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Motivation

Viability approaches can be found in various fields

� MVP: minimum viable population is
a lower bound on the population of a species
such that it can survive in the wild

� PVA: population viability analysis

� TWA: tolerable windows approach
(set of guardrails)

� SMS: safe minimum standards
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Motivation

“Please leave the toilets clean for the next person to use”
;-)

The notion of “stewardship” can be
seen as a special form of sustainability.
It points to particular aspects of the
world, which should themselves be
passed on in a state at least as good as
that inherited from the previous
generation.

Nicholas Stern, The Economics of Climate
Change, Cambridge University Press, 2006
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Motivation

Solow’s generalized capacity

If sustainability means anything more
than a vague emotional commitment, it
must require that something be
conserved for the very long run. It is
very important to understand what that
thing is: I think it has to be a
generalized capacity to produce
economic well-being.

R. M. Solow. An almost practical step towards
sustainability. Resources Policy, 19:162–172,
1993.
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Motivation

m Report of the Brundtland Commission,
Our Common Future, 1987

”Sustainable development is development that meets the needs of the present
without compromising the ability of future generations to meet their own needs.
It contains within it two key concepts:

� the concept of ’needs’, in particular the essential needs of the world’s poor,
to which overriding priority should be given; and

� the idea of limitations imposed by the state of technology and social
organization on the environment’s ability to meet present and future needs.”
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Motivation

Management of natural resources requires
specific modeling options

� Take into account

� Dynamics, that capture inertia, stock variations, interactions
� Decisions, actions, controls D U

� Uncertainties and information

� Deal with

� Multi-criteria

Ecology: conservation l g

Economy: efficiency I j

� Intergenerational equity:
envisage alternatives to compensation between generations
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Motivation

Some economists recommend objectives to be
expressed in their own units, without aggregation

The “Stiglitz-Sen-Fitoussi”
Commission (2009)
déconseille de privilégier un
indicateur synthétique unique
car, quel que soit l’indicateur
envisagé, l’agrégation de
données disparates ne va pas
de soi
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Motivation

When dealing with economic and environmental objectives,
this disaggregated approach is coined co-viability

� Co-viability when

� m environmental constraints:
conservation, viability

� I economic constraints:
production, efficiency

� C. Béné, L. Doyen, and D. Gabay
A viability analysis for a bio-economic
model.
Ecological Economics, 36:385–396, 2001

Michel DE LARA (École des Ponts ParisTech) Viable Sequential Decisions November 10, 2014 10 / 109



Resource management examples under viability constraints

Outline of the presentation

1 Motivation

2 Resource management examples under viability constraints
Viable management of an animal population
Mitigation for climate change
Forestry management
Viable epidemics control

3 The viability kernel and viable controls
Viability kernel
Dynamic programming equation and viable controls
Discussion on optimization, state constraints and multipliers
Example: viable control of an invasive species
Viability in the autonomous case
Approximation of viability kernels

4 Resource management by viability methods
A bioeconomic precautionary threshold
The anchovy–hake couple in the Peruvian upwelling ecosystem

5 Summary
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Resource management examples under viability constraints Viable management of an animal population

Viable management of an animal population

B(t + 1) =

dynamic︷ ︸︸ ︷
Biol

(
B(t)︸︷︷︸

biomass

− h(t)︸︷︷︸
catches

)

� B(t) biomass

� h(t) catch with 0 ≤ h(t) ≤ B(t)

� Biol natural resource growth function
(linear, logistic, etc.)
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Resource management examples under viability constraints Viable management of an animal population
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Resource management examples under viability constraints Viable management of an animal population

We define an ecological window by
lower and upper bounds for the biomass

State constraints

B♭ ≤ B(t) ≤ B♯ , t = t0, . . . ,T

� B♭ minimum viable population

� B♯ maximal safety value
(pest control, invasive species)
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Resource management examples under viability constraints Viable management of an animal population

The problem is one of inertia

B(t0) ∈ [B♭,B♯]
B(t0 + 1) = Biol

(
B(t0)− h(t0)

)
∈ [B♭,B♯]

B(t0 + 2) = Biol
(
B(t0 + 1)− h(t0 + 1)

)

= Biol
(
Biol

(
B(t0)− h(t0)

)
− h(t0 + 1)

)
∈ [B♭,B♯]

B(t0 + s) depends on B(t0) and on past decisions h(t0), . . . , h(t0 + s − 1)
because of the dynamic (inertia)
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Resource management examples under viability constraints Mitigation for climate change

Let us scout a very stylized model
of the climate-economy system

We lay out a dynamical model with

� two state variables

environmental: atmospheric co2

concentration level M(t)
economic: gross world product

gwp Q(t)

� one decision variable,
the emission abatement rate a(t)
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Resource management examples under viability constraints Mitigation for climate change

A carbon cycle model “à la Nordhaus”
is an example of decision model

� Time index t in years

� Economic production Q(t) (gwp)

Q(t + 1) =

economic growth︷ ︸︸ ︷
(1 + g) Q(t)

� co2 concentration M(t)

M(t + 1) = M(t)−δ(M(t)−M−∞)︸ ︷︷ ︸
natural sinks

+α

emissions︷ ︸︸ ︷
Emiss

(
Q(t)

) (
1− a(t)

)
︸ ︷︷ ︸
abatement

� Decision a(t) ∈ [0, 1] is the abatement rate of co2 emissions
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Resource management examples under viability constraints Mitigation for climate change

Data

� M(t) co2 atmospheric concentration, measured in ppm, parts per million
(379 ppm in 2005)

� M−∞ pre-industrial atmospheric concentration
(about 280 ppm)

� Emiss(Q(t)) “business as usual” co2 emissions
(about 7.2 GtC per year between 2000 and 2005)

� 0 ≤ a(t) ≤ 1 abatement rate reduction of co2 emissions

� α conversion factor from emissions to concentration
(α ≈ 0.471 ppm.GtC−1 sums up highly complex physical mechanisms)

� δ natural rate of removal of atmospheric co2 to unspecified sinks
(δ ≈ 0.01 year−1)
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Resource management examples under viability constraints Mitigation for climate change

A concentration target is pursued to avoid danger

United Nations Framework Convention
on Climate Change

“to achieve, (. . . ), stabilization of
greenhouse gas concentrations in the
atmosphere at a level that would prevent
dangerous anthropogenic interference
with the climate system”

Limitation of concentrations of co2

� below a tolerable threshold M♯

(say 350 ppm, 450 ppm)

� at a specified date T > 0
(say year 2050 or 2100)

M(T )︸ ︷︷ ︸
concentration at horizon

≤ M♯
︸︷︷︸

threshold
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Resource management examples under viability constraints Mitigation for climate change

Constraints capture different requirements
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� The concentration has to
remain below a tolerable
level at the horizon T :

M(T ) ≤ M♯

� More demanding:
from the initial time t0
up to the horizon T

M(t) ≤ M♯

t = t0, . . . ,T
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Resource management examples under viability constraints Mitigation for climate change

Constraints may be environmental, physical, economic

� The concentration has to remain below a tolerable level
from initial time t0 up to the horizon T

M(t) ≤ M♯ , t = t0, . . . ,T

� Abatements are expressed as fractions

0 ≤ a(t) ≤ 1 , t = t0, . . . ,T − 1

� As with “cap and trade”, setting a ceiling on co2 price
amounts to cap abatement costs

Cost
(
a(t),Q(t)

)
︸ ︷︷ ︸

costs

≤ c♯ (100 euros / tonne co2) , t = t0, . . . ,T − 1
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Resource management examples under viability constraints Mitigation for climate change

Mixing dynamics, optimization and constraints
yields a cost-effectiveness problem

� Minimize abatement costs

min
a(t0),...,a(T−1)

T−1∑

t=t0

(
1

1 + re
)t−t0 Cost

(
a(t),Q(t)

)
︸ ︷︷ ︸

abatement costs

� under the gwp-co2 dynamics

{
M(t + 1) = M(t)− δ(M(t)−M−∞) + αEmiss

(
Q(t)

)
(1− a(t))

Q(t + 1) = (1 + g)Q(t)

� and under target constraint

M(T ) ≤ M♯

︸ ︷︷ ︸
CO2 concentration
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Resource management examples under viability constraints Mitigation for climate change
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Resource management examples under viability constraints Forestry management

We consider an age-class forest dynamic linear model

� The forest is described by a vector N(t) of abundances

N(t) =




NA(t)
NA−1(t)

...
N1(t)


 =




number of trees of age ≥ A
number of trees of age ∈ [A− 1,A[

...
...

number of trees of age ∈ [1, 2[
number of trees of age ∈ [0, 1[




� The evolution from an age-class a to the next a + 1 is described by

Na+1(t + 1) = (1 − µa︸︷︷︸
mortality

)Na(t)

� Young trees result from the offspring of the different age-classes

N1(t + 1) =

A∑

a=1

γa︸︷︷︸
fertility

Na(t)
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Resource management examples under viability constraints Forestry management

P. H. Leslie introduced mortality-natality matrix models
in forestry

N(t + 1) = LN(t)

L =

















1−

mortality
︷︸︸︷
µA 1− µA−1 0 · · · 0

0 0 1− µA−2

. . . 0

. . . 0

0 . . . 0
. . . 1− µ1

γA
︸︷︷︸

fertility

γA−1 · · · · · · γ1

















Leslie, P.H. (1945)
”The use of matrices in certain population mathematics”
Biometrika, 33(3), 183–212
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Resource management examples under viability constraints Forestry management

We suppose that only old trees are cut
and that they are replaced by young ones

� Only trees of age A can be cut in quantity h(t)

� Each time a tree of age A is cut,
it is immediately replaced by a tree of age 1




NA(t + 1)
NA−1(t + 1)

...
N2(t + 1)
N1(t + 1)




= LN(t) +




−1
0
...
0
1




h(t)

A. Rapaport, J.-P. Terreaux, and L. Doyen.
Sustainable management of renewable resource: a viability approach.
Mathematics and Computer Modeling, 43(5-6):466–484, March 2006.
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Resource management examples under viability constraints Forestry management

We add a social objective of minimal harvesting

� One cannot plan to harvest more than will exist at the end of period [t, t + 1[

0 ≤ h(t) ≤
(
1 0 · · · 0 0

)
LN(t)

︸ ︷︷ ︸
future old trees

= NA(t + 1)

� A minimal guaranteed harvesting h♭ > 0 is required
(when h(t) is associated with an income)

h♭ ≤ h(t)

This approach differs from the classical one of Faustmann optimal rotation
problem, which attaches a value to harvesting and formulates an intertemporal
optimization problem
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Resource management examples under viability constraints Viable epidemics control

Detecting an epidemic outbreak by corredor endémico
(canal endémico)

� success, security, alert, epidemics
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Resource management examples under viability constraints Viable epidemics control

Endemic channels form the core of a decision rule
for dengue outbreak prevention

The epidemiological surveillance system should be able to differentiate
between transient and seasonal increases in disease incidence and
increases observed at the beginning of a dengue outbreak. One such
approach is to track the occurrence of current (probable) cases and
compare them with the average number of cases by week (or month) of
the preceding 5–7 years, with confidence intervals set at two standard
deviations above and below the average (± 2 SD). This is sometimes
referred to as the “endemic channel”. If the number of cases reported
exceeds 2 SDs above the “endemic channel” in weekly or monthly
reporting, an outbreak alert is triggered.

Dengue. Guidelines for Diagnosis, Treatment, Prevention and Control.
A joint publication of the World Health Organization (WHO) and the Special
Programme for Research and Training in Tropical Diseases (TDR), 2009
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Resource management examples under viability constraints Viable epidemics control

We consider an epidemiological model with vector control

� Basic variables and parameters are

� time t, measured in weeks
� Mt , the abundance of infected mosquitos (Aedes Aegypti adultos)
� Ht , the abundance of infected humans
� ∆µM

t , the additional mortality rate of mosquitos, a control variable
� M, H, f H , f M , µM and µH , parameters

� The controlled dynamics is

Mt+1 = f HHt(M −Mt)− (µM +∆µM
t )Mt

Ht+1 = f MMt(H − Ht)− µHHt

� The objective is to maintain infected humans at a low level

Ht ≤ H♯ , ∀t = t0, . . . ,T

with limited resources 0 ≤ µM
t ≤ µ♯ , ∀t = t0, . . . ,T − 1
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Resource management examples under viability constraints Viable epidemics control

Summary

� We have seen examples of natural resources management problems
where objectives are formulated as constraints

� We now present the mathematical control theory framework,
and especially viability theory
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The viability kernel and viable controls Viability kernel
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The viability kernel and viable controls Viability kernel

A control system connects input and output variables

Input variables

Control wood logs
Uncertainty wood humidity

metal conductivity

Output variables

soup quality
water vapor
temperature (internal
state)
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The viability kernel and viable controls Viability kernel

Discrete-time nonlinear state-control systems
are special input-output systems

A specific output is distinguished, and is labeled state,
when the system may be written as

x(t + 1) = Dyn(t, x(t), u(t)), t ∈ T = {t0, t0 + 1, . . . ,T − 1}

� the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, etc.)

� the state variable x(t) belongs to the finite dimensional state space X = RnX ;
(stocks, biomasses, abundances, capital, etc.)

� the control variable u(t) is an element of the control space U = RnU

(outflows, catches, harvesting effort, investment, etc.)

� the dynamics Dyn maps T× X× U into X

(storage, age-class model, population dynamics, economic model, etc.)
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The viability kernel and viable controls Viability kernel

We dress natural resources management issues
in the formal clothes of control theory in discrete time

Control theory
in discrete time

blanco

Ecology Economics Modeling
Life-cycle Decision Simulations
Patches under

uncertainty

� Problems are framed as

� find controls/decisions
driving a dynamical system

� to achieve various goals

� Three main ingredients are

� controlled dynamics ®

� constraints �
� criterion to optimize
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The viability kernel and viable controls Viability kernel

We mathematically express the objectives pursued
as control and state constraints

� For a state-control system,
we cloth objectives as constraints

� and we distinguish

control constraints (rather easy)
state constraints (rather difficult)

� Viability theory deals with state constraints
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The viability kernel and viable controls Viability kernel

Constraints may be explicit on the control variable
and are rather easily handled by reducing the decision set

Examples of control constraints

� Irreversibility constraints, physical bounds
�

0 ≤ a(t) ≤ 1 , 0 ≤ h(t) ≤ B(t)

� Tolerable costs c
(
a(t),Q(t)

)
≤ c♯

Control constraints / admissible decisions

u(t)︸︷︷︸
control

∈ B
(
t, x(t)

)
︸ ︷︷ ︸
admissible set

, t = t0, . . . ,T − 1

Easy because control variables u(t) are precisely those variables whose values the
decision-maker can fix at any time within given bounds
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The viability kernel and viable controls Viability kernel

Meeting constraints bearing on the state variable is delicate
due to the dynamics pipeline between controls and state

State constraints / admissible states

x(t)︸︷︷︸
state

∈ A(t)︸︷︷︸
admissible set

, t = t0, . . . ,T

Examples (“tipping points”)

� co2 concentration M(t) ≤ M♯

� biomass B♭ ≤ B(t) ≤ B♯

State constraints are mathematically difficult because of “inertia”

x(t) = function
︸ ︷︷ ︸

iterated dynamics

(
u(t − 1), . . . , u(t0)
︸ ︷︷ ︸

past controls

, x(t0)
)
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The viability kernel and viable controls Viability kernel

Target and asymptotic state constraints are special cases

� Final state achieves some target

x(T )︸ ︷︷ ︸
final state

∈ A(T )︸ ︷︷ ︸
target set

Example: co2 concentration

� State converges toward a target

lim
t→+∞

x(t)
︸ ︷︷ ︸

asymptotic state

∈ A(∞)︸ ︷︷ ︸
target set

Example: convergence towards an endemic state in epidemiology
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The viability kernel and viable controls Viability kernel

Can we solve the compatibility puzzle between dynamics
and objectives by means of appropriate controls?

� Given a dynamics that
mathematically embodies the causal
impact of controls on the state

� Imposing objectives bearing on
output variables (states, controls)

� Is it possible to find a control path
that achieves the objectives
for all times?
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The viability kernel and viable controls Viability kernel

Crisis occurs when constraints are trespassed at least once

� An initial state is not viable if,
whatever the sequence of controls,
a crisis occurs

� There exists a time when
one of the state or control
constraints is violated
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The viability kernel and viable controls Viability kernel

The compatibility puzzle can be solved when
the initial viability kernel Viab(t0) is not empty

Viable initial states form the viability kernel (Jean-Pierre Aubin)

Viab(t) :=






initial
states
x ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

there exist a control path u(·) =(
u(t), u(t + 1), . . . , u(T − 1)

)

and a state path x(·) =(
x(t), x(t + 1), . . . , x(T )

)

starting from x(t) = x at time t
satisfying for any time s ∈ {t, . . . ,T − 1}
x(s + 1) = Dyn

(
s, x(s), u(s)

)
dynamics

u(s) ∈ B(s, x(s)) control constraints
x(s) ∈ A(s) state constraints
and x(T ) ∈ A(T ) target constraints
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The viability kernel and viable controls Viability kernel

The viability kernel is included in the state constraint set

� The largest set is the
state constraint set A

� It includes the smaller blue
viability kernel Viab(t0)

� The green set measures
the incompatibility between
dynamics and constraints:
good start, but inevitable crisis!
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The viability kernel and viable controls Viability kernel

The viability program aims at turning
a priori constraints, with state constraints,

into a posteriori constraints, without state constraints

� A priori constraints, with state constraints






x(t0) ∈ X

x(t + 1) = Dyn
(
t, x(t), u(t)

)

u(t) ∈ B
(
t, x(t)

)
control constraints

x(t) ∈ A(t) state constraints

� are turned into a posteriori constraints, without state constraints
except for the initial state





x(t0) ∈ Viab(t0) initial state constraint
x(t + 1) = Dyn

(
t, x(t), u(t)

)

u(t) ∈ Bviab
(
t, x(t)

)
control constraints
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The viability kernel and viable controls Dynamic programming equation and viable controls
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The viability kernel and viable controls Dynamic programming equation and viable controls

The viability kernels satisfy
a backward dynamic programming equation

Proposition

Assume that T < +∞. The viability kernels Viab(t) satisfy a
backward induction, where t runs from T − 1 down to t0:

Viab(T ) = A(T )

Viab(t) = { admissible states x ∈ A(t) |

there exists an admissible control u ∈ B(t, x)

such that the future state Dyn(t, x , u)

belongs to the next viability kernel Viab(t + 1) }
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The viability kernel and viable controls Dynamic programming equation and viable controls

The dynamic programming equation
yields viable controls

� The following viable regulation set

Bviab(t, x) := {u ∈ B(t, x) | Dyn(t, x , u) ∈ Viab(t + 1)}

is not empty if and only if x ∈ Viab(t)

Bviab(t, x) 6= ∅ ⇐⇒ x ∈ Viab(t)

� Any u ∈ Bviab(t, x) is said to be a viable control

� A viable policy is a mapping Pol : T× X → U such that

Pol(t, x) ∈ Bviab(t, x)

for all (t, x) ∈ T× X
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The viability kernel and viable controls Dynamic programming equation and viable controls

Any viable control yields a viable trajectory

1 Initial state x⋆(t0) = x0 ∈ Viab(t0) ⊂ A(t0)

2 Plug the state x⋆(t0) into the viable policy Pol →
initial decision u⋆(t0) = Pol⋆

(
t0, x

⋆(t0)
)
∈ Bviab

(
t0, x

⋆(t0)
)
⊂ B

(
t0, x

⋆(t0)
)

3 Run the dynamics → second state x⋆(t0 + 1) = Dyn
(
t0, x

⋆(t0), u
⋆(t0)

)

∈ Viab(t0 + 1) ⊂ A(t0 + 1)

4 Second decision u⋆(t0 + 1) = Pol⋆
(
t0 + 1, x⋆(t0 + 1)

)

∈ Bviab
(
t0 + 1, x⋆(t0 + 1)

)
⊂ B

(
t0 + 1, x⋆(t0 + 1)

)

5 And so on x⋆(t0 + 2) = Dyn
(
t0 + 1, x⋆(t0 + 1), u⋆(t0 + 1)

)

6 . . .
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The viability kernel and viable controls Dynamic programming equation and viable controls

“Life is lived forward but understood backward”
(Søren Kierkegaard)

D. P. Bertsekas introduces his book
Dynamic Programming and Optimal Control
with a citation by Søren Kierkegaard

”Livet skal forst̊as baglaens, men leves
forlaens”

Life is to be understood backwards,
but it is lived forwards

� The viability kernels and the viable policies are
computed backward and offline by means of the
dynamic programming equation

� The viable trajectories are computed forward
and online

Michel DE LARA (École des Ponts ParisTech) Viable Sequential Decisions November 10, 2014 54 / 109



The viability kernel and viable controls Dynamic programming equation and viable controls

Thanks to the dynamic programming equation,
the viability program is achieved

� The a priori constraints, with state constraints






x(t0) ∈ X

x(t + 1) = Dyn
(
t, x(t), u(t)

)

u(t) ∈ B
(
t, x(t)

)
control constraints

x(t) ∈ A(t) state constraints

� have been turned into a posteriori constraints,
without state constraints except for the initial state





x(t0) ∈ Viab(t0) initial state constraint
x(t + 1) = Dyn

(
t, x(t), u(t)

)

u(t) ∈ Bviab
(
t, x(t)

)
control constraints
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The viability kernel and viable controls Dynamic programming equation and viable controls

Viable controls are not unique, in general

� Multiplicity and flexibility of viable decisions:
the set Bviab(t, x) is generally not a singleton.

� Selections

� Random viable selection
� Slow viable regulations: ‖Pol(t, x)‖ ∈ argminu∈Bviab(t,x) ‖u‖
� Inertial viable selection: Pol(t, x) ∈ arg minu∈Bviab(t,x) ‖u − u

∗‖
� Viable and optimal intertemporal selection
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The viability kernel and viable controls Discussion on optimization, state constraints and multipliers
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The viability kernel and viable controls Discussion on optimization, state constraints and multipliers

Viability theory can help to turn
cost-effectiveness problems into a standard form

1 Once obtained the true constraints Bviab(t, x) and Viab(t)
from the dynamic and the a posteriori constraints

2 Optimize some intertemporal criterion

max
x(·),u(·)

(T−1∑

t=t0

L
(
t, x(t), u(t)

)
+ K

(
T , x(T )

))

under the constraints which now take the form




x(t0) ∈ Viab(t0)
x(t + 1) = Dyn(t, x(t), u(t))
u(t) ∈ Bviab(t, x)

3 There are no more state constraints! Only control constraints
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The viability kernel and viable controls Discussion on optimization, state constraints and multipliers

Constraints in dynamic optimization problems
can be hard or soft

� State constraints penalization (hard)

max
x(·),u(·)

(T−1∑

t=t0

L
(
t, x(t), u(t)

)
−

T−1∑

t=t0

χA(t)

(
x(t)

))

where χA(t)(x) =

{
+∞ if x 6∈ A(t)

0 if x ∈ A(t)

� State constraints dualization (soft), with Lagrange multipliers p(t),
when constraints are given by inequalities I

(
t, x(t)

)
≥ 0 ⇐⇒ x(t) ∈ A(t)

max
x(·),u(·)

min
p(·)≥0

(T−1∑

t=t0

L
(
t, x(t), u(t)

)
+

T−1∑

t=t0

p(t)I
(
t, x(t)

))

and then, interchange to obtain a minp(·)≥0maxx(·),u(·)
when a saddle point exists
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The viability kernel and viable controls Discussion on optimization, state constraints and multipliers

More on the soft constraints and on interpreting a
marginal variation of intertemporal utility as a price

� For ǫ(·) =
(
ǫ(t0), . . . , ǫ(T )

)
, define

J
(
ǫ(·)

)
= max

x(·),u(·)

(T−1∑

t=t0

L
(
t, x(t), u(t)

))

the optimal intertemporal payoff under the constraints that

I
(
t, x(t)

)
≥ −ǫ(t) , t = t0, . . . ,T

� The Lagrange multiplier p(t) attached to the constraint I
(
t, x(t)

)
≥ 0

is the marginal variation of the intertemporal utility
when the constraint is slightly modified

p(t) =
∂J

∂ǫ(t)
(0)

� The Lagrange multiplier p(t) is the price
one is ready to pay for an extra unit of the “resource” I

(
t, x(t)

)
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The viability kernel and viable controls Example: viable control of an invasive species
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The viability kernel and viable controls Example: viable control of an invasive species

We consider an invasive species biomass model
driven by an effort control

� Consider a density-dependent linear dynamic

B(t + 1) = R B(t)︸︷︷︸
biomass

(
1− E (t)︸︷︷︸

effort

)

� where the invasive species is described by its biomass B(t)
� where the control is exterted under the form of a harvesting effort E(t)

� The effort is constrained by

E ♭ ≤ E (t) ≤ E ♯

where
0 ≤ E ♭ ≤ E ♯ ≤ 1
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The viability kernel and viable controls Example: viable control of an invasive species

We constrain the ultimate biomass to lie
between conservation and maximal safety values

� Consider two thresholds

� a conservation lower bound B
♭ > 0

� a safety upper bound B
♯ > 0

� We assume that the policy goal is to constrain the ultimate biomass B(T )
within the ecological window [B♭,B♯]

B♭ ≤ B(T ) ≤ B♯

� We will show that this target constraint is achieved
whenever the initial biomass is sufficiently high, but not too high
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The viability kernel and viable controls Example: viable control of an invasive species

We write a dynamic programming equation
relating the viability kernels

� The abstract dynamic programming equation relating the viability kernels is

Viab(T ) = A(T )

Viab(t) = {x ∈ A(t) | ∃u ∈ B(t, x), Dyn(t, x , u) ∈ Viab(t + 1)}

� In our case, it materializes as

Viab(T ) = [B♭,B♯]

Viab(t) =
{
B ∈ R+ | there exists an effort E ∈ [E ♭,E ♯]

such that the future biomass

RB
(
1− E

)
∈ Viab(t + 1)

}

Michel DE LARA (École des Ponts ParisTech) Viable Sequential Decisions November 10, 2014 64 / 109



The viability kernel and viable controls Example: viable control of an invasive species

Exercise: calculate the penultimate viability kernel

Viab(T − 1) =




B ∈ R+ | ∃E ∈ [E ♭,E ♯] , RB

(
1− E

)
∈ [B♭,B♯]︸ ︷︷ ︸

Viab(T )





� Fix a biomass B ≥ 0

� Look for an effort E ∈ [E ♭,E ♯] such that

B♭ ≤ RB
(
1− E

)
≤ B♯

� Observe that such an effort E exists if and only if the intersection of [E ♭,E ♯]
with another interval (the bounds of which depend on the fixed biomass B)
is not empty

� As a consequence, establish for which biomasses B ≥ 0 such an effort E exists

� These biomasses B ≥ 0 delineate the viability kernel

Viab(T − 1) = [
B♭

R(1− E ♭)
,

B♯

R(1− E ♯)
]
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The viability kernel and viable controls Example: viable control of an invasive species

Viability kernels are intervals
and viable efforts belong to intervals

� The viability kernels are intervals

Viab(t) = [B♭(t),B♯(t)]

whose viability biomass bounds are given by

{
B♭(t) = B♭

(
R(1− E ♭)

)t−T

B♯(t) = B♯
(
R(1− E ♯)

)t−T

� Viable efforts E belong to the set

1−
B♯(t)

RB
≤ E ≤ 1−

B♭(t)

RB
and E ♭ ≤ E ≤ E ♯
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The viability kernel and viable controls Example: viable control of an invasive species
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The viability kernel and viable controls Viability in the autonomous case
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The viability kernel and viable controls Viability in the autonomous case

We restrict to stationary constraints and dynamics

� Stationary state constraints
A(t) = A

� Stationary control constraints

B(t, x) = B(x)

� Stationary dynamics
Dyn(t, x , u) = Dyn(x , u)
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The viability kernel and viable controls Viability in the autonomous case

Stationary constraints can express intergenerational equity

� Consider the autonomous case of stationary constraints and dynamics

A(t) = A

B(t, x) = B(x)
Dyn(t, x , u) = Dyn(x , u)

� When the horizon T = +∞ is infinite,
constraints to be satisfied for all times may be a way to
embody intergenerational equity, sustainability, stewardship
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The viability kernel and viable controls Viability in the autonomous case

There are three relevant configurations
for an autonomous viability problem

� Comfortable case: the viability kernel is
the whole state constraint

Viab(t0) = Viab(t) = A

−→ we say that A is viable

� Dangerous case:

∅ ( Viab(t0) ( A

−→ crisis outside Viab(t0)
−→ security margins in Viab(t0)

� Hopeless case: the viability kernel is empty
Viab(t0) = ∅
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The viability kernel and viable controls Viability in the autonomous case

In the autonomous case, the viability kernel
extends the concept of equilibrium

Proposition

In the autonomous case,
the admissible equilibria belong to the viability kernel Viab(t)
at any time t:

{xe ∈ A | ∃ue ∈ B(xe) , xe = Dyn(xe, ue)} ⊂ Viab(t)

Indeed, the stationary control u(t) = ue ∈ B(xe) makes that

x(t) = Dyn(x(t), u(t)) = Dyn(xe, ue) = xe ∈ A
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The viability kernel and viable controls Viability in the autonomous case

The viability kernels are increasing with respect to time

Proposition

� In the autonomous case,
the viability kernels are increasing with respect to time:

Viab(t0) ⊂ Viab(t0 + 1) ⊂ · · · ⊂ Viab(T ) = A

� If, in addition, the horizon is infinite (T = +∞),
the viability kernels are stationary
and we write the common set Viab:

Viab(t0) = · · · = Viab(t) = · · · = Viab ⊂ A
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The viability kernel and viable controls Viability in the autonomous case

Viable controls delineate the “true constraints”

� In the autonomous case and in the infinite horizon case, the time component
vanishes and we obtain the viable controls as follows:

Bviab(x) := {u ∈ B(x) | Dyn(x , u) ∈ Viab}

� Hence, ensuring viability means remaining in the viability kernel:

A︸︷︷︸
state constraints

→ Viab︸︷︷︸
“true constraints”

⊂ A
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The viability kernel and viable controls Viability in the autonomous case

The notion of viability domain is relevant
in the autonomous case

Definition

A subset V ⊂ X of states is said to be a viability domain if

∀x ∈ V ∃u ∈ B(x)︸ ︷︷ ︸
admissible control

Dyn(x , u)︸ ︷︷ ︸
future state

∈ V

That is,

� for any state x in V

� there exists an admissible control u ∈ B(x)

� such that the future state Dyn(x , u) belongs to V
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The viability kernel and viable controls Viability in the autonomous case

Viability kernel and viability domains are tied sets

Theorem (J.-P. Aubin)

In the autonomous case with infinite horizon T = +∞,
the viability kernel Viab is, equivalently,

� the largest viability domain V contained in the state constraint set A

� the union of all viability domains in the state constraint set A

Any viability domain is a lower approximation of the viability kernel

V︸︷︷︸
viability domain

⊂ Viab︸︷︷︸
viability kernel

⊂ A︸︷︷︸
state constraints
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The viability kernel and viable controls Approximation of viability kernels
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The viability kernel and viable controls Approximation of viability kernels

We outline an alternative formulation
with an acceptable configurations set

A decision maker describes acceptable configurations of the system through a set
D ⊂ X× U termed the acceptable set

(x(t), u(t)) ∈ D , ∀t = t0, t0 + 1, . . .

where D includes both system states and controls constraints

Upper sets

We say that a set S ⊂ X is an upper set (or is an increasing set) if it satisfies the
following property:

∀x ∈ S , ∀x ′ ∈ X , x ′ ≥ x ⇒ x ′ ∈ S

In the same way, a set K ⊂ X× U is said to be an upper set if

∀(x , u) ∈ K , ∀x ′ ∈ X , x ′ ≥ x ⇒ (x ′, u) ∈ K
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The viability kernel and viable controls Approximation of viability kernels

The notion of monotone harvest dynamics
will prove useful for management

We say that the dynamic Dyn : X× U → X is

� increasing with respect to the state if it satisfies

∀ (x , x ′, u) ∈ X× X× U , x ′ ≥ x ⇒ Dyn(x ′, u) ≥ Dyn(x , u)

� decreasing with respect to the control if

∀(x , u, u′) ∈ X× U× U , u′ ≥ u ⇒ Dyn(x , u′) ≤ Dyn(x , u)

Monotone harvest dynamic

We coin Dyn : X× U → X a monotone harvest dynamic if Dyn is increasing with
respect to the state and decreasing with respect to the control
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The viability kernel and viable controls Approximation of viability kernels

More on approximation of viability kernels

Proposition

If V is a viability domain of Dyn in D, then

Ṽ = {x ∈ X | ∃u ∈ U , (x , u) ∈ D and Dyn(x , u) ∈ V}

is a viability domain which contains V. As a consequence,

1 the induction

Ṽ0 = V and Ṽk+1 = {x ∈ X | ∃u ∈ U , (x , u) ∈ D and Dyn(x , u) ∈ Ṽk}

generates an increasing sequence of viability domains

2 and its limit is included in the viability kernel

⋃
k∈N

Ṽk = lim
k→+∞

↑ Ṽk ⊂ V(Dyn,D)

Michel DE LARA (École des Ponts ParisTech) Viable Sequential Decisions November 10, 2014 80 / 109



The viability kernel and viable controls Approximation of viability kernels

More on approximation of viability kernels

Proposition

Assume that

� the desirable set D is increasing

� the dynamics Dyn is bounded below by an increasing Dyn♭ : X× U → X

Dyn♭(x , u) ≤ Dyn(x , u) , ∀(x , u) ∈ X× U

and
Dyn♭ is increasing with respect to the state

Then, V(Dyn♭,D) is a viability domain associated with Dyn in D, and thus

V(Dyn♭,D) ⊂ V(Dyn,D)
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The viability kernel and viable controls Approximation of viability kernels

Summary
The viability program

� The compatibility puzzle between dynamics and objectives
can be solved when the viability kernel is not empty

� The viability program aims at turning
a priori constraints, with state constraints
into a posteriori constraints, without state constraints
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The viability kernel and viable controls Approximation of viability kernels

Summary
Dynamic programming and viable controls

� The viability kernels satisfy a backward dynamic programming equation

� The dynamic programming equation displays viable controls

� Therefore, the viability program is achieved

� Viable controls delineate the “true constraints”,
those that allow to satisfy the state constraints

� There is generally no uniqueness of viable controls and policies
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The viability kernel and viable controls Approximation of viability kernels

Summary
Viability kernel in the autonomous case

In the autonomous case,

� the viability kernel extends the concept of equilibrium

� The viability kernel is the union of all viability domains
in the state constraint set

� Monotonicity properties of sets and dynamics
provide approximations of the viability kernel
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We consider a biomass model
for a harvested renewable resource

B(t + 1) =

dynamic︷ ︸︸ ︷
Biol

(
B(t)︸︷︷︸

biomass

− h(t)︸︷︷︸
catches

)

� B(t) biomass

� h(t) catch with 0 ≤ h(t) ≤ B(t)

� Biol natural resource growth function
(Beverton-Holt, for instance)
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A regulating agency aims to guarantee along time
both a minimal harvesting and a minimal stock

� Consider a regulating agency whose policy goals are
to guarantee at each time t

� a minimal harvesting hlim > 0

h(t) ≥ hlim production

� a minimal biomass Blim > 0

B(t) ≥ Blim preservation

� By a viability analysis,
we will determine whether these goals can be achieved or not

� When possible, we will display viable policies to achieve these goals
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We need and recall the notion of sustainable yield

� The sustainable yield function Sust is defined by

h = Sust(B) ⇐⇒ B = Biol(B − h) and 0 ≤ h ≤ B

� The maximum sustainable biomass Bmse and
maximum sustainable yield hmse are defined by

hmse = Sust(Bmse) = max
B≥0

Sust(B)
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When the dynamic is increasing, the viability kernel
is either empty or is an interval

Proposition

� Assume that the dynamic B 7→ Biol(B) is increasing and continuous,
and let K be the carrying capacity (Biol(K ) = K)

� The viability kernel is either empty or has the form [Bpa,K ]

� Any interval [B,K ] is a viability domain whenever

Sust(B) ≥ hlim

� The largest of the viability domains [B,K ]
included in the state constraint set [Blim,K ] is

Viab = [Bpa,K ]

where Bpa = min{B ≥ Blim | Sust(B) ≥ hlim}
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The expression of the viability kernel depends on
the minimal guaranteed thresholds hlim and Blim
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The expression of the viability kernel depends on
the minimal guaranteed thresholds hlim and Blim
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Viab =





∅ if hlim > hmse

∅ if Blim > Bmse

and hlim > Sust(Blim)

[Blim,K ] if hlim ≤ Sust(Blim)

[Sust−1(hlim),K ] if Blim ≤ Bmse and
Sust(Blim) < hlim ≤ hmse

where

Sust−1(h) := min{B | Sust(B) = h}
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Sust
−1(h) := min{B | Sust(B) = h}
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The green horizontal line h = hlim intersects the sustainable yield curve in two
points. The smaller abcisse is Sust−1(hlim).
For hlim = 25 000 tonnes, Sust−1(hlim) = 50 000 tonnes.
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Viable controls belong to an interval

� For any stock B ∈ Viab, the viable catches lie within the set

Bviab(B) = [hlim, Catchpa(B)]

� The ceiling viable catch is given by

Catchpa(B) = B + Sust(Bpa)− Bpa
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The green horizontal line is the lower limit for viable catches
The blue line is the upper limit for viable catches
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The unsustainable case: Viab = ∅ or hlim > hmse
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The sustainable case: Viab 6= ∅ or hlim ≤ hmse
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(e) Viable biomass B(t) ≥ Bpa.
Non viable biomass B(t) < Bpa

Harvesting trajectories 	   satisfying the constraint

time t

harvest h

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Minimal harvest

(f) Viable catch h(t) ≥ hlim

Michel DE LARA (École des Ponts ParisTech) Viable Sequential Decisions November 10, 2014 97 / 109



Resource management by viability methods The anchovy–hake couple in the Peruvian upwelling ecosystem

Outline of the presentation
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Example: viable control of an invasive species
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Approximation of viability kernels

4 Resource management by viability methods
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The anchovy–hake couple in the Peruvian upwelling ecosystem
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Resource management by viability methods The anchovy–hake couple in the Peruvian upwelling ecosystem

Perú is World 2nd for marine and inland capture fisheries

The northern Humboldt current system off Perú
covers less than 0.1% of the world ocean
but presently sustains
about 10% of the world fish catch
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Resource management by viability methods The anchovy–hake couple in the Peruvian upwelling ecosystem

We were lucky enough that IMARPE entrusted us
yearly data of anchoveta and merluza stock and catches

from 1971 to 1985
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Resource management by viability methods The anchovy–hake couple in the Peruvian upwelling ecosystem

We consider two species targeted by two fleets
in a biomass ecosystem dynamic

We embody stocks and fishing interactions
in a two-dimensional dynamical model

future biomass︷ ︸︸ ︷
A(t + 1) = A(t)

growth factor︷ ︸︸ ︷
RA

(
A(t),H(t)

) (
1− EA(t)︸ ︷︷ ︸

effort

)

H(t + 1) = H(t)RH

(
A(t),H(t)

)(
1−

control︷ ︸︸ ︷
EH(t)

)

� State vector (A(t),H(t)) represents biomasses

� Control vector (EA(t),EH(t)) is fishing effort of each species

� Catches are EA(t)RA

(
A(t),H(t)

)
A(t) and EH(t)RH

(
A(t),H(t)

)
H(t)

(measured in biomass)
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Resource management by viability methods The anchovy–hake couple in the Peruvian upwelling ecosystem

Our objectives are twofold: conservation and production

The viability kernel is the set of initial species biomasses
(
A(t0),H(t0)

)

from which appropriate effort controls
(
EA(t),EH(t)

)
, t = t0, t0 + 1, . . .

produce a trajectory of biomasses
(
A(t),H(t)

)
, t = t0, t0 + 1, . . .

such that the following goals are satisfied

� preservation (minimal biomass thresholds)

A stocks: A(t) ≥ S♭
A

H stocks: H(t) ≥ S♭
H

� economic/social requirements (minimal catch thresholds)

A catches: EA(t)RA

(
A(t),H(t)

)
A(t) ≥ C ♭

A

H catches: EH(t)RH

(
A(t),H(t)

)
H(t) ≥ C ♭

H
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Resource management by viability methods The anchovy–hake couple in the Peruvian upwelling ecosystem

We provide an explicit expression for the viability kernel
under rather weak assumptions

Proposition

If the thresholds S♭
A, S

♭
H and C ♭

A,C
♭
H meet the inequalities

S♭
ARA(S

♭
A, S

♭
H)− S♭

A︸ ︷︷ ︸
surplus

≥ C ♭
A and S♭

HRH(S
♭
A, S

♭
H)− S♭

H︸ ︷︷ ︸
surplus

≥ C ♭
H

the viability kernel is given by

{
(A,H) | A ≥ S♭

A, H ≥ S♭
A, ARA(A,H)− S♭

A ≥ C ♭
A, HRH(A,H)− S♭

H ≥ C ♭
H

}

Michel DE LARA (École des Ponts ParisTech) Viable Sequential Decisions November 10, 2014 103 / 109



Resource management by viability methods The anchovy–hake couple in the Peruvian upwelling ecosystem

We taylor a Lotka-Volterra decision model
to hake-anchovy Peruvian fisheries scarce data
Hake-anchovy Peruvian fisheries data between 1971 and 1981, in thousands of tonnes (103 tons)

� anchoveta stocks= [11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407]

� merluza stocks= [347 437 455 414 538 735 636 738 408 312 148]

� anchoveta captures= [9184 3493 1313 3053 2673 3211 626 464 1000 223]

� merluza captures= [26 13 133 109 85 93 107 303 93 159 69]

(g) Anchovy (h) Hake

Figure : Comparison of observed and simulated biomasses of anchovy and hake using a
Lotka-Volterra model with density-dependence in the prey. Model parameters are
R = 2.25, L = 0.945, κ = 67 113 × 103 t (K = 37 285 × 103 t), α = 1.22× 10−6

t
−1,

β = 4.845 × 10−8
t
−1.
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Here is the Lotka-Volterra decision model

� A is the prey biomass (anchovy)

� H is the predator biomass (hake)

� The discrete-time Lotka-Volterra system is

A(t + 1) = A(t)

RA

(
A(t),H(t)

)
︷ ︸︸ ︷
(
R −

R

κ
A(t)− αH(t)

) (
1− EA(t)

)

H(t + 1) = H(t)
(
L+ βA(t)

)
︸ ︷︷ ︸
RH

(
A(t),H(t)

)

(
1− EH(t)

)
,

� The associated deterministic viability kernel is

V(t0) =
{

(A,H) | A ≥ S♭
A,

1
α [R − R

κA−
S♭

A+C♭

A

A
] ≥ H ≥ max{

S♭

H+C♭

H

L+βA , S♭
H}

}
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For given biomasses and catches thresholds,
we display the associated viability kernel

� Minimal biomasses thresholds

� S
♭
A = 7 000 kt (anchovy)

� S
♭
H = 200 kt (hake)

� Minimal catches thresholds

� C
♭
A = 2 000 kt (anchovy)

� C
♭
H = 5 kt (hake)

First acid test: plotting years of observed biomasses

� The range of values for viable states fits with measured biomasses

� Theoretically, a viable management with guaranteed biomasses and catches
would have been possible since the initial state ⋆ is viable
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Summary

Resource managers often design policies
contingent on implicit objectives

objectives

policies
In practice, we observe that
resource managers generally

� design policies

� which directly incorporate objectives

� with confusion between

� objectives
� and decision rules
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Summary

Control theory draws an explicit line
between objectives and policies

� We can observe a mismatch between proposed
policies and implicit objectives (ICES
precautionary approach)

� Control theory makes a clear distinction
between objectives and policies

objectives ⇒ adapted policies

� More specifically, viability theory puts
emphasis on consistency between
dynamics and objectives

objectives + dynamics ⇒ policies
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