthant-monotonic norm

-

In the bottom right orthant,
consider

(0, =1)] < (0.5, ~1)]

Lo

\

{z:a}+23 +22,=1} 3

and
but

1=(0,-1)] > [|(0.5, = 1)]



Orthant-strictly monotonic norms

[Chancelier and De Lara, 2023]

A norm |-|| on the space RY is called orthant-strictly monotonic if,
for all x, x' in R?, we have

Ix| < |x'| and xox' >0 = |x| < |X|
where |x| < |x’| means that

there exists j € [1,d] such that |x;| < |x;|

Intuition: € 0 == |(0,*,0, %, 0)] < [[(0,%,¢€*,x,0)




Examples of orthant-strictly monotonic norms

d
1/p
Ille = sup_|xil and xll, = (Y Ixil?) " for p e [1, o]
i=1

i€[1,d]

with unit ball B, and unit sphere S,

> All the £p-norms ||-|| , on the space R, for p € [1, 0],
are monotonic, hence orthant-monotonic

617427600

> All the /,-norms |[|-[| , on the space R, for p € [1, 00,
are orthant-strictly monotonic

01,00, 05

e <1 = [(1,0)]|c =1=1I(1,6)ll»



Outline of the presentation

Orthant-strictly monotonicity and Capra-convexity of ¢y [5 min]

OSM norms and hidden convexity in the o pseudonorm



Graph of the Euclidean fy-cup function £




Orthant-strictly monotonic norms
and hidden convexity in the ¢y pseudonorm

[Chancelier and De Lara, 2022b]
Theorem

If both the norm ||-|| and the dual norm |||/«

are orthant-strictly monotonic,

there exists a proper convex Isc function Ly,

the fp-cup function, with domain the unit ball B, such that

lo(x) = Lo ( ), ¥xeR9\ {0}

convex lsc
function

and, as a consequence, the ¢y pseudonorm coincides,
on the unit sphere S, with the proper convex Isc function Ly

lo(x) = Lo(x), VxeS



The ¢y-cup function as a convex envelope
Proposition

The proper convex Isc function Ly is the convex envelope
of the following piecewise constant function

0 if x =0,
Lo(X) = 14
+00

if x € B(E)\B(e 1y L€ [1,d]
if x & B(n) = (5

< 9




The fy-cup function as best proper convex Isc lower
approximation of the ¢y pseudonorm on the unit ball

Theorem

The £y-cup function Ly is
the best convex Isc lower approximation of the £y pseudonorm
on the unit ball B

best convex Isc function  Lo(x) < {p(x), Vx € B

and, as seen above, coincides with the ¢y pseudonorm

on the unit sphere S

KO(X) = ,Co(X) , VX €Sy

u}
o)
I
i
it




Tightest closed convex function below the ¢y pseudonorm
on the £,-unit balls on R? for p € {1,1.1,2,4,300, 00}

-— -
S vvwv

- \
—A



Outline of the presentation

Orthant-strictly monotonicity and Capra-convexity of ¢y [5 min]

Crash course on generalized convexity



Motivation: Legendre transform and

Fenchel conjugacy in convex analysis

Two vector spaces X and ), paired by a bilinear form ( . ),
give rise to the classic Fenchel conjugacy

feR Y —» fFeR”
given by the Legendre transform
f*(y) = sup

XEX

((x, y) + (—f(x))) , Yy ey



Coupling function between sets

» Let be given two sets X' (“primal”) and ) (“dual”)
not necessarily paired vector spaces (nodes and arcs, etc.)

» We consider a coupling function
c:Xx)Y—->R

We also use the notation X' <> ) for a coupling
[Moreau, 1966-1967, 1970]

In duality in convex analysis, one uses the bilinear coupling
c(x,y)=(x,y)
and, on a Hilbert space, the scalar product

c(x,y) = (x| y)



Constant Along Primal RAys (Capra) coupling

[Chancelier and De Lara, 2021, 2022a]
On the vector space RY, equipped with a (source) norm |-||, the
Capra coupling (Capra) R¢ <i> RY is given by

e |

_ x| )
I

, Vx € RA\{0}
¢(0,y)

The coupling Capra has the property of being

=0
Constant Along Primal RAys (Capra)




Fenchel-Moreau conjugate of a function

feRY — fecR”
The c-Fenchel-Moreau conjugate f€:) — R
of a function f : X — R is defined by

) = sup (clxx) + (-F(9)) , Wy €

We use the Moreau lower and upper additions on R
that extend the usual addition with

(+00) + (~00) = (=00) + (+0) = —o0
(+00) 4 (~0) = (~00) + (+00) = +00



Capra-conjugate of the ¢y pseudonorm

[Chancelier and De Lara, 2021, 2022a]

(5(y) = sup {e(x,y) + (~to(x)) }

x€R4

= sup {0 {1 — b0}

Ix
=sup<0,sup (s —lo(s

{0.50p {(s1 ») ~ to(s)}}
where S € RY is the unit sphere

:sup{O, sup { sup (s | y) _J}}
S5
N——

coordinate-j norm HyHZ/z)

= sup [|yl5 —J]
jelLd] () +



Wrap-up on generalized /abstract convexity

» Generalized convexity
» coupling function between two sets
c:XxY—=R
» conjugacy and biconjugacy
feR s feeR” s fe e RY
» generalized convex functions
f=fe
» subdifferential
o°f(x) C Y
> Abstract convexity
> set of elementary functions
» abstract convex envelope:
supremum of lower elementary functions
» abstract convex function:
equal to its abstract convex envelope
» subdifferential:
tight lower elementary functions



Outline of the presentation

Orthant-strictly monotonicity and Capra-convexity of ¢y [5 min]

OSM norms, Capra conjugacies and the £y pseudonorm



Capra = Fenchel coupling after primal normalization

» We define the primal radial projection o as

X i x#£0
x|
0:R? = SU{0}, ofx) =
g =0 ifx=0
» so that the coupling Capra
¢(x,y)=(e(x)| y) , xR, Vy e R

appears as the Fenchel coupling after primal normalization
(and the coupling Capra is one-sided linear)



The Capra conjugacy shares properties
with the Fenchel conjugacy

» For any function f : RY — R,
the ¢-Fenchel-Moreau conjugate is given by

¢ = (inf [f | o])*

where
inf,~of if
inf [F | g](x) = { "ol () TxE SUAO)
+00 if x¢Z SU{0}
» For any function g : R - R,

the ¢/-Fenchel-Moreau conjugate is given by

g% =g o0




The Capra-convex functions are 0-homogeneous and

coincide, on the unit sphere, with a closed convex function

¢-convexity of the function h: R — R
> h=h¢

— h= (h¢)*'

cQ
~——

convex lsc function

<= hidden convexity in the function h: RY — R

there exists a closed convex function f : R — R

such that h=f oo, thatis, h(x) = f(ﬁ)




[Chancelier and De Lara, 2022b]
Theorem

If both the norm |-|| and the dual norm |-||.
are orthant-strictly monotonic, we have that

delo(x) #0, Vx € RY |

and, as a consequence,

6§° =44
and thus
radial
¢¢, ¢ , ¢ ) projection
bo=1Ly" =45 opo= (KO) o 0
——

convex lsc
function Lo

u}
o)
I
i
it




Variational formulas for the ¢y pseudonorm

bo(x) =

min
||X I x®ere,.

?||x Vx € RY

<d>eRd¥ Ix¢ II e) ;

S X ||(e <Ixl
Ze_l xO=x

lo(x) = sup inf (—<X| y)
yERd GII d]

2= [y -1, )  wxer\ (0}



Conclusion

>

>

We have proposed systematic ways to design
unit balls that enhance sparsity at a given threshold

The corresponding norms originally appeared related to
generalized Capra-convexity of the fg pseudonorm,
as well as the property of orthant-strict monotonicity

For classic ¢, ¢> and /1 source norms,
we have a complete description of
the corresponding sparsity-inducing unit balls
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