
Sequential Decision Models
Extended from Chapter 2 of

Sustainable Management of Natural Resources.
Mathematical Models and Methods

by Luc DOYEN and Michel DE LARA

Michel De Lara
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Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models August 18, 2014 3 / 104



Stylized examples of sequential decision models Exploitation of an exhaustible resource
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Stylized examples of sequential decision models Exploitation of an exhaustible resource

Exploitation of an exhaustible resource

The dynamic of the exhaustible resource is

S(t + 1)
︸ ︷︷ ︸

future stock

= S(t)
︸︷︷︸

stock

− h(t)
︸︷︷︸

extraction

, t = t0, t0 + 1, . . . ,T − 1

Chuquicamata (copper, Chile)

where

S(t) stock of resource at the beginning
of period [t, t + 1[

h(t) extraction during [t, t + 1[
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Stylized examples of sequential decision models Exploitation of an exhaustible resource

Different requirements are formulated as static constraints

Physical constraints

0 ≤ h(t) ≤ S(t)

Stronger conservation constraint

S♭ ≤ S(t)

where S♭ > 0 stands for some minimal resource standard

Intergenerational equity: can we impose some
guaranteed consumption level h♭ > 0 along the generations t?

h♭ ≤ h(t)
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Stylized examples of sequential decision models Exploitation of an exhaustible resource

In 1931, Harold Hotelling proposed to look for
extraction paths that maximize discounted utility

Looking for an optimal decision path h⋆(t0), . . . , h
⋆(T − 1) solving

max
h(t0),...,h(T−1)

T−1∑

t=t0

(
1

1 + re
)t−t0

utility
︷ ︸︸ ︷

L
(
h(t)

)

︸ ︷︷ ︸

discounted utility

1
1+re

stands for a (social) discount factor

L is a utility function of the consumption h,
for instance,

L(h)
︸︷︷︸

profit

= p
︸︷︷︸

price

h − Cost(h, S)
︸ ︷︷ ︸

costs
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Stylized examples of sequential decision models Management of a renewable resource
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Stylized examples of sequential decision models Management of a renewable resource

First, we showcase biomass biological models

B(t + 1)
︸ ︷︷ ︸

future biomass

= Biol
(

B(t)
︸︷︷︸

biomass

)

where

B(t) resource biomass (tonnes)

biological dynamics
Biol : R+ → R+

(Biol(0) = 0)
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Stylized examples of sequential decision models Management of a renewable resource
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Stylized examples of sequential decision models Management of a renewable resource

The linear model is the most simple

B(t + 1) = RB(t) =

growth factor
︷ ︸︸ ︷

(1 + r) B(t)

Biol(B) = RB

r = R − 1
= natality rate - mortality rate

is the per capita rate of growth
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Stylized examples of sequential decision models Management of a renewable resource

In 1835, Adolphe Quételet proposed to model
resistance to geometric population growth as quadratic

Adolphe Quételet
Sur l’homme et le développement de ses facultés ou essai de physique sociale, 1835

La théorie de la population peut se réduire aux deux principes suivants,
que je regarde comme devant servir désormais de principes
fondamentaux à l’analyse du développement de la population et des
causes qui l’influencent.

La population tend à crôıtre selon une progression géométrique.
La résistance, ou la somme des obstacles à son développement, est,
toutes choses égales d’ailleurs comme le carré de la vitesse avec
laquelle la population tend à crôıtre.
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Stylized examples of sequential decision models Management of a renewable resource

Pierre-François Verhulst proposed a
linear density-dependent per capita rate of growth

Pierre-François Verhulst claims

j’ai tenté depuis longtemps de déterminer par l’analyse, la loi
probable de la population, mais j’ai abandonné ce genre de
recherches parce que les données de l’observation sont trop peu
nombreuses pour que les formules puissent être vérifiées, de manière
à ne laisser aucun doute sur leur exactitude

and proposes to keep “l’hypothèse la plus simple que l’on puisse faire”
the simplest hypothesis one can do, that is, a growth rate
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Stylized examples of sequential decision models Management of a renewable resource

A linear density-dependent per capita rate of growth
leads to the logistic model
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B(t + 1) = B(t) + rB(t)

correction term
︷ ︸︸ ︷
(

1−
B(t)

K

)

Biol(B) = B + r
(
1− B

K

)
B

r ≥ 0 is the per capita rate of growth
(for small populations)

K is the carrying capacity of the habitat:
the lowest K > 0 which satisfies

Biol(K ) = K
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Stylized examples of sequential decision models Management of a renewable resource

The Beverton-Holt model was introduced for fisheries

Beverton, R. J. H. and Holt, S. J.,
On the dynamics of exploited fish populations,
Fishery Investigations. Her Majesty’s Stationery Office, London, 1957
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Stylized examples of sequential decision models Management of a renewable resource

Now, we turn to harvesting models
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Stylized examples of sequential decision models Management of a renewable resource

Introduced for fisheries in 1954, the Schaefer model
builds harvesting upon a biological model

M. B. Schaefer,
Some aspects of the dynamics of populations important to the management of
commercial marine fisheries,
Bulletin of the Inter-American tropical tuna commission, 1954

B(t + 1)
︸ ︷︷ ︸

future biomass

= Biol
(

B(t)− h(t)
︸ ︷︷ ︸

biomass−catches

)
, 0 ≤ h(t) ≤ B(t)

where h(t) is the harvesting or catch at time t

1 catches occur at beginning of period [t, t + 1[: B(t) → B(t)− h(t)

2 then regeneration takes place during period [t, t + 1[:
B(t)− h(t) → Biol

(
B(t)− h(t)

)
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Stylized examples of sequential decision models Management of a renewable resource

Catches are related to harvesting effort

h
︸︷︷︸

catch

= q

effort
︷︸︸︷

E B
︸︷︷︸

biomass

E is the harvesting effort:
number of boats, equipment, etc.

q is a catchability coefficient

More generally, h = Catch(E ,B)

Cobb-Douglas production function

Catch(E ,B) = qEαBβ

In Perú, 2nd world country for fish production,

fisheries depend of the ministry of production
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Stylized examples of sequential decision models Management of a renewable resource

Constraints may be inevitable (physical)
or imposed (conservation)

One cannot harvest more biomass than there is

0 ≤ h(t) ≤ B(t)

Requiring a minimal resource biomass B♭ > 0 (safety threshold) for all times
is represented by a conservation constraint

B♭ ≤ B(t)
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Stylized examples of sequential decision models Management of a renewable resource

An optimal catch path can be looked after
as solution of an intertemporal utility maximization

max
h(t0),...,h(T−1)

(

discounted utility
︷ ︸︸ ︷

T−1∑

t=t0

(
1

1 + re
)t−t0

L

(
h(t)

)
+ (

1

1 + re
)T−t0

K

(
B(T )

)

︸ ︷︷ ︸

final utility

)

re is a discount rate
1

1+re
is a discount factor

L is a utility function

Final term K
(
B(T )

)
:

existence or inheritance value of the biomass
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions

Let us scout a very stylized model
of the climate-economy system

We lay out a dynamical model with

two state variables

environmental: atmospheric co2

concentration level M(t)
economic: gross world product

gwp Q(t)

one decision variable,
the emission abatement rate a(t)
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions

A carbon cycle model “à la Nordhaus”
is an example of decision model

Time index t in years

Economic production Q(t) (gwp)

Q(t + 1) =

economic growth
︷ ︸︸ ︷

(1 + g) Q(t)

co2 concentration M(t)

M(t + 1) = M(t)−δ(M(t)−M−∞)
︸ ︷︷ ︸

natural sinks

+α

emissions
︷ ︸︸ ︷

Emiss
(
Q(t)

) (
1− a(t)

)

︸ ︷︷ ︸

abatement

Decision a(t) ∈ [0, 1] is the abatement rate of co2 emissions
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions

Data

M(t) co2 atmospheric concentration, measured in ppm, parts per million
(379 ppm in 2005)

M−∞ pre-industrial atmospheric concentration
(about 280 ppm)

Emiss(Q(t)) “business as usual” co2 emissions
(about 7.2 GtC per year between 2000 and 2005)

0 ≤ a(t) ≤ 1 abatement rate reduction of co2 emissions

α conversion factor from emissions to concentration
(α ≈ 0.471 ppm.GtC−1 sums up highly complex physical mechanisms)

δ natural rate of removal of atmospheric co2 to unspecified sinks
(δ ≈ 0.01 year−1)
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions

A concentration target is pursued to avoid danger

United Nations Framework Convention
on Climate Change

“to achieve, (. . . ), stabilization of
greenhouse gas concentrations in the
atmosphere at a level that would prevent
dangerous anthropogenic interference
with the climate system”

Limitation of concentrations of co2

below a tolerable threshold M♯

(say 350 ppm, 450 ppm)

at a specified date T > 0
(say year 2050 or 2100)

M(T )
︸ ︷︷ ︸

concentration at horizon

≤ M♯
︸︷︷︸

threshold
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions

Constraints capture different requirements
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The concentration has to
remain below a tolerable
level at the horizon T :

M(T ) ≤ M♯

More demanding:
from the initial time t0
up to the horizon T

M(t) ≤ M♯

t = t0, . . . ,T
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions

Constraints may be environmental, physical, economic

The concentration has to remain below a tolerable level
from initial time t0 up to the horizon T

M(t) ≤ M♯ , t = t0, . . . ,T

Abatements are expressed as fractions

0 ≤ a(t) ≤ 1 , t = t0, . . . ,T − 1

As with “cap and trade”, setting a ceiling on co2 price
amounts to cap abatement costs

Cost
(
a(t),Q(t)

)

︸ ︷︷ ︸

costs

≤ c♯ (100 euros / tonne co2) , t = t0, . . . ,T − 1
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions

Mixing dynamics, optimization and constraints
yields a cost-effectiveness problem

Minimize abatement costs

min
a(t0),...,a(T−1)

T−1∑

t=t0

(
1

1 + re
)t−t0 Cost

(
a(t),Q(t)

)

︸ ︷︷ ︸

abatement costs

under the gwp-co2 dynamics

{
M(t + 1) = M(t)− δ(M(t)−M−∞) + αEmiss

(
Q(t)

)
(1− a(t))

Q(t + 1) = (1 + g)Q(t)

and under target constraint

M(T ) ≤ M♯

︸ ︷︷ ︸

CO2 concentration
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Stylized examples of sequential decision models Mitigation policies for carbon dioxyde emissions
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Stylized examples of sequential decision models Single dam management under tourism constraint
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Stylized examples of sequential decision models Single dam management under tourism constraint
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Stylized examples of sequential decision models Single dam management under tourism constraint

Tourism issues impose constraints upon traditional
economic management of a hydro-electric dam

Maximizing the revenue
from turbinated water

under a tourism constraint
of having enough water
in July and August
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Stylized examples of sequential decision models Single dam management under tourism constraint

The red stock trajectories fail to meet
the tourism constraint in July and August
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Stylized examples of sequential decision models Single dam management under tourism constraint

We consider a single dam nonlinear dynamical model
in the decision-hazard setting

We can model the dynamics of the water volume in a dam by

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

}

S(t) volume (stock) of water at the beginning of period [t, t + 1[

a(t) inflow water volume (rain, etc.) during [t, t + 1[

q(t) turbined outflow volume during [t, t + 1[

decided at the beginning of period [t, t + 1[
chosen such that 0 ≤ q(t) ≤ min{S(t),q♯}
supposed to depend on the stock S(t) but not on the inflow water a(t)

the setting is called decision-hazard:
a(t) is not available at the beginning of period [t, t + 1[
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Stylized examples of sequential decision models Single dam management under tourism constraint

In the risk-neutral economic approach,
an optimal management maximizes the expected payoff

Suppose that

at the horizon, the final volume S(T ) has a value K

(
S(T )

)
,

the “final value of water”
turbined water q(t) is sold at price p(t),
related to the price at which energy can be sold at time t

a probability P is given on the set Ω = R
T−t0 × R

T−t0

of water inflows scenarios
(
a(t0), . . . , a(T − 1)

)

and prices scenarios
(
p(t0), . . . , p(T − 1)

)

The traditional (risk-neutral) economic problem is to maximize the
intertemporal payoff (without discounting if the horizon is short)

maxE






T−1∑

t=t0






price
︷︸︸︷

p(t)

turbined
︷︸︸︷

q(t) −ǫq(t)2
︸ ︷︷ ︸

turbined costs




+

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)
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Stylized examples of sequential decision models Single dam management under tourism constraint

We now have a stochastic optimization problem,
where the tourism constraint still needs

to be dressed in formal clothes

Traditional cost minimization/payoff maximization

maxE






T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) − ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)






Tourism constraint

volume S(t) ≥ S♭ , ∀t ∈ { July, August }

In what sense should we consider this inequality which involves the
random variables S(t) for t ∈ { July, August }?
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Stylized examples of sequential decision models Single dam management under tourism constraint

Robust / almost sure / probability constraint

Robust constraints: for all the scenarios in a subset Ω ⊂ Ω

S(t) ≥ S♭ , ∀t ∈ { July, August }

Almost sure constraints

Probability







water inflow scenarios along which
the volumes S(t) are above the
threshold S♭ for periods t in summer






= 1

Probability constraints, with “confidence” level p ∈ [0, 1]

Probability







water inflow scenarios along which
the volumes S(t) are above the

threshold S♭ for periods t in summer






≥ p

and also by penalization, or in the mean, etc.
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Stylized examples of sequential decision models Single dam management under tourism constraint

Our problem may be clothed as a stochastic optimization
problem under a probability constraint

The traditional economic problem is maxE [P(T )]
where the payoff/utility criterion is

P(T ) =

T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) − ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)

and a failure tolerance is accepted

Probability







water inflow scenarios along which
the volumes S(t) ≥ S♭

for periods t in July and August






≥ 90%

Details concerning the theoretical and numerical resolution are available on
demand ;-)
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Stylized examples of sequential decision models Single dam management under tourism constraint

Details concerning the theoretical and numerical resolution
are available on demand ;-)

π0 = 1 and πt+1 ={

1{xt+1≥xref} × πt if t ∈ T

πt else

P [xτ ≥ xref , ∀τ ∈ T ]
= E

[
1{xτ≥xref , ∀τ∈T }

]

= E
[∏

τ∈T 1{xτ≥xref}

]

= E [πT ]
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Stylized examples of sequential decision models Single dam management under tourism constraint

90% of the stock trajectories meet the tourism constraint
in July and August
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Stylized examples of sequential decision models Single dam management under tourism constraint

Our resolution approach brings a sensible improvement
compared to standard procedures
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Stylized examples of sequential decision models Single dam management under tourism constraint

However, though the expected payoff is optimal,
the payoff effectively realized can be far from it
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Stylized examples of sequential decision models Single dam management under tourism constraint

Summary

Mineral resources, forestry, fisheries, climate and energy provide examples of
sequential decision-making

Decisions are made at discrete times: extraction, catches, abatment, turbined

Objectives can be formulated as indicators not trespassing thresholds

A particular objective can be distinguished to be optimized
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Clothing a sequential decision problem in formal garb
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Clothing a sequential decision problem in formal garb State-control dynamical systems

Examples of dynamical equations highlight
the specific roles of state and control variables

In the above examples appear two types of variables

state variables

control variables

S(t + 1) = S(t)− h(t)

B(t + 1) = Biol
(
B(t)− h(t)

)

{
M(t + 1) = M(t)− δ(M(t)−M−∞) + αEmiss

(
Q(t)

)
(1− a(t))

Q(t + 1) = (1 + g)Q(t)

S(t + 1) = min{S♯, S(t)− q(t) + a(t)}
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Clothing a sequential decision problem in formal garb State-control dynamical systems

A control system connects input and output variables

Input variables

Control wood logs
Uncertainty wood humidity

metal conductivity

Output variables

soup quality
water vapor
temperature (internal
state)
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Clothing a sequential decision problem in formal garb State-control dynamical systems

Input control variables
are in the hands of the decision-maker

at successive time periods

Control variables u(t) are those variables whose values the decision-maker can fix

at successive time periods

annual catches
years, months: starting of energy units like nuclear
plants
weeks, days, intra-day: starting of hydropower units

within given bounds

fishing quotas
turbined capacity
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Clothing a sequential decision problem in formal garb State-control dynamical systems

Discrete-time nonlinear state-control systems
are special input-output systems

A specific output is distinguished, and is labeled state,
when the system may be written as

x(t + 1) = Dyn(t, x(t), u(t)), t ∈ T = {t0, t0 + 1, . . . ,T − 1}

the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, etc.)

the state variable x(t) belongs to the finite dimensional state space X = RnX ;
(stocks, biomasses, abundances, capital, etc.)

the control variable u(t) is an element of the control space U = RnU

(outflows, catches, harvesting effort, investment, etc.)

the dynamics Dyn maps T× X× U into X

(storage, age-class model, population dynamics, economic model, etc.)
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Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

We dress natural resources management issues
in the formal clothes of control theory in discrete time

Control theory
in discrete time

blanco

Ecology Economics Modeling
Life-cycle Decision Simulations
Patches under

uncertainty

Problems are framed as

find controls/decisions
driving a dynamical system
to achieve various goals

Three main ingredients are

controlled dynamics ®

constraints �
criterion to optimize
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Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

We mathematically express the objectives pursued
as control and state constraints

For a state-control system,
we cloth objectives as constraints

and we distinguish

control constraints (rather easy)
state constraints (rather difficult)

Viability theory deals with state constraints
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Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

Constraints may be explicit on the control variable
and are rather easily handled by reducing the decision set

Examples of control constraints

Irreversibility constraints, physical bounds
�

0 ≤ a(t) ≤ 1 , 0 ≤ h(t) ≤ B(t)

Tolerable costs c
(
a(t),Q(t)

)
≤ c♯

Control constraints / admissible decisions

u(t)
︸︷︷︸

control

∈ B
(
t, x(t)

)

︸ ︷︷ ︸

admissible set

, t = t0, . . . ,T − 1

Easy because control variables u(t) are precisely those variables whose values the
decision-maker can fix at any time within given bounds
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Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

Meeting constraints bearing on the state variable is delicate
due to the dynamics pipeline between controls and state

State constraints / admissible states

x(t)
︸︷︷︸

state

∈ A(t)
︸︷︷︸

admissible set

, t = t0, . . . ,T

Examples (“tipping points”)

co2 concentration M(t) ≤ M♯

biomass B♭ ≤ B(t) ≤ B♯

State constraints are mathematically difficult because of “inertia”

x(t) = function
︸ ︷︷ ︸

iterated dynamics

(
u(t − 1), . . . , u(t0)
︸ ︷︷ ︸

past controls

, x(t0)
)

Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models August 18, 2014 54 / 104



Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

Target and asymptotic state constraints are special cases

Final state achieves some target

x(T )
︸ ︷︷ ︸

final state

∈ A(T )
︸ ︷︷ ︸

target set

Example: co2 concentration

State converges toward a target

lim
t→+∞

x(t)
︸ ︷︷ ︸

asymptotic state

∈ A(∞)
︸ ︷︷ ︸

target set

Example: convergence towards an endemic state in epidemiology
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Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

Anchoveta and merluza stock and catches trajectories,
in Perú from 1971 to 1985
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Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

Trajectories are time sequences (of states and controls),
also called paths

Control trajectory

u(·) :=
(
u(t0), u(t0 + 1), . . . , u(T − 1)

)

︸ ︷︷ ︸

control path

State trajectory

x(·) :=
(
x(t0), x(t0 + 1), . . . , x(T − 1), x(T )

)

︸ ︷︷ ︸

state path

State-control trajectory
(
x(·), u(·)

)
:=

(
x(t0), . . . , x(T ), u(t0), . . . , u(T − 1)

)

︸ ︷︷ ︸

state−control path

IMARPE data from 1971 to 1985 in thousands of tonnes (103 tons)

anchoveta stocks [11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407 1678 40 900 3944]

merluza stocks [347 437 455 414 538 735 636 738 408 312 148 100 99 124 194]

anchoveta captures [9184 3493 1313 3053 2673 3211 626 464 1000 223 288 1240 118 2 648]

merluza captures [26 13 133 109 85 93 107 303 93 159 69 26 6 12 26]
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Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

A history is a whole path of states and controls,
and the history set is the natural domain

for an intertemporal optimization problem

A state-control trajectory is called a history
(
x(·), u(·)

)
:=

(
x(t0), . . . , x(T ), u(t0), . . . , u(T − 1)

)

︸ ︷︷ ︸

history

The set of state and control trajectories is the so-called history set
(
x(·), u(·)

)

︸ ︷︷ ︸

history

∈ X
T+1−t0 × U

T−t0

︸ ︷︷ ︸

history set

Single dam histories

(
S(·), q(·)

)
=

(

stocks
︷ ︸︸ ︷

S(t0), . . . , S(T ),

turbined
︷ ︸︸ ︷

q(t0), . . . , q(T − 1)
)
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Clothing a sequential decision problem in formal garb State-control constraints and feasability/viability

State and control constraints reduce the set of
admissible trajectories to account for feasibility issues

Admissible trajectories
(
x(·), u(·)

)
in T ad(t0, x0) satisfy

dynamics x(t + 1) = Dyn
(
t, x(t), u(t)

)

control constraints u(t) ∈ B
(
t, x(t)

)

state constraints x(t) ∈ A(t)

T ad(t0, x0) :=







(
x(·), u(·)

)

∣
∣
∣
∣
∣
∣
∣
∣

x(t0) = x0 ,
x(t + 1) = Dyn

(
t, x(t), u(t)

)
, t ∈ T

u(t) ∈ B
(
t, x(t)

)
, t ∈ T

x(t) ∈ A(t) , t ∈ T







Admissible trajectories for a single dam dynamical model

T ad(t0,S0) :=






(
S(·), q(·)

)

∣
∣
∣
∣
∣
∣

S(t0) = S0 ,

S(t + 1) = min{S♯, S(t) − q(t) + a(t)} , t ∈ T

q(t) ∈ [0,min{q♯,S(t)}] t ∈ T
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Clothing a sequential decision problem in formal garb Criterion and optimality
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Clothing a sequential decision problem in formal garb Criterion and optimality

What is “optimization”?

Optimizing is obtaining the best compromise between needs and resources
Marcel Boiteux (président d’honneur d’Électricité de France)

Needs: multiple targets

Resources: multiple limits and multiple possible allocations

Best compromise: value, trade-offs

An optimization problem can have multiple targets and limits
that can conflict with each other, requiring trade-offs
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Clothing a sequential decision problem in formal garb Criterion and optimality

An intertemporal criterion assigns a value to each history

Intertemporal criterion

An (intertemporal) criterion or (intertemporal) objective function

Crit

(

x(t0), x(t0 + 1), . . . , x(T − 1), x(T ), u(t0), u(t0 + 1), . . . , u(T − 1)

)

is a function defined over the set of histories

Crit : X
T+1−t0 × U

T−t0 → R
(
x(·), u(·)

)
7→ Crit

(
x(·), u(·)

)

Intertemporal payoff for a single dam

Crit
(
S(·), q(·)

)
=

T−1∑

t=t0

turbined water profit
︷ ︸︸ ︷

p(t)
︸︷︷︸

price ×

q(t)
︸︷︷︸

quantity

+

final stock utility
︷ ︸︸ ︷

Final
(
S(T )

)
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Clothing a sequential decision problem in formal garb Criterion and optimality

A criterion reflects the intertemporal preferences of the
decision-maker (impatience, intergenerational equity, etc.)

The additive and time-separable criterion

Crit
(
x(·), u(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t)

)

︸ ︷︷ ︸

instantaneous gain

+ Final
(
T , x(T )

)

︸ ︷︷ ︸

final gain

is the most common and covers many well-known examples

Discounted present value (or net present value)
∑T−1

t=t0
δt−t0L

(
x(t), u(t)

)

Green Golden Final

(
T , x(T )

)

Chichilnisky θ
∑T−1

t=t0
δt−t0L

(
x(t), u(t)

)
+ (1− θ)Final

(
T , x(T )

)

The Maximin or Rawls criterion

Crit
(
x(·), u(·)

)
= min

t=t0,...,T−1
L
(
t, x(t), u(t)

)
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Clothing a sequential decision problem in formal garb Criterion and optimality

The most common additive and time-separable criterion
allows for compensations between time periods

The most usual criterion is additive and time-separable

Crit

(
x(·), u(·)

)
=

T−1∑

t=t0

L

(
t, x(t), u(t)

)
+ Final

(
T , x(T )

)

Additive criteria allow for possible compensations between time periods
(like the sums of times spent on a graph)

Environmental economists sanction the present value

Crit
(
x(·), u(·)

)
=

discounted utility
︷ ︸︸ ︷
+∞∑

t=t0

(
1

1 + re
)t−t0L

(
x(t), u(t)

)

as “dictatorship of the present” (because of discounting)
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Clothing a sequential decision problem in formal garb Criterion and optimality

Discounting erases the future

The French public discount rate

En France, le rapport Révision du taux d’actualisation des investissements publics
(Commissariat général du Plan, groupe d’experts présidé par Daniel Lebègue,
janvier 2005) a conduit à diviser par deux (de 8% à 4%) le taux d’actualisation à
retenir pour évaluer la rentabilité des choix d’investissements publics

1

1 + re
=

1

1 + 0.04
≈ 0.96

The future in one hundred years is valued, seen from today, 2%

(
1

1 + 0.04
)10 ≈ 0.68 , (

1

1 + 0.04
)50 ≈ 0.14 , (

1

1 + 0.04
)100 ≈ 0.02
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Clothing a sequential decision problem in formal garb Criterion and optimality

The Maximin focuses on minimal utility over time

Equity: a focus on the poorest generation /
utility level of the least advantaged generation

The maximin form in the finite horizon case

Crit

(
x(·), u(·)

)
= min

t=t0,...,T−1

generation utility
︷ ︸︸ ︷

L

(
t, x(t), u(t)

)

︸ ︷︷ ︸

worse generation utility

In the infinite horizon case

Crit

(
x(·), u(·)

)
= min

t=t0,...,+∞

L

(
t, x(t), u(t)

)

There can be no compensations between time periods

John Rawls, A Theory of Justice, 1971
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Clothing a sequential decision problem in formal garb Criterion and optimality

John Bordley Rawls (1921–2002)

John Bordley Rawls was an American
philosopher and a leading figure in moral
and political philosophy, famous for having
written A Theory of Justice (1971)

Two of John Rawls’s younger brothers died
as children – from illnesses they contracted
from him

Rawls believed he developed his life-long
stutter as a result of guilt over his brothers’
deaths
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Clothing a sequential decision problem in formal garb Criterion and optimality

The Green Golden criterion is a
“dictatorship of the future”

In the finite horizon case

Crit
(
x(·), u(·)

)
= Final

(
T , x(T )

︸ ︷︷ ︸

state

)

In the infinite horizon case

Crit
(
x(·), u(·)

)
= lim inf

T→+∞
Final

(
T , x(T )

)

The Green Golden criterion values only the final state
and none of the controls (no consumption)
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Clothing a sequential decision problem in formal garb Criterion and optimality

The Chichilnisky criterion is in-between

The Chichilnisky form with ponderation parameter θ ∈ [0, 1]

Crit

(
x(·), u(·)

)
= θ

T−1∑

t=t0

(
1

1 + re
)t−t0L

(
x(t), u(t)

)

︸ ︷︷ ︸

dictatorship of the present

+(1− θ) Final

(
T , x(T )

)

︸ ︷︷ ︸

dictatorship of the future

Sustainability: to reconcile

{
present
future

In the infinite horizon case

Crit

(
x(·), u(·)

)
= θ

+∞∑

t=t0

L

(
t, x(t), u(t)

)
+ (1− θ) lim inf

T→+∞

Final

(
T , x(T )

)
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Clothing a sequential decision problem in formal garb Criterion and optimality

Summary

Discrete-time nonlinear state-control systems
are special input-output dynamical systems

control = input
state = specific output satisfying a dynamical equation

Trajectories are time sequences (of states and controls), also called paths

State and control constraints reduce the set of admissible trajectories to
account for feasibility issues

A history is a whole path of states and controls, and an intertemporal
criterion assigns a value to each history

A criterion reflects the intertemporal preferences of the decision-maker
(impatience, intergenerational equity, etc.)

An optimal trajectory maximizes the criterion over all admissible trajectories
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Outline of the presentation

1 Stylized examples of sequential decision models
Exploitation of an exhaustible resource
Management of a renewable resource
Mitigation policies for carbon dioxyde emissions
Single dam management under tourism constraint

2 Clothing a sequential decision problem in formal garb
State-control dynamical systems
State-control constraints and feasability/viability
Criterion and optimality

3 A glimpse at some more complex models
A trophic web example
A single species age-classified model of fishing
Interconnected dam models

4 General remarks on numerical issues
Open and closed loop solutions to sequential decision problems
Computational explosion with time
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A glimpse at some more complex models A trophic web example

The New Caledonia lagoon hosts rich trophic webs

Abore reef reserve (15 000 ha)
New Caledonia

large coral reef ecosystem:
374 species

differing in mobility, taxonomy
(41 families) and feeding habits

7 clusters, each cluster forming a
trophic group
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A glimpse at some more complex models A trophic web example

Species differ in mobility, taxonomy and feeding habits
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A glimpse at some more complex models A trophic web example

Diet composition varies with groups of species

Piscivores Macro Micro Coral Herbivores Microalgae Zooplankton
carnivores carnivores feeders Detritivores feeders

(Pi) (MC) (mC) (Co) (He) (mAD) (Zoo)

Group for the model X1 X2 X4 X4 X3 X3 X4
Species richness 46 112 50 26 10 73 54

Diet composition (%)

- Nekton 77 10 2 0 0 0.1 1

- Macroinvertebrates 21 82 20 2 0 2 1

- Microinvertebrates 0.3 6 67 11 3 5 6

- Zooplankton 1 0.4 3 2 0 3 79

- Other plankton 0 0 0 0 0 0 0.3

- Macroalgae 0 0.3 1 0 66 3 0.3

- Microalgae 0 1 5 7 28 80 11

- Coral 0 0.3 2 77 0 1 0.3

- Detritus 0 0.3 1 1 4 6 0.2

Maxi. adult size (cm) 77 38 17 16 39 24 13
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A glimpse at some more complex models A trophic web example

A Lotka-Volterra model is the simplest trophic model

Ni abundance of species i (number of individuals or density)

Ni (t + 1) = Ni(t)

density−dependent growth factor
︷ ︸︸ ︷

(

Ri +
n∑

j=1

SijNj(t)
)

Species i consumes species j when Sij > 0

Species i is the prey of species j if Sij < 0

The strength of direct intra-specific interactions is given by Sii < 0

Example of interaction coefficients

S =







−0.093 0.013 0.013 0.013
−0.106 −0.012 0.002 0.002
−0.076 −0.01 0. 0.
−0.53 −0.069 0. 0.
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A glimpse at some more complex models A single species age-classified model of fishing

Populations can be described by abundances at ages

Jack Mackrel abundances (Chilean data)
are measured in thousand of individuals

13651022 thousand of age < 1 (recruits)
7495888 thousand of age ∈ [1, 2[
6804151
4191318
4582943
2500338
1139182
523261
269328
166390
95606 thousand of age ≥ 11
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A glimpse at some more complex models A single species age-classified model of fishing

We now line up the ingredients
of a harvested population age-class dynamical model

Time t ∈ N measured in years

Abundances at age
N = (Na)a=1,...,A ∈ X = RA

+

a ∈ {1, . . . ,A} age class index

A = 3 for anchovy
A = 8 for hake
A = 40 for bacalao

Control variable λ ∈ U = R+

is fishing effort

Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models August 18, 2014 79 / 104



A glimpse at some more complex models A single species age-classified model of fishing

One year older every year. . .

Except for the recruits (a = 1) and the last age class (a = A),

Na(t + 1) = e

−

mortality

︷ ︸︸ ︷

(Ma−1
︸ ︷︷ ︸

natural

+λ(t)Fa−1
︸ ︷︷ ︸

fishing

)

Na−1(t), a = 2, . . . ,A− 1

where

Ma stands for
the natural mortality-at-age a

Fa is the harvesting mortality rate
of individuals of age a,
also called exploitation pattern-at-age a,
related to the mesh size for instance

the control variable λ(t) is the fishing effort,
or the exploitation pattern multiplier
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A glimpse at some more complex models A single species age-classified model of fishing

The last age-class may comprise a plus-group

NA is the abundance of individuals of age above A− 1
(and not equal, like for other classes)

To account for this specificity, one considers the dynamics

NA(t + 1) = NA−1(t) exp
(
− (MA−1 + λ(t)FA−1)

)

+ π
︸︷︷︸

0 or 1

NA(t) exp
(
− (MA + λ(t)FA)

)

The parameter π ∈ {0, 1} is related to the existence of a so-called plus-group

if we neglect the survivors older than age A,
then π = 0 (an example is anchovy)
if we consider the survivors older than age A,
then π = 1, and the last age class is a plus group
(an example is hake)

Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models August 18, 2014 81 / 104



A glimpse at some more complex models A single species age-classified model of fishing

The stock-recruitment function mathematically turns
spawning stock biomass into future recruits abundance

The spawning stock biomass is

SSB(N) =

A∑

a=1

γa
︸︷︷︸

proportion

mass
︷︸︸︷
µa Na

︸︷︷︸

abundance

γa proportion of matures-at-age a

µa weight-at-age a

The stock-recruitment relationship S/R turns biomass into abundance

N1(t + 1)
︸ ︷︷ ︸

future recruits

= S/R
(

SSB
(
N(t)

)

︸ ︷︷ ︸

spawning biomass

)
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A glimpse at some more complex models A single species age-classified model of fishing

Here are traditional examples
of stock-recruitment functions

Recruitment involves complex biological and environmental processes that
fluctuate in time, and are difficult to integrate into a population model
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constant: S/R(B) = R

linear: S/R(B) = rB

Beverton-Holt: S/R(B) = B
α+βB

Ricker: S/R(B) = αBe−βB
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A glimpse at some more complex models A single species age-classified model of fishing

And here are the state vector and the control

The state vector N(t) is forged with abundances at age

N(t) =










N1(t)
N2(t)

...
NA−1(t)
NA(t)










∈ R
A
+

The scalar control λ(t) is the fishing effort multiplier
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A glimpse at some more complex models A single species age-classified model of fishing

A harvested population age-class model is an
A—dimensional controlled dynamical system

N1(t + 1) = S/R
(

spawning biomass
︷ ︸︸ ︷

SSB
(
N(t)

) )

recruitment

N2(t + 1) = e−(M1+λ(t)F1)N1(t)

Na(t + 1) = e

−

mortality

︷ ︸︸ ︷

(Ma−1
︸ ︷︷ ︸

natural

+λ(t)Fa−1
︸ ︷︷ ︸

fishing

)

Na−1(t), a = 2, . . . ,A− 1

NA−1(t + 1) = e−(MA−2+λ(t)FA−2)NA−2(t)

NA(t + 1) = e−(MA−1+λ(t)FA−1)NA−1(t) + πe−(MA+λ(t)FA)
︸ ︷︷ ︸

plus group

NA(t)
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A glimpse at some more complex models A single species age-classified model of fishing

Catches and production formulas
depend on effort and abundances

Catches (Baranov catch equation)

Catcha(λ,N) =
λFa

λFa +Ma

(

1− exp
(
− (Ma + λFa)

))

Na

Production (summing catches over mean weights per age)

Yield(λ,N) =

A∑

a=1

µa Catcha(λ,N)

Thus quotas on catches are related to the fishing effort multiplier λ(t)
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A glimpse at some more complex models A single species age-classified model of fishing

Here are different possible objectives

International Council for the Exploration of the Sea (ices) precautionary
approach on spawning biomass requires that

SSB
(
N(t)

)
≥ Blim

Guaranteed production is achieved by

Yield
(
λ(t),N(t)

)
≥ Y ♭

Economists usually aim at optimizing the discounted rent

max
λ(·)

+∞∑

t=t0

(
1

1 + re
)t−t0

(

pYield
(
λ(t),N(t)

)
− cλ(t)

)

where p is a unit price, whereas c is a unit cost
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A glimpse at some more complex models Interconnected dam models

Outline of the presentation

1 Stylized examples of sequential decision models
Exploitation of an exhaustible resource
Management of a renewable resource
Mitigation policies for carbon dioxyde emissions
Single dam management under tourism constraint

2 Clothing a sequential decision problem in formal garb
State-control dynamical systems
State-control constraints and feasability/viability
Criterion and optimality

3 A glimpse at some more complex models
A trophic web example
A single species age-classified model of fishing
Interconnected dam models

4 General remarks on numerical issues
Open and closed loop solutions to sequential decision problems
Computational explosion with time
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A glimpse at some more complex models Interconnected dam models

Complexity increases with interconnected dams
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A glimpse at some more complex models Interconnected dam models

Typology of hydro-valleys

(c)(a) (b)

dams in cascade converging valleys pumping
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A glimpse at some more complex models Interconnected dam models

Sketch of a cascade model with dams i = 1, . . . ,N

Dam 2

Dam 3

Dam 1

S1,t

S2,t

S3,t

Q1,t

R1,t Q2,t

R2,t Q3,t

R3,t

A1,t

A2,t

A3,t

ai (t) : inflow into dam i at time t (rain, run off water)
Si (t) : volume in dam i at time t (water volume)
qi (t) : turbined from dam i at time t (valued at price pi(t))
ri (t) : spilled volume from dam i at time t (irrigation. . . )
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General remarks on numerical issues
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1 Stylized examples of sequential decision models
Exploitation of an exhaustible resource
Management of a renewable resource
Mitigation policies for carbon dioxyde emissions
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General remarks on numerical issues Open and closed loop solutions to sequential decision problems
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General remarks on numerical issues Open and closed loop solutions to sequential decision problems

The ices precautionary approach is an example of policy

The precautionary approach (PA) may be sketched as follows

The condition SSB(N) ≥ Blim is checked

If valid, the following usual advice is given:

effort
︷ ︸︸ ︷

λUA(N) = max{λ ∈ R+ | λ ≤ λlim and

SSB
(
Dyn(N , λ)

)

︸ ︷︷ ︸

future spawning biomass

≥ Blim}
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General remarks on numerical issues Open and closed loop solutions to sequential decision problems

Open loop solutions are control paths

x(t + 1) = Dyn
(
t, x(t), u(t)

)

Stationary (open-loop): stationary sequences

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ≡ ue ∈ U
︸ ︷︷ ︸

control

Example: maximum sustainable yield

Open-loop: time-dependent sequences (planning, scheduling)

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ∈ U
︸ ︷︷ ︸

control

Example: Pontryagin approach to optimal control
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General remarks on numerical issues Open and closed loop solutions to sequential decision problems

Solutions are no longer control paths, but are policies

From planning � to contingent planning �×E

Again the intriguing thought: A solution is not merely a set of functions
of time, or a set of numbers, but a rule telling the decisionmaker what
to do; a policy. (Richard Bellman)

Richard Ernest Bellman (August 26,
1920 – March 19, 1984) was an applied
mathematician, celebrated for his
invention of dynamic programming in
1953, and important contributions in
other fields of mathematics

Wikipedia
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General remarks on numerical issues Open and closed loop solutions to sequential decision problems

The concept of policy as a contingent planning

However, the thought was finally forced upon me that the desired
solution in a control process was a policy:
’Do thus-and-thus if you find yourself in this portion of state space with
this amount of time left.’

Richard Bellman autobiography, Eye of the Hurricane

Closed-loop: state feedback (decision rule)

Pol : (t, x) ∈ T× X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

Going from planning to contingent planning, we
have considerably enlarged the set of solutions

an open-loop solution is an element of UT

whereas now it is an element of UT×X
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General remarks on numerical issues Open and closed loop solutions to sequential decision problems

“The blind cat does not catch mice”

A decision rule depends on
online information

State feedback decision rules are
natural solutions given by
dynamic programming methods

Adaptive decision rules

Appropriate for managing
uncertain systems
More robust
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General remarks on numerical issues Open and closed loop solutions to sequential decision problems

How clouded the crystal ball looks beforehand

What is worth noting about the foregoing
development is that I should have seen the
application of dynamic programming to
control theory several years before. I should
have, but I didn’t. It is very well to start a
lecture by saying, ’Clearly, a control process
can be regarded as a multistage decision
process in which. . . ,’ but it is a bit
misleading.
Scientific developments can always be made
logical and rational with sufficient
hindsight. It is amazing, however, how
clouded the crystal ball looks beforehand.
We all wear such intellectual blinders and
make such inexplicable blunders that it is
amazing that any progress is made at all.
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General remarks on numerical issues Computational explosion with time
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General remarks on numerical issues Computational explosion with time

A simple decision tree illustrates the exponential growth

111

110

101

100

011

010

001

000

A binary decision u ∈ {0, 1} on horizon
T = 52 weeks
=⇒ 252 possible paths u(·)

On a computer

RAM: 8 GBytes =
8(1 024)3 = 233 bytes
a double-precision real: 8 bytes =
23 bytes

=⇒ 230 double-precision reals
<< 252 possible controls paths

The rice and chessboard tale

It is said that the inventor of the game of chess was invited by his sovereign who was so pleased
that he asked him to choose his price. The king was suprised, enven offended, by the inventor’s
answer: for the first square of the chessboard, he would receive one grain of rice; two for the
second, four for the third, etc., doubling the amount from one square to the other. The total
number is around 1,000 times the global production of rice in 2010.
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General remarks on numerical issues Computational explosion with time

Simulations can help

Test specific policies by computing outputs for a given initial state x0

Example: projections of mitigation policies
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Problem: the outputs, like L
(
x(t), u(t)

)
, etc. depend on

the parameters of the model
the functional form of the model
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General remarks on numerical issues Computational explosion with time

Sensitivity to functional forms is a delicate issue

Example: different population dynamics
with R = 2, K = 10

N
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General remarks on numerical issues Computational explosion with time

Summary and conclusion

We have unwrapped control theory with an eye
to formalize sustainability issues in mathematical suits

We have laid out management examples with objective framed as constraints
or criterion

The firt step towards sustainability consists in equating it with permanency

Hence, we explore equilibrium and stability in the next chapter
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