How much is information worth? A geometric insight using duality between payoffs and beliefs

Michel De Lara and Olivier Gossner

CERMICS, Ecole des Ponts ParisTech ´ CNRS, X – Paris Saclay and LSE

Saint Petersburg State University 10 September 2019

I am not sure if my husband is cheating on me What should I do?

A spouse

- \triangleright can gather information about the current state of Nature: has my husband really been to this (mathematical) conference? if yes, was his secretary travelling with him? is my husband cheating on me?
- \triangleright makes a decision, taken from a set:
	- \triangleright stay faithful to her husband ("freeze")
	- \triangleright stay with her husband and cheat on him ("fight")
	- ► divorce ("flee")

What is the value of hiring a private detective? Will valuable information make the spouse change her current choice?

Decision under incomplete information

Investment, insurance, voting, hiring, etc. virtually all decisions involve incomplete information

How valuable information is depends on

- \blacktriangleright the agent's available decisions
- \triangleright the agent's utility function (preferences)
- \triangleright the agent's prior belief on the state of Nature
- \blacktriangleright the piece of information

Uniform approach: Blackwell (1951, 1953)

A piece of information α is more informative than β iff all agents (available decisions, utility, prior) weakly prefer α to β .

Our objective

What is the value of a given piece of information for a given agent?

Outline of the presentation

[A Geometric View of the Value of Information](#page-4-0)

[Confident, Undecided, Flexible](#page-12-0)

[Examples: Small Information](#page-18-0)

[Conclusion](#page-27-0)

Outline of the presentation

[A Geometric View of the Value of Information](#page-4-0)

[Confident, Undecided, Flexible](#page-12-0)

[Examples: Small Information](#page-18-0)

[Conclusion](#page-27-0)

An agent acquires information before making a decision

An agent

- ▶ observes information about the current state of Nature
- \triangleright makes a decision, taken from a set

How much information is worth for the agent depends jointly on

- \blacktriangleright the information provided
- \triangleright the decision problem (decisions at stake and preferences)

Our objective

Characterize the Value of Information based on separate conditions on

- \blacktriangleright the information structure
- \blacktriangleright the choices available $(instrumental approach: choice=decision+payoff)$

Here is how we frame the problem in mathematical clothes

Prior belief and information received

- A (finite) set K of states of nature, a prior belief $\bar{b} \in \Delta = \Delta(K)$
- An information structure is a random variable $(r.v.)$ **B** with values in Δ such that $\mathbb{E} \mathbf{B} = \bar{b}$ (beliefs about beliefs)

Decisions and preferences

Set D of decisions, utility function $u: D \times K \to \mathbb{R}$ Actions are payoff vectors $\mathbb{A} = \{u(d, \cdot), d \in D\} \subset \mathbb{R}^K$ We assume A compact, convex (mixed strategies)

Value of information

 $V_{\mathbb{A}}(b) = \sup_{a \in \mathbb{A}} \mathbb{E}_{b} a = \sup_{a \in \mathbb{A}} \langle b, a \rangle$, for all belief $b \in \Delta$ a∈A a∈A $\text{Vol}_{\mathbb{A}}(\mathbf{B}) = \mathbb{E} V_{\mathbb{A}}(\mathbf{B}) - V_{\mathbb{A}}(\mathbb{E}\mathbf{B})$, for all information structure **B** Geometric representation of the value function $V_{A}(b) = \max_{a \in A} \mathbb{E}_{b} a = \max_{a \in A} \langle b, a \rangle$

Optimal action a as a function of belief b Belief b is in normal to $\mathbb A$ at action a Varying action a The subgradient of \mathcal{S} are the optimal actions a

Geometric formalization using duality

Between actions A and beliefs Δ , we consider the bilinear pairing

 $\langle b, a \rangle = \mathbb{E}_b a$, $\forall a \in \mathbb{A}$, $\forall b \in \Delta$

that is the expected utility of action/payoff a under belief b

Geometric formalization using convex analysis

- ► The value function $V_{\mathbb{A}}(b) = \max_{a \in \mathbb{A}} \langle b, a \rangle$ is
	- \triangleright the support function of the set $\mathbb A$

 $V_{\mathbb{A}} = \sigma_{\mathbb{A}} : \Delta \to \mathbb{R}$

► whose sugradient at $b \in \Delta$ is given by

 $\partial V_{\mathbb{A}}(b) = \argmax \langle b \, , a \rangle$ a∈A

the exposed face of A at b

 \triangleright The Fenchel conjugate of the value function is

 \triangleright the characteristic function of the set $\mathbb A$

$$
V_\mathbb{A}^\star = \sigma_\mathbb{A}^\star = \delta_\mathbb{A} : \mathbb{R}^\mathsf{K} \to \mathbb{R}
$$

► whose sugradient at $a \in A$ is given by

 $\partial V_{\mathbb{A}}^{\star}(a) = N_{\mathbb{A}}(a) \cap \Delta$

where $N_A(a)$ is the normal cone of A at a

Justifiable actions / Exposed face

Optimal actions

For any belief $b \in \Delta$, let $\mathbb{A}^{\star}(b)$ be the the set of optimal actions at b (justifiable actions)

$$
\mathbb{A}^{\star}(b) = \{ a \in \mathbb{A} \mid V_{\mathbb{A}}(b) = \langle b \, , a \rangle \} = \argmax_{a \in \mathbb{A}} \langle b \, , a \rangle
$$

▶ Optimal actions $\mathbb{A}^*(b)$ form the exposed face of $\mathbb A$ at b , that is, the subgradient of $V_{\mathbb{A}}$ at b

$$
\mathbb{A}^{\star}(b) = \partial V_{\mathbb{A}}(b)
$$

Actions in $\mathbb{A}^{\star}(b)$ can be justified as they are compatible with belief b

Revealed beliefs / Normal cone

Revealed beliefs

For any action $a \in \mathbb{A}$, let $\Delta_{\mathbb{A}}^{\star}(a)$ be the beliefs revealed by a (justifiable)

$$
\Delta_{\mathbb{A}}^{\star}(a) = \{b \in \Delta \mid \forall a' \in \mathbb{A} \; , \; \langle b \, , a' \rangle \leq \langle b \, , a \rangle\}
$$

Revealed beliefs $\Delta_{\mathbb{A}}^{\star}(a)$ are the beliefs in the normal cone of the set A at action a , that is, are related to the subgradient of $V^{\star}_{\mathbb{A}}$ at *a* by

$$
\Delta^{\star}_{\mathbb{A}}(a) = \partial V^{\star}_{\mathbb{A}}(a) \cap \Delta = N_{\mathbb{A}}(a) \cap \Delta
$$

► The revealed beliefs $\Delta_{\mathbb{A}}^{\star}(a)$ are compatible with the observed action, hence non refutable

Outline of the presentation

[A Geometric View of the Value of Information](#page-4-0)

[Confident, Undecided, Flexible](#page-12-0)

[Examples: Small Information](#page-18-0)

[Conclusion](#page-27-0)

Information has value if and only if it does impact choices

Confidence set

A belief $b\in \Delta$ is in the confidence set $\Delta^{\mathrm{c}}_\mathbb{A}(\bar b)$ of the prior belief $\bar b$ if the optimal actions at \bar{b} are also optimal at b, that is,

> $\Delta^{\rm c}_{\mathbb{A}}(\bar b) = \bigcap \Delta^{\star}_{\mathbb{A}}(a)$ $a \in A \star (b)$

The confidence set $\Delta_{\mathbb{A}}^{\mathrm{c}}(\bar b)$ is closed, convex and contains $\bar b$ **Proposition**

> $\text{Vol}_{\mathbb{A}}(\mathbf{B})=0$ iff $\exists a^* \in \mathbb{A}^*(\bar{b})$, $a^* \in \mathbb{A}^*(\mathbf{B})$ a.s. iff **B** $\in \Delta^c_{\mathbb{A}}(\bar{b})$ a.s.

This result is aligned with the common wisdom that information is valueless if it does not impact choices

Confident

Theorem: Bounds on the VoI

There exist a positive constant C_A such that, for every information structure B,

 $C_{\mathbb{A}}\mathbb{E} d(\Delta^{\mathrm{c}}_{\mathbb{A}}(\bar{b}),\mathsf{B})\geq \mathrm{Vol}_{\mathbb{A}}(\mathsf{B})\geq \mathrm{Vol}_{\mathbb{A}^{\star}(\bar{b})}(\mathsf{B})$

where $d(\Delta^{\scriptscriptstyle\mathrm{C}}_\mathbb{A}(\bar b),b')=\mathsf{inf}_{b\in\Delta^{\scriptscriptstyle\mathrm{C}}_\mathbb{A}(\bar b)}\|b-b'\|$

Undecided

Proposition

The two following conditions are equivalent

 \blacktriangleright There are more than two optimal actions in $\mathbb{A}^{\star}(\bar b)$

 \triangleright The value function $V_{\mathbb{A}}$ is not differentiable at the prior belief \bar{b} In that case we say the agent is undecided at \bar{b} Example: indifference in a finite choice set

Bounds on the VoI for the undecided agent

If the agent is undecided at $\bar b$, there exist positive constants $\mathcal{C}_{\bar b,\mathbb{A}}$ and $c_{\bar{b},\mathbb{A}}$ such that, for every information structure **B**,

 $\mathcal{C}_{\bar{b},\mathbb{A}}\mathbb{E}\|\mathbf{B}-\bar{b}\|\geq \text{Vol}_{\mathbb{A}}(\mathbf{B})\geq c_{\bar{b},\mathbb{A}}\mathbb{E}\|\mathbf{B}-\bar{b}\|_{\Sigma_{\mathbb{A}}^{\text{i}}(\bar{b})}\,,$

where $\|\cdot\|_{\Sigma_{\mathbb{A}}^i(\bar{b})}$ is a semi-norm with kernel $\left[{\mathbb{A}}^\star(\bar{b}) - {\mathbb{A}}^\star(\bar{b})\right]^\perp$ The valuable directions of information are the tie-breaking ones

Flexible

Suppose that $\mathbb A$ has boundary $\partial \mathbb A$ which is a $\mathcal C^2$ submanifold of $\mathbb R^K$ Proposition

The three following conditions are equivalent:

- ▶ The set-valued mapping $b \mapsto \mathbb{A}^*(b)$ is a mapping which is a local diffeomorphism at \bar{b}
- \triangleright The Hessian of the value function V_A at the prior belief b is well defined and is definite positive
- \blacktriangleright The curvature of $\mathbb A$ at $\mathbb A^\star(\bar b)$ is positive

In that case we say the agent is flexible at \bar{b} Examples: portfolio investment, scoring rules.

Theorem: Bounds on the VoI for the flexible agent

If the agent is flexible at $\bar b$, there exist positive constants $\mathcal{C}_{\bar b,\mathbb{A}}$ and $\mathcal{c}_{\bar b,\mathbb{A}}$ such that, for every information structure **B**,

 $C_{\bar{b}} \triangleq \mathbb{E}||\mathbf{B} - \bar{b}||^2 \geq \text{Vol}_{\mathbb{A}}(\mathbf{B}) \geq c_{\bar{b}} \triangleq \mathbb{E}||\mathbf{B} - \bar{b}||^2$

Confident, Undecided, Flexible

- ▶ An agent can be both confident (for certain beliefs) and undecided (in certain directions of information): the value function $V_{\mathbb{A}}$ is not differentiable at belief \bar{b} and displays a flat part (vee shape)
- ▶ A flexible agent cannot be confident or undecided: the value function V_A is differentiable at belief b and does not display a flat part

Outline of the presentation

[A Geometric View of the Value of Information](#page-4-0)

[Confident, Undecided, Flexible](#page-12-0)

[Examples: Small Information](#page-18-0)

[Conclusion](#page-27-0)

Small information acquisition

- \triangleright Browsing the web, magasines in a waiting room
- \blacktriangleright Turning on the radio for a couple of minutes
- \triangleright Windows shopping
- \triangleright A quick look at a pile of job applications

Both costs and benefits are relatively low Can the benefit compensate the cost? (When?)

Notations

Radner-Stiglitz (1984)

Under some technical conditions, the "marginal value" of a little piece of information is null

Letting $(\mathsf{B}^\theta)_{\theta>0}$ be a family of information structures, the marginal value of information is

$$
V^+ = \limsup_{\theta \to 0} \frac{1}{\theta} \text{Vol}_\mathbb{A}(\mathbf{B}^\theta)
$$

Our contribution

Our bounds on the VoI allow to characterise the marginal VoI based on separate conditions on

- ighthe parameterized information structure $(\mathbf{B}^{\theta})_{\theta>0}$
- \triangleright the decision problem at hand $\mathbb A$

Setting

In all three following examples,

- \triangleright we assume binary states of nature $K = \{0, 1\}$
- ightharpoonup and we denote by \bar{b} the prior belief on the state being 1

We label as

- ighthroof confident the case in which \bar{b} lies in the interior of the (closed convex) confidence interval $\Delta^{\mathrm{c}}_{\mathbb{A}}(\bar b)$
- \triangleright undecided the case in which the decision maker displays indifference between two actions at \bar{b}
- \blacktriangleright flexible the case in which the optimal action is a smooth function of the belief in a neighborhood of \overline{b}

Brownian motion (experimentation, repeated games...)

▶ Assume the agent observes the realisation of a Brownian motion with variance 1 and drift $k \in \{k, \overline{k}\}\)$ from time 0 to (small) θ

$$
d\mathbf{Z}_t = kdt + d\mathbf{W}_t \ , \ 0 \leq t \leq \theta
$$

► The agent has initially uniform beliefs on the drift $k \in \{k, \overline{k}\}\$

$$
\bar{b} = \frac{1}{2}\delta_{\underline{k}} + \frac{1}{2}\delta_{\overline{k}}
$$

► For a small interval of time $\theta > 0$, we have

$$
\mathbb{E} \|\mathbf{B}^{\theta} - \bar{b}\| \sim \sqrt{\theta} , \ \mathbb{E} \|\mathbf{B}^{\theta} - \bar{b}\|^2 \sim \theta
$$

Marginal value of information

- ► Confident: $V^+ = 0$
- ► Undecided: $V^+ = +\infty$
- ► Flexible: $0 < V^+ < +\infty$

Poisson (multi-armed bandits, strategic experimentation...)

- \triangleright Assume the agent observes a Poisson process with intensity ρ from time 0 to (small) θ
- ► The agent has initially uniform beliefs on the intensity $\rho \in {\rho, \overline{\rho}}$

$$
\bar{b}=\frac{1}{2}\delta_{\underline{\rho}}+\frac{1}{2}\delta_{\overline{\rho}}
$$

 \triangleright The observation of a success leads to an a posteriori $b = \frac{\overline{\rho}}{\overline{\rho} + \rho} \delta_{\overline{\rho}} + \frac{\rho}{\overline{\rho} + \rho}$ $\frac{\rho}{\overline{\rho}+\rho}\delta_{\underline{\rho}}$ and happens with probability $\sim \theta$ For a small interval of time $\theta > 0$, we have

$$
\mathbb{E}\|\mathbf{B}^{\theta}-\bar{b}\| \sim \theta\;,\;\;\mathbb{E}\|\mathbf{B}^{\theta}-\bar{b}\|^{2} \sim \theta
$$

Marginal value of information

- ▶ Confident:
	- $\blacktriangleright \; V^+ = 0$ if b is in the confidence set of \bar{b}
	- \blacktriangleright $0 < V^+ < +\infty$ if b is not in the confidence set of $\bar b$
- ► Undecided: $0 < V^+ < +\infty$

► Flexible: $0 < V^+ < +\infty$

Equally likely signals

 \triangleright The agent has initially uniform beliefs on $\{\overline{k}, k\}$

$$
\bar{b} = \frac{1}{2}\delta_{\overline{k}} + \frac{1}{2}\delta_{\underline{k}}
$$

 \triangleright After observing a signal, the equally likely posterior beliefs are

$$
(\frac{1}{2} - \theta^{\alpha})\delta_{\overline{k}} + (\frac{1}{2} + \theta^{\alpha})\delta_{\underline{k}}, \quad (\frac{1}{2} + \theta^{\alpha})\delta_{\overline{k}} + (\frac{1}{2} - \theta^{\alpha})\delta_{\underline{k}}
$$

$$
\mathbb{E} \|\mathbf{B}^{\theta} - \bar{b}\| \sim \theta^{\alpha}, \quad \mathbb{E} \|\mathbf{B}^{\theta} - \bar{b}\|^{2} \sim \theta^{2\alpha}
$$

Marginal value of information

 \blacktriangleright Confident:

 \blacktriangleright $V^+ = 0$

▶ Undecided:

$$
\begin{array}{ll}\n\blacktriangleright & V^+ = \infty \text{ if } \alpha < 1 \\
\blacktriangleright & 0 < V^+ < +\infty \text{ if } \alpha = 1 \\
\blacktriangleright & V^+ = 0 \text{ is } \alpha > 1\n\end{array}
$$

 \blacktriangleright Flexible:

$$
\begin{array}{ll}\n\blacktriangleright & V^+ = \infty \text{ if } \alpha < \frac{1}{2} \\
\blacktriangleright & 0 < V^+ < +\infty \text{ if } \alpha = \frac{1}{2} \\
\blacktriangleright & V^+ = 0 \text{ is } \alpha > \frac{1}{2}\n\end{array}
$$

Summary of cases

For two elements of x, y of $\mathbb{R}_+ \cup \{\infty\}$, we use the notation $x \simeq y$ if x, y are both 0, both finite and positive (strictly), or both infinite:

 $x \simeq y \iff x, y \in \{(0,0), (\infty, \infty)\} \cup [0, \infty) \times [0, \infty)$

Relation with the literature

- \triangleright RADNER, R., AND J. STIGLITZ (1984): "A nonconcavity in the value of information," in Bayesian Models of Economic Theory, ed. by M. Boyer, and R. Kihlstrom, pp. 33–52, Amsterdam. Elsevier. Joint conditions on the parameterized information structure $(\mathsf{B}^\theta)_{\theta>0}$ and the decision problem at hand \mathbb{A} , leading to $V^+=0$
- ▶ CHADE, H., AND E. SHLEE (2002): "Another look at the Radner-Stiglitz Nonconcavity in the Value of Information," Journal of Economic Theory, 107, 421–452. Joint/separate conditions on the parameterized information structure $({\sf B}^\theta)_{\theta>0}$ and the decision problem at hand ${\mathbb A}$, leading to ${\sf V}^+=0$
- ▶ DE LARA, M., AND L. GILOTTE (2007): "A tight sufficient condition for Radner–Stiglitz nonconcavity in the value of information," Journal of Economic Theory, 137(1), 696–708. Separate conditions on the parameterized information structure $(\mathsf{B}^\theta)_{\theta>0}$ and the decision problem at hand $\mathbb A$, leading to $\mathsf{V}^+=0$

\n- ▶ DE LARA, M., AND O. GOSSNER
\n- Separate conditions on the parameterized information structure
\n- $$
(\mathbf{B}^{\theta})_{\theta>0}
$$
 and the decision problem at hand A, leading to $V^+ = \infty$, $0 < V^+ < +\infty$ or $V^+ = 0$
\n

Outline of the presentation

[A Geometric View of the Value of Information](#page-4-0)

[Confident, Undecided, Flexible](#page-12-0)

[Examples: Small Information](#page-18-0)

[Conclusion](#page-27-0)

To conclude

The value of information VoI depends on how strong is the effect of information on choices

 \blacktriangleright Lowest for a confident decision maker (locally flat value function $V_{\mathbb{A}}$)

The agent is "hard to convince" to change decisions The information structure **B** must charge beliefs outside the confidence set to "shake" the agent

 \blacktriangleright Highest in case of an indifference in the choice set (kinked value function V_{A})

A "small piece" of information can have

a large influence on the decision

► Mild when the decision problem is smooth and one-to-one (curved value function $V_{\mathbb{A}}$) In this case, the optimal decision when the belief is b is "almost optimal" (envelope theorem) when the belief is near b

Open question

- \blacktriangleright Historically, dual variables have moved from geometric (Lagrange) to economic (Kantorovich) flavor
	- \blacktriangleright Lagrange multipliers of inequality constraints are geometric dual variables
	- \triangleright Kantorovich "resolving multipliers" of constrained primal quantities (or "objectively determined estimators") are economic dual variables (The price of a resource is the sensitivity of the optimal payoff with respect to a small increment of the resource)
- \triangleright In the duality between payoffs/actions and beliefs, what is
	- \triangleright the equivalent of a production function? (is it minus a risk measure?)
	- \triangleright the "economic" interpretation of beliefs (probability distributions) as dual variables of primal payoff/action vectors (one payoff per state of the world)?