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Multi-objectives dynamic management under uncertainty Assessment frameworks are designed to deal with multiple goals

A battery of assessment frameworks have been concocted
to gauge policies with respect to

risk and ecological impact

Integrated Ecosystem Assessment (IEA)
(National Oceanic and Atmospheric Administration)

Ecological Risk Assessment

Ecosystem-based Management (EBM)

Ecosystem Approach to Management

Driver Pressure State Impact Response (DPSIR) Approach

Management strategy evaluation (MSE)
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Multi-objectives dynamic management under uncertainty Assessment frameworks are designed to deal with multiple goals

The Driver-Pressure-State-Impact-Response framework

stressor is an agent of change
in the environment

receptor

exposure

“effect” means the response
of the receptor when it is actually
exposed to the stressor

assessment endpoint:
a specific management outcome
that is desired of the ecosystem
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Multi-objectives dynamic management under uncertainty Assessment frameworks are designed to deal with multiple goals

The Management Strategy Evaluation framework

“Mieux vaut être riche et bien portant que pauvre et malade”
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Multi-objectives dynamic management under uncertainty Recalls on uncertain dynamical systems under constraints

A control system connects input and output variables

Input variables

Control wood logs
Uncertainty wood humidity

metal conductivity

Output variables

soup quality
water vapor
temperature (internal
state)
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Multi-objectives dynamic management under uncertainty Recalls on uncertain dynamical systems under constraints

Uncertainty variables are new input variables
in a discrete-time nonlinear state-control system

A specific output is distinguished, and is labeled “state” (more on this later),
when the system may be written

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)
, t ∈ T = {t0, t0 + 1, . . . ,T − 1}

time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N

(the time period [t, t + 1[ may be a year, a month, etc.)

state x(t) ∈ X := Rn (biomasses, abundances, etc.)

control u(t) ∈ U := Rp (catches or harvesting effort)

uncertainty w(t) ∈ W := Rq

(recruitment or mortality uncertainties, climate fluctuations or trends, etc.)

dynamics Dyn maps T× X× U×W into X

(biomass model, age-class model, economic model)
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Multi-objectives dynamic management under uncertainty Recalls on uncertain dynamical systems under constraints

We dress natural resources management issues
in the formal clothes of control theory in discrete time

Control theory
in discrete time

blanco

Ecology Economics Modeling
Life-cycle Decision Simulations
Patches under

uncertainty

Problems are framed as

find controls/decisions
driving a dynamical system
to achieve various goals

Three main ingredients are

controlled dynamics ®

constraints �
criterion to optimize
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Multi-objectives dynamic management under uncertainty Recalls on uncertain dynamical systems under constraints

We mathematically express the objectives pursued
as control and state constraints

For a state-control system,
we cloth objectives as constraints

and we distinguish

control constraints (rather easy)
state constraints (rather difficult)

Viability theory deals with state constraints
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Multi-objectives dynamic management under uncertainty Recalls on uncertain dynamical systems under constraints

Constraints may be explicit on the control variable
and are rather easily handled by reducing the decision set

Examples of control constraints

Irreversibility constraints, physical bounds
�

0 ≤ a(t) ≤ 1 , 0 ≤ h(t) ≤ B(t)

Tolerable costs c
(
a(t),Q(t)

)
≤ c♯

Control constraints / admissible decisions

u(t)
︸︷︷︸

control

∈ B
(
t, x(t)

)

︸ ︷︷ ︸

admissible set

, t = t0, . . . ,T − 1

Easy because control variables u(t) are precisely those variables whose values the
decision-maker can fix at any time within given bounds
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Multi-objectives dynamic management under uncertainty Recalls on uncertain dynamical systems under constraints

Meeting constraints bearing on the state variable is delicate
due to the dynamics pipeline between controls and state

State constraints / admissible states

x(t)
︸︷︷︸

state

∈ A(t)
︸︷︷︸

admissible set

, t = t0, . . . ,T

Examples (“tipping points”)

co2 concentration M(t) ≤ M♯

biomass B♭ ≤ B(t) ≤ B♯

State constraints are mathematically difficult because of “inertia”

x(t) = function
︸ ︷︷ ︸

iterated dynamics

(
u(t − 1), . . . , u(t0)
︸ ︷︷ ︸

past controls

, x(t0)
)
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Multi-objectives dynamic management under uncertainty Recalls on uncertain dynamical systems under constraints

Target and asymptotic state constraints are special cases

Final state achieves some target

x(T )
︸ ︷︷ ︸

final state

∈ A(T )
︸ ︷︷ ︸

target set

Example: co2 concentration

State converges toward a target

lim
t→+∞

x(t)
︸ ︷︷ ︸

asymptotic state

∈ A(∞)
︸ ︷︷ ︸

target set

Example: convergence towards an endemic state in epidemiology
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Criterion and constraints in the uncertain case A dam management example
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Criterion and constraints in the uncertain case A dam management example

Tourism issues impose constraints upon traditional
economic management of a hydro-electric dam

Maximizing the revenue
from turbinated water

under a tourism constraint
of having enough water
in July and August
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Criterion and constraints in the uncertain case A dam management example

The red stock trajectories fail to meet
the tourism constraint in July and August
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Criterion and constraints in the uncertain case A dam management example

We consider a single dam nonlinear dynamical model
in the decision-hazard setting

We can model the dynamics of the water volume in a dam by

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

}

S(t) volume (stock) of water at the beginning of period [t, t + 1[

a(t) inflow water volume (rain, etc.) during [t, t + 1[

q(t) turbined outflow volume during [t, t + 1[

decided at the beginning of period [t, t + 1[
chosen such that 0 ≤ q(t) ≤ min{S(t),q♯}
supposed to depend on the stock S(t) but not on the inflow water a(t)

the setting is called decision-hazard:
a(t) is not available at the beginning of period [t, t + 1[
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Criterion and constraints in the uncertain case A dam management example

In the risk-neutral economic approach,
an optimal management maximizes the expected payoff

Suppose that

at the horizon, the final volume S(T ) has a value K
(
S(T )

)
,

the “final value of water”
turbined water q(t) is sold at price p(t),
related to the price at which energy can be sold at time t

a probability P is given on the set Ω = R
T−t0 × R

T−t0

of water inflows scenarios
(
a(t0), . . . , a(T − 1)

)

and prices scenarios
(
p(t0), . . . , p(T − 1)

)

The traditional (risk-neutral) economic problem is to maximize the
intertemporal payoff (without discounting if the horizon is short)

maxE






T−1∑

t=t0






price
︷︸︸︷

p(t)

turbined
︷︸︸︷

q(t) −ǫq(t)2
︸ ︷︷ ︸

turbined costs




+

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)
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Criterion and constraints in the uncertain case A dam management example

We now have a stochastic optimization problem,
where the tourism constraint still needs

to be dressed in formal clothes

Traditional cost minimization/payoff maximization

maxE






T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) − ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)






Tourism constraint

volume S(t) ≥ S♭ , ∀t ∈ { July, August }

In what sense should we consider this inequality which involves the
random variables S(t) for t ∈ { July, August }?
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Criterion and constraints in the uncertain case A dam management example

Robust / almost sure / probability constraint

Robust constraints: for all the scenarios in a subset Ω ⊂ Ω

S(t) ≥ S♭ , ∀t ∈ { July, August }

Almost sure constraints

Probability







water inflow scenarios along which
the volumes S(t) are above the
threshold S♭ for periods t in summer






= 1

Probability constraints, with “confidence” level p ∈ [0, 1]

Probability







water inflow scenarios along which
the volumes S(t) are above the

threshold S♭ for periods t in summer






≥ p

and also by penalization, or in the mean, etc.
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Criterion and constraints in the uncertain case A dam management example

Our problem may be clothed as a stochastic optimization
problem under a probability constraint

The traditional economic problem is maxE [P(T )]
where the payoff/utility criterion is

P(T ) =

T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) − ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)

and a failure tolerance is accepted

Probability







water inflow scenarios along which
the volumes S(t) ≥ S♭

for periods t in July and August






≥ 90%

Details concerning the theoretical and numerical resolution are available on
demand ;-)
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Criterion and constraints in the uncertain case A dam management example

Details concerning the theoretical and numerical resolution
are available on demand ;-)

π0 = 1 and πt+1 ={

1{xt+1≥xref} × πt if t ∈ T

πt else

P [xτ ≥ xref , ∀τ ∈ T ]
= E

[
1{xτ≥xref , ∀τ∈T }

]

= E
[∏

τ∈T 1{xτ≥xref}

]

= E [πT ]
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Criterion and constraints in the uncertain case A dam management example

90% of the stock trajectories meet the tourism constraint
in July and August
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Criterion and constraints in the uncertain case A dam management example

Our resolution approach brings a sensible improvement
compared to standard procedures
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Criterion and constraints in the uncertain case A dam management example

However, though the expected payoff is optimal,
the payoff effectively realized can be far from it
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Criterion and constraints in the uncertain case Constraints penalization

Hard constraints in deterministic optimization problems

The intertemporal deterministic optimization problem

max
x(·),u(·)

(T−1∑

t=t0

L
(
t, x(t), u(t)

)
)

under the viability constraints

x(t) ∈ A(t) , t = t0, . . . ,T − 1

is equivalent to

max
x(·),u(·)

(T−1∑

t=t0

L
(
t, x(t), u(t)

)
−

T−1∑

t=t0

χA(t)

(
x(t)

)
)

where χA(t)(x) =

{
+∞ if x 6∈ A(t)

0 if x ∈ A(t)
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Criterion and constraints in the uncertain case Constraints penalization

Hard constraints in stochastic optimization problems

The intertemporal stochastic optimization problem

max
x(·),u(·)

E

(T−1∑

t=t0

L
(
t, x(t), u(t),w(t)

)
−

T−1∑

t=t0

χA(t)

(
x(t)

)
)

where χA(t)(x) =

{
+∞ if x 6∈ A(t)

0 if x ∈ A(t)

is equivalent to

max
x(·),u(·)

E

(T−1∑

t=t0

L
(
t, x(t), u(t),w(t)

)
)

under the almost sure viability constraints

P{x(t) ∈ A(t) , t = t0, . . . ,T − 1} = 1
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Criterion and constraints in the uncertain case Viable scenarios
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Criterion and constraints in the uncertain case Viable scenarios

A scenario is said to be viable for a given policy if
the state and control trajectories satisfy the constraints

Viable scenario under given policy

A scenario w(·) ∈ Ω is said to be viable under policy Pol : T× X → U

if the trajectories x(·) and u(·) generated by the dynamics

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)
, t = t0, . . . ,T − 1

with the policy
u(t) = Pol

(
t, x(t)

)

satisfy the state and control constraints

u(t) ∈ B
(
t, x(t)

)

︸ ︷︷ ︸

control constraints

and x(t) ∈ A(t)
︸ ︷︷ ︸

state constraints

, ∀t = t0, . . . ,T

The set of viable scenarios is denoted by ΩPol,t0,x0
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Criterion and constraints in the uncertain case Viable scenarios

We look after policies that make
the corresponding set of viable scenarios “large”

Set of viable scenarios

ΩPol,t0,x0 := {w(·) ∈ Ω | the state constraints

XDyn[t0, x0, Pol,w(·)](t) ∈ A(t)

and the control constraints

UDyn[t0, x0, Pol,w(·)] ∈ B
(
t, x(t)

)

are satisfied for all times t = t0, . . . ,T}

The larger set ΩPol,t0,x0 of viable scenarios, the better,
because the policy Pol is able to maintain the system within constraints
for a large “number” of scenarios

But “large” in what sense? Robust? Probabilistic?
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The robust viability problem The deterministic viability approach
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The robust viability problem The deterministic viability approach

Can we solve the compatibility puzzle between dynamics
and objectives by means of appropriate controls?

Given a dynamics that
mathematically embodies the causal
impact of controls on the state

Imposing objectives bearing on
output variables (states, controls)

Is it possible to find a control path
that achieves the objectives
for all times?
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The robust viability problem The deterministic viability approach

Crisis occurs when constraints are trespassed at least once

An initial state is not viable if,
whatever the sequence of controls,
a crisis occurs

There exists a time when
one of the state or control
constraints is violated
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The robust viability problem Robust viable controls and states
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The robust viability problem Robust viable controls and states

Robust viability dissects how to channel the system
inside constraints whatever the scenarios

Let Ω ⊂ Ω be a subset of the set Ω of scenarios

The robust viability problem

Identify the initial states x0 ∈ X for which there exists
at least one viable robust policies Pol : T× X → U such that

the state trajectories given by the state solution map
x(t) = XDyn[t0, x0, Pol,w(·)](t) satisfy the following state constraints

x(t) ∈ A(t) for t = t0, . . . ,T

and the control constraints u(t) = Pol
(
t, x(t)

)
∈ B

(
t, x(t)

)

are satisfied for t = t0, . . . ,T − 1

for all scenarios w(·) ∈ Ω
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The robust viability problem Robust viable controls and states

The robust viability kernel is the set of initial states for
which the robust viability problem can be solved

Robust viability kernel

Viab1(t0) :=







x0 ∈ X

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

there exists a policy Pol ∈ U

such that for all scenario w(·) ∈ Ω
the state constraints x(t) ∈ A(t)
and the control constraints
u(t) = Pol

(
t, x(t)

)
∈ B

(
t, x(t)

)

are satisfied for all times t = t0, . . . ,T







where the state x(t) = XDyn[t0, x0, Pol,w(·)](t) is given by the state solution map
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The robust viability problem Robust viable controls and states

The robust viability kernel and viable scenarios are related

x0 ∈ Viab1(t0)
︸ ︷︷ ︸

robust viability kernel

⇐⇒







there exists a policy Pol ∈ U,

Ω ⊂ ΩPol,t0,x0
︸ ︷︷ ︸

viable scenarios
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The robust viability problem Robust viable controls and states

Robust viability kernels and robust viable policies
can be defined for all times

Robust viability kernel at time t

The robust viability kernel at time t is the subset of states

Viab1(t) :=






x ∈ X

∣
∣
∣
∣
∣
∣

there exists Pol ∈ U
ad such that

for all scenario w(·) ∈ Ω
x(s) ∈ A(s) for s = t, . . . ,T







where x(s) = XDyn[t, x , Pol,w(·)](s) is given by the state solution map

The final viability kernel is the whole target set: Viab1(T ) = A(T )

Viable robust policies

U
viab

1 (t, x) :=






Pol ∈ U

ad

∣
∣
∣
∣
∣
∣

for all scenario w(·) ∈ Ω
XDyn[t, x , Pol,w(·)](s) ∈ A(s)
for s = t, . . . ,T
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The robust viability problem Robust viable controls and states

The viability program aims at turning state constraints
into control constraints

A priori constraints, with state constraints







x(t0) ∈ X

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)

u(t) ∈ B
(
t, x(t)

)
control constraints

x(t) ∈ A(t) state constraints

are turned into a posteriori constraints, without state constraints
except for the initial state







x(t0) ∈ Viab(t0) initial state constraint
x(t + 1) = Dyn

(
t, x(t), u(t),w(t)

)

u(t) ∈ Bviab
(
t, x(t)

)
⊂ B

(
t, x(t)

)
control constraints

ex ante state constraints → ex post control constraints
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The robust viability problem Robust viable controls and states

Product scenarios subsets embody time independence

HH

HM

HL

MH

MM

ML

LH

LM

LL

There is no time independence because
the range of values of w(t + 1) depends
on the value of w(t):
w(t) = H ⇒ w(t + 1) ∈ {M , L}
w(t) = M ⇒ w(t + 1) ∈ {M}

HH

HM

HL

MH

MM

ML

LH

LM

LL

There is time independence because
Ω = {H ,M} × {M , L} ⊂ Ω
is a product set
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The robust viability problem Robust viable controls and states

A priori information on the scenarios
may be set membership
The product case

Uncertain variables may be restricted to subsets, period by period

w(t) ∈ S(t)

so that some scenarios are selected and the rest are excluded

w(·) ∈ S(t0)× · · · × S(T ) ⊂ Ω = W
T+1−t0

Bounded water inflows in a dam

If only an upper bound on water inflows is known,
we represent off-line information by

0 ≤ a(t) ≤ a♯
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The robust viability problem Robust viable controls and states

The robust dynamic programming equation is a
backward equation relating the robust viability kernels

Let Ω ⊂ Ω be a subset of the set Ω of scenarios

Robust dynamic programming equation

If the scenarios vary within a rectangle Ω = S(t0)× · · · × S(T )
(corresponding to independence in the stochastic setting),
the robust viability kernels satisfy the following backward induction,
where t runs from T − 1 down to t0

Viab1(T ) = A(T )

Viab1(t) =






x ∈ A(t)

∣
∣
∣
∣
∣
∣

there exists an admissible control u ∈ B(t, x)
such that for all scenarios w ∈ S(t)
one has that Dyn(t, x , u,w) ∈ Viab1(t + 1)
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The robust viability problem Robust viable controls and states

The robust dynamic programming equation yields
the robust viable controls

Robust viable controls

For any time t and state x , robust viable controls are

B
viab

1 (t, x) :=

{u ∈ B(t, x) | ∀w ∈ S(t) , Dyn(t, x , u,w) ∈ Viab1(t + 1)}

Proposition

Viable robust policies are those Pol ∈ U such that

Pol(t, x) ∈ B
viab

1 (t, x) , ∀t ∈ T , ∀x ∈ Viab1(t)
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The robust viability problem Robust viable controls and states

The viability program is achieved

Robust viable controls exist at time t if and only if
the state x belongs to the robust viability kernel at time t:

B
viab

1 (t, x) 6= ∅ ⇐⇒ x ∈ Viab1(t)

A solution to the viability problem is

an initial state x0
and a policy Pol

such that

x0 ∈ Viab1(t0)

Pol(t, x) ∈ B
viab

1 (t, x) , ∀t ∈ T , ∀x ∈ Viab1(t)
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Outline of the presentation

1 Multi-objectives dynamic management under uncertainty
Assessment frameworks are designed to deal with multiple goals
Recalls on uncertain dynamical systems under constraints

2 Criterion and constraints in the uncertain case
A dam management example
Constraints penalization
Viable scenarios

3 The robust viability problem
The deterministic viability approach
Robust viable controls and states
Robust viability analysis of anchovy–hake Peruvian fisheries

4 The stochastic viability problem
Maximal viability probability and dynamic programming equation
Stochastic viability kernels
Dam stochastic viable management
Nephrops-hake fishery viable management

5 Summary
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

We consider two species targeted by two fleets
in a biomass ecosystem dynamics with uncertainties

We embody uncertainties, stocks and fishing interactions
in a two-dimensional dynamical model

future biomass
︷ ︸︸ ︷

A(t + 1) = A(t)

growth factor
︷ ︸︸ ︷

RA

(
A(t),H(t),wA(t)

︸ ︷︷ ︸

uncer

) (
1− EA(t)

︸ ︷︷ ︸

effort

)

H(t + 1) = H(t)RH

(
A(t),H(t),

tainty
︷ ︸︸ ︷

wH(t)
)(
1−

control
︷ ︸︸ ︷

EH(t)
)

Uncertainties wA(t) and wH(t) are discrepancies

State vector (A(t),H(t)) represents biomasses

Control vector (EA(t),EH(t)) is fishing effort of each species

Catches are
EA(t)RA

(
A(t),H(t),wA(t)

)
A(t) and EH(t)RH

(
A(t),H(t),wH(t)

)
H(t)
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Our objectives are twofold: conservation and production

The robust viability kernel is the set of initial species biomasses
(
A(t0),H(t0)

)

from which at least one appropriate policy
produces biomasses and effort trajectories
such that the following goals are satisfied

for all the scenarios
(
wA(t),wH(t)

)
, t = t0, t0 + 1, . . . ,T

preservation (minimal biomass thresholds)

A stocks: A(t) ≥ S♭
A

H stocks: H(t) ≥ S♭
H

economic/social requirements (minimal catch thresholds)

A catches: EA(t)RA

(
A(t),H(t),wA(t)

)
A(t) ≥ C ♭

A

H catches: EH(t)RH

(
A(t),H(t),wH(t)

)
H(t) ≥ C ♭

H
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

We taylor a Lotka-Volterra decision model

to hake-anchovy Peruvian fisheries scarce data,

and qualify the discrepancies as uncertainties
Hake-anchovy Peruvian fisheries data between 1971 and 1981, in thousands of tonnes (103 tons)

anchoveta stocks= [11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407]

merluza stocks= [347 437 455 414 538 735 636 738 408 312 148]

anchoveta captures= [9184 3493 1313 3053 2673 3211 626 464 1000 223]

merluza captures= [26 13 133 109 85 93 107 303 93 159 69]

(a) Anchovy (b) Hake

Figure : Comparison of observed and simulated biomasses of anchovy and hake using a
Lotka-Volterra model with density-dependence in the prey. Model parameters are
R = 2.25, L = 0.945, κ = 67 113 × 103 t (K = 37 285 × 103 t), α = 1.22× 10−6 t−1,
β = 4.845 × 10−8 t−1.
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Here is the Lotka-Volterra decision model with uncertainty

A is the prey biomass (anchovy)

H is the predator biomass (hake)

The discrete-time Lotka-Volterra system with uncertainty is

A(t + 1) = A(t)

RA

(
A(t),H(t),wA(t)

)

︷ ︸︸ ︷

(
wA(t) + R −

R

κ
A(t) − αH(t)

) (
1− EA(t)

)

H(t + 1) = H(t)
(
wH(t) + L+ βA(t)

)

︸ ︷︷ ︸

RH

(
A(t),H(t),wH(t)

)

(
1− EH(t)

)
,
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

We make a heroic assumption about the set of scenarios

An uncertainty scenario is a time sequence of uncertainty couples

(
wA(·),wH(·)

)
=

((
wA(t0),wH(t0)

)
, . . . ,

(
wA(T − 1),wH(T − 1)

))

We assume that, at each time t,
the uncertainties (wA(t),wH(t)) can take any value in a two-dimensional set

(wA(t),wH(t)) ∈ S(t) ⊂ R
2

Therefore, from one time t to the next t + 1,
uncertainties can be drastically different,
since (wA(t),wH(t)) is not related to (wA(t + 1),wH(t + 1))

Such an independence assumption is materialized by the property that
a scenario can take any value in a product set

(
wA(·),wH(·)

)
∈

T−1∏

t=t0

S(t)
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

In practice, we consider stationary uncertainty sets
forged from empirical data

In practice, we consider stationary uncertainty sets S(t) = S

We define wA(t) and wH(t) such that







A(t + 1) = A(t)
(
wA(t) + R − R

κA(t)− αH(t)
)(
1− vA(t)

)

H(t + 1) = H(t)
(
wH(t) + L+ βA(t)

)(
1− vH(t)

)

where (A(t),H(t))t=t0 ,...,T and (vA(t), vH(t))t=t0,...,T−1

denote the empirical biomass and effort trajectories

Therefore, our tough assumption on the set of scenarios is:
any of the possible uncertainty of any year
can materialize any other year
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Empirical distribution of the uncertainties
(wA(t),wH(t))t=t0,...,T−1
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

We first consider the empirical uncertainty set
and a refinement

The empirical uncertainties set is

S
E = {(wA(t),wH(t))|t = t0, . . . ,T − 1}

︸ ︷︷ ︸

empirical discrepancies

∪ {(0, 0)}
︸ ︷︷ ︸

deterministic case

The refined empirical uncertainties set SER

is made of 900 uncertainty couples delineated by a 30× 30 grid over the
surface [wmin

A ,wmax
A ]× [wmin

H ,wmax
H ], including all the uncertainty couples

in SE

Since {(0, 0)} ⊂ S
E ⊂ S

ER ,
the corresponding robust and deterministic viability kernels satisfy

ViabER1 (t0) ⊂ ViabE1 (t0) ⊂ Viab(t0)
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Figure : Uncertainty sets SE (diamonds) and S
ER (grid)
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Numerical resolution of the dynamic programming equation

We discretize biomass, harvesting effort and uncertainty values

A top loop for time steps embraces two nested loops for state variables A and
H , respectively

Next, loops over uncertainties nested in loops over harvesting efforts allow us
to obtain the set of images associated with a biomass couple

Images for target constraints that are not satisfied are set equal to zero

We then project these images on the value function grid of the previous
period, through linear interpolation

At given efforts, we retain the minimum value obtained over all uncertainties

Then, we retain the highest value produced by an effort couple among all

It is this value that is multiplied with the value function of the current time
period, at the location of the biomass couple at stake

The robust viability kernel is defined by the set of grid points where the value
function is equal to 1

This implies that biomass couples for which all images do not fall between
four 1 in the interpolation are excluded from the robust viability kernel (in
the sense that we provide robustness with respect to grid approximation)

Michel DE LARA (École des Ponts ParisTech) Robust and Stochastic Viable Control August 27, 2014 60 / 97



The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

The robust viability kernels are noticeably smaller
than the deterministic one
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Now, we focus on worst-case uncertainties

Numerical simulations led us to consider the three following uncertainty sets

S
L = {(

wmin
A

2
,
wmin

H

2
), (

wmin
A

2
,
wmax

H

2
)}

S
M = {(wmin

A ,w
min
H ), (wmin

A ,w
max
H )}

S
H = 1.1 ∗ SM

Since {(0, 0)} ⊂ SL ⊂ SM ⊂ SH , the corresponding robust and deterministic
viability kernels satisfy

Viab
H
1 (t0) ⊂ Viab

M
1 (t0) ⊂ Viab

L
1(t0) ⊂ Viab(t0)
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Figure : Uncertainty sets SL (crosses), SM (diamonds) and S
H (triangles)
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Figure : Robust viability kernels ViabL
1(t0), Viab

M
1 (t0) and ViabH

1 (t0) and the
deterministic viability kernel
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The robust viability problem Robust viability analysis of anchovy–hake Peruvian fisheries

Summary

We introduce uncertainties in the growth rates of interacting populations

When populations start from a robust viable state, the fisheries can be
managed so that both preservation and conservation objectives are met,
whatever the scenarios of uncertainties

To compute robust viable states, we make the strong assumption that, from
one year t to the next t + 1, uncertainties can be drastically different
(independence)

With this assumption, we compute the robust viability kernel by dynamic
programming, for different sets of uncertainties

We observe that the robust viability kernels are noticeably smaller than the
deterministic ones

We also identify uncertainties and scenarios that really matter for a
precautionary approach: low growth for both species
alternating with low growth of anchovy/high growth of hake
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The stochastic viability problem

Outline of the presentation

1 Multi-objectives dynamic management under uncertainty

2 Criterion and constraints in the uncertain case

3 The robust viability problem

4 The stochastic viability problem

5 Summary
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The stochastic viability problem Maximal viability probability and dynamic programming equation

Outline of the presentation

1 Multi-objectives dynamic management under uncertainty
Assessment frameworks are designed to deal with multiple goals
Recalls on uncertain dynamical systems under constraints

2 Criterion and constraints in the uncertain case
A dam management example
Constraints penalization
Viable scenarios

3 The robust viability problem
The deterministic viability approach
Robust viable controls and states
Robust viability analysis of anchovy–hake Peruvian fisheries

4 The stochastic viability problem
Maximal viability probability and dynamic programming equation
Stochastic viability kernels
Dam stochastic viable management
Nephrops-hake fishery viable management

5 Summary
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The stochastic viability problem Maximal viability probability and dynamic programming equation

Maximizing the probability of success may be an objective

How to gamble if you must,
L.E. Dubbins and L.J. Savage,
1965

Imagine yourself at a casino with
$1,000. For some reason, you
desperately need $10,000 by morning;
anything less is worth nothing for your
purpose.

The only thing possible is to gamble
away your last cent, if need be, in an
attempt to reach the target sum of
$10,000.

The question is how to play, not whether.
What ought you do? How should you play?

Diversify, by playing 1 $ at a time?
Play boldly and concentrate,
by playing 10,000 $ only one time?

What is your decision criterion?
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The stochastic viability problem Maximal viability probability and dynamic programming equation

The set Ω of scenarios can be equipped
with a probability P (though this is a delicate issue!)

In practice, one often assumes that the components
(
w(t0), . . . ,w(T − 1)

)

form an independent and identically distributed sequence of random variables,
or form a Markov chain, or a time series
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The stochastic viability problem Maximal viability probability and dynamic programming equation

The viability probability is the probability
of satisfying constraints under a policy

Viability probability

The viability probability associated with
the initial time t0, the initial state x0 and the policy Pol

is the probability P [ΩPol,t0,x0 ] of the set ΩPol,t0,x0 of viable scenarios

P [ΩPol,t0,x0 ] = Proba







scenarios along which
the state x(·) and control u(·) trajectories
generated by dynamics Dyn and policy Pol

starting from initial state x0 at initial time t0
satisfy the constraints
from initial time t0 to horizon T
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The stochastic viability problem Maximal viability probability and dynamic programming equation

The maximal viability probability is the upper bound
for the probability of satisfying constraints

Maximal viability probability and optimal viable policy

The maximal viability probability is

max
Pol

P [ΩPol,t0,x0 ]

An optimal viable policy Pol⋆ satisfies

P [ΩPol⋆,t0,x0 ] ≥ P [ΩPol,t0,x0 ]

In a sense, any optimal viable policy makes the set of viable scenarios
the “largest” possible
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The stochastic viability problem Maximal viability probability and dynamic programming equation

Let us introduce the stochastic viability Bellman function

Suppose that the primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 2),w(T − 1)

)

are independent under the probability P

Bellman function / stochastic viability value function

Define the probability-to-go as

V (t, x) :=

max
Pol

P

(

w(·) ∈ Ω |

control constraints
︷ ︸︸ ︷

Pol
(
s, x(s)

)
∈ B

(
s, x(s)

)
and

state constraints
︷ ︸︸ ︷

x(s) ∈ A(s) for s ≥ t
)

where x(s + 1) = Dyn
(
s, x(s), Pol

(
s, x(s)

)
,w(s)

)
and x(t) = x

The function V (t, x) is called stochastic viability value function
or Bellman function

The original problem is V (t0, x0)
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The stochastic viability problem Maximal viability probability and dynamic programming equation

The dynamic programming equation
is a backward equation satisfied by

the stochastic viability value function

Proposition

If the primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 2),w(T − 1)

)
are

independent under the probability P, the stochastic viability value function V (t, x)
satisfies the following backward induction, where t runs from T − 1 down to t0

V (T , x) = 1A(T )(x)

V (t, x) = 1A(t)(x) max
u∈B(t,x)

Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))]
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The stochastic viability problem Maximal viability probability and dynamic programming equation

The stochastic viable dynamic programming equation
yields stochastic viable policies

For any time t and state x , let us assume that the set

B
viab(t, x) := argmax

u∈B(t,x)

(

1A(t)(x)Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))])

of viable controls is not empty

Proposition

Then, any (measurable) policy Pol such that Pol⋆(t, x) ∈ B
viab(t, x) is an optimal

viable policy which achieves the maximal viability probability

V (t0, x0) = max
Pol

P [ΩPol,t0,x0 ]
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The stochastic viability problem Stochastic viability kernels

Outline of the presentation

1 Multi-objectives dynamic management under uncertainty
Assessment frameworks are designed to deal with multiple goals
Recalls on uncertain dynamical systems under constraints

2 Criterion and constraints in the uncertain case
A dam management example
Constraints penalization
Viable scenarios

3 The robust viability problem
The deterministic viability approach
Robust viable controls and states
Robust viability analysis of anchovy–hake Peruvian fisheries

4 The stochastic viability problem
Maximal viability probability and dynamic programming equation
Stochastic viability kernels
Dam stochastic viable management
Nephrops-hake fishery viable management

5 Summary
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The stochastic viability problem Stochastic viability kernels

In the dam management multi-objective problem, the
“tourism” constraint must be met

with probability 90% at least

Dam management under “tourism” probability constraint

Traditional cost minimization/payoff maximization

maxE






T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) +

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)






For “tourism” reasons, the following probability constraint is added

Probability







water inflow scenarios along which
the volumes S(t) are above the
threshold S♭ for periods t in summer






≥ 90%
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The stochastic viability problem Stochastic viability kernels

Stochastic viability kernels

In stochastic viability, state constraints are to be met along time with a given
confidence level

P

(

w(·) ∈ Ω | x(t) ∈ A(t) for t = t0, . . . ,T
)

≥ β

Stochastic viability kernels

The stochastic viability kernel at confidence level β ∈ [0, 1] is

Viabβ(t0) :=

{

x0 ∈ X

∣
∣
∣
∣
∣

there exists a policy Pol ∈ U
ad such that

P

(

w(·) ∈ Ω | x(t) ∈ A(t) for t = t0, . . . ,T
)

≥ β

}

where the state x(t) = XDyn[t0, x0, Pol,w(·)](t) is the outcome of the state
solution map
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The stochastic viability problem Stochastic viability kernels

Stochastic viability kernels Viabβ(t0)
for a hake-anchovy fisheries model
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The stochastic viability problem Stochastic viability kernels

Stochastic viable policies

Stochastic viable policies

Stochastic viable policies are

U
viab

β (t0, x0) :=
{

Pol ∈ U
ad

∣
∣
∣ P

(

w(·) ∈ Ω | x(t) ∈ A(t) for t = t0, . . . ,T
)

≥ β

}

where the state x(t) = XDyn[t0, x0, Pol,w(·)](t) corresponds to the state solution
map
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The stochastic viability problem Stochastic viability kernels

The dynamic programming equation yields
the viability kernels, as well as stochastic viable policies

The viability kernel at confidence level β is the section of level β of the
stochastic value function:

V (t0, x0) ≥ β ⇐⇒ x0 ∈ Viabβ(t0)

If, for any time t and state x , the set Bviab(t, x) :=

argmax
u∈B(t,x)

(

1A(t)(x)Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))])

is not empty, then any (measurable) Pol⋆ ∈ U such that
Pol⋆(t, x) ∈ Bviab(t, x) belongs to U

viab

β (t0, x0) for x0 ∈ Viabβ(t0)
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The stochastic viability problem Dam stochastic viable management

Outline of the presentation

1 Multi-objectives dynamic management under uncertainty
Assessment frameworks are designed to deal with multiple goals
Recalls on uncertain dynamical systems under constraints

2 Criterion and constraints in the uncertain case
A dam management example
Constraints penalization
Viable scenarios

3 The robust viability problem
The deterministic viability approach
Robust viable controls and states
Robust viability analysis of anchovy–hake Peruvian fisheries
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Maximal viability probability and dynamic programming equation
Stochastic viability kernels
Dam stochastic viable management
Nephrops-hake fishery viable management
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The stochastic viability problem Dam stochastic viable management

We propose a stochastic viability formulation
to treat symmetrically and to guarantee

both environmental and economic objectives

Given two thresholds to be guaranteed

a volume S♭ (measured in cubic hectometers hm3)
a payoff P♭ (measured in numeraire $)

we look after policies achieving the maximal viability probability

Π(S♭,P♭) = max Proba







water inflow scenarios along which

the volumesS(t) ≥ S♭

for all time t ∈ { July, August }
and the final payoff P(T ) ≥ P♭







Π(S♭,P♭) is the maximal probability
to guarantee to be above the thresholds S♭ and P♭
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The stochastic viability problem Dam stochastic viable management

The stochastic viability formulation
requires to redefine state and dynamics

The state is the couple x(t) =
(
S(t),P(t)

)
volume/payoff

The control u(t) = q(t) is the turbined water

The dynamics is

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

} ,

t = t0, . . . ,T − 1

P(t + 1)
︸ ︷︷ ︸

future payoff

= P(t)
︸︷︷︸

payoff

+ p(t)q(t) − ǫq(t)2
︸ ︷︷ ︸

turbined water payoff

, t = t0, . . . ,T − 2

P(T ) = P(T − 1) + K
(
S(T )

)

︸ ︷︷ ︸

final volume utility
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The stochastic viability problem Dam stochastic viable management

In the stochastic viability formulation,
objectives are dressed as state constraints

The control constraints are

u(t) ∈ B
(
t, x(t)

)
⇐⇒ 0 ≤ q(t) ≤ S(t)

The state constraints are

x(t) ∈ A(t) ⇐⇒

{
S(t) ≥ S♭ , ∀t ∈ { July, August }

P(T ) ≥ P♭
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The stochastic viability problem Dam stochastic viable management

For each couple of thresholds on payoff and stock,
we write a dynamic programming equation

Abstract version

V (T , x) = 1A(T )(x)

V (t, x) = 1A(t)(x) max
u∈B(t,x)

Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))]

Specific version

V (T , S,P) = 1{P≥P♭}

V (T − 1, S,P) = max
0≤q≤S

Ea(t)

[

V
(

t + 1, S − q + a(t),P + K
(

S
)

)]

V (t, S,P) = max
0≤q≤S

Ea(t)

[

V
(

t + 1, S − q + a(t),P + pq − ǫq2
)]

, t 6∈ { July, August }

V (t, S,P) = 1{S≥S♭} max
0≤q≤S

Ea(t)

[

V
(

t + 1,S − q + a(t),P + pq − ǫq2
)]

,

t ∈ { July, August }
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The stochastic viability problem Dam stochastic viable management

We plot the maximal viability probability Π(S ♭
,P

♭)

as a function of guaranteed thresholds S ♭ and P
♭

For example, the probability
to guarantee

a final payoff above
P♭ = 1 Meuros

and a volume above
S♭ = 40 hm3 in July
and August

is about 90%
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The stochastic viability problem Dam stochastic viable management

We plot iso-values for the maximal viability probability

as a function of guaranteed thresholds S ♭ and P
♭
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The stochastic viability problem Dam stochastic viable management

The probability distribution of the random gain
reflects the viability objectives
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The stochastic viability problem Nephrops-hake fishery viable management

Outline of the presentation

1 Multi-objectives dynamic management under uncertainty
Assessment frameworks are designed to deal with multiple goals
Recalls on uncertain dynamical systems under constraints

2 Criterion and constraints in the uncertain case
A dam management example
Constraints penalization
Viable scenarios

3 The robust viability problem
The deterministic viability approach
Robust viable controls and states
Robust viability analysis of anchovy–hake Peruvian fisheries

4 The stochastic viability problem
Maximal viability probability and dynamic programming equation
Stochastic viability kernels
Dam stochastic viable management
Nephrops-hake fishery viable management

5 Summary
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The stochastic viability problem Nephrops-hake fishery viable management

We tackle the issue of bycatch in nets

M. De Lara and V. Martinet.
Multi-criteria dynamic decision under
uncertainty:
a stochastic viability analysis and
an application to sustainable fishery
management.
In Mathematical Biosciences,
Volume 217, Issue 2, February 2009,
Pages 118-124
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The stochastic viability problem Nephrops-hake fishery viable management

Hake and nephrops in technical interaction

Nh
1(t + 1) = wh(t) uncertain hake recruitment

Nn
1(t + 1) = wn(t) uncertain nephrops recruitment

Nh
a(t + 1) = Nh

a−1(t)




1−Mh

a−1 −

hake bycatch
︷ ︸︸ ︷

u(t)F nh
a−1 −F hh

a−1






Nn
a(t + 1) = Nn

a−1(t)




1−Mn

a−1 −

nephrops fishing mortality
︷ ︸︸ ︷

u(t)F nn
a−1






Nh
A(t + 1) = Nh

A−1(t)
(
1−Mh

A−1 − u(t)F nh
A−1 − F hh

A−1

)

+Nh
A(t)

(
1−Mh

A − u(t)F nh
A − F hh

A

)

Nn
A(t + 1) = Nn

A−1(t)
(
1−Mn

A−1 − u(t)F nn
A−1

)

+Nn
A(t)

(
1−Mn

A − u(t)F nn
A

)
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The stochastic viability problem Nephrops-hake fishery viable management

The relative effort of the nephrops fleet
has to be controlled to ensure both

nephrops fleet profitability and hake preservation

Economic objective: nephrops fishery is economically viable if the gross
return is greater than a threshold

P
(
Nn(t), u(t)

)

︸ ︷︷ ︸

payoff

≥ P♭

Ecological objective: fishery is ecologically viable if its impact by bycatch on
the hake biology is compatible with
sufficient recruitment of mature hakes

Nh
4 (t)

︸ ︷︷ ︸

fourth age−class

≥ (Nh
4 )

♭
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The stochastic viability problem Nephrops-hake fishery viable management

An optimal viable policy can be calculated
thanks to monotonicity properties

Due to monotonicity properties

of the dynamics, increasing in the state variable and decreasing in the control
of the constraints, increasing in the state variable and decreasing in the control

we can prove that

Pol⋆(t,N) = inf{u ∈ [0, u♯] | P(Nn, u) ≥ P♭}

is an optimal viable policy
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The stochastic viability problem Nephrops-hake fishery viable management

Maximal viability probability function of P♭ and (Nh
4 )

♭
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The stochastic viability problem Nephrops-hake fishery viable management

Iso-values for the maximal viability probability

as a function of guaranteed thresholds P♭ and (Nh
4 )

♭
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Summary

Outline of the presentation

1 Multi-objectives dynamic management under uncertainty

2 Criterion and constraints in the uncertain case

3 The robust viability problem

4 The stochastic viability problem

5 Summary
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Summary

Summary

When uncertainties affect the dynamics at each time step,
the state outcome is no longer unique

The state trajectory is now contingent on policy and scenario

Therefore, state constraints are met or not depending on the scenario

In the robust setting, state constraints have to be met
for all the scenarios in a subset of scenarios

In the probabilistic setting, state constraints have to be met
with a given confidence level, possibly the highest
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