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Dynamical control systems under uncertainty Examples of uncertainties in dynamical systems

Uncertainty is pervasive in natural resources management

Environmental uncertainties
(El Niño)

Habitats changes, mortality, natality

Scientific uncertainties
(structure of trophic networks,
ecosystem services)
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Dynamical control systems under uncertainty Examples of uncertainties in dynamical systems

We plug incertain variables
into the carbon cycle model “à la Nordhaus”

Economic production Q(t)

Q(t + 1) =
(

1 +

economic growth
︷ ︸︸ ︷

g
(
we(t)

) )

Q(t)

co2 concentration M(t)

M(t + 1) = M(t)− δ(M(t)−M−∞) + α(wp(t))
︸ ︷︷ ︸

physics

technologies
︷ ︸︸ ︷

Emiss
(
Q(t),wz (t)

)) (
1− a(t)

)

Vector of uncertainties w(t) = (we(t),wp(t),wz(t)) on

economic growth
technologies
climate dynamics
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Dynamical control systems under uncertainty Examples of uncertainties in dynamical systems

Uncertainties transpire in epidemiological models

Basic variables and parameters are

time t, measured in weeks
Mt , the abundance of infected mosquitos (Aedes Aegypti adultos)
Ht , the abundance of infected humans
∆µM

t , the additional mortality rate of mosquitos, a control variable
M, H, f H , f M , µM and µH , parameters

The controlled dynamics is

Mt+1 = f HHt(M −Mt)− (µM +∆µM
t )Mt

Ht+1 = f MMt(H − Ht)− µHHt

Scientific literature provides bounds for

disease transmission rates f H and f M

mortality rate of mosquitos µM

Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models under Uncertainty August 25, 2014 7 / 56



Dynamical control systems under uncertainty Examples of uncertainties in dynamical systems

Uncertainties abound in population models
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Stock-recruitment relationship
condenses, in one function,
complex mechanisms of
birth, dispersion, predation,
habitats, physical conditions, etc.

Natural mortality
(deseases, predation)
between age-classes
is poorly known
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Dynamical control systems under uncertainty Examples of uncertainties in dynamical systems

We plug incertain variables
into the harvested age-class model

N1(t + 1) = S/R
(

SSB
(
N(t)

)
, w(t)

︸︷︷︸

birth mortality, etc.

)

recruitment

N2(t + 1) = e−(M1+λ(t)F1)N1(t)

... =
...

Na(t + 1) = e−(

mortality

︷ ︸︸ ︷

Ma−1 +λ(t)Fa−1)Na−1(t), a = 2, . . . ,A− 1

NA(t + 1) = e−(MA−1+λ(t)FA−1)NA−1(t) + πe−(MA+λ(t)FA)NA(t)
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Dynamical control systems under uncertainty Uncertainty variables are new input variables

Uncertainty variables are new input variables
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Dynamical control systems under uncertainty Uncertainty variables are new input variables

Input control variables are in the hands
of the decision-maker at successive time periods

Control variables u(t) ∈ U

The decision-maker can choose the values of control variables u(t) at any time
within given bounds

at successive time periods

annual catches
years, months:
starting of energy units like nuclear plants
weeks, days, intra-day: starting of hydropower units

within given bounds

fishing quotas
turbined capacity
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Dynamical control systems under uncertainty Uncertainty variables are new input variables

Input uncertain variables are out of the control
of the decision-maker

Uncertain variables w(t) ∈ W are variables

that take more than one single value (else they are deterministic)

and over which the decision-maker (DM) has no control whatsoever

Stationary parameters:
unitary cost of co2 emissions

Trends or seasonal effects:
energy consumption pathway, mean temperatures,
mean prices

Stochastic processes:
rain inputs in a dam, energy demand, prices

Else (set membership):
costs of climate change damage,
water inflows in a dam
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Dynamical control systems under uncertainty Uncertainty variables are new input variables

Uncertainty variables are new input variables
in a discrete-time nonlinear state-control system

A specific output is distinguished, and is labeled “state” (more on this later),
when the system may be written

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)
, t ∈ T = {t0, t0 + 1, . . . ,T − 1}

time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N

(the time period [t, t + 1[ may be a year, a month, etc.)

state x(t) ∈ X := Rn (biomasses, abundances, etc.)

control u(t) ∈ U := Rp (catches or harvesting effort)

uncertainty w(t) ∈ W := Rq

(recruitment or mortality uncertainties, climate fluctuations or trends, etc.)

dynamics Dyn maps T× X× U×W into X

(biomass model, age-class model, economic model)
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Dynamical control systems under uncertainty Uncertainty variables are new input variables

What have we covered so far?
Uncertainty variables are new input variables

x(t + 1) = Dyn
(
t, x(t), u(t), w(t)

︸︷︷︸

uncertainty

)

The future state x(t + 1) is no longer predictable

because of the uncertain term w(t),

but the current state x(t) carries information relevant for decision-making,

and we shed light on the notion of policy
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Dynamical control systems under uncertainty Uncertainty variables are new input variables

Summary

Control variables are defined rather unambiguously:
the DM can select their values at any time within given sets

The distinction between input and output variables is relative to a system:
for two interconnected dams, the water release from the upper to the lower
dam can be “seen” as an input to the lower dam or as a control variable for
the two-dams system

In various examples of natural resources management,
we have seen so-called uncertain variables

Uncertain variables are variables

which take more than one single value (else they are deterministic)
and over which the decision-makers have no control whatsoever

Uncertain and control variables combine in a dynamical model

Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models under Uncertainty August 25, 2014 16 / 56



Scenarios support a priori/off-line information

Outline of the presentation

1 Dynamical control systems under uncertainty

2 Scenarios support a priori/off-line information

3 On-line information feeds policies

4 Summary
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Scenarios support a priori/off-line information Scenarios are temporal sequence of uncertainties

Water inflows historical scenarios
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Scenarios support a priori/off-line information Scenarios are temporal sequence of uncertainties

We call scenario a temporal sequence of uncertainties

Scenarios are special cases of “states of Nature”

A scenario (pathway, chronicle) is a sequence of uncertainties

w(·) :=
(
w(t0), . . . ,w(T − 1)

)
∈ Ω := WT−t0

HHH

HHC

HCH

HCC

CHH

CHC

CCH

CCC

El tiempo se bifurca perpetuamente hacia innumerables futuros
(Jorge Luis Borges, El jard́ın de senderos que se bifurcan)
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Scenarios support a priori/off-line information Scenarios are temporal sequence of uncertainties

Beware! Scenario holds a different meaning
in other scientific communities

In practice, what modelers call a
“scenario” is a mixture of

a sequence of uncertain variables
(also called a pathway, a
chronicle)
a policy Pol

and even a static or dynamical
model

In what follows

scenario = pathway = chronicle
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Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models under Uncertainty August 25, 2014 22 / 56



Scenarios support a priori/off-line information A priori / off-line information

Probabilistic and set-membership approaches are ways
to translate a priori / off-line information

as illustrated in nuclear accidents prevention

Three Mile Island accident:
before the fact, the core meltdown was considered as excluded

Nuclear accidents with probability per reactor per year

between 10−6 and 10−4 are considered as hypothetical,
whereas below 10−6 they are not envisaged

Fukushima nuclear plants had a 10−9 nuclear accident probability per reactor
per year
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Scenarios support a priori/off-line information A priori / off-line information

Choosing a set of scenarios is excluding
“things we do not know we don’t know”

Reports that say that something hasn’t happened are always interesting
to me, because as we know, there are known knowns; there are things
we know we know. We also know there are known unknowns; that is to
say we know there are some things we do not know. But there are also
unknown unknowns – the ones we don’t know we don’t know. And if
one looks throughout the history of our country and other free countries,
it is the latter category that tend to be the difficult ones.

Donald Rumsfeld, former United States Secretary of Defense. From Department
of Defense news briefing, February 12, 2002
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Scenarios support a priori/off-line information A priori / off-line information

In the stochastic approach, the set of scenarios
is equipped with a known probability
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Scenarios support a priori/off-line information A priori / off-line information

A priori information on the scenarios may be probabilistic

A probability distribution P on Ω
CCC (60%)

CCH (10%)

CHC

CHH

HCC

HCH (30%)

HHC

HHH

In practice, one often assumes that the components
(
w(t0), . . . ,w(T − 1)

)

form

an independent and identically distributed sequence
a Markov chain, a time series, etc.

Water inflows in a dam

Water inflows in a dam may be modelled as time series (ARMA, etc.)
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Scenarios support a priori/off-line information A priori / off-line information

Probabilistic assumptions and expected value

The domain of scenarios Ω = WT+1−t0 = Rq × · · · × Rq is equipped
with the σ-field F =

⊗T

t=t0
B(Rq) and a probability P

The sequences w(·) = (w(t0),w(t0 + 1), . . . ,w(T − 1),w(T ))
now become the primitive random variables

The notation EP refers to the mathematical expectation over Ω under
probability P

E[A
(
w(·)

)
] =

∑

w(·)∈Ω

P{w(·)}A
(
w(·)

)

The expectation operator EP enjoys linearity in the (+,×) algebra:

EP(A+ B) = EP(A) + EP(B)

The random variables (w(t0),w(t0 + 1), . . . ,w(T − 1),w(T )) are
independent under P if P can be decompsed as a product

P = µt0 ⊗ · · · ⊗ µT
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Scenarios support a priori/off-line information A priori / off-line information

Equipping the set Ω of scenarios with a probability P

is a delicate issue!

The probabilistic distribution of the climate sensitivity parameter in climate
models differs according to authors

In the multi-prior approach, the a priori information consists of different
probabilities (beliefs, priors), belonging to a set P of admissible probabilities
on Ω
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Scenarios support a priori/off-line information A priori / off-line information

In the set-membership approach,
only a subset of the set of scenarios is known
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Scenarios support a priori/off-line information A priori / off-line information

A priori information on the scenarios
may be set membership
The general case

Selected scenarios may belong to any subset Ω

w(·) ∈ Ω ⊂ Ω

Historical water inflows scenarios in a
dam

We can represent off-line information by
the observed historical water inflows
scenarios
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Scenarios support a priori/off-line information A priori / off-line information

Specific subsets correspond to time independence

HH

HM

HL

MH

MM

ML

LH

LM

LL

There is no time independence because
the range of values of w(t + 1) depends
on the value of w(t):
w(t) = H ⇒ w(t + 1) ∈ {M , L}
w(t) = M ⇒ w(t + 1) ∈ {M}

HH

HM

HL

MH

MM

ML

LH

LM

LL

There is time independence because
Ω = {H ,M} × {M , L} ⊂ Ω
is a product set
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Scenarios support a priori/off-line information A priori / off-line information

A priori information on the scenarios
may be set membership
The product case

Uncertain variables may be restricted to subsets, period by period

w(t) ∈ S(t)

so that some scenarios are selected and the rest are excluded

w(·) ∈ S(t0)× · · · × S(T ) ⊂ Ω = WT+1−t0

Bounded water inflows in a dam

If only an upper bound on water inflows is known, we represent off-line
information by

0 ≤ a(t) ≤ a♯
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Scenarios support a priori/off-line information A priori / off-line information

A priori information on the scenarios may be softer
than set membership thanks to plausibility functions

The counterpart of a probability P — that weighs the likelihood of an event
— is a plausibility function Q

Plausibility function Q : Ω → R ∪ {−∞} can “soften” the above set
membership approach

the higher Q
(
w(·)

)
, the more plausible the scenario w(·)

totally implausible scenarios are those for which Q
(
w(·)

)
= −∞

Historical water inflows scenarios in a dam

Attribute the value Q
(
w(·)

)
= −∞ for all the scenarios w(·) which

do not belong to the observed historical water inflows scenarios
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Scenarios support a priori/off-line information A priori / off-line information

The fear operator (Pierre Bernhard)
is the robust counterpart of a probability

Let Q : Ω → R ∪ {−∞} be a a plausibility function

The feared value of a function A : Ω → R is defined by

FQ(A) := min
w(·)∈Ω

[
A
(
w(·)

)
−Q

(
w(·)

)]

The fear operator FQ enjoys linearity in the (min,+) algebra:

FQ(min{A,B}) = min{FQ(A),FQ(B)}

In the (min,+) algebra, the plausibility function Q plays the role of a weight,
paralleling a probability distribution

The uncertainties (w(t0),w(t0 + 1), . . . ,w(T − 1),w(T )) are independent
under Q if Q can be decomposed as a sum

Q = νt0 + · · ·+ νT

Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models under Uncertainty August 25, 2014 34 / 56



Scenarios support a priori/off-line information A priori / off-line information

Summary

A priori information is carried by the scenarios set, and may be

probabilistic
set membership

This will be useful to mathematically express the objectives and the
constraints in a decision problem under uncertainty
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On-line information feeds policies The concept of policy
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Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models under Uncertainty August 25, 2014 37 / 56



On-line information feeds policies The concept of policy

The issue of on-line information

Can we centralize all the informations
on stock values in a large power system?

Can we measure on-line the abundances
of all age-classes in a population model?

What about measurement errors?
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On-line information feeds policies The concept of policy

When decisions do not take into account on-line
information and the clock time,

we are in the stationary static case

Stationary (open-loop)

Stationary open-loop control is

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ≡ ue ∈ U
︸ ︷︷ ︸

control

Harvest the same biomass every year, as in the maximum sustainable yield
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On-line information feeds policies The concept of policy

When decisions do not take into account on-line
information but depend on the clock,

we are in the open-loop case

Open-loop �

Open-loop control consists of time-dependent sequences (planning, scheduling)

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ∈ U
︸ ︷︷ ︸

control

Examples of open-loop control

Fixed cycle gears for traffic lights in traffic regulation

Mine planning: extract a given sequence of blocks every year, whatever you
learn of the metal prices or of the ore content

Solutions to optimal control problems by Pontryagin’s variational approach
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On-line information feeds policies The concept of policy

“I started work on control theory” (Richard Bellman)

The tool we used was the calculus of variations.
What we found was that very simple problems
required great ingenuity. A small change in the
problem caused a great change in the solution.

Clearly, something was wrong. There was an
obvious lack of balance. Reluctantly, I was
forced to the conclusion that the calculus of
variations was not an effective tool for
obtaining a solution
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On-line information feeds policies The concept of policy

“The thought was finally forced upon me that the desired
solution in a control process was a policy”

(Richard Bellman)

Richard Ernest Bellman
(August 26, 1920 – March 19, 1984)

From planning �

to contingent planning �×E

Again the intriguing thought: A
solution is not merely a set of
functions of time, or a set of
numbers, but a rule telling the
decisionmaker what to do; a policy
(Richard Bellman)
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On-line information feeds policies The concept of policy

A computer code aboard a launcher
embodies the concept of policy

if state==0,

do control=8

elseif state==1,

do control=5.4

else do control=-15

On 4 June 1996, the maiden flight of
the Ariane 5 launcher ended in a failure.
(. . . ) The attitude of the launcher and
its movements in space are measured
by an Inertial Reference System (SRI).
(. . . ) The data from the SRI are
transmitted through the databus to the
On-Board Computer (OBC), which
executes the flight program (. . . )
The Operand Error occurred due to an
unexpected high value of an internal
alignment function result called BH,
Horizontal Bias, related to the
horizontal velocity sensed by the
platform
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On-line information feeds policies The concept of policy

“The blind cat does not catch mice”

u(t)
︸︷︷︸

control

= Pol
(
t, y(t)

︸︷︷︸

output

)

adaptive

adjustable

feeback

wait and see

full recourse

on-line management

corrective (vs. preventive)
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On-line information feeds policies The concept of policy

How clouded the crystal ball looks beforehand

What is worth noting about the foregoing

development is that I should have seen the

application of dynamic programming to control

theory several years before. I should have, but I

didn’t. It is very well to start a lecture by

saying, ’Clearly, a control process can be

regarded as a multistage decision process in

which. . . ,’ but it is a bit misleading.

Scientific developments can always be made

logical and rational with sufficient hindsight. It

is amazing, however, how clouded the crystal

ball looks beforehand. We all wear such

intellectual blinders and make such inexplicable

blunders that it is amazing that any progress is

made at all.
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On-line information feeds policies The concept of policy

There are different observation patterns

Perfect observation:

Decision-hazard

y(t) = x(t)

Hazard-decision

y(t) =
(

x(t),w(t)
)

Partial observation:
y(t) = Obs

(

t, x(t)
)

Imperfect observation:

y(t) = Obs
(

t, x(t),w(t)
)

Dams management

Observing the stocks of all dams / the stocks and the water inflows / or only some stocks
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On-line information feeds policies The concept of policy

State feedback policies correspond to
perfect observation of the state

’Do thus-and-thus if you find yourself in this portion of state space with
this amount of time left’ (Richard Bellman)

Closed-loop control, state feedback (decision rule)

Pol : (t, x) ∈ T× X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

Turbinate a fraction of the dam stock

Pol(t,S) = α(t)S with 0 ≤ α(t) ≤ 1

ices precautionary approach

λUA(N) = max{λ ∈ R+ | SSB(Dyn(N, λ)) ≥ Blim and F (λ) ≤ Flim}
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On-line information feeds policies The concept of policy

Going from planning to contingent planning,
we have considerably enlarged the set of solutions

Stationary (open-loop): stationary sequences

u : t ∈ T 7→ u(t) ≡ ue , ue ∈ U

Once the control space U is discretized in NU elements,
the solution space cardinality is NU

Open-loop: time-dependent sequences (planning, scheduling)

u : t ∈ T 7→ u(t) , u(·) :=
(
u(t0), . . . , u(T − 1)

)
∈ U

T

With NT time periods, the solution space cardinality is NNT

U

Closed-loop: time and state-dependent sequences

Pol : (t, x) ∈ T× X 7→ u = Pol(t, x) ∈ U , Pol ∈ U
T×X

Once the state space X is discretized in NX elements,
the solution space cardinality is NNT×NX

U
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On-line information feeds policies The concept of policy

Admissible state feedback policies
express control constraints

The control constraints case restricts policies to
admissible policies

U
ad = {Pol | Pol(t, x) ∈ B(t, x) , ∀(t, x) ∈ T× X}

Dam management physical volume constraint

In a water reservoir, the output flow (control) cannot be more than the stock
volume (state) and than a capacity constraint

0 ≤ q(t) ≤ S(t) and 0 ≤ q(t) ≤ q♯

Hence, an dam management policy of the form

Pol(t, S) = max{q♭,min{ function of (t, S), q♯, S}}

is admissible, where 0 ≤ q♭ ≤ q♯ captures a requirement of minimal outflow
(for biodiversity preservation in downward rivers, for instance)
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On-line information feeds policies State and control solution maps

Outline of the presentation

1 Dynamical control systems under uncertainty
Examples of uncertainties in dynamical systems
Uncertainty variables are new input variables

2 Scenarios support a priori/off-line information
Scenarios are temporal sequence of uncertainties
A priori / off-line information

3 On-line information feeds policies
The concept of policy
State and control solution maps

4 Summary

Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models under Uncertainty August 25, 2014 50 / 56



On-line information feeds policies State and control solution maps

Along a given scenario, the system is deterministic

Une intelligence qui, à un instant
donné, connâıtrait toutes les forces
dont la nature est animée, la position
respective des êtres qui la composent,
si d’ailleurs elle était assez vaste pour
soumettre ces données à l’analyse,
embrasserait dans la même formule les
mouvements des plus grands corps de
l’univers, et ceux du plus léger atome.
Rien ne serait incertain pour elle, et
l’avenir comme le passé seraient
présents à ses yeux.

Pierre-Simon Laplace,
Essai philosophique sur les probabilités
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On-line information feeds policies State and control solution maps

State and control solution maps are defined inductively
along each scenario

Pick up

a scenario w(·) =
(
w(t0),w(t0 + 1), . . . ,w(T )

)
∈ Ω

a policy Pol : (t, x) ∈ T× X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

an initial state x(t0) = x0 ∈ X

1 Plug the state x(t0) into the “machine” Pol → initial decision
u(t0) = Pol(t0, x(t0))

2 Run the dynamics → second state x(t0 + 1) = Dyn(t0, x(t0), u(t0),w(t0))

3 Second decision u(t0 + 1) = Pol(t0 + 1, x(t0 + 1))

4 And so on x(t0 + 2) = Dyn(t0 + 1, x(t0 + 1), u(t0 + 1),w(t0 + 1))

5 . . .
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On-line information feeds policies State and control solution maps

State and control solution maps

Let be given

a policy Pol : T× X → U

a scenario w(·) ∈ Ω

and an initial state x0 at initial time t0

State solution map

The state solution map XDyn[t0, x0, Pol,w(·)] is the unique state path
x(·) = (x(t0), x(t0 + 1), . . . , x(T )) solution of dynamic

x(t + 1) = Dyn
(
t, x(t), Pol

(
t, x(t)

)
,w(t)

)
, t = t0, . . . ,T − 1

starting from the initial condition x(t0) = x0 at time t0
and associated with policy Pol and scenario w(·)

The control solution map UDyn[t0, x0, Pol,w(·)] is the associated decision path
u(·) = (u(t0), u(t0 + 1), . . . , u(T − 1)) where u(t) = Pol

(
t, x(t)

)

Everything above extends to the hazard-decision case
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On-line information feeds policies State and control solution maps

What have we covered so far?
A policy is a decision rule

x(t + 1) = Dyn
(
t, x(t),

Pol(t,x(t))
︷︸︸︷

u(t) , w(t)
︸︷︷︸

uncertainty

)

On-line information feeds decisions through
a policy, a strategy, a decision rule

State feedback policies are natural solutions given by
dynamic programming methods

Once a policy is fixed, what is the fate of the state?

This fate depends on the sequence of uncertainties crossed by the state
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Summary

Outline of the presentation

1 Dynamical control systems under uncertainty

2 Scenarios support a priori/off-line information

3 On-line information feeds policies

4 Summary

Michel DE LARA (École des Ponts ParisTech) Sequential Decision Models under Uncertainty August 25, 2014 55 / 56



Summary

Summary

Uncertain variables w(t) upon which the decision-maker (DM) has no control
whatsoever

Control variables u(t) the values of which the DM can fix at any time within
given sets

Output variables: state, observation, etc.

State variables x(t) are recursively constructed from a dynamics Dyn by
x(t + 1) = Dyn

(
t, x(t), u(t),w(t)

)

Observation variables y(t) = Obs
(
t, x(t),w(t)

)

On-line information feeds decisions through policies Pol : (t, x) 7→ Pol(t, x),
giving u(t) = Pol(t, x(t))

A scenario w(·) is a temporal sequence of uncertainties

The set Ω of scenarios is endowed with off-line information

How do we express the objectives and the constraints in a decision problem
under uncertainty? How do we compare policies?
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