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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

In 2012, the Botanic Garden in Mauritius Island witnessed
an exceptional blooming of the talipot palm

In 2012, at Sir Seewoosagur Ramgoolam
Botanic Garden in Mauritius Island,
the talipot palm Corypha umbraculifera
was in bloom

This remarkable event occurs only once
in the life of this species (monocarpic)

The palm flowers only once,
when it is 30 to 80 years old, produces fruits,
and dies after fruiting
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

Organisms trade growth off for reproduction

Organisms (vegetal, animal) trade growth off for reproduction
to achieve the largest number of offspring

The bigger a plant today, the bigger tomorrow
(leafs and roots capturing more resources)

Therefore, it might be interesting to postpone reproduction
and convert all final biomass into seeds

But, it the environment is hostile in the sense that
the plant faces a sequence of independent death threats,
it may be better to start reproducing early

Fishes and snakes grow and reproduce during all their life time
(wild salmon dies after spawning)
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

What is investing?

Investing is refraining from consuming now
at the benefit of more consumption in one year

at the expense of being dead in one year
(the first reason for discounting the future)
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

The debate on the timing of decisions for mitigating climate change
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

Carbon cycle model and uncertain damages

co2 concentration M(t)

M(t + 1) = M(t)−δ(M(t)−M−∞)︸ ︷︷ ︸
natural sinks

+α

emissions︷ ︸︸ ︷
Emiss(t)

(
1− a(t)

)
︸ ︷︷ ︸
abatement

decision a(t) ∈ [0, 1] is the abatement rate of co2 emissions.
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

Mitigation for climate change under uncertainty

Three periods: t = 0 (today), t = 1 (in twenty-five years),
t = 2 (in fifty years)

First-period abatement cost Cost
(
a(0)

)

Discounted second-period abatement cost δCost
(
a(1)

)
, where δ = 1

1+re

Discounted final damage cost δ2Damage
(
M(2), θ(2)

)
depends on

co2 final concentration M(2)
uncertain damage sensitivity to climate θ(2) in fifty years

Total costs are Crit(M(·), a(·), θ(·)) =

Cost
(
a(0)

)
+ δCost

(
a(1)

)
+ δ2Damage(M(2), θ(2))

and they depend upon the uncertainty θ(2)
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

Managing a dam requires many decisions over several years
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

Optimal single dam management

At

St

Qt

Rt
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

A single dam nonlinear dynamical model in decision-hazard

We can model the dynamics of the water volume in a dam by

S(t + 1)︸ ︷︷ ︸
future volume

= min{S♯, S(t)︸︷︷︸
volume

− q(t)︸︷︷︸
turbined

+ a(t)︸︷︷︸
inflow volume

}

S(t) volume (stock) of water at the beginning of period [t, t + 1[

a(t) inflow water volume (rain, etc.) during [t, t + 1[

decision-hazard:
a(t) is not available at the beginning of period [t, t + 1[

q(t) turbined outflow volume during [t, t + 1[

decided at the beginning of period [t, t + 1[
supposed to depend on S(t) but not on a(t)
chosen such that 0 ≤ q(t) ≤ S(t)
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

The traditional economic problem is
maximizing the expected payoff

Suppose that

a probability P is given on the set S = R
T−t0

of water inflows scenarios
(
a(t0), . . . , a(T − 1)

)

turbined water q(t) is sold at price p(t),
related to the price at which energy can be sold at time t

at the horizon, the final volume S(T ) has a value K
(
S(T )

)
,

the “final value of water”

The traditional economic problem is to maximize the intertemporal payoff
(without discounting if the horizon is short)

maxE



T−1∑

t=t0

turbined water payoff︷ ︸︸ ︷
p(t)q(t) +

final volume utility︷ ︸︸ ︷
K
(
S(T )

)
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

Let us fix notations and vocabulary
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Optimization intertemporal criteria under uncertainty Examples of trade-offs in intertemporal stochastic optimization

Uncertainty variables are new input variables
in a discrete-time nonlinear state-control system

A specific output is distinguished, and is labeled “state” (more on this later),
when the system may be written

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)
, t ∈ T = {t0, t0 + 1, . . . ,T − 1}

time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N

(the time period [t, t + 1[ may be a year, a month, etc.)

state x(t) ∈ X := Rn (biomasses, abundances, etc.)

control u(t) ∈ U := Rp (catches or harvesting effort)

uncertainty w(t) ∈ W := Rq

(recruitment or mortality uncertainties, climate fluctuations or trends, etc.)

dynamics Dyn maps T× X× U×W into X

(biomass model, age-class model, economic model)
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Optimization intertemporal criteria under uncertainty An intertemporal criterion displays preferences with respect to time
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Optimization intertemporal criteria under uncertainty An intertemporal criterion displays preferences with respect to time

Histories and criterion for
the single dam optimization problem

Single dam histories

(
S(·), q(·), a(·)

)
=

(
stocks︷ ︸︸ ︷

S(t0), . . . , S(T ),

turbined︷ ︸︸ ︷
q(t0), . . . , q(T − 1),

inflows︷ ︸︸ ︷
a(t0), . . . , a(T − 1)

)

Intertemporal payoff for a single dam

Crit
(
S(·), q(·), a(·)

)
=

T−1∑

t=t0

turbined water profit︷ ︸︸ ︷
p(t)︸︷︷︸

price ×

q(t)︸︷︷︸
quantity

+

final stock utility︷ ︸︸ ︷
K
(
S(T )

)
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Optimization intertemporal criteria under uncertainty An intertemporal criterion displays preferences with respect to time

An intertemporal criterion attaches a value to a history
and performs an aggregation with respect to time,

reflecting preferences across time

The history space is

H :=

history space︷ ︸︸ ︷
X

T+1−t0︸ ︷︷ ︸
state

×U
T−t0︸ ︷︷ ︸

control

× W
T+1−t0︸ ︷︷ ︸

uncertainty

A criterion Crit is a function

Crit : H → R

which assigns

a scalar value Crit

(
x(·), u(·),w(·)

)
∈ R

to a history
(
x(·), u(·),w(·)

)
∈ H
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Optimization intertemporal criteria under uncertainty An intertemporal criterion displays preferences with respect to time

Here are the most common intertemporal criteria
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Optimization intertemporal criteria under uncertainty An intertemporal criterion displays preferences with respect to time

The additive criterion is the most common
and sums payoffs over time-periods

The traditional discounted present value is

+∞∑

t=t0

δt−t0L
(
x(t), u(t),w(t)

)

The time-separable additive criterion includes
discounted present value, Green Golden, Chichilnisky

Crit
(
x(·), u(·),w(·)

)
=

T−1∑

t=t0

instantaneous gain︷ ︸︸ ︷
L
(
t, x(t), u(t),w(t)

)

+ K
(
x(T ),w(T )

)
︸ ︷︷ ︸

final gain

The payoffs in one time-period may be compensated
by those of other time-periods
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Optimization intertemporal criteria under uncertainty An intertemporal criterion displays preferences with respect to time

The maximin criterion focuses on
the worst payoff accross time-periods

Equity: a focus on the poorest generation

The maximin form or Rawls criterion is

Crit
(
x(·), u(·),w(·)

)
=

min
t=t0,...,T−1

generation utility︷ ︸︸ ︷
L
(
t, x(t), u(t),w(t)

)

︸ ︷︷ ︸
worse generation utility
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Optimization intertemporal criteria under uncertainty An intertemporal criterion displays preferences with respect to time

Summary

A criterion attaches a value to a history
and performs an aggregation with respect to time,
reflecting preferences across time

How can we attach a value to a policy,
so that we can rank policies?

Michel DE LARA (École des Ponts ParisTech) Robust and Stochastic Optimal Sequential Control January 5, 2016 23 / 112



Optimization intertemporal criteria under uncertainty How can we rank policies with a criterion under uncertainty?
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Optimization intertemporal criteria under uncertainty How can we rank policies with a criterion under uncertainty?

An example of state and control solution maps

Volume and turbined trajectories under a given policy

Consider a dam modeled as S(t + 1) = S(t)− q(t) + a(t),
where there is no spilling by supposing that the total volume S♯ = +∞, and pick up

a scenario a(·) =
(
a(t0), a(t0 + 1), . . . , a(T )

)
of water inflows

a policy Pol(t,S) = α(t)S with 0 ≤ α(t) ≤ 1

an initial state (volume) S(t0)

1 Initial decision q(t0) = α(t0)S(t0)

2 Second state S(t0 + 1) =
(
1− α(t0)

)
S(t0) + a(t0)

3 Second decision
q(t0 + 1) = α(t0 + 1)S(t0 + 1) = α(t0 + 1)

((
1− α(t0)

)
S(t0) + a(t0)

)

4 And so on S(t0 + 2) =
(
1− α(t0 + 1)

)
S(t0 + 1) + a(t0 + 1) =

(
1− α(t0 + 1)

)(
1− α(t0)

)
S(t0) +

(
1− α(t0 + 1)

)
a(t0) + a(t0 + 1)

5 . . .
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Optimization intertemporal criteria under uncertainty How can we rank policies with a criterion under uncertainty?

A policy and a scenario yield a history
that is evaluated by a criterion (time aggregation)

Turbined and final volume payoff under a given policy

Plug the solution maps

1 q(t0) = α(t0)S(t0)

2 S(t0 + 1) =
(
1− α(t0)

)
S(t0) + a(t0)

3 q(t0 + 1) = α(t0 + 1)
(
1− α(t0)

)
S(t0) + a(t0)

4 S(t0 + 2) =
(
1− α(t0 + 1)

)(
1− α(t0)

)
S(t0) +

(
1− α(t0 + 1)

)
a(t0) + a(t0 + 1)

5 . . .

into the criterion

Crit

(
S(·), q(·), a(·)

)
=

T−1∑

t=t0

water release profit
︷ ︸︸ ︷

p(t)q(t) +

final stock utility
︷ ︸︸ ︷

K
(
S(T )

)
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Optimization intertemporal criteria under uncertainty How can we rank policies with a criterion under uncertainty?

Let us fix notations and vocabulary
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Optimization intertemporal criteria under uncertainty How can we rank policies with a criterion under uncertainty?

Admissible state feedback policies
express control constraints

The control constraints case restricts policies to admissible policies

U
ad := {Pol : T× X → U | Pol(t, x) ∈ B(t, x) , ∀(t, x)}

Dam management physical volume constraint

In a water reservoir, the output flow (control) cannot be more than the stock
volume (state) and than a capacity constraint

0 ≤ q(t) ≤ S(t) and 0 ≤ q(t) ≤ q♯

For instance, a dam management policy of the form

Pol(t, S) = max{q♭,min{α(t)S , q♯, S}}

is admissible, where 0 ≤ q♭ ≤ q♯ captures a requirement of minimal outflow
(for biodiversity preservation in downward rivers, for instance)
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Optimization intertemporal criteria under uncertainty How can we rank policies with a criterion under uncertainty?

A policy and a scenario yield a history
that is evaluated by a criterion (time aggregation)

The criterion Crit maps the history space H towards R

For t0 the initial time, and x0 ∈ X the initial state,
the evaluation of the criterion is

CritPol
(
t0, x0,w(·)

)
:=

Crit
(
XDyn[t0, x0, Pol,w(·)](·)︸ ︷︷ ︸

state trajectory

,UDyn[t0, x0, Pol,w(·)](·)︸ ︷︷ ︸
control trajectory

,w(·)
)
∈ R
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Optimization intertemporal criteria under uncertainty How can we rank policies with a criterion under uncertainty?

A policy and a criterion yield a real-valued payoff

Given a policy Pol ∈ U
ad and a scenario w(·) ∈ S, we obtain a payoff

Payoff
(
Pol,w(·)

)
= CritPol

(
t0, x0,w(·)

)

hence a mapping U
ad × S → R

Policies/Scenarios wA(·) ∈ S wB(·) ∈ S . . .

Pol1 ∈ U
ad Payoff

(
Pol1,w

A(·)
)

Payoff
(
Pol1,w

B(·)
)

. . .

Pol2 ∈ U
ad Payoff

(
Pol2,w

A(·)
)

Payoff
(
Pol2,w

B(·)
)

. . .
. . . . . . . . . . . .
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Optimization intertemporal criteria under uncertainty How can we rank policies with a criterion under uncertainty?

Summary

An intertemporal criterion Crit attaches a value to a history
and performs an aggregation with respect to time,
reflecting preferences across time

A policy Pol and a scenario w(·) yield a history,
thanks to the state and control solution maps,
that is evaluated by a criterion Crit (time aggregation),
yielding CritPol

(
t0, x0,w(·)

)

A policy Pol and a criterion Crit yield a real-valued mapping
w(·) ∈ S 7→ Payoff

(
Pol,w(·)

)
= CritPol

(
t0, x0,w(·)

)

over the scenarios S

Therefore, comparing policies amounts to
comparing mappings over the scenarios S

For this purpose, we will see how to aggregate the real-valued mapping
w(·) ∈ S 7→ Payoff

(
Pol,w(·)

)
with respect to scenarios

Michel DE LARA (École des Ponts ParisTech) Robust and Stochastic Optimal Sequential Control January 5, 2016 31 / 112



Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

In the robust or pessimistic approach,
Nature is supposed to be malevolent,

and the DM aims at protection against all odds
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

In the robust or pessimistic approach,
Nature is supposed to be malevolent

In the robust approach, the DM considers the worst payoff

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)

︸ ︷︷ ︸
worst payoff

Nature is supposed to be malevolent,
and specifically selects the worst scenario:
the DM plays after Nature has played, and maximizes the worst payoff

max
Pol∈Uad

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)

Robust, pessimistic, worst-case, maximin, minimax (for costs)

Guaranteed energy production

In a dam, the minimal energy production in a given period,
corresponding to the worst water inflow scenario
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

The robust approach can be softened
with plausibility weighting

Let Θ : Ω → R ∪ {−∞} be a a plausibility function.

The higher, the more plausible:
totally implausible scenarios are those for which Θ

(
w(·)

)
= −∞

Nature is malevolent, and specifically selects the worst scenario,
but weighs it according to the plausibility function Θ

The DM plays after Nature has played, and solves

max
Pol∈Uad


 min
w(·)∈Ω


Payoff

(
Pol,w(·)

)
− Θ

(
w(·)

)
︸ ︷︷ ︸
plausibility
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

In the optimistic approach,
Nature is supposed to benevolent

Future. That period of time in which our affairs prosper,
our friends are true and our happiness is assured.

Ambrose Bierce

Instead of maximizing the worst payoff as in a robust approach, the
optimistic perspective focuses on the most favorable payoff

max
w(·)∈Ω

Payoff
(
Pol,w(·)

)

︸ ︷︷ ︸
best payoff

Nature is supposed to benevolent, and specifically selects the best scenario:
the DM plays after Nature has played, and solves

max
Pol∈Uad

max
w(·)∈Ω

Payoff
(
Pol,w(·)

)
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

The Hurwicz criterion reflects an intermediate attitude
between optimistic and pessimistic approaches

A proportion α ∈ [0, 1] graduates the level of prudence

max
Pol∈Uad

{
α

pessimistic︷ ︸︸ ︷
min

w(·)∈Ω
Payoff

(
Pol,w(·)

)
+(1− α) max

w(·)∈Ω
Payoff

(
Pol,w(·)

)

︸ ︷︷ ︸
optimistic

}
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

In the stochastic or expected approach,
Nature is supposed to play stochastically
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

In the stochastic or expected approach,
Nature is supposed to play stochastically

The expected payoff is

mean payoff︷ ︸︸ ︷
E

[
Payoff

(
Pol,w(·)

)]
=

∑

w(·)∈S

P{w(·)}Payoff
(
Pol,w(·)

)

Nature is supposed to play stochastically, according to distribution P:
the DM plays after Nature has played, and solves

max
Pol∈Uad

E

[
Payoff

(
Pol,w(·)

)]

The discounted expected utility is the special case

E

[+∞∑

t=t0

δt−t0L
(
x(t), u(t),w(t)

)]
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

The expected utility approach distorts payoffs
before taking the expectation

We consider a utility function L to assess the utility of the payoffs
(for instance a CARA exponential utility function)

The expected utility is

E

[
L

(
Payoff

(
Pol,w(·)

))]

︸ ︷︷ ︸
expected utility

=
∑

w(·)∈S

P{w(·)}L

(
Payoff

(
Pol,w(·)

))

The expected utility maximizer solves

max
Pol∈Uad

E

[
L

(
Payoff

(
Pol,w(·)

))]
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Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

The ambiguity or multi-prior approach
combines robust and expected criterion

Different probabilities P, termed as beliefs or priors,
and belonging to a set P of admissible probabilities on Ω

The multi-prior approach combines robust and expected criterion,
by taking the worst beliefs in terms of expected payoff

max
Pol∈Uad

min
P∈P

mean payoff︷ ︸︸ ︷
E
P

[
Payoff

(
Pol,w(·)

)]

︸ ︷︷ ︸
pessimistic over probabilities
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Convex risk measures cover a wide range of risk criteria

Different probabilities P, termed as beliefs or priors,
and belonging to a set P of admissible probabilities on Ω

To each probability P is attached a plausibility Θ(P)

max
Pol∈Uad

min
P∈P

mean payoff︷ ︸︸ ︷
E
P

[
Payoff

(
Pol,w(·)

)]
−

plausibility︷ ︸︸ ︷
Θ(P)

︸ ︷︷ ︸
pessimistic over probabilities

Michel DE LARA (École des Ponts ParisTech) Robust and Stochastic Optimal Sequential Control January 5, 2016 42 / 112



Optimization intertemporal criteria under uncertainty A risk criterion displays attitudes with respect to uncertainty

Non convex risk measures can lead to non diversification

How to gamble if you must,
L.E. Dubbins and L.J. Savage,
1965

Imagine yourself at a casino with
$1,000. For some reason, you
desperately need $10,000 by morning;
anything less is worth nothing for your
purpose.

The only thing possible is to gamble
away your last cent, if need be, in an
attempt to reach the target sum of
$10,000.

The question is how to play, not whether.
What ought you do? How should you play?

Diversify, by playing 1 $ at a time?
Play boldly and concentrate,
by playing 10,000 $ only one time?

What is your decision criterion?
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Savage’s minimal regret criterion... “Had I known”

min
Pol∈Uad

{
worst regret︷ ︸︸ ︷

max
w(·)∈Ω

[
max

anticipative policies Pol

Payoff
(
Pol,w(·)

)
− Payoff

(
Pol,w(·)

)

︸ ︷︷ ︸
regret

]}

If the DM knows the future in advance, she solves
maxanticipative policies Pol

Payoff
(
Pol,w(·)

)
, for each scenario w(·) ∈ Ω

The regret attached to a non-anticipative policy Pol ∈ U
ad is the loss due to

not being visionary

The best a non-visionary DM can do with respect to regret is minimizing it
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Summary

A criterion attaches a value to a history
and performs an aggregation with respect to time,
reflecting preferences across time

Off-line information on scenarios makes possible
different aggregations with respect to uncertainties,
reflecting risk attitudes
and preferences across scenarios

Policies are compared with respect to
both time and uncertainties payoffs aggregations

How do we compute optimal policies?
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The stochastic optimality problem and dynamic programming

Outline of the presentation

1 Optimization intertemporal criteria under uncertainty

2 The stochastic optimality problem and dynamic programming

3 Applications to stochastic resources optimal management

4 The robust optimality problem and dynamic programming

5 Summary
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Examples of trade-offs in intertemporal stochastic optimization
An intertemporal criterion displays preferences with respect to time
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A risk criterion displays attitudes with respect to uncertainty
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Maximizing the expected additive payoff

The expected additive payoff is maxPol∈Uad E

[
Payoff

(
Pol,w(·)

)]
where

Crit

(
x(·), u(·),w(·)

)
=

T−1∑

t=t0

instantaneous gain
︷ ︸︸ ︷

L

(
t, x(t), u(t),w(t)

)
+ K

(
x(T ),w(T )

)

︸ ︷︷ ︸

final gain

The optimization problem is traditionally written as

max
u(·)

E

[T−1∑

t=t0

L
(
t, x(t), u(t),w(t)

)
+ K

(
x(T ),w(T )

)]

where the last expression is abusively used, but practical and traditional,
in which x(·) and u(·) need to be replaced by

x(t) = XDyn[t0, x0, Pol,w(·)](t) and u(t) = Pol

(
t, x(t)

)
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The shortest path on a graph illustrates
Bellman’s Principle of Optimality

Los Angeles

Chicago

Boston

For an auto travel analogy,
suppose that the fastest route
from Los Angeles to Boston
passes through Chicago.
The principle of optimality
translates to obvious fact that
the Chicago to Boston portion
of the route is also the fastest
route for a trip that starts from
Chicago and ends in Boston.
(Dimitri P. Bertsekas)
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Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19, 1984)

An optimal policy has the property
that whatever the initial state and
initial decision are, the remaining
decisions must constitute an
optimal policy with regard to the
state resulting from the first
decision (Richard Bellman)
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We make the assumption that
the primitive random variables are independent

The set S = WT+1−t0 = Rq × · · · × Rq of scenarios is equipped with

a σ-field F =
⊗T

t=t0
B(Rq)

and a probability P, supposed to be of product form

P = µt0 ⊗ · · · ⊗ µT

Therefore, the primitive random variables

w(t0),w(t0 + 1), . . . ,w(T − 1),w(T )

are independent under P, with marginal distributions µt0 , . . . , µT

The notation E refers to the mathematical expectation over S

either under probability P, as in E, Ew(·), EP

or under the marginal distributions µt0 , . . . , µT , as in E, Ew(t), Eµt
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What is state and what is noise?
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The stochastic optimality problem and dynamic programming The payoff-to-go and Bellman’s Principle of Optimality

Delineating what is state and what is noise
is a modelling issue

When the uncertainties are not independent, a solution is to enlarge the state

If the water inflows follow an auto-regressive model, we have

future stock︷ ︸︸ ︷
S(t + 1) = min{S♯,

stock︷︸︸︷
S(t)−

water release︷︸︸︷
q(t) +

water inflows︷︸︸︷
a(t) }

a(t + 1)︸ ︷︷ ︸
future water inflows

= α a(t)︸︷︷︸
water inflows

+w(t)︸︷︷︸
noise

where we suppose that
(
w(t0), . . . ,w(T − 1)

)
form

a sequence of independent random variables

The couple x(t) =
(
S(t), a(t)

)
is a sufficient summary of past controls and

uncertainties to do forecasting:
knowing the state x(t) =

(
S(t), a(t)

)
at time t is sufficient to forecast

x(t + 1), given the control q(t) and the uncertainty w(t)
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What is a state?

Bellman autobiography, Eye of the Hurricane

Conversely, once it was realized that the concept of policy was
fundamental in control theory, the mathematicization of the basic
engineering concept of ’feedback control,’ then the emphasis upon a
state variable formulation became natural.

A state in optimal stochastic control problems is a sufficient statistics for the
uncertainties and past controls (P. Whittle, Optimization over Time:
Dynamic Programming and Stochastic Control)

Quoting Whittle, suppose there is a variable xt which summarizes past history
in that, given t and the value of xt , one can calculate the optimal ut and also
xt+1 without knowledge of the history (ω, u0, ..., ut−1), for all t, where ω
represents all uncertainties. Such a variable is termed sufficient

While history takes value in an increasing space as t increases, a sufficient
variable taking values in a space independent of t is called a state variable
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The payoff-to-go / value function / Bellman function

Payoff-to-go / value function / Bellman function

Assume that the primitive random variables(
w(t0),w(t0 + 1), . . . ,w(T − 1),w(T )

)
are independent under the probability P.

The payoff-to-go from state x at time t is

V (t, x) := max
Pol∈Uad

E

[T−1∑

s=t

L

(
s, x(s), u(s),w(s)

)
+ K

(
x(T ),w(T )

)
]

where x(t) = x and, for s = t, . . . ,T − 1,
x(s + 1) = Dyn

(
s, x(s), u(s),w(s)

)
and u(s) = Pol

(
s, x(s)

)

The function V is called the value function, or the Bellman function

The original problem is V (t0, x0)
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The stochastic dynamic programming equation,
or Bellman equation, is a backward equation

satisfied by the value function

Stochastic dynamic programming equation

If the primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 1),w(T )

)
are

independent under the probability P, the value function V (t, x) associated with
the additive criterion satisfies the following backward induction,
where t runs from T − 1 down to t0

V (T , x) = Ew(T )

[
K
(
x ,w(T )

)]

V (t, x) = max
u∈B(t,x)

Ew(t)

[
L
(
t, x , u,w(t)

)
+ V

(
t + 1, Dyn

(
t, x , u,w(t)

))]
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Algorithm for the Bellman functions

initialization V (T , x) =
∑

w∈S(T )

P{w}K
(
x ,w

)
;

for t = T ,T − 1, . . . , t0 do

forall the x ∈ X do

forall the u ∈ B(t, x) do
forall the w ∈ S(t) do

l
(
t, x , u,w

)
= L

(
t, x , u,w

)
+ V

(
t + 1, Dyn(t, x , u,w)

)
∑

w∈S(t)

P{w}l
(
t, x , u,w

)

V (t, x) = max
u∈B(t,x)

∑

w∈S(t)

P{w}l
(
t, x , u,w

)
;

B⋆(t, x) = argmax

u∈B(t,x)

∑

w∈S(t)

P{w}l
(
t, x , u,w

)

Michel DE LARA (École des Ponts ParisTech) Robust and Stochastic Optimal Sequential Control January 5, 2016 58 / 112



The stochastic optimality problem and dynamic programming Bellman equation and the curse of dimensionality

Sketch of the proof in the deterministic case

V (t, x) = max
u∈B(t,x)

(
L
(
t, x , u

)
︸ ︷︷ ︸

instantaneous gain

+

optimal payoff︷ ︸︸ ︷
V
(
t + 1, Dyn(t, x , u)︸ ︷︷ ︸

future state

) )

Los Angeles

Chicago

Boston

A decision u at time t in state x provides

an instantaneous gain L
(
t, x , u

)

and a future payoff for attaining the
new state Dyn(t, x , u)
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The Bellman equation provides an optimal policy

Proposition

For any time t and state x, assume the existence of the policy Pol⋆(t, x) ∈

argmax

u∈B(t,x)

Ew(t)

[
L
(
t, x , u,w(t)

)
+ V

(
t + 1, Dyn

(
t, x , u,w(t)

))]

If Pol⋆ : (t, x) 7→ Pol⋆(t, x) is measurable, then

Pol⋆ is an optimal policy

for any initial state x0, the optimal expected payoff is given by

V (t0, x0) = max
Pol∈Uad

CritPolexpect(t0, x0) = CritPol
⋆

expect(t0, x0)
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A bit of history (and fun)
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“Where did the name, dynamic programming, come from?”

The 1950s were not good years for
mathematical research. We had a very
interesting gentleman in Washington
named Wilson. He was Secretary of
Defense, and he actually had a
pathological fear and hatred of the
word, research. I’m not using the term
lightly; I’m using it precisely. His face
would suffuse, he would turn red, and
he would get violent if people used the
term, research, in his presence. You can
imagine how he felt, then, about the
term, mathematical.
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“Where did the name, dynamic programming, come from?”

What title, what name, could I choose? In the
first place I was interested in planning, in
decision making, in thinking. But planning, is
not a good word for various reasons. I decided
therefore to use the word, programming.
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“Where did the name, dynamic programming, come from?”

I wanted to get across the idea that this was
dynamic, this was multistage, this was
time-varying. I thought, let’s kill two birds with
one stone. Let’s take a word that has an
absolutely precise meaning, namely dynamic, in
the classical physical sense. It also has a very
interesting property as an adjective, and that is
it’s impossible to use the word, dynamic, in a
pejorative sense. Try thinking of some
combination that will possibly give it a
pejorative meaning. It’s impossible. Thus, I
thought dynamic programming was a good
name.
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Navigating between “backward off-line” and “forward on-line”
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Optimal trajectories are calculated forward on-line

1 Initial state x⋆(t0) = x0
2 Plug the state x⋆(t0) into the “machine” Pol → initial decision

u⋆(t0) = Pol⋆(t0, x
⋆(t0))

3 Run the dynamics → second state x⋆(t0 + 1) = Dyn
(
t0, x

⋆(t0), u
⋆(t0),w(t0)

)

4 Second decision u⋆(t0 + 1) = Pol⋆(t0 + 1, x⋆(t0 + 1))

5 And so on x⋆(t0 + 2) = Dyn
(
t0 + 1, x⋆(t0 + 1), u⋆(t0 + 1)),w(t0 + 1)

)

6 . . .
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“Life is lived forward but understood backward”
(Søren Kierkegaard)

D. P. Bertsekas introduces his book
Dynamic Programming and Optimal Control
with a citation by Søren Kierkegaard

”Livet skal forst̊as baglaens, men leves
forlaens”

Life is to be understood backwards,
but it is lived forwards

The value function and the optimal policies
are computed backward and offline
by means of the Bellman equation

whereas the optimal trajectories
are computed forward and online
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The curse of dimensionality :-(
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The curse of dimensionality is illustrated by the random
access memory capacity on a computer:

one, two, three, infinity (Gamov)

On a computer

RAM: 8 GBytes = 8(1 024)3 = 233 bytes
a double-precision real: 8 bytes = 23 bytes
=⇒ 230 ≈ 109 double-precision reals can be handled in RAM

If we discretize a state of dimension 4
by a grid with 100 levels by components,
we need to manipulate 1004 = 108 reals and

do a time loop
do a control loop (after discretization)
compute an expectation

The wall of dimension can be pushed beyond 3
if additional properties are exploited (linearity, convexity)
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Summary

Bellman’s Principle of Optimality breaks
an intertemporal optimization problem
into a sequence of interconnected static optimization problems

The payoff-to-go / value function / Bellman function
is solution of a backward dynamic programming equation,
or Bellman equation

The Bellman equation provides an optimal policy,
a concept of solution adapted to uncertain case

In practice, the curse of dimensionality
forbids to use dynamic programming
for a state with dimension more than three or four
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Bellman equation and optimal policies
in the hazard-decision information pattern

The uncertainty is observed before making the decision

initialization V (T , x) =
∑

w∈S(T )

P{w}K
(
x ,w

)
;

for t = T ,T − 1, . . . , t0 do

forall the x ∈ X do

forall the w ∈ S(t) do
forall the u ∈ B(t, x) do

l
(
t, x , u,w

)
= L

(
t, x , u,w

)
+ V

(
t + 1, Dyn(t, x , u,w)

)

max
u∈B(t,x)

l
(
t, x , u,w

)
;

B⋆(t, x ,w) = argmax

u∈B(t,x)

l
(
t, x , u,w

)

V (t, x) =
∑

w∈S(t)

P{w} max
u∈B(t,x)

l
(
t, x , u,w

)
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In the linear-quadratic-Gaussian case,
optimal policies are linear

When utilities are quadratic

K
(
x ,w

)
= x ′S(T )x + w ′R(T )w

L
(
t, x , u,w

)
= x ′S(t)x + w ′R(t)w + u′Q(t)u

and the dynamic is linear

Dyn(t, x , u,w) = F (t)x + G(t)u + H(t)w

and primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 1),w(T )

)

are Gaussian independent under the probability P

then, the value functions x 7→ V (t, x) are quadratic,
and optimal policies are linear

u(t) = K (t)x(t)
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How optimal decisions can be computed on-line

If we are able to store the value functions x 7→ V (t, x),
we do not need to compute the optimal policy Pol⋆ in advance and store it

Indeed, when we are at state x at time t in real time,
we can just compute the optimal decision u⋆(t) “on the fly” by

u⋆(t) ∈ argmax

u∈B(t,x)

Ew(t)

[
L
(
t, x , u,w(t)

)
+ V

(
t + 1, Dyn

(
t, x , u,w(t)

))]

In addition to sparing storage, this method makes it possible
to incorporate in the above program any new information available at time t
(on the distribution of the noise w(t), for instance)
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So, the question is:
how can we store the value functions?

The effort can be concentrated on computing the value functions

on a grid, by discretizing the Bellman equation

by estimating basis coefficients,
when it is known that the value function is quadratic

by estimating upper affine approximation of the value function,
when it is known that the value function is concave

by estimating lower approximation of the value function,
when restricting the search to a subclass of policies (open-loop in OLFO)
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Plants display a large spectrum of life-history patterns

(Mark Kot, Elements of Mathematical Ecology)

Herbs often flower in their first year and
then die, roots and all, after setting seed

Plants that flower once and then die
are monocarpic

Bamboos are grasses but they grow to
unusually large size. One Japanese species,
Phyllostachys bambusoides, waits 120
years to flower (Janzen, 1976)
Most trees flower repeatedly. However,
Foster (1977) has characterized Tachigalia

versicolor as a ’suicidal neotropical tree’.
After reaching heights of 30-40 m, it
flowers once and then dies
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A stochastic control model of plant growth

The model is a discrete time one with
time variable t ∈ {t0, . . . ,T}

A time unit may typically be either
a day (t ∈ {0, . . . , 364}),
a month (t ∈ {0, . . . , 11}),
or a season (t ∈ {0, 1, 2, 3})

1 At the beginning of each time interval [t, t + 1[,

the plant is characterized by its vegetative biomass kt ∈ [0,+∞[
and by the cumulated reproductive biomass St ∈ [0,+∞[

2 At the end of each time interval [t, t + 1[,
the vegetative biomass kt+1 is at most f (kt),

0 ≤ kt+1 ≤ f (kt)

where f is the growth function
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Applications to stochastic resources optimal management A model of plant growth over a finite horizon

The growth of a plant in one period is modeled by a stricly
increasing and strictly concave function
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Concerning the (gross) growth
function f : R+ → R, we make the
following assumptions:

f is continuous

f (0) = 0

f (k) > 0 for k > 0

f is strictly increasing: f ′ > 0

f is strictly concave: f ′′ < 0

Michel DE LARA (École des Ponts ParisTech) Robust and Stochastic Optimal Sequential Control January 5, 2016 80 / 112



Applications to stochastic resources optimal management A model of plant growth over a finite horizon

A stochastic control model of plant growth

1 At the beginning of each time interval [t, t + 1[,

the plant is characterized by its vegetative biomass kt ∈ [0,+∞[
and by the cumulated reproductive biomass St ∈ [0,+∞[

2 During each time interval [t, t + 1[, where t + 1 < T ,

the plant allocates biomass ut as vegetative biomass, with 0 ≤ ut ≤ f (kt)
and f (kt)− ut as reproductive biomass in the interval [t, t + 1[

3 At the end of each time interval [t, t + 1[, where t + 1 < T ,

the cumulated reproductive biomass is
St+1 = S0 +

∑t

s=0[f (ks)− us ] = St + [f (kt)− ut ]
the plant vegetative biomass is kt+1

either kt+1 = ut with probability p (survival)
or kt+1 = 0 with probability 1− p (death)

4 At the maximal life span T ,

the cumulated reproductive biomass ST is released
in the form of independent offspring
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Applications to stochastic resources optimal management A model of plant growth over a finite horizon

Optimization problem and Bellman equation

Which are the growth strategies ut = Pol(t, kt), or the growth patterns
(ut0 ,kt0), . . . , (uT−1,kT−1) that display the highest expected offspring E [ST ]?

The optimization problem is

maxE

[
T−1∑

t=t0

(
f (kt)− ut

)
]

The corresponding Bellman equation is

V (T , k) =

no final gain
︷︸︸︷

0

V (t, k) = max
0≤u≤f (k)

(

f (k)− u
︸ ︷︷ ︸

offspring

+pV
(
t + 1, u

)
+ (1− p)V

(
t + 1, 0

︸︷︷︸

death

))
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Applications to stochastic resources optimal management A model of plant growth over a finite horizon

Optimal growth strategies and patterns

Since f ′ is decreasing — and supposing that f ′(0) = +∞
and that limk→+∞ f ′(k) = 0 — define kp by

f ′(kp) = 1/p

In the case where kp ≤ f (kp), one can show that the optimal stragegy is
stationary (except for the ultimate one consisting in dying)

Pol⋆(t, k) =

{
f (k) if k ≤ f −1(kp)
kp if k ≥ f −1(kp)

Draw optimal trajectories t 7→ kt for the vegetative biomass

What happens to kp and to the optimal trajectories
when the survival probability p decreases from 1 to 0?
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Applications to stochastic resources optimal management Biomass linear models

Outline of the presentation

1 Optimization intertemporal criteria under uncertainty
Examples of trade-offs in intertemporal stochastic optimization
An intertemporal criterion displays preferences with respect to time
How can we rank policies with a criterion under uncertainty?
A risk criterion displays attitudes with respect to uncertainty

2 The stochastic optimality problem and dynamic programming
The payoff-to-go and Bellman’s Principle of Optimality
Bellman equation and the curse of dimensionality
Complements

3 Applications to stochastic resources optimal management
A model of plant growth over a finite horizon
Biomass linear models
The inventory problem
An introduction to SDDP

4 The robust optimality problem and dynamic programming

5 Summary

Michel DE LARA (École des Ponts ParisTech) Robust and Stochastic Optimal Sequential Control January 5, 2016 84 / 112



Applications to stochastic resources optimal management Biomass linear models

A biomass linear model over two periods

We consider the biomass linear model over two periods T = 2

B(t + 1) = R(t)
(

B(t)︸︷︷︸
biomass

− h(t)︸︷︷︸
catches

)
, t = 0, 1

where R(0) and R(1) are two independent random variables representing
growth factors

We aim at maximizing the expectation of the sum of the discounted
successive harvesting revenues (with discount factor δ = 1

1+re
)

maxER(0),R(1)

[
p(0)h(0) + δp(1)h(1)

]

where the harvests satisfy 0 ≤ h(0) ≤ B(0), 0 ≤ h(1) ≤ B(1)
and the prices p(0) and p(1) are fixed
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Applications to stochastic resources optimal management Biomass linear models

The Bellman equation (ultimate and penultimate periods)

Since there is no final term in the criterion, we have

V (2,B) = 0

By the Bellman equation, we have

V (1,B) = max
0≤h≤B

ER(1)[δp(1)h + V
(
2,R(1)(B − h)

)
]

= max
0≤h≤B

ER(1)[δp(1)h]

= δp(1)B

with a maximum achieved at

⋆(1,B) = B
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Applications to stochastic resources optimal management Biomass linear models

The Bellman equation (initial period)

By the Bellman equation, we have

V (0,B) = max
0≤h≤B

ER(0)[p(0)h + V
(
1,R(0)(B − h)

)
]

= max
0≤h≤B

ER(0)[p(0)h + δp(1)R(0)(B − h)]

= max
0≤h≤B

p(0)h + δp(1)ER(0)[R(0)](B − h)

with a maximum achieved at h = 0 or at h = B
depending on the sign of p(0)− δER(0)[R(0)]p(1)

if p(0) > δER(0)[R(0)]p(1), then
⋆(0,B) = B

if p(0) < δER(0)[R(0)]p(1), then
⋆(0,B) = 0
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Applications to stochastic resources optimal management Biomass linear models

A biomass linear model over T − t0 + 1 periods

The dynamic model is

B(t + 1) = R(t)
(
B(t)− h(t)

)
, 0 ≤ h(t) ≤ B(t)

where R(t0), . . . , R(T − 1) are independent and identically distributed
positive random variables

We consider expected intertemporal discounted utility maximization

max
h(t0),...,h(T−1)

E



T−1∑

t=t0

δt−t0
(
h(t)

)η
︸ ︷︷ ︸
utility

+δT−t0
(
B(T )

)η



with isoelastic utility
0 < η < 1
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Applications to stochastic resources optimal management Biomass linear models

Bellman equation

The dynamic programming equation starts by

V (T ,B) = δT−t0Bη

and, for t = t0, . . . ,T − 1, gives

V (t,B) = max
h∈[0,B]

(
δt−t0hη + ER

[
V
(
t + 1,R(B − h)

)])

where R is a random variable
standing for the uncertain growth of the resource
and having the same distribution as any of the random variables
R(t0), . . . , R(T − 1)
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Applications to stochastic resources optimal management Biomass linear models

Optimal policy

The value function V (t,B) is given by

V (t,B) = δt−t0b(t)η−1Bη

and the optimal policy is
⋆(t,B) = b(t)B

where the optimal fraction satisfies

1

b(t)
= 1 +

1

a
+ · · ·+

1

aT−t
with a = (δR̂η)

1
η−1

where the certainty equivalent R̂ is defined by

R̂ = (ER [R
η])

1/η
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Applications to stochastic resources optimal management The inventory problem

Outline of the presentation

1 Optimization intertemporal criteria under uncertainty
Examples of trade-offs in intertemporal stochastic optimization
An intertemporal criterion displays preferences with respect to time
How can we rank policies with a criterion under uncertainty?
A risk criterion displays attitudes with respect to uncertainty

2 The stochastic optimality problem and dynamic programming
The payoff-to-go and Bellman’s Principle of Optimality
Bellman equation and the curse of dimensionality
Complements

3 Applications to stochastic resources optimal management
A model of plant growth over a finite horizon
Biomass linear models
The inventory problem
An introduction to SDDP

4 The robust optimality problem and dynamic programming

5 Summary
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Applications to stochastic resources optimal management The inventory problem

Inventory control dynamical model

Consider the control dynamical model

x(t + 1) = x(t) + u(t)− w(t)

time t ∈ {t0, . . . ,T} is discrete (days, weeks or months, etc.)

x(t) is the stock at the beginning of period t,
belonging to X = R =]−∞,+∞[

u(t) is the stock ordered at the beginning of period t,
belonging to U = R+ = [0,+∞[

w(t) is the uncertain demand during the period t,
belonging to W = R+ = [0,+∞[

When x(t) < 0, this corresponds to a backlogged demand,
supposed to be filled immediately once inventory is again available
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Applications to stochastic resources optimal management The inventory problem

Inventory optimization criterion

The costs incurred in period t are
purchasing costs: cu(t)
shortage costs: bmax{0,−

(
x(t) + u(t)− w(t)

)
}

holding costs: hmax{0, x(t) + u(t)− w(t)}

On the period from t0 to T , the costs sum up to

T−1∑

t=t0

[ cu(t)
︸ ︷︷ ︸

purchasing

+

Cost(x(t)+u(t)−w(t))
︷ ︸︸ ︷

bmax{0,−
(
x(t) + u(t)− w(t)

)
}

︸ ︷︷ ︸

shortage

+ hmax{0, x(t) + u(t)− w(t)}
︸ ︷︷ ︸

holding

]
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Applications to stochastic resources optimal management The inventory problem

Probabilistic assumptions and
the inventory stochastic optimization problem

We suppose that

w(t), the uncertain demand, is a random variable
with distribution p0, . . . , pN on the set {0, . . . ,N}
the sequence of demands w(t0), . . . , w(T − 1) is independent

We consider the inventory sochastic optimization problem

min
u(·)

E

[ T−1∑

t=t0

[cu(t) + Cost
(
x(t) + u(t) − w(t)

)
]
]
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Applications to stochastic resources optimal management The inventory problem

The Bellman equation

The dynamic programming equation associated with
the problem of minimizing the expected costs is

V (T , x) =

final cost︷︸︸︷
0

V (t, x) = min
u≥0

EW

[
cu + Cost

(
x + u −W

)
︸ ︷︷ ︸

instantaneous cost

+V
(
t + 1, x + u −W︸ ︷︷ ︸

future stock

)]

where

W is a random variable
with the distribution p0, . . . , pN on the set {0, . . . ,N}

the cost function is the piecewise linear function

Cost(x) = bmax{0,−x}+ hmax{0, x}
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Applications to stochastic resources optimal management The inventory problem

The value function is convex in the state

V (T − 1, x) = min
u≥0

E[cu + Cost
(
x + u −W

)
] = min

u≥0
[cu +

N∑

i=0

piCost
(
x + u − i

)
]

Recalling that b > c > 0, show that
z 7→ E[cz + Cost

(
z −W

)
] is a convex function with a minimum xT−1
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Applications to stochastic resources optimal management The inventory problem

The optimal policy is an echelon base-stock policy

Deduce that an optimal policy is

Pol(T − 1, x) =

{
xT−1 − x if x < xT−1

0 if x ≥ xT−1

Show by induction that there exist thresholds (echelons) x t0 , . . . , xT−1

such that the optimal policy at period t is

Pol(t, x) =

{
x t − x if x < x t

0 if x ≥ x t

Interpret this policy
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Applications to stochastic resources optimal management An introduction to SDDP

Outline of the presentation

1 Optimization intertemporal criteria under uncertainty
Examples of trade-offs in intertemporal stochastic optimization
An intertemporal criterion displays preferences with respect to time
How can we rank policies with a criterion under uncertainty?
A risk criterion displays attitudes with respect to uncertainty

2 The stochastic optimality problem and dynamic programming
The payoff-to-go and Bellman’s Principle of Optimality
Bellman equation and the curse of dimensionality
Complements

3 Applications to stochastic resources optimal management
A model of plant growth over a finite horizon
Biomass linear models
The inventory problem
An introduction to SDDP

4 The robust optimality problem and dynamic programming

5 Summary
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Applications to stochastic resources optimal management An introduction to SDDP

In the linear-convex case, value functions are convex

Here, we aim at minimizing expected cumulated costs

E

[T−1∑

t=t0

instantaneous cost︷ ︸︸ ︷
Cost

(
t, x(t), u(t),w(t)

)
+ CostFin

(
x(T ),w(T )

)
︸ ︷︷ ︸

final cost

]

The value functions x 7→ V (t, x) are convex whenever

(x , u) 7→ Cost
(
t, x , u,w

)
is jointly convex in state and control

x 7→ CostFin
(
x ,w

)
is convex

w(t), . . . ,w(T ) are independent random variables

the dynamic is linear

Dyn(t, x , u,w) = F (t)x + G(t)u + H(t)w

Michel DE LARA (École des Ponts ParisTech) Robust and Stochastic Optimal Sequential Control January 5, 2016 99 / 112



Applications to stochastic resources optimal management An introduction to SDDP

The minimum over one variable of a jointly convex function
is convex in the other variable

A lemma in convex analysis

Let f : Y× Z → R be convex, and let C ⊂ Y× Z be a convex set. Then

g(y) = min
z∈Z,(y,z)∈C

f (y , z)

is a convex function
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Applications to stochastic resources optimal management An introduction to SDDP

The Bellman equation produces convex value functions

The dynamic programming equation associated with
the problem of minimizing the expected costs is

V (T , x) = Ew(T )

[ final cost︷ ︸︸ ︷
CostFin

(
x ,w(T )

) ]

V (t, x) = min
u∈B(t,x)

Ew(t)

[
Cost

(
t, x , u,w(t)

)
︸ ︷︷ ︸
instantaneous cost

+V
(
t + 1,F (t)x + G(t)u + H(t)w(t)

)
︸ ︷︷ ︸

future state

)]

It can be shown by induction that x 7→ V (t, x) is convex

The derivative ∂V
∂x at

(
t + 1, x⋆(t + 1)

)
defines a hyperplane and

a lower affine approximation of the value function, calculated by duality
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Applications to stochastic resources optimal management An introduction to SDDP

When spilling decisions are made after knowing the water
inflows, we obtain a linear dynamical model

S(t + 1)︸ ︷︷ ︸
future volume

= S(t)︸︷︷︸
volume

− q(t)︸︷︷︸
turbined

− r(t)︸︷︷︸
spilled

+ a(t)︸︷︷︸
inflow volume

S(t) volume (stock) of water at the beginning of period [t, t + 1[

a(t), inflow water volume (rain, etc.) during [t, t + 1[;

q(t) turbined outflow volume

decided at the beginning of period [t, t + 1[ (hazard follows decision)
supposed to depend on the stock S(t)

r(t) spilled volume

decided at the end of period [t, t + 1[ (hazard precedes decision)
supposed to depend on the stock S(t) and on the inflow water a(t)

0 ≤ q(t) ≤ min{S(t), q♯} and 0 ≤ S(t)− q(t) + a(t)− r(t) ≤ S♯
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Applications to stochastic resources optimal management An introduction to SDDP

We aim at minimizing cumulated convex costs

On the period from t0 to T , the costs sum up to

T−1∑

t=t0

instantaneous cost︷ ︸︸ ︷
Cost

(
t, S(t), q(t), a(t)

)
+ CostFin

(
T , S(T ), a(T )

)
︸ ︷︷ ︸

final cost

where

(S , q) 7→ Cost
(
t, S , q, a

)
is jointly convex in state and control

S 7→ CostFin
(
T , S , a

)
is convex

a(t), . . . , a(T ) are independent random variables
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Applications to stochastic resources optimal management An introduction to SDDP

The Bellman equation produces convex value functions

The dynamic programming equation associated with the problem of
minimizing the expected costs is

V (T , S) = Ea(T )

[ final cost︷ ︸︸ ︷
CostFin

(
T , S , a(T )

) ]

V (t, S) = min
0≤q≤min{S,q♯}

Ea(t)

[
min

r≥0,0≤S−q+a(t)−r≤S♯
Cost

(
t, S , q, a(t)

)
︸ ︷︷ ︸
instantaneous cost

+V
(
t + 1, S − q − r + a(t)︸ ︷︷ ︸

future stock

)]

and it can be shown by induction that S 7→ V (t, S) is convex

The derivative ∂V
∂S at

(
t + 1, S⋆(t + 1)

)
defines a hyperplane

and a lower approximation of the value function, calculated by duality
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Applications to stochastic resources optimal management An introduction to SDDP

Stochastic Dual Dynamic Programming (SDDP)

The property that value functions are convex extends to the following cases

Multiple stocks interconnected by linear dynamics

Si (t + 1) = Si (t) + ai(t) + qi−1(t)− qi(t)− ri (t)

Water inflows following an auto-regressive model

ai(t) =
∑

k=1,...,Ki

αkai(t − k) + w(t)

where w(t0), . . . ,w(T ) are independent random variables
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The robust optimality problem and dynamic programming

Outline of the presentation

1 Optimization intertemporal criteria under uncertainty

2 The stochastic optimality problem and dynamic programming

3 Applications to stochastic resources optimal management

4 The robust optimality problem and dynamic programming

5 Summary
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The robust optimality problem and dynamic programming

Maximal worst payoff

First, we fix an admissible decision rule Pol.

Then, we introduce the worst performance, namely the minimal payoff with
respect to the scenarios w(·) ∈ S ⊂ S:

CritPolworst(t0, x0) := min
w(·)∈S

CritPol
(
t0, x0,w(·)

)

Second, we let the decision rule Pol vary, and aim at maximizing this worst
payoff by solving the optimization problem

max
Pol∈Uad

Crit
Pol
worst(t0, x0) = max

u(·)
min

w(·)∈S

Crit

(
x(·), u(·),w(·)

)

where the last expression is abusively used, but practical and traditional, in
which x(·) and u(·) need to be replaced by

x(t) = XDyn[t0, x0, Pol,w(·)](t) and u(t) = Pol
(
t, x(t)

)
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The robust optimality problem and dynamic programming

Robust additive dynamic programming equation

Crit
(
x(·), u(·),w(·)

)
=

T−1∑

t=t0

instantaneous gain
︷ ︸︸ ︷

L
(
t, x(t), u(t),w(t)

)
+ K

(
x(T ),w(T )

)

︸ ︷︷ ︸

final gain

Proposition

If the scenarios vary within a rectangle S = S(t0)× · · · × S(T ) (corresponding to
independence in the stochastic setting), the value functions V (t, x) satisfy the
following backward induction, where t runs from T − 1 down to t0

V (T , x) = min
w∈S(T )

K(x ,w)

V (t, x) = max
u∈B(t,x)

min
w∈S(t)

[
L(t, x , u,w) + V

(
t + 1, Dyn(t, x , u,w)

)]
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The robust optimality problem and dynamic programming

Optimal robust policies

Proposition

For any time t and state x, assume the existence of the following policy

Pol⋆(t, x) ∈ argmax

u∈B(t,x)

min
w∈S(t)

[
L(t, x , u,w) + V

(
t + 1, Dyn(t, x , u,w)

)]

Then Pol⋆ ∈ U is an optimal policy of the robust problem and, for any initial
state x0, the maximal worst payoff is given by

V (t0, x0) = max
Pol∈Uad

CritPolworst(t0, x0) = CritPol
⋆

worst(t0, x0)
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The robust optimality problem and dynamic programming

A biomass linear model over two periods

The uncertain resource productivity R(t) ∈ S(t) = [R♭,R♯] ⊂ W = R, with
R♭ < R♯

We aim at maximizing the worst benefit namely the minimal sum of the
discounted successive harvesting revenues

max
0≤h(0)≤B(0), 0≤h(1)≤B(1)

min
R(0),R(1)

[
ph(0) + δph(1)

]

where the resource dynamics is

B(1) = R(0)
(
B(0)− h(0)

)
, B(2) = R(1)

(
B(1)− h(1)

)
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Summary

Outline of the presentation

1 Optimization intertemporal criteria under uncertainty

2 The stochastic optimality problem and dynamic programming

3 Applications to stochastic resources optimal management

4 The robust optimality problem and dynamic programming
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Summary

Summary

Time-additive criteria are well adapted to dynamic programming
in robust and stochastic optimization problems
(but other criteria also work well)

Bellman’s Principle of Optimality breaks
an intertemporal optimization problem
into a sequence of interconnected static optimization problems

In practice, the curse of dimensionality
forbids to use dynamic programming for a state
with dimension more than three or four
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