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A bird’s eye view of trade-offs in intertemporal optimization

Colin W. Clark’s Mathematical Bio-economics (1976)

“Perhaps the most important initial
realization for the question of
sustainable development is that the
overwhelming environmental and
resource problems now facing humanity
are the result of economically rational
individual decisions made every day by
each and every one of us”

Clark C.W., (1976), Mathematical
Bio-economics. The Optimal Management of
Renewable Resources, J. Wiley & Sons, New York

Michel DE LARA (École des Ponts ParisTech) Optimal Sequential Decisions January 4, 2016 4 / 147



A bird’s eye view of trade-offs in intertemporal optimization

What is the deep reason why whales have been depleted?
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A bird’s eye view of trade-offs in intertemporal optimization

It is economically sensible to deplete the stock of whales

Imagine that you manage a stock of 1,000 whales.
How can you exploit them?

Any “good” whales manager should be a “good” manager, whales or not,
and should consider the following data on yearly growth rates

yearly growth rate

whales 2 — 5%
money 5%

Any “good” manager should consider at least two management strategies

harvest every year the “whales surplus”, say 3% of the stocks, and sell it;
the population is stationary, and the process can go forever
deplete the stock of whales, sell it and invest the money at 5%

A whales manager would be economically sensible to sell its stocks
and to invest this money at a higher rate
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A bird’s eye view of trade-offs in intertemporal optimization

Here are intertemporal trade-offs

Getting more fish catches now is at the expense of
having less stock in one year

In a hydropower dam, turbinating water today reduces the stock, hence
precluding to turbinate much in the future when prices may be higher
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A bird’s eye view of trade-offs in intertemporal optimization

Many economic analysis and insights
are based upon (dynamic) optimization models

Optimality stands as a basic tool in economics

utility maximization, cost minimization
cost-benefit analysis
cost-effectiveness analysis

Many economic analysis are built upon optimization

Ramsey growth model on optimal allocation of levels of
consumption/investment over successive generations
Solow long-run economic growth model
Hotelling rule on optimal extraction path of an exhaustible resource
discounted utility criterion for climate change policy evaluation
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A bird’s eye view of trade-offs in intertemporal optimization

The use of optimization is said to have been triggered
by the Second World War

The Map Room of W. Churchill’s
Cabinet War Rooms

In May 1940, the Royal Air Force (RAF)
sustained massive losses
of 500 operational fighters

and remained with 620 operational
fighters, well below the 1,200 fighters
thought to be the minimum number
needed to win an air battle
over the U. K.

W. Churchill brought in
experts to determine a program
that best met objectives without
exceeding existing limited resources
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A bird’s eye view of trade-offs in intertemporal optimization

What is “optimization”?

Optimizing is obtaining the best compromise between needs and resources
Marcel Boiteux (président d’honneur d’Électricité de France)

Needs: multiple targets

Resources: multiple limits and multiple possible allocations

Best compromise: value, trade-offs, balancing the costs against the benefits
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A bird’s eye view of trade-offs in intertemporal optimization

Optimization in the wild

“In laying bricks, the motions used in laying a single brick were reduced from
18 to 5, with an increase in output from 120 bricks an hour to 350 an hour”,
Frank B. Gilbreth, 1915

“The motions of a girl putting paper on boxes of shoe polish were studied.
Her methods were-changed only slightly, and where she had been doing
24 boxes in 40 seconds, she did 24 in 20 seconds, with less effort”,
Frank B. Gilbreth, 1915

Improvement in military actions:
“1000 percent increase in bombs on targets”,
“optimal size of a merchant convoy”, etc.

in S. I. Gass and A. A. Assad,
An Annotated Timeline of Operations Research: An Informal History
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A bird’s eye view of trade-offs in intertemporal optimization

The Diet Problem,
or the birth of Linear Programming by George Dantzig

Jerry Cornfield’s diet problem: the Army wanted a low cost diet
that would meet the nutritional needs of a GI soldier

A footnote at the very end of the article The Cost of Subsistence
by George Stigler reveals that bureaucrats had recommended
low cost diets that cost twice as much as Stigler’s (suboptimal) solution

The optimal solution comprises spinach ;-)

George Dantzig: ”The trouble with a diet is that one’s always hungry.
What I need to do is maximize the feeling of feeling full.”

George Dantzig: ”I placed an upper bound of three on the number of
bouillon cubes consumed per day. That was how upper bounds on variables
in linear programming first began.”
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Dressing an intertemporal optimization problem in formal clothes
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

We pay attention to time periods
when we lay out descriptive variables

time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} is discrete,
and t denotes the beginning of the period [t, t + 1[ (day or 8 hours)

stock S(t), volume of water at the beginning of period [t, t + 1[

turbined outflow volume q(t) during [t, t + 1[

decided at the beginning of period [t, t + 1[
q(t) is a control variable in the hands of the decision-maker
who can pick up its value in a given range

Michel DE LARA (École des Ponts ParisTech) Optimal Sequential Decisions January 4, 2016 16 / 147



Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

As for data,
we distinguish between parameters and scenarios:

parameters do not depend on time

S♯ is the dam capacity (maximum dam volume)

q♯ is the outflow capacity,
the maximum which can be turbined by time unit (and produce electricity)

time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} is discrete,

t0 is the initial time
T is the horizon
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

Water inflows historical scenarios
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

As for data, we distinguish between parameters and
scenarios: scenarios are time sequences

A scenario is a time sequence

that runs from initial time t0 to horizon T or to T − 1

inflow water volume a(t) (rain, upper dam outflow) during [t, t + 1[
gives rise to a scenario of water inflows

a(·) =
(
a(t0), . . . , a(T − 1)

)

price p(t) of water turbined during [t, t + 1[
gives rise to a scenario of prices

p(·) =
(
p(t0), . . . , p(T − 1)

)

E In the deterministic setting, a single scenario is part of the data of the
problem, hence is supposed to be known in advance
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

Static constraints relate variables at the same time t

Stocks are volumes of water

0 ≤ S(t) ≤ S♯
︸︷︷︸

dam capacity

Turbined outflows are volumes of water taken from the stock

0 ≤ q(t) ≤ S(t)

Turbined outflows are limited by turbined capacity

0 ≤ q(t) ≤ q♯
︸︷︷︸

turbined capacity
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

A dynamical equation relates variables
between times t and t + 1

More precisely, a so-called “state variable” at time t + 1
is expressed as a function of variables at time t

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

} , t = t0, t0+1, . . . ,T − 1

S(t) volume (stock) of water at the beginning of period [t, t + 1[

a(t) inflow water volume during [t, t + 1[

q(t) turbined outflow volume during [t, t + 1[

decided at the beginning of period [t, t + 1[
chosen such that

0 ≤ q(t) ≤ S(t) and 0 ≤ q(t) ≤ q
♯
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

The so-called “history space” can have a large size

Single dam histories

(
S(·), q(·)

)
=

(

stocks
︷ ︸︸ ︷

S(t0), . . . , S(T ),

turbined
︷ ︸︸ ︷

q(t0), . . . , q(T − 1)
)

For a single dam managed over a year with one turbinating decision a day,
(
S(·), q(·)

)
∈ R366+365 = R731

For a single dam managed over a year with three turbinating decisions a day,
(
S(·), q(·)

)
∈ R3×731 = R2193

For five dams managed over a year with three turbinating decisions a day,
(
S(·), q(·)

)
∈ R5×2193 = R10965
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

State and control constraints reduce the set of
admissible trajectories to account for feasibility issues

Admissible trajectories for a single dam dynamical model






(
S(·), q(·)

)

∣
∣
∣
∣
∣
∣

S(t0) = S0 ,
S(t + 1) = min{S♯, S(t)− q(t) + a(t)} , t ∈ T

q(t) ∈ [0,min{q♯, S(t)}] t ∈ T






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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

When each history has a value, optimization is possible

“In economics, there is the concept of value”

Optimization requires measuring value

Intertemporal payoff for a single dam

T−1∑

t=t0

turbined water profit
︷ ︸︸ ︷

p(t)
︸︷︷︸

price ×

q(t)
︸︷︷︸

quantity

+

final stock utility
︷ ︸︸ ︷

K
(
S(T )

)

Michel DE LARA (École des Ponts ParisTech) Optimal Sequential Decisions January 4, 2016 24 / 147



Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

We are now ready to dress
an intertemporal optimization problem in formal clothes

Domain: the product set of histories with generic element
(
S(·), q(·)

)

Criterion/objective function:

(
S(·), q(·)

)
7→

T−1∑

t=t0

p(t)q(t)
︸ ︷︷ ︸

instantaneous payoff

+ K
(
S(T )

)

︸ ︷︷ ︸

final payoff

Constraints: induced by state, control and dynamics constraints

T ad(t0,S0) =







(
S(·), q(·)

)

∣
∣
∣
∣
∣
∣

S(t0) = S0 ,

S(t + 1) = min{S♯,S(t) − q(t) + a(t)} , t ∈ T

q(t) ∈ [0,min{q♯,S(t)}] t ∈ T







max(
S(·),q(·)

)
∈T ad(t0,S0)

T−1∑

t=t0

p(t)q(t) + K
(
S(T )

)
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

We know illustrate the two well-known approaches
to tackle intertemporal optimization problems

à la Pontryaguin

à la Bellman
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

In the Pontryaguin approach,
the dynamics equations are treated as constraints

that inherit a multiplier, the adjoint state

We can handle the resolution of the intertemporal optimization problem by
mathematical programming, that is, the maximization of a function over Rn

under equality and inequality constraints

In one approach, one writes the KKT conditions
for the equality constraints induced by the dynamics equations

In another approach, one annihilates a gradient

the volumes S(t) are intermediary variables,
completely determined by the choice of the controls q(t)
however, such intermediary variables may be used
to compute gradients by means of an adjoint state
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

In the Bellman approach,
a value is attached to a stock at any time

Question: What happens to the final stock if we maximize
∑T−1

t=t0
p(t)q(t) + K

(
S(T )

)
with final value of water K(S) = 0?

Answer:

In economic terms, the final value of water K(S)
is the best payoff that can be obtained over an infinite horizon
starting from the stock S at time t0
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Dressing an intertemporal optimization problem in formal clothes An example of dam optimal management

To beat myopic strategies, an intuition of Bellman equation

A myopic decision-maker maximizes, at each time t, the instantaneous payoff:

max
0≤q(t)≤min{q♯,S(t)}

p(t)q(t)

Denote by V (t, S) = max(
S(·),q(·)

)
∈T ad(t,S)

∑T−1
s=t p(s)q(s) + K

(
S(T )

)

the best payoff that can be achieved over the time range
{t, t + 1, . . . ,T − 1,T} starting from the stock S at time t

A non myopic decision-maker solves, at each time t

max
0≤q(t)≤min{q♯,S}

p(t)q(t)
︸ ︷︷ ︸

instantaneous payoff

+V (t + 1,min{S♯, S − q(t) + a(t)})
︸ ︷︷ ︸

future payoff

which reveals a trade-off between immediate and future reward

The Bellman equation follows by definition of the left-hand side

V (t, S) = max
0≤q≤min{q♯,S}

p(t)q + V (t + 1,min{S♯, S − q + a(t)})
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Dressing an intertemporal optimization problem in formal clothes Discrete-time nonlinear state-control systems
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Dressing an intertemporal optimization problem in formal clothes Discrete-time nonlinear state-control systems

Discrete-time nonlinear state-control systems
are special input-output systems

A specific output is distinguished, and is labeled state,
when the system may be written as

x(t + 1) = Dyn(t, x(t), u(t)), t ∈ T = {t0, t0 + 1, . . . ,T − 1}

the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, etc.)

the state variable x(t) belongs to the finite dimensional state space X = RnX ;
(stocks, biomasses, abundances, capital, etc.)

the control variable u(t) is an element of the control space U = RnU

(outflows, catches, harvesting effort, investment, etc.)

the dynamics Dyn maps T× X× U into X

(storage, age-class model, population dynamics, economic model, etc.)

Michel DE LARA (École des Ponts ParisTech) Optimal Sequential Decisions January 4, 2016 31 / 147



Dressing an intertemporal optimization problem in formal clothes Discrete-time nonlinear state-control systems

A historical snapshot on the distinction between states and
controls

The Maximum Principle of optimal control: A history of ingenious ideas and
missed opportunities, by Hans Josef Pesch and Michael Plail,
Control and Cybernetics, vol. 38 (2009) No. 4A

Lawrence M. Graves (1932, 1933) distinguished the state variables
and the degrees of freedom by different letters

Buried in RAND reports (1949, 1950) Magnus R. Hestenes has definitely
introduced different notations for the state and the control variables

RAND (Research ANd Development) corporation:
Magnus R. Hestenes, Rufus P. Isaacs, Richard E. Bellman

Later, Rudolf E. Kálmán as well introduced
the concept of state and control variables;

The letter u stands for the Russian word for control: upravlenie

Russian school: Pontryagin, Gamkrelidze, Boltyanskii
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Dressing an intertemporal optimization problem in formal clothes Discrete-time nonlinear state-control systems

We dress natural resources management issues
in the formal clothes of control theory in discrete time

Control theory
in discrete time

blanco

Ecology Economics Modeling
Life-cycle Decision Simulations
Patches under

uncertainty

Problems are framed as

find controls/decisions
driving a dynamical system
to achieve various goals

Three main ingredients are

controlled dynamics ®

constraints �
criterion to optimize
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Dressing an intertemporal optimization problem in formal clothes Discrete-time nonlinear state-control systems

We mathematically express the objectives pursued
as control and state constraints

For a state-control system,
we cloth objectives as constraints

and we distinguish

control constraints (rather easy)
state constraints (rather difficult)

Viability theory deals with state constraints
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Dressing an intertemporal optimization problem in formal clothes Discrete-time nonlinear state-control systems

Constraints may be explicit on the control variable
and are rather easily handled by reducing the decision set

Examples of control constraints

Irreversibility constraints, physical bounds
�

0 ≤ a(t) ≤ 1 , 0 ≤ h(t) ≤ B(t)

Tolerable costs c
(
a(t),Q(t)

)
≤ c♯

Control constraints / admissible decisions

u(t)
︸︷︷︸

control

∈ B
(
t, x(t)

)

︸ ︷︷ ︸

admissible set

, t = t0, . . . ,T − 1

Easy because control variables u(t) are precisely those variables
whose values the decision-maker can fix at any time within given bounds
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Dressing an intertemporal optimization problem in formal clothes Discrete-time nonlinear state-control systems

Meeting constraints bearing on the state variable is delicate
due to the dynamics pipeline between controls and state

State constraints / admissible states

x(t)
︸︷︷︸

state

∈ A(t)
︸︷︷︸

admissible set

, t = t0, . . . ,T

Examples (“tipping points”)

co2 concentration M(t) ≤ M♯

biomass B♭ ≤ B(t) ≤ B♯

State constraints are mathematically difficult because of “inertia”

x(t) = function
︸ ︷︷ ︸

iterated dynamics

(
u(t − 1), . . . , u(t0)
︸ ︷︷ ︸

past controls

, x(t0)
)
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Dressing an intertemporal optimization problem in formal clothes Discrete-time nonlinear state-control systems

Target and asymptotic state constraints are special cases

Final state achieves some target

x(T )
︸ ︷︷ ︸

final state

∈ A(T )
︸ ︷︷ ︸

target set

Example: co2 concentration

State converges toward a target

lim
t→+∞

x(t)
︸ ︷︷ ︸

asymptotic state

∈ A(∞)
︸ ︷︷ ︸

target set

Example: convergence towards an endemic state in epidemiology
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

Anchoveta and merluza stock and catches trajectories,
in Perú from 1971 to 1985
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

Trajectories are time sequences (of states and controls),
also called paths

Control trajectory

u(·) =
(
u(t0), u(t0 + 1), . . . , u(T − 1)

)

︸ ︷︷ ︸

control path

State trajectory

x(·) =
(
x(t0), x(t0 + 1), . . . , x(T − 1), x(T )

)

︸ ︷︷ ︸

state path

State-control trajectory
(
x(·), u(·)

)
=

(
x(t0), . . . , x(T ), u(t0), . . . , u(T − 1)

)

︸ ︷︷ ︸

state−control path

IMARPE data from 1971 to 1985 in thousands of tonnes (103 tons)

anchoveta stocks [11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407 1678 40 900 3944]

merluza stocks [347 437 455 414 538 735 636 738 408 312 148 100 99 124 194]

anchoveta captures [9184 3493 1313 3053 2673 3211 626 464 1000 223 288 1240 118 2 648]

merluza captures [26 13 133 109 85 93 107 303 93 159 69 26 6 12 26]
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

A history is a whole path of states and controls,
and the history set is the natural domain

for an intertemporal optimization problem

A state-control trajectory is called a history
(
x(·), u(·)

)
=

(
x(t0), . . . , x(T ), u(t0), . . . , u(T − 1)

)

︸ ︷︷ ︸

history

The set of state and control trajectories is the so-called history set
(
x(·), u(·)

)

︸ ︷︷ ︸

history

∈ X
T+1−t0 × U

T−t0

︸ ︷︷ ︸

history set

Single dam histories

(
S(·), q(·)

)
=

(

stocks
︷ ︸︸ ︷

S(t0), . . . , S(T ),

turbined
︷ ︸︸ ︷

q(t0), . . . , q(T − 1)
)
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

State and control constraints reduce the set of
admissible trajectories to account for feasibility issues

Admissible trajectories
(
x(·), u(·)

)
in T ad(t0, x0) satisfy

dynamics x(t + 1) = Dyn
(
t, x(t), u(t)

)

control constraints u(t) ∈ B
(
t, x(t)

)

state constraints x(t) ∈ A(t)

T ad(t0, x0) =







(
x(·), u(·)

)

∣
∣
∣
∣
∣
∣
∣
∣

x(t0) = x0 ,
x(t + 1) = Dyn

(
t, x(t), u(t)

)
, t ∈ T

u(t) ∈ B
(
t, x(t)

)
, t ∈ T

x(t) ∈ A(t) , t ∈ T







Admissible trajectories for a single dam dynamical model

T ad(t0,S0) =






(
S(·), q(·)

)

∣
∣
∣
∣
∣
∣

S(t0) = S0 ,

S(t + 1) = min{S♯,S(t) − q(t) + a(t)} , t ∈ T

q(t) ∈ [0,min{q♯,S(t)}] t ∈ T





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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

An intertemporal criterion assigns a value to each history

Intertemporal criterion

An (intertemporal) criterion or (intertemporal) objective function

Crit

(

x(t0), x(t0 + 1), . . . , x(T − 1), x(T ), u(t0), u(t0 + 1), . . . , u(T − 1)

)

is a function defined over the set of histories

Crit : X
T+1−t0 × U

T−t0 → R
(
x(·), u(·)

)
7→ Crit

(
x(·), u(·)

)

Intertemporal payoff for a single dam

Crit
(
S(·), q(·)

)
=

T−1∑

t=t0

turbined water profit
︷ ︸︸ ︷

p(t)
︸︷︷︸

price ×

q(t)
︸︷︷︸

quantity

+

final stock utility
︷ ︸︸ ︷

K
(
S(T )

)
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

A criterion reflects the intertemporal preferences of the
decision-maker (impatience, intergenerational equity, etc.)

The additive and time-separable criterion

Crit
(
x(·), u(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t)

)

︸ ︷︷ ︸

instantaneous gain

+ K
(
x(T )

)

︸ ︷︷ ︸

final gain

is the most common and covers many well-known examples

Discounted present value (or net present value)
∑T−1

t=t0
δt−t0L

(
x(t), u(t)

)

Green Golden K
(
T , x(T )

)

Chichilnisky θ
∑T−1

t=t0
δt−t0L

(
x(t), u(t)

)
+ (1− θ)K

(
T , x(T )

)

The Maximin or Rawls criterion

Crit
(
x(·), u(·)

)
= min

t=t0,...,T−1
L
(
t, x(t), u(t)

)
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

The most common additive and time-separable criterion
allows for compensations between time periods

The most usual criterion is additive and time-separable

Crit
(
x(·), u(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t)

)
+ K

(
x(T )

)

Additive criteria allow for possible compensations between time periods
(like the sums of times spent on a graph)

Environmental economists sanction the present value

Crit
(
x(·), u(·)

)
=

discounted utility
︷ ︸︸ ︷
+∞∑

t=t0

(
1

1 + re
)t−t0L

(
x(t), u(t)

)

as “dictatorship of the present” (because of discounting)
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

Discounting erases the future

The French public discount rate

En France, le rapport Révision du taux d’actualisation des investissements publics
(Commissariat général du Plan, groupe d’experts présidé par Daniel Lebègue,
janvier 2005) a conduit à diviser par deux (de 8% à 4%) le taux d’actualisation à
retenir pour évaluer la rentabilité des choix d’investissements publics

1

1 + re
=

1

1 + 0.04
≈ 0.96

The future in one hundred years is valued, seen from today, 2%

(
1

1 + 0.04
)10 ≈ 0.68 , (

1

1 + 0.04
)50 ≈ 0.14 , (

1

1 + 0.04
)100 ≈ 0.02
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

The Maximin focuses on minimal utility over time

Equity: a focus on the poorest generation /
utility level of the least advantaged generation

The maximin form in the finite horizon case

Crit
(
x(·), u(·)

)
= min

t=t0,...,T−1

generation utility
︷ ︸︸ ︷

L
(
t, x(t), u(t)

)

︸ ︷︷ ︸

worse generation utility

In the infinite horizon case

Crit
(
x(·), u(·)

)
= min

t=t0,...,+∞
L
(
t, x(t), u(t)

)

There can be no compensations between time periods

John Rawls, A Theory of Justice, 1971
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

John Bordley Rawls (1921–2002)

John Bordley Rawls
was an American philosopher and a leading
figure in moral and political philosophy,
famous for having written
A Theory of Justice (1971)

Two of John Rawls’s younger brothers
died as children —
from illnesses they contracted from him

Rawls believed he developed
his life-long stutter as a result of guilt
over his brothers’ deaths
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

The Green Golden criterion is a
“dictatorship of the future”

In the finite horizon case

Crit
(
x(·), u(·)

)
= K

(
x(T )
︸ ︷︷ ︸

state

)

In the infinite horizon case

Crit
(
x(·), u(·)

)
= lim inf

T→+∞
K
(
x(T )

)

The Green Golden criterion values only the final state
and none of the controls (no consumption)
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Dressing an intertemporal optimization problem in formal clothes Histories, criteria and intertemporal preferences

The Chichilnisky criterion is in-between

The Chichilnisky form with ponderation parameter θ ∈ [0, 1]

Crit
(
x(·), u(·)

)
= θ

T−1∑

t=t0

(
1

1 + re
)t−t0L

(
x(t), u(t)

)

︸ ︷︷ ︸

dictatorship of the present

+(1− θ) K
(
x(T )

)

︸ ︷︷ ︸

dictatorship of the future

Sustainability: to reconcile

{
present
future

In the infinite horizon case

Crit
(
x(·), u(·)

)
= θ

+∞∑

t=t0

L
(
t, x(t), u(t)

)
+ (1− θ) lim inf

T→+∞
K
(
x(T )

)
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Dressing an intertemporal optimization problem in formal clothes The general problem of optimal control under constraints
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1 A bird’s eye view of trade-offs in intertemporal optimization
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Hotelling rule
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Dressing an intertemporal optimization problem in formal clothes The general problem of optimal control under constraints

We are now ready to dress
an intertemporal optimization problem in formal clothes

Domain: the product set of histories

X
T+1−t0 × U

T−t0

Criterion/objective function:

Crit : XT+1−t0 × UT−t0 → R
(
x(·), u(·)

)
7→ Crit

(
x(·), u(·)

)

Constraints: induced by state, control and dynamics constraints

T ad(t0, x0) =







(
x(·), u(·)

)

∣
∣
∣
∣
∣
∣
∣
∣

x(t0) = x0 ,
x(t + 1) = Dyn

(
t, x(t), u(t)

)
, t ∈ T

u(t) ∈ B
(
t, x(t)

)
, t ∈ T

x(t) ∈ A(t) , t ∈ T






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Dressing an intertemporal optimization problem in formal clothes The general problem of optimal control under constraints

An optimal trajectory maximizes the criterion
over all admissible trajectories

The optimal value

Crit⋆(t0, x0) = max(
x(·),u(·)

)
∈T ad(t0,x0)

Crit
(
x(·), u(·)

)

is abusively denoted by Crit⋆(t0, x0) = maxu(·) Crit
(
x(·), u(·)

)

Optimal trajectory

Any path
(
x⋆(·), u⋆(·)

)
∈ T ad(t0, x0) such that

max(
x(·),u(·)

)
∈T ad(t0,x0)

Crit
(
x(·), u(·)

)
= Crit

(
x⋆(·), u⋆(·)

)

is a feasible optimal trajectory or an optimal path
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Dressing an intertemporal optimization problem in formal clothes The general problem of optimal control under constraints

Why mathematical optimization? (and not rules of thumb)

Optimization can examine millions, or even an infinite number, of choices
to find the best ones within the specified resource limits

It can look at many more options than any human decision maker
(using rules of thumb)

In 1962, Bryson and Denham calculated the
optimal trajectory for a supersonic plane (F4H)
to go from zero altitude to the altitude of
20 km in horizontal flight with Mach 1 speed

They showed the counterintuitive result
that the path of a supersonic aircraft
should actually dive at one point

The minimal time obtained by optimal control
is, depending on sources, 10% (to 50%) less
than the time needed by the best of pilots!

The optimum is by no ways obvious,
and requires mathematical techniques
to be characterized
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Dressing an intertemporal optimization problem in formal clothes The general problem of optimal control under constraints

Summary

Discrete-time nonlinear state-control systems
are special input-output dynamical systems

control = input
state = specific output satisfying a dynamical equation

Trajectories are time sequences (of states and controls), also called paths

State and control constraints reduce the set of admissible trajectories
to account for feasibility issues

A history is a whole path of states and controls,
and an intertemporal criterion assigns a value to each history

A criterion reflects the intertemporal preferences of the decision-maker
(impatience, intergenerational equity, etc.)

An optimal trajectory maximizes the criterion over all admissible trajectories
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Pontryaguin’s “maximum” principle and Hotelling rule

Outline of the presentation
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4 Dynamic programming for the additive payoff case

5 Examples in natural resources optimal management

6 Non additive criteria
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Pontryaguin’s “maximum” principle and Hotelling rule Pontryaguin’s “maximum” principle for the additive case
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Pontryaguin’s “maximum” principle and Hotelling rule Pontryaguin’s “maximum” principle for the additive case

In Pontryaguin’s approach, dynamic equations are dualized,
and a derivative is set to zero

Pontryaguin was incited to work on optimal control to beat the U-2 plane

Treat dynamic equations as constraints bearing on trajectories

Raise the constraints into the criterion by means of Lagrange multipliers
and forge the Hamiltonian

Set the derivative of the Hamiltonian to zero

In De Methodis Serierum et Fluxionum
(A Treatise on the Methods of Series and Fluxions) (1671), Newton stated

When a quantity is greatest or least, at that moment its flow neither
increases nor decreases: for if it increases, that proves that it was less
and will at once be greater than it now is, and conversely so if it
decreases. Therefore seek its fluxion [by previously described methods]
and set it equal to nothing.
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Pontryaguin’s “maximum” principle and Hotelling rule Pontryaguin’s “maximum” principle for the additive case

For an additive criterion, we define a Hamiltonian

To the optimization problem

max(
x(·),u(·)

)

T−1∑

t=t0

L
(
t, x(t), u(t)

)

︸ ︷︷ ︸

instantaneous gain

+ K
(
x(T )

)

︸ ︷︷ ︸

final gain

with dynamics x(t + 1) = Dyn
(
t, x(t), u(t)

)
, x(t) ∈ X = Rn

we attach the Hamiltonian function

H(t, x , q, u) =

n∑

i=1

qiDyni (t, x , u) + L(t, x , u)

= Dyn(t, x , u)′
︸ ︷︷ ︸

dynamic

q + L
(
t, x , u

)

︸ ︷︷ ︸

instantaneous gain

where the new variable q ∈ Rn is called
adjoint state, adjoint variable, or multiplier

Michel DE LARA (École des Ponts ParisTech) Optimal Sequential Decisions January 4, 2016 59 / 147



Pontryaguin’s “maximum” principle and Hotelling rule Pontryaguin’s “maximum” principle for the additive case

Pontryaguin’s “maximum” principle

Assume that instantaneous utility L, final utility K and dynamic Dyn
are continuously differentiable in the state and control variables (x , u)

If the trajectory
(
x⋆(·), u⋆(·)

)
is optimal,

there exists a sequence q⋆(·) = (q⋆(t0), . . . , q
⋆(T − 1)) ∈ XT−t0

of adjoint states

such that, for any i = 1, . . . , n and j = 1, . . . , p, we have
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Pontryaguin’s “maximum” principle and Hotelling rule Pontryaguin’s “maximum” principle for the additive case

Hamilton equations







x⋆i (t + 1) =
∂H
∂qi

(
t, x⋆(t), q⋆(t), u⋆(t)

)
, t = t0, . . . ,T − 1

q⋆i (t − 1) =
∂H
∂xi

(
t, x⋆(t), q⋆(t), u⋆(t)

)
, t = t0 + 1, . . . ,T − 1

0 =
∂H
∂uj

(
t, x⋆(t), q⋆(t), u⋆(t)

)
, t = t0, . . . ,T − 1

x⋆i (t0) = xi0

q⋆i (T − 1) =
∂K

∂xi

(
x⋆(T )

)

Beware! The optimum may not be a maximum (in discrete-time)
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Pontryaguin’s “maximum” principle and Hotelling rule Hotelling rule
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Pontryaguin’s “maximum” principle and Hotelling rule Hotelling rule

Harold Hotelling, 1895-1973

Harold Hotelling
was a mathematical statistician
and an influential economic theorist

His name is known to all statisticians
because of Hotelling’s T-square
distribution and its use in statistical
hypothesis testing
and confidence regions

He also introduced
canonical correlation analysis,
and is the eponym of
Hotelling’s law, Hotelling’s lemma,
and Hotelling’s rule in economics

Wikipedia
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Pontryaguin’s “maximum” principle and Hotelling rule Hotelling rule

Optimal extraction of an exhaustible resource

H. Hotelling. The economics of exhaustible resources.
Journal of Political Economy, 39:137–175, april 1931.

For the dynamic

S(t + 1) = S(t)
︸︷︷︸

stock

− h(t)
︸︷︷︸

extraction

, 0 ≤ h(t) ≤ S(t)

and the optimal discounted utility problem

max
h(t0),...,h(T−1)

( T−1∑

t=t0

δ
t−t0 L

(
h(t)

)

︸ ︷︷ ︸

extraction utility

+δ
T−t0 L

(
S(T )

)

︸ ︷︷ ︸

final stock utility

)

the Hamiltonian is

H(t, S , q, h) = q (S − h)
︸ ︷︷ ︸

dynamics

+ δt−t0L(h)
︸ ︷︷ ︸

instantaneous gain
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Pontryaguin’s “maximum” principle and Hotelling rule Hotelling rule

The Hamilton equations yield a stationary multiplier

S⋆(t + 1) = S⋆(t)− h⋆(t) ( ∂H
∂q

= S − h)

q⋆(t − 1) = q⋆(t) ( ∂H
∂S

= q)

0 = δt−t0L
′
(
h⋆(t)

)
− q⋆(t) ( ∂H

∂h
= δt−t0L

′
(
h
)
− q)

S⋆(t0) = S0

q⋆(T − 1) = δT−t0L
′
(
S⋆(T )

)
( ∂K
∂S

= δT−t0L
′
(
S
)
)

The second equation shows that the multiplier q⋆(t) is stationary
and the third equation gives

L′
(
h⋆(t)

)
= q⋆(t0)δ

t0−t
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Pontryaguin’s “maximum” principle and Hotelling rule Hotelling rule

The Hotelling rule states that the price
of an exhaustible resource grows at the discount rate

Economists interpret the marginal utility L′
(
h⋆(t)

)

as the price of the stock at time t, that we denote by

p(t) = L′
(
h⋆(t)

)

Since the multiplier q⋆(t) is stationary,
we deduce that the price of the resource grows as

p(t + 1) = δ−1p(t) = (1 + re)p(t)

The so-called Hotelling rule states that
the exhaustible resource price growth rate coincides with the discount rate re

p(t + 1)

p(t)
= 1 + re

︸︷︷︸

discount rate
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Pontryaguin’s “maximum” principle and Hotelling rule Hotelling rule

The Hotelling rule has found an application to remedy
the stubborn use of discounting with constant prices

M. Boiteux, À propos de la “critique de la théorie de l’actualisation telle
qu’employée en France”, Revue d’Économie Politique, 1976.

“l’application obtuse de l’actualisation,
à prix constants et sur les seules valeurs marchandes,
trahit les réalités et les aspirations profondes de nos sociétés”

“la procédure de l’actualisation nettoie, à terme, ce qui est accessoire
parce que mâıtrisable par le génie humain, pour mettre en relief l’essentiel :
ce qui est intrinsinquement rare et non reproductible”
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Pontryaguin’s “maximum” principle and Hotelling rule Hotelling rule

En France, la valeur tutélaire du carbone est fixée
à l’aide de la règle de Hotelling

La valeur tutélaire du carbone, Commission du Centre d’analyse stratégique,
présidée par Alain Quinet, 2009.

Valeur fixée à 100 euros par tonne de CO2 à l’horizon 2030.

Après 2030, cette valeur de 100 euros crôıt au rythme du taux d’actualisation
public. Cette règle d’évolution, similaire à la règle de Hotelling pour
l’exploitation optimale des ressources épuisables, est une règle de préservation
de l’avenir. Elle garantit que le prix actualisé d’une ressource limitée reste
constant au cours du temps et n’est pas “écrasé” par l’actualisation.

Il est retenu un taux de croissance annuel de la valeur carbone de 4%. Avec
ces hypothèses, la valeur du carbone crôıt de 100 euros la tonne de CO2 en
2030 à 200 euros en 2050.
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Dynamic programming for the additive payoff case Bellman dynamic programming equation
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An example of dam optimal management
Discrete-time nonlinear state-control systems
Histories, criteria and intertemporal preferences
The general problem of optimal control under constraints

3 Pontryaguin’s “maximum” principle and Hotelling rule
Pontryaguin’s “maximum” principle for the additive case
Hotelling rule

4 Dynamic programming for the additive payoff case
Bellman dynamic programming equation
Open-loop and closed-loop solutions to optimal control problems

5 Examples in natural resources optimal management
Optimal depletion of an exhaustible resource
Discussion on discounting
Intergenerational equity for a renewable resource
Over-exploitation, extinction and inequity

6 Non additive criteria
The Green Golden rule approach
The ”Maximin” approach
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We consider a shortest distance travelling problem

Los Angeles

Chicago

Boston

Shortest time path to go from Los Angeles to Boston

Time: day

States: nodes of a graph (cities)

Admissible controls: arcs starting from a node

Criterion: sum of the arcs lengths

Optimization problem: minimal distance to go from Los Angeles to Boston
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We illustrate two notions of solutions
to the shortest time travelling problem

Los Angeles

Chicago

Boston

Open loop: a sequence of cities
Los Angeles → Las Vegas → Salt Lake City → · · · → Chicago → · · ·
Cleveland → Boston
Closed loop: a sequence of decision rules
for any city (Los Angeles, San Diego, Dallas, Chicago, etc.),
pinpoint the next city to visit

Shortest path to go to Boston
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The shortest path on a graph illustrates
Bellman’s Principle of Optimality

Los Angeles

Chicago

Boston

For an auto travel analogy,
suppose that the fastest route
from Los Angeles to Boston
passes through Chicago. The
principle of optimality
translates to obvious fact that
the Chicago to Boston portion
of the route is also the fastest
route for a trip that starts from
Chicago and ends in Boston.
(Dimitri P. Bertsekas)
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Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19, 1984)

An optimal policy has the property
that whatever the initial state and
initial decision are, the remaining
decisions must constitute an
optimal policy with regard to the
state resulting from the first
decision (Richard Bellman)

A plan is time consistent if the passage of
time alone gives no reason to change it
(G. Heal)
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Optimization of an intertemporal additive criterion

We consider the optimization of an intertemporal additive criterion

max(
x(·),u(·)

)
∈T ad(t0,x0)

T−1∑

t=t0

L
(
t, x(t), u(t)

)

︸ ︷︷ ︸

instantaneous gain

+ K
(
x(T )

)

︸ ︷︷ ︸

final gain

The dynamic programming method breaks

an intertemporal optimization problem
into smaller static optimization subproblems

and Richard Bellman’s Principle of Optimality describes how to do this
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The payoff-to-go / value function / Bellman function

The payoff-to-go from state x at time t is

V (t, x) = max
(
x(·),u(·)

)
∈T ad (t,x)

T−1∑

s= t

L
(
s, x(s), u(s)

)
+ K

(
x(T )

)

that is, the best payoff which can be obtained starting from state x at time t

The function V is called the value function, or the Bellman function

The original problem is V (t0, x0) , that is,
a single problem among a myriad of others

Shortest path to go from Los Angeles to Boston

Value function: minimal time to go from any city (node) to Boston

The original problem is V (0, Los Angeles )
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The dynamic programming equation, or Bellman equation,
is a backward equation satisfied by the value function

Proposition

In the case without state constraints (A(t) = X), the value function is the solution
of the following backward dynamic programming equation (or Bellman equation)
where t runs from T − 1 down to t0:

V (T , x) = K(x) , ∀x ∈ X

V (t, x) = max
u∈B(t,x)

(

L(t, x , u) + V
(
t + 1, Dyn(t, x , u)

))

, ∀x ∈ X
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Sketch of the proof

V (t, x) = max
u∈B(t,x)

(

L
(
t, x , u

)

︸ ︷︷ ︸

instantaneous gain

+

optimal payoff
︷ ︸︸ ︷

V
(
t + 1, Dyn(t, x , u)

︸ ︷︷ ︸

future state

) )

Los Angeles

Chicago

Boston

A decision u at time t in state x provides

an instantaneous gain L
(
t, x , u

)

and a future payoff for attaining the
new state Dyn(t, x , u)

Shortest path to go from LA to Boston

When you leave a node (city) by an arc

it takes the travel time on the arc

and it brings you to another node
(city), from where the minimal time
is supposed known
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Sketch of the proof (2)

T ad(t, xt) =







(
x(·), u(·)

)

∣
∣
∣
∣
∣
∣
∣
∣

x(t) = xt ,

x(s + 1) = Dyn
(
s, x(s), u(s)

)
, s = t, . . . ,T − 1

u(s) ∈ B
(
s, x(s)

)
, s = t, . . . ,T − 1

x(s) ∈ A(s) , s = t, . . . ,T







=







(
x(·), u(·)

)

∣
∣
∣
∣
∣
∣
∣

x(t) = xt ∈ A(t) ,
u(t) ∈ B(t, xt) ,
(
x(·), u(·)

)
∈ T ad

(

t + 1, Dyn
(
t, xt , u(t)

))






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Sketch of the proof (3)

V (t, x) = max(
x(·),u(·)

)
∈T ad(t,x)

T−1∑

s=t

L
(
s, x(s), u(s)

)
+ K

(
x(T )

)

= max
u(t)∈B(t,xt)

max
(
x(·),u(·)

)
∈T ad

(

t+1,Dyn
(
t,xt ,u(t)

))

T−1∑

s=t

L
(
s, x(s), u(s)

)
+ K

(
x(T )

)

= max
ut∈B(t,xt )

L
(
t, x(t), u(t)

)

+ max
(
x(·),u(·)

)
∈T ad

(

t+1,Dyn
(
t,xt ,u(t)

))

T−1∑

s=t+1

L
(
s, x(s), u(s)

)
+ K

(
x(T )

)

= max
u∈B(t,x)

(

L(t, x , u) + V
(
t + 1, Dyn(t, x , u)

))
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Building block for the proof:
a maximum over a product set is a sequence of maxima

A maximum over a product set is a sequence of maxima

max
a∈A,b∈B

f (a, b) = max
(a,b)∈A×B

f (a, b) = max
a∈A

(

max
b∈B

f (a, b)

)

Extension to the case when the domain B depends on the “first” decision:
B → B(a)

max
a∈A,b∈B(a)

f (a, b) = max
a∈A

(

max
b∈B(a)

f (a, b)

)

︸ ︷︷ ︸

f̂ (a)

Michel DE LARA (École des Ponts ParisTech) Optimal Sequential Decisions January 4, 2016 81 / 147
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“Where did the name, dynamic programming, come from?”

The 1950s were not good years for
mathematical research. We had a very
interesting gentleman in Washington
named Wilson. He was Secretary of
Defense, and he actually had a
pathological fear and hatred of the
word, research. I’m not using the term
lightly; I’m using it precisely. His face
would suffuse, he would turn red, and
he would get violent if people used the
term, research, in his presence. You can
imagine how he felt, then, about the
term, mathematical.
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“Where did the name, dynamic programming, come from?”

What title, what name, could I choose? In the
first place I was interested in planning, in
decision making, in thinking. But planning, is
not a good word for various reasons. I decided
therefore to use the word, programming.
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Dynamic programming for the additive payoff case Bellman dynamic programming equation

“Where did the name, dynamic programming, come from?”

I wanted to get across the idea that this was
dynamic, this was multistage, this was
time-varying. I thought, let’s kill two birds with
one stone. Let’s take a word that has an
absolutely precise meaning, namely dynamic, in
the classical physical sense. It also has a very
interesting property as an adjective, and that is
it’s impossible to use the word, dynamic, in a
pejorative sense. Try thinking of some
combination that will possibly give it a
pejorative meaning. It’s impossible. Thus, I
thought dynamic programming was a good
name.
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Algorithm for the Bellman functions

initialization V (T , x) = K(x);
for t = T ,T − 1, . . . , t0 do

forall the x ∈ X do

forall the u ∈ B(t, x) do
l
(
t, x , u

)
= L

(
t, x , u

)
+ V

(
t + 1, Dyn(t, x , u)

)

V (t, x) = max
u∈B(t,x)

l
(
t, x , u

)
;

B⋆(t, x) = argmax
u∈B(t,x)

l
(
t, x , u

)
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Case with state constraints

Proposition

V (T , x) = K(x) , ∀x ∈ Viab(T )

V (t, x) = max
u∈Bviab(t,x)

(

L(t, x , u) + V
(
t + 1, Dyn(t, x , u)

))

, ∀x ∈ Viab(t)

where Viab(t) is given by the backward induction

Viab(T ) = A(T )

Viab(t) = {x ∈ A(t) | ∃u ∈ B(t, x) , Dyn(t, x , u) ∈ Viab(t + 1)}

and where the supremum is over viable controls

B
viab(t, x) = {u ∈ B(t, x) | Dyn(t, x , u) ∈ Viab(t + 1)}
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The dynamic programming equation yields a decision rule

The dynamic programming equation

V (t, x) = max
u∈B(t,x)

(

L
(
t, x , u

)

︸ ︷︷ ︸

instantaneous gain

+

optimal payoff
︷ ︸︸ ︷

V
(
t + 1, Dyn(t, x , u)

︸ ︷︷ ︸

future state

) )

yields a decision rule

Pol⋆(t, x) ∈ argmax
u∈B(t,x)

(

L(t, x , u) + V
(
t + 1, Dyn(t, x , u)

))

Again the intriguing thought: A solution is not merely a set of functions
of time, or a set of numbers, but a rule telling the decisionmaker what
to do; a policy (Richard Bellman)
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The Bellman equation provides an optimal policy

Proposition

For any time t and state x, assume the existence of the policy

Pol⋆(t, x) ∈ argmax
u∈B(t,x)

(

L(t, x , u) + V
(
t + 1, Dyn(t, x , u)

))

The policy Pol⋆ : (t, x) 7→ Pol⋆(t, x) is an optimal strategy,
in the sense that it yields an optimal trajectory as follows
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Optimal trajectories are calculated forward online

1 Initial state x⋆(t0) = x0
2 Plug the state x⋆(t0) into the “machine” Pol⋆ → initial decision

u⋆(t0) = Pol⋆(t0, x
⋆(t0))

3 Run the dynamics → second state x⋆(t0 + 1) = Dyn
(
t0, x

⋆(t0), u
⋆(t0)

)

4 Second decision u⋆(t0 + 1) = Pol⋆(t0 + 1, x⋆(t0 + 1))

5 And so on x⋆(t0 + 2) = Dyn
(
t0 + 1, x⋆(t0 + 1), u⋆(t0 + 1))

)
. . .

Proposition

max(
x(·),u(·)

)
∈T ad(t0,x0)

Crit
(
x(·), u(·)

)
optimal payoff

= V (t0, x0) value function at (t0, x0)

= Crit
(

x⋆(·), u⋆(·)
︸ ︷︷ ︸

optimal trajectory

)
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“Life is lived forward but understood backward”
(Søren Kierkegaard)

D. P. Bertsekas introduces his book
Dynamic Programming and Optimal Control
with a citation by Søren Kierkegaard

”Livet skal forst̊as baglaens, men leves
forlaens”

Life is to be understood backwards,
but it is lived forwards

The value function and the optimal policies
are computed backward and offline
by means of the Bellman equation

whereas the optimal trajectories
are computed forward and online
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Optimal strategies anticipate the future

Dam management optimal strategy

V (T , S) =

final payoff
︷︸︸︷

K(S) ,

V (t, S) = max
0≤q≤min{S,q♯}

p(t)q
︸ ︷︷ ︸

instant. payoff

+V
(
t + 1,min{S♯, S − q + a(t)}

︸ ︷︷ ︸

future stock volume

)

The value function S 7→ V (t, S) at time t depends on the tails
(
a(t), . . . , a(T − 1)

)
of the water inflows

(
p(t), . . . , p(T − 1)

)
of the prices

Therefore, an optimal policy S 7→ Pol⋆(t, S) at time t depends on
the same remaining future trajectories, hence anticipates the future

Therefore, an optimal control trajectory q(·) depends
on the whole trajectories a(·) and p(·)
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The adjoint state as a marginal value

Proposition

Suppose that the value function V (t, x) associated to the maximization problem
is smooth with respect to the state variable x
Assume that there exists an optimal trajectory x⋆(·) such that
the optimal decision Pol⋆

(
t, x⋆(t)

)
is unique for all t = t0, . . . ,T − 1

Then, the sequence q⋆(·) defined by

q⋆i (t) =
∂V

∂xi

(
t + 1, x⋆(t + 1)

)
, t = t0, . . . ,T − 1

is a solution of the Hamilton equations

The adjoint state appears as the derivative of the value function with respect to
the state variable along an optimal trajectory
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The curse of dimensionality is illustrated by the random
access memory capacity on a computer:

one, two, three, infinity (Gamov)

On a computer

RAM: 8 GBytes = 8(1 024)3 = 233 bytes
a double-precision real: 8 bytes = 23 bytes
=⇒ 230 ≈ 109 double-precision reals can be handled in RAM

If a state of dimension 4 is approximated
by a grid with 100 levels by components,
we need to manipulate 1004 = 108 reals
(without even counting the discretization of the controls and the time loop)
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Outline of the presentation
1 A bird’s eye view of trade-offs in intertemporal optimization
2 Dressing an intertemporal optimization problem in formal clothes

An example of dam optimal management
Discrete-time nonlinear state-control systems
Histories, criteria and intertemporal preferences
The general problem of optimal control under constraints

3 Pontryaguin’s “maximum” principle and Hotelling rule
Pontryaguin’s “maximum” principle for the additive case
Hotelling rule

4 Dynamic programming for the additive payoff case
Bellman dynamic programming equation
Open-loop and closed-loop solutions to optimal control problems

5 Examples in natural resources optimal management
Optimal depletion of an exhaustible resource
Discussion on discounting
Intergenerational equity for a renewable resource
Over-exploitation, extinction and inequity

6 Non additive criteria
The Green Golden rule approach
The ”Maximin” approach
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The issue of on-line information

Can we centralize all the informations
on stock values in a large power system?

Can we measure on-line the abundances
of all age-classes in a population model?

What about measurement errors?
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When decisions do not take into account on-line
information and the clock time,

we are in the stationary static case

Stationary (open-loop)

Stationary open-loop control is

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ≡ ue ∈ U
︸ ︷︷ ︸

control

Harvest the same biomass every year, as in the maximum sustainable yield
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When decisions do not take into account on-line
information but depend on the clock,

we are in the open-loop case

Open-loop �

Open-loop control consists of time-dependent sequences (planning, scheduling)

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ∈ U
︸ ︷︷ ︸

control

Examples of open-loop control

Fixed cycle gears for traffic lights in traffic regulation

Mine planning: extract a given sequence of blocks every year,
whatever you learn of the metal prices or of the ore content

Solutions to optimal control problems by Pontryagin’s variational approach
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“I started work on control theory” (Richard Bellman)

The tool we used was the calculus of variations.
What we found was that very simple problems
required great ingenuity. A small change in the
problem caused a great change in the solution.

Clearly, something was wrong. There was an
obvious lack of balance. Reluctantly, I was
forced to the conclusion that the calculus of
variations was not an effective tool for
obtaining a solution
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“The thought was finally forced upon me that the desired
solution in a control process was a policy”

(Richard Bellman)

Richard Ernest Bellman
(August 26, 1920 – March 19, 1984)

From planning �

to contingent planning �×E
Again the intriguing thought: A
solution is not merely a set of
functions of time, or a set of
numbers, but a rule telling the
decisionmaker what to do; a policy
(Richard Bellman)
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A computer code aboard a launcher
embodies the concept of policy

if state==0,

do control=8

elseif state==1,

do control=5.4

else do control=-15

On 4 June 1996, the maiden flight of
the Ariane 5 launcher ended in a failure.
(. . . ) The attitude of the launcher and
its movements in space are measured
by an Inertial Reference System (SRI).
(. . . ) The data from the SRI are
transmitted through the databus to the
On-Board Computer (OBC), which
executes the flight program (. . . )
The Operand Error occurred due to an
unexpected high value of an internal
alignment function result called BH,
Horizontal Bias, related to the
horizontal velocity sensed by the
platform
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“The blind cat does not catch mice”

u(t)
︸︷︷︸

control

= Pol
(
t, y(t)

︸︷︷︸

output

)

adaptive

adjustable

feeback

wait and see

full recourse

on-line management

corrective (vs. preventive)
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How clouded the crystal ball looks beforehand

What is worth noting about the foregoing
development is that I should have seen the
application of dynamic programming to
control theory several years before. I should
have, but I didn’t. It is very well to start a
lecture by saying, ’Clearly, a control process
can be regarded as a multistage decision
process in which. . . ,’ but it is a bit
misleading.
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How clouded the crystal ball looks beforehand

Scientific developments can always be made
logical and rational with sufficient
hindsight. It is amazing, however, how
clouded the crystal ball looks beforehand.
We all wear such intellectual blinders and
make such inexplicable blunders that it is
amazing that any progress is made at all.
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There are different observation patterns

Perfect observation:

Decision-hazard

y(t) = x(t)

Hazard-decision

y(t) =
(
x(t),w(t)

)

Partial observation:
y(t) = Obs

(
t, x(t)

)

Imperfect observation:

y(t) = Obs
(
t, x(t),w(t)

)

Dams management

Observing the stocks of all dams / the stocks and the water inflows / or only some stocks
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State feedback policies correspond to
perfect observation of the state

’Do thus-and-thus if you find yourself in this portion of state space with
this amount of time left’ (Richard Bellman)

Closed-loop control, state feedback (decision rule)

Pol : (t, x) ∈ T× X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

Turbinate a fraction of the dam stock

Pol(t,S) = α(t)S with 0 ≤ α(t) ≤ 1

ices precautionary approach

λUA(N) = max{λ ∈ R+ | SSB(Dyn(N, λ)) ≥ Blim and F (λ) ≤ Flim}
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Going from planning to contingent planning,
we have considerably enlarged the set of solutions

Stationary (open-loop): stationary sequences

u : t ∈ T 7→ u(t) ≡ ue , ue ∈ U

Once the control space U is discretized in NU elements,
the solution space cardinality is NU

Open-loop: time-dependent sequences (planning, scheduling)

u : t ∈ T 7→ u(t) , u(·) =
(
u(t0), . . . , u(T − 1)

)
∈ U

T

With NT time periods, the solution space cardinality is NNT

U

Closed-loop: time and state-dependent sequences

Pol : (t, x) ∈ T× X 7→ u = Pol(t, x) ∈ U , Pol ∈ U
T×X

Once the state space X is discretized in NX elements,
the solution space cardinality is NNT×NX

U
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Dynamic programming for the additive payoff case Open-loop and closed-loop solutions to optimal control problems

Summary

Bellman’s Principle of Optimality
breaks an intertemporal optimization problem
into a sequence of interconnected static optimization problems

The payoff-to-go / value function / Bellman function
is solution of a backward dynamic programming equation,
or Bellman equation

The Bellman equation provides an optimal policy,
a concept of solution which will prove useful in the uncertain case

In numerical practice, the curse of dimensionality
forbids to use dynamic programming
for a state with dimension more than three or four
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Examples in natural resources optimal management

Outline of the presentation

1 A bird’s eye view of trade-offs in intertemporal optimization

2 Dressing an intertemporal optimization problem in formal clothes

3 Pontryaguin’s “maximum” principle and Hotelling rule

4 Dynamic programming for the additive payoff case

5 Examples in natural resources optimal management

6 Non additive criteria
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

Outline of the presentation

1 A bird’s eye view of trade-offs in intertemporal optimization
2 Dressing an intertemporal optimization problem in formal clothes

An example of dam optimal management
Discrete-time nonlinear state-control systems
Histories, criteria and intertemporal preferences
The general problem of optimal control under constraints

3 Pontryaguin’s “maximum” principle and Hotelling rule
Pontryaguin’s “maximum” principle for the additive case
Hotelling rule

4 Dynamic programming for the additive payoff case
Bellman dynamic programming equation
Open-loop and closed-loop solutions to optimal control problems

5 Examples in natural resources optimal management
Optimal depletion of an exhaustible resource
Discussion on discounting
Intergenerational equity for a renewable resource
Over-exploitation, extinction and inequity

6 Non additive criteria
The Green Golden rule approach
The ”Maximin” approach

Michel DE LARA (École des Ponts ParisTech) Optimal Sequential Decisions January 4, 2016 109 / 147



Examples in natural resources optimal management Optimal depletion of an exhaustible resource

Two stage optimal management of an exhaustible resource

Time t runs from t0 = 0 to T = 2, that is, t = 0, 1, 2

We consider an exhaustible resource

S(t + 1) = S(t)
︸︷︷︸

stock

− h(t)
︸︷︷︸

extraction

, 0 ≤ h(t) ≤ S(t) , t = 0, 1

where one maximizes intertemporal discounted utility

max
h(0),h(1)

( (
h(0)

)γ

︸ ︷︷ ︸

extraction utility

+

discount factor
︷︸︸︷

δ
(
h(1)

)γ

︸ ︷︷ ︸

extraction utility

+δ2
(
S(2)

)γ

︸ ︷︷ ︸

final stock utility

)
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

As an exercise, write the Bellman equation
and find the optimal control at time t = 1

The Bellman equation is







V (2, S) = δ2
√
S

V (1, S) = max0≤h≤S

(

δ
√
h+ V

(
2, S − h

))

V (0, S) = max0≤h≤S

(√
h+ V

(
1, S − h

))

In particular, we deduce that

V (1, S) = max
0≤h≤S

(

δ
√
h + δ2

√
S − h

)

By differenting with respect to h, we find that
the maximum is achieved at h⋆ solution of (S − h⋆) = δ2h⋆, that is,

h⋆ =
1

1 + δ2
S
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

Then find the Bellman functions and the optimal policies
at times t = 0 and t = 1

The Bellman functions at times t = 0, t = 1 and t = 2 are







V (2, S) = δ2
√
S

V (1, S) = δ
√
1 + δ2

√
S

V (0, S) =

The optimal policies at times t = 0 and t = 1 are







Pol⋆(1, S) = 1
1+δ2 S

Pol⋆(0, S) = 1
1+δ2+δ4 S
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

Finally, find the optimal trajectories







S⋆(0) = S0

h⋆(0) = Pol⋆(0, S0) =
1

1+δ2+δ4 S0

S⋆(1) = S⋆(0)− h⋆(0) = δ2(1+δ2)
1+δ2+δ4 S0

h⋆(1) = Pol⋆
(
1, S⋆(1)

)
= δ2

1+δ2+δ4
S0

S⋆(2) = S⋆(1)− h⋆(1) = δ4

1+δ2+δ4
S0
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

Optimal management of an exhaustible resource

We now consider the multi-period case where time t runs from t0 to T

We consider an exhaustible resource

S(t + 1) = S(t)
︸︷︷︸

stock

− h(t)
︸︷︷︸

extraction

, 0 ≤ h(t) ≤ S(t)

where one maximizes intertemporal discounted utility

max
h(t0),...,h(T−1)

( T−1∑

t=t0

δt−t0
(
h(t)

)γ

︸ ︷︷ ︸

extraction utility

+δT−t0
(
S(T )

)γ

︸ ︷︷ ︸

final stock utility

)
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

As an exercise, provide the dynamic programming equation
attached to this specific problem







V (T , x) = K(x)

V (t, x) = max
u∈B(t,x)

(

L
(
t, x , u

)

︸ ︷︷ ︸

instantaneous gain

+

optimal payoff
︷ ︸︸ ︷

V
(
t + 1, Dyn(t, x , u)

︸ ︷︷ ︸

future state

) )

Data Abstract Specific

State x S
Control u h

Control constraints u ∈ B(t, x) h ∈ [0, S ]
Dynamic Dyn(t, x , u) S − h

Instantaneous gain L
(
t, x , u

)
δt−t0hγ

Final gain K(x) δT−t0Sγ

{
V (T , S) = ?

V (t, S) = max?
(

? + V
(
t + 1, ?

))
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

Dynamic programming equation







V (T , x) = K(x)

V (t, x) = max
u∈B(t,x)

[

L(t, x , u) + V
(
t + 1, Dyn(t, x , u)

)]

V (T , S) = δT−t0Sγ

V (T − 1, S) = max
0≤h≤S

[
δT−t0−1hγ + V

(
T , S − h

)]

= max
0≤h≤S

[
δT−t0−1hγ + δT−t0(S − h)γ

]

= δT−t0−1 max
0≤h≤S

[hγ + δ(S − h)γ ]
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

What is the influence of the discount factor δ
on optimal strategies and extraction paths?

One can prove by induction that
{

V (t, S) = δt−t0b(t)γ−1Sγ

h⋆(t, S) = b(t)S

where
1

b(t)
=

θ − 1

θ − θt−T
= 1 + θ + · · ·+ θT−t

︸ ︷︷ ︸

T−t+1 terms

with θ = δ
1

1−γ

What happens to b(t) when time goes on?

When δ ↓ 0 (sensititivity to the present), one has θ ↓ 0:
what happens to b(t), hence to h⋆(t, S)?

When δ ↑ 1 (sensititivity to the future), one has θ ↑ 1:
what happens to b(t), hence to h⋆(t, S)?

Show that h⋆(t + 1) = θh⋆(t).
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

Influence of the discount factor δ

The optimal fraction of the stock S to be extracted at time t is

b(t) =
θ − θt−T

θ − 1
=

1

1 + θ + · · ·+ θT−t

︸ ︷︷ ︸

T−t+1 terms

with θ = δ
1

1−γ

so that, in particular

b(T ) = 1 , b(T − 1) =
1

1 + θ
, b(T − 2) =

1

1 + θ + θ2

Discount factor optimal fraction interpretation
δ θ b(t)

δ ↑ 1 θ ↑ 1 b(t) ↓ 1
T−t+1 equity

δ ↓ 0 θ ↓ 0 b(t) ↑ 1 myopism and greed
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Examples in natural resources optimal management Optimal depletion of an exhaustible resource

Comparing δ = 0.95 (left) with δ = 0.99 (right)

0 2 4 6 8 10 12

−5

−4
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−2

−1

0

Optimal extraction profile at initial time t=1 for discount rate 0.95

0 2 4 6 8 10 12

−5

−4

−3

−2

−1

0

Optimal extraction profile at time t=12 for discount rate 0.95
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Optimal extraction profile at ultimate time t=20 for discount rate 0.95
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Optimal extraction profile at ultimate time t=1 for discount rate 0.99
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Optimal extraction profile at ultimate time t=12 for discount rate 0.99
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Optimal extraction profile at ultimate time t=30 for discount rate 0.99
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Examples in natural resources optimal management Discussion on discounting

Outline of the presentation
1 A bird’s eye view of trade-offs in intertemporal optimization
2 Dressing an intertemporal optimization problem in formal clothes

An example of dam optimal management
Discrete-time nonlinear state-control systems
Histories, criteria and intertemporal preferences
The general problem of optimal control under constraints

3 Pontryaguin’s “maximum” principle and Hotelling rule
Pontryaguin’s “maximum” principle for the additive case
Hotelling rule

4 Dynamic programming for the additive payoff case
Bellman dynamic programming equation
Open-loop and closed-loop solutions to optimal control problems

5 Examples in natural resources optimal management
Optimal depletion of an exhaustible resource
Discussion on discounting
Intergenerational equity for a renewable resource
Over-exploitation, extinction and inequity

6 Non additive criteria
The Green Golden rule approach
The ”Maximin” approach
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Examples in natural resources optimal management Discussion on discounting

Discounting erases the future

The French public discount rate

En France, le rapport Révision du taux d’actualisation des investissements publics
(Commissariat général du Plan, groupe d’experts présidé par Daniel Lebègue,
janvier 2005) a conduit à diviser par deux (de 8% à 4%) le taux d’actualisation à
retenir pour évaluer la rentabilité des choix d’investissements publics

δ =
1

1 + 0.04
≈ 0.96

The future in one hundred years is valued, seen from today, 2%

(
1

1 + 0.04
)10 ≈ 0.68 , (

1

1 + 0.04
)50 ≈ 0.14 , (

1

1 + 0.04
)100 ≈ 0.02
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Examples in natural resources optimal management Discussion on discounting

The discount rate is not necessarily an interest rate

M. Boiteux, À propos de la “critique de la théorie de l’actualisation telle
qu’employée en France”, Revue d’Économie Politique, 1976.

“Le taux d’actualisation optimal pour orienter les choix d’intérêt général”
n’est pas “nécessairement égal dans la réalité au taux d’intérêt d’un
quelconque marché monétaire et financier”

“l’actualisation, instrument de cohérence des choix”
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Examples in natural resources optimal management Discussion on discounting

Discounting may be related to random final time

Nicholas Stern. The Economics of Climate Change. Cambridge University
Press, 2006.
(. . . ) following distinguished economists from Frank Ramsey in the 1920s to

Amartya Sen and Robert Solow more recently, the only sound ethical basis for

placing less value on the utility (as opposed to consumption) of future generations

was the uncertainty over whether or not the world will exist, or whether those

generations will all be present

The discounted utility criterion can be written without discounting
as a mathematical expectation

+∞∑

t=0

δtL
(
c(t)

)
= E

[
τ−1∑

t=0

L
(
c(t)

)

]

where the random final time τ follows a
memoryless geometric distribution on the set {1, 2, 3 . . .}
with parameter 1− δ = P(τ = 1)
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Examples in natural resources optimal management Discussion on discounting

We interpret discounting till infinity as
no discounting till Geometric distributed final time

Let τ denote a random variable having geometric distribution

P(τ ≥ s) = δs−1 , s = 1, 2, 3 . . .

or, equivalently, that

P(τ = s) = (1 − δ)δs−1 , s = 1, 2, 3 . . .

Then, we have that

E

[
τ−1∑

t=0

L
(
c(t)

)

]

︸ ︷︷ ︸

no discounting

= E

[
+∞∑

t=0

1{τ−1≥t}L
(
c(t)

)

]

=

+∞∑

t=0

δtL
(
c(t)

)

︸ ︷︷ ︸

discounting
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Examples in natural resources optimal management Discussion on discounting

We interpret the discount factor δ ∈ [0, 1[
in term of mean lifetime

discount factor discount rate mean time

discount factor δ re =
1−δ
δ θ = 1

1−δ

discount rate δ = 1
1+re

re θ = 1+re
re

mean time δ = θ−1
θ

re =
1

θ−1
θ

discount factor discount rate mean time survival

δ re θ P(θ ≥ θ)

0.990 1% 100 0.370
0.952 5% 21 0.377
0.909 10% 11 0.386
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Examples in natural resources optimal management Discussion on discounting

“The pure time discount rate” and chance of extinction

Nicholas Stern. The Economics of Climate Change.
Cambridge University Press, 2006.
(. . . ) we should interpret the factor e−∆t in W =

∫∞

0
L(c(t))e−∆tdt as the

probability that the world exists at that time

Pure time Probability of human race Probability of human race
preference ∆ not surviving 10 years not surviving 100 years
0,1 0,010 0,095
0,5 0,049 0,393
1,0 0,095 0,632
1,5 0,139 0,777
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Examples in natural resources optimal management Intergenerational equity for a renewable resource

Outline of the presentation

1 A bird’s eye view of trade-offs in intertemporal optimization
2 Dressing an intertemporal optimization problem in formal clothes

An example of dam optimal management
Discrete-time nonlinear state-control systems
Histories, criteria and intertemporal preferences
The general problem of optimal control under constraints

3 Pontryaguin’s “maximum” principle and Hotelling rule
Pontryaguin’s “maximum” principle for the additive case
Hotelling rule

4 Dynamic programming for the additive payoff case
Bellman dynamic programming equation
Open-loop and closed-loop solutions to optimal control problems

5 Examples in natural resources optimal management
Optimal depletion of an exhaustible resource
Discussion on discounting
Intergenerational equity for a renewable resource
Over-exploitation, extinction and inequity

6 Non additive criteria
The Green Golden rule approach
The ”Maximin” approach
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Examples in natural resources optimal management Intergenerational equity for a renewable resource

Optimal management of a biomass linear growth model
with catches

We consider a biomass linear growth model with catches

B(t + 1) = R
(

B(t)
︸︷︷︸

biomass

− h(t)
︸︷︷︸

catches

)
, 0 ≤ h(t) ≤ B(t)

where R = 1 + r , with biological growth rate r > 0,

and where one maximizes intertemporal discounted utility

max
h(t0),...,h(T−1)

( T−1∑

t=t0

δ
t−t0 L

(
h(t)

)

︸ ︷︷ ︸

catches utility

+δ
T−t0 L

(
B(T )

)

︸ ︷︷ ︸

final biomass utility

)

in the special case where, for the sake of simplicity,
discount rate re and biological growth rate r = R − 1 are equal

re = r ⇐⇒ δ =
1

R
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Examples in natural resources optimal management Intergenerational equity for a renewable resource

The utility function L is supposed to be
stricly increasing and strictly concave

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

The utility function L is

strictly increasing: L′ > 0

strictly concave: L′′ < 0
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Examples in natural resources optimal management Intergenerational equity for a renewable resource

As an exercise, provide the dynamic programming equation
attached to this specific problem







V (T , x) = K(x)

V (t, x) = max
u∈B(t,x)

(

L
(
t, x , u

)

︸ ︷︷ ︸

instantaneous gain

+

optimal payoff
︷ ︸︸ ︷

V
(
t + 1, Dyn(t, x , u)

︸ ︷︷ ︸

future state

) )

State x B
Control u h

Control constraints u ∈ B(t, x) h ∈ [0,B]
Dynamic Dyn(t, x , u) R(B − h)

Instantaneous gain L
(
t, x , u

)
δt−t0L

(
h
)

Final gain K(x) δT−t0L
(
B
)

{
V (T ,B) = ?

V (t,B) = max?
(

? + V
(
t + 1, ?

))
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Examples in natural resources optimal management Intergenerational equity for a renewable resource

Detail the dynamic programming equation
for t = T and t = T − 1







V (T , x) = K(x)

V (t, x) = max
u∈B(t,x)

(

L
(
t, x , u

)

︸ ︷︷ ︸

instantaneous gain

+

optimal payoff
︷ ︸︸ ︷

V
(
t + 1, Dyn(t, x , u)

︸ ︷︷ ︸

future state

) )

V (T ,B) =

final utility
︷ ︸︸ ︷

δT−t0L(B) with Rδ = 1

V (T − 1,B) = max
0≤h≤B

[

R t0−T+1L(h) + V
(
T ,

future state
︷ ︸︸ ︷

R(B − h)
)]

= R t0−T max
0≤h≤B

[

RL(h) + L
(
R(B − h)

)]
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Examples in natural resources optimal management Intergenerational equity for a renewable resource

The optimal decision rule is linear in the biomass

The maximum V (T − 1,B) = RT−t0−1 max
0≤h≤B

[

L(h) + RL
(
R(B − h)

)]

is achieved for

h⋆(T − 1,B) =
R

1 + R
B

and the maximum is thus

V (T − 1,B) =
1 + R

RT−t0
× L

( R

1 + R
B
)

Michel DE LARA (École des Ponts ParisTech) Optimal Sequential Decisions January 4, 2016 132 / 147



Examples in natural resources optimal management Intergenerational equity for a renewable resource

The optimal trajectories have the property
that catches are stationary

Prove by induction that

h⋆(t,B) =
RT−t

1 + R + · · ·+ RT−t
B

Compute the optimal trajectory given by

B(t + 1) = R
(
B(t)− h(t)

)
, h(t) =

RT−t

1 + R + · · ·+ RT−t
B(t)

Show that h(t + 1) = h(t) for all times t
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Examples in natural resources optimal management Over-exploitation, extinction and inequity

Outline of the presentation
1 A bird’s eye view of trade-offs in intertemporal optimization
2 Dressing an intertemporal optimization problem in formal clothes

An example of dam optimal management
Discrete-time nonlinear state-control systems
Histories, criteria and intertemporal preferences
The general problem of optimal control under constraints

3 Pontryaguin’s “maximum” principle and Hotelling rule
Pontryaguin’s “maximum” principle for the additive case
Hotelling rule

4 Dynamic programming for the additive payoff case
Bellman dynamic programming equation
Open-loop and closed-loop solutions to optimal control problems

5 Examples in natural resources optimal management
Optimal depletion of an exhaustible resource
Discussion on discounting
Intergenerational equity for a renewable resource
Over-exploitation, extinction and inequity

6 Non additive criteria
The Green Golden rule approach
The ”Maximin” approach
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Examples in natural resources optimal management Over-exploitation, extinction and inequity

Optimal management of a biomass linear growth model
with catches

We consider a biomass linear growth model with catches

B(t + 1) = R
(

B(t)
︸︷︷︸

biomass

− h(t)
︸︷︷︸

catches

)
, 0 ≤ h(t) ≤ B(t)

where rb = R − 1 is the biological growth rate

and where one maximizes intertemporal discounted profit
(with fixed prices and without costs)

max
h(t0),h(t0+1),...,h(T−1)

T−1∑

t=t0

δt−t0h(t)

where re is the discount rate
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Examples in natural resources optimal management Over-exploitation, extinction and inequity

Low discount rate re < rb (high preference for the future)

If rb > re ,

there are no catches

h⋆(t0) = h⋆(t0 + 1) = · · · = h⋆(T − 2) = 0

except at the penultimate period where

h⋆(T − 1) = B0R
T−1−t0
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Examples in natural resources optimal management Over-exploitation, extinction and inequity

High discount rate re > rb (high preference for the present)

If rb < re ,

all the biomass is captured at the initial time t0

h⋆(t0) = B0

so that the resource is immediately extinct

yearly growth rate

whales 2 — 5%
money 5%
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Examples in natural resources optimal management Over-exploitation, extinction and inequity

Special case rb = re

If rb = re ,

many solutions exist,

and one optimal solution is given by equitable catches

h⋆(t0) = h⋆(t0 + 1) = · · · = h⋆(T − 1) =
B0

T − t0
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Non additive criteria

Outline of the presentation

1 A bird’s eye view of trade-offs in intertemporal optimization

2 Dressing an intertemporal optimization problem in formal clothes

3 Pontryaguin’s “maximum” principle and Hotelling rule

4 Dynamic programming for the additive payoff case

5 Examples in natural resources optimal management

6 Non additive criteria
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Non additive criteria The Green Golden rule approach

Green Golden criterion and dictatorship of the future

We consider a biomass growth model with catches

B(t + 1) =

dynamics
︷ ︸︸ ︷

Biol
(

B(t)
︸︷︷︸

biomass

− h(t)
︸︷︷︸

catches

)

where one maximizes the final utility

max
h(t0),...,h(T−1)

K
(
B(T )

)

Show that, when

final utility B 7→ K(B)

dynamics B 7→ Biol(B)

are increasing with biomass B, it is optimal never to capture
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Non additive criteria The ”Maximin” approach

Maximin dynamic programming equation

For the optimization problem

max(
x(·),u(·)

)
∈T ad(t0,x0)

min
t=t0,...,T−1

L
(
t, x(t), u(t)

)

the value function

V (t, x) = max(
x(·),u(·)

)
∈T ad(t,x)

(

min
s=t,...,T−1

L
(
s, x(s), u(s)

))

is the solution of






V (T , x) = +∞

V (t, x) = max
u∈B(t,x)

min
(

L(t, x , u),V
(
t + 1, Dyn(t, x , u)

))
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Non additive criteria The ”Maximin” approach

Maximin dynamic programming equation

In the general case, the value function

V (t, x) = max(
x(·),u(·)

)
∈T ad(t,x)

min
(

min
s=t,...,T−1

L
(
s, x(s), u(s)

)
, K
(
x(T )

))

is the solution of

V (T , x) = K
(
x
)
, ∀x ∈ Viab(T )

V (t, x) = max
u∈Bviab(t,x)

min
(

L(t, x , u),V
(
t + 1, Dyn(t, x , u)

))

,

∀x ∈ Viab(t)
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Non additive criteria The ”Maximin” approach

Maximin and viability

Viab(t, L♭) =







x ∈ X

∣
∣
∣
∣
∣
∣
∣
∣

∃
(
x(·), u(·)

)
such that ∀s = t, . . . ,T

x(s + 1) = Dyn
(
s, x(s), u(s)

)

x(t) = x

L(s, x(s), u(s)) ≥ L♭







Proposition

The value function associated to the maximin problem

max
u(·)

min
t=t0,...,T−1

L
(
t, x(t), u(t)

)

satisfies
V (t, x) = max{L♭ ∈ R | x ∈ Viab(t, L♭)}
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Non additive criteria The ”Maximin” approach

Maximin for an exhaustible resource

Consider the exhaustible resource management

S(t + 1) = S(t)
︸︷︷︸

stock

− h(t)
︸︷︷︸

extraction

, 0 ≤ h(t) ≤ S(t)

where the utility of the least favoured generation is maximized

max
h(t0),...,h(T−1)

min
t=t0,..,T−1

L
(
h(t)

)
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Non additive criteria The ”Maximin” approach

The ”maximin” approach leads to intergenerational equity

Assuming that the utility h 7→ L(h) is increasing,

the optimal decision rule is

h⋆(t, S) =
S

T − t

the maximin optimal stock path S⋆(·) is regularly decreasing

S⋆(t) =
T − t

T − t0
S0

the maximin optimal extraction path h⋆(·) is stationary

h⋆(t) = h⋆
(
t, S⋆(t)

)
=

S0
T − t0
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