Two Players Game Theory with Information: Introducing the Witsenhausen Intrinsic Model

> Michel De Lara and Benjamin Heymann Cermics, École des Ponts ParisTech France

> > École des Ponts ParisTech

March 9, 2017

KORK EX KEY KEY YOUR

Outline of the presentation

[Introduction to games in intrinsic form](#page-2-0)

[Witsenhausen intrinsic model and game theory with information](#page-7-0)

[Nash equilibrium with information](#page-29-0)

[Witsenhausen intrinsic model and principal-agent models](#page-33-0)

[Games solvable by dynamic programming](#page-42-0)

[Open questions](#page-52-0)

Outline of the presentation

[Introduction to games in intrinsic form](#page-2-0)

[Witsenhausen intrinsic model and game theory with information](#page-7-0)

[Nash equilibrium with information](#page-29-0)

[Witsenhausen intrinsic model and principal-agent models](#page-33-0)

[Games solvable by dynamic programming](#page-42-0)

[Open questions](#page-52-0)

Information plays a crucial role in competition

- \blacktriangleright Information who knows what and when plays a crucial role in competitive contexts
- \blacktriangleright Concealing, dissimulation, cheating, lying, deception are effective strategies

Our goals are to

- 1. introduce the notion of game in intrinsic form
- 2. contribute to the analysis of decentralized, non-cooperative decision settings
- 3. provide a (very) general mathematical language for mechanism design

KORK EX KEY KEY YOUR

We will distinguish an individual from an agent

- \triangleright An individual who makes a first, followed by a second decision, is represented by two agents (two decision makers)
- \triangleright An individual who makes a sequence of decisions — one for each period $t = 0, 1, 2, \ldots, T - 1$ is represented by T agents, labelled $t = 0, 1, 2, \ldots, T - 1$
- \triangleright N individuals each *i* of whom makes a sequence of decisions, one for each period $t = 0, 1, 2, \ldots, T_i - 1$ is represented by $\prod_{i=1}^N \mathcal{T}_i$ agents, labelled by

$$
(i,t) \in \bigcup_{j=1}^N \{j\} \times \{0,1,2,\ldots,T_j-1\}
$$

A O A Y A P A P A P A SHOP

What is a game in intrinsic form?

- I Nature, the source of all randomness, or states of Nature
- \blacktriangleright Agents, who
	- \blacktriangleright hold information
	- \triangleright make decisions, by means of admissible strategies, those fueled by information
- \blacktriangleright Players, who
	- \blacktriangleright hold *heliefs* about states of Nature
	- \blacktriangleright hold a subset of agents under their exclusive control (executives)

KORK EX KEY KEY YOUR

 \blacktriangleright hold *objectives*, that they achieve by selecting proper admissible strategies for the agents under their control

What is a game in intrinsic form?

- \triangleright Nature, the source of all randomness a set Ω equipped with a σ -field $\mathcal F$
- \triangleright Agents, who hold *information* and make *decisions* \rightarrow a set A
	- \triangleright for each agent $a \in A$, an action set \mathbb{U}_a equipped with a σ -field \mathcal{U}_a
	- ► for each agent $a \in A$, an information field

$$
\mathcal{I}_a \subset \mathcal{H} = \mathcal{U}_A \otimes \mathcal{F} = \bigotimes_{b \in A} \mathcal{U}_b \otimes \mathcal{F}
$$

- \triangleright Players, who hold objectives and beliefs a partition $(A_p)_{p \in P}$ of the set A of agents
	- ► for each player $p \in P$, a criterion

$$
j_{p}:\mathbb{H}=\mathbb{U}_{A}\times\Omega=\prod_{b\in A}\mathbb{U}_{b}\times\Omega\rightarrow\mathbb{R}
$$

KORK EX KEY KEY YOUR

 \triangleright for each player $p \in P$, a probability P_p over $(Ω, θ)$

Outline of the presentation

[Introduction to games in intrinsic form](#page-2-0)

[Witsenhausen intrinsic model and game theory with information](#page-7-0)

[Nash equilibrium with information](#page-29-0)

[Witsenhausen intrinsic model and principal-agent models](#page-33-0)

[Games solvable by dynamic programming](#page-42-0)

[Open questions](#page-52-0)

Witsenhausen intrinsic model with Nature and two players, each made of a single agent

We lay out

- \blacktriangleright basic sets
	- \blacktriangleright decision sets
	- \blacktriangleright states of Nature
	- \blacktriangleright history set

and their σ -fields

- \blacktriangleright objective functions
- \blacktriangleright beliefs
- information σ -fields, admissible strategies and predecessors

KORK (FRAGE) KERK EL POLO

Nature's moves and agents decisions

- Exet Ω be a measurable set equipped with a σ -field $\mathcal F$ which represents all uncertainties: any $\omega \in \Omega$ is called a state of Nature
- **►** The agent a makes one decision $u_a \in \mathbb{U}_a$ where the decision set \mathbb{U}_a is equipped with a σ -field \mathcal{U}_a
- **►** The agent *b* makes one decision $u_b \in \mathbb{U}_b$ where the decision set \mathbb{U}_b is equipped with a σ -field \mathcal{U}_b

History space

The history space is the product space

 $\mathbb{H} = \mathbb{U}_a \times \mathbb{U}_b \times \Omega$

equipped with the product history field

 $\mathfrak{H} = \mathfrak{U}_a \otimes \mathfrak{U}_b \otimes \mathfrak{F}$

KOD CONTRACT A ST AND KOD

Players, criteria and beliefs

From now on, we consider the partition $\{a\}, \{b\}$ of players, and we identify player $\{a\}$ with agent a, and player $\{b\}$ with agent b \blacktriangleright The two players a, b have a criterion,

$j_a: \mathbb{U}_a \times \mathbb{U}_b \times \Omega \to \mathbb{R}$, $j_b: \mathbb{U}_a \times \mathbb{U}_b \times \Omega \to \mathbb{R}$

that are measurable functions over history $\mathbb H$

 \blacktriangleright The two players a, b have a belief,

 $\mathcal{P}_s : \mathcal{F} \to [0, 1], \quad \mathcal{P}_b : \mathcal{F} \to [0, 1]$

A O A Y A P A P A P A SHOP

that are probability distributions over $(Ω, θ)$

Information and predecessors

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

Information

 \blacktriangleright When making a decision, agent a and agent b can make use of information, materialized under the form of σ -fields

 \blacktriangleright The information field \mathcal{I}_a of the agent a is a subfield of the history field H

 $J_a \subset \mathcal{U}_a \otimes \mathcal{U}_b \otimes \mathcal{F}$

 \blacktriangleright The information field \mathcal{I}_b of the agent b is a subfield of the history field H

 $\mathfrak{I}_b \subset \mathfrak{U}_a \otimes \mathfrak{U}_b \otimes \mathfrak{F}$

KORK EX KEY KEY YOUR

Absence of "self-information"

 \blacktriangleright The information fields \mathcal{I}_a and \mathcal{I}_b display the absence of "self-information" when

 $\mathcal{I}_a \subset \{\emptyset, \mathbb{U}_a\} \otimes \mathcal{U}_b \otimes \mathcal{F}$

 $\mathcal{I}_b \subset \mathcal{U}_a \otimes {\emptyset, \mathbb{U}_b} \otimes \mathcal{F}$

KORK EX KEY KEY YOUR

 \blacktriangleright In what follows, we always assume absence of "self-information" (otherwise, we would be led to paradoxes)

Classical information patterns in game theory

Two agents: the principal Pr (leader) and the agent Ag (follower)

 \triangleright Moral hazard (the insurance company cannot observe if the insured plays with matches at home)

 $\mathcal{I}_{\text{Pr}} \subset \{\emptyset, \mathbb{U}_{\text{Ag}}\} \otimes \{\emptyset, \mathbb{U}_{\text{Pr}}\} \otimes \mathcal{F}$

 \triangleright Stackelberg leadership model

 $\mathcal{I}_{\mathbf{A}\sigma} \subset \{\emptyset, \mathbb{U}_{\mathbf{A}\sigma}\}\otimes \mathcal{U}_{\mathbf{P}\mathbf{r}} \otimes \mathcal{F}$, $\mathcal{I}_{\mathbf{P}\mathbf{r}} \subset \{\emptyset, \mathbb{U}_{\mathbf{A}\sigma}\}\otimes \{\emptyset, \mathbb{U}_{\mathbf{P}\mathbf{r}}\}\otimes \mathcal{F}$

Adverse selection (the insurance company cannot observe if the insured has good health)

 $\{\emptyset, \mathbb{U}_{\mathtt{A}\sigma}\}\otimes\{\emptyset, \mathbb{U}_{\mathtt{Pr}}\}\otimes\mathcal{F}\subset\mathcal{I}_{\mathtt{A}\sigma}$, $\mathcal{I}_{\mathtt{Pr}}\subset\mathcal{U}_{\mathtt{A}\sigma}\otimes\{\emptyset, \mathbb{U}_{\mathtt{Pr}}\}\otimes\{\emptyset, \Omega\}$

 \blacktriangleright Signaling

 $\{\emptyset, \mathbb{U}_{Ag} \}\otimes \{\emptyset, \mathbb{U}_{Pr}\}\otimes \mathcal{F} \subset \mathcal{I}_{Ag}$, $\mathcal{I}_{Pr} = \mathcal{U}_{Ag} \otimes \{\emptyset, \mathbb{U}_{Pr}\}\otimes \{\emptyset, \Omega\}$

KORK EX KEY KEY YOUR

Cylindric subfields

 \blacktriangleright Information only carried by the moves of Nature

 $\mathcal{H}_{\emptyset} = {\emptyset, \mathbb{U}_{\mathsf{a}} } \otimes {\emptyset, \mathbb{U}_{\mathsf{b}}} \otimes \mathcal{F}$

 \blacktriangleright Information only carried by the moves of Nature and by the decisions of agent a

 $\mathcal{H}_{\{a\}} = \mathcal{U}_a \otimes \{\emptyset, \mathbb{U}_b\} \otimes \mathcal{F}$

 \blacktriangleright Information only carried by the moves of Nature and by the decisions of agent b

 $\mathcal{H}_{\{b\}} = {\emptyset, \mathbb{U}_a} \otimes \mathcal{U}_b \otimes \mathcal{F}$

 \blacktriangleright Information carried by the moves of Nature and by the decisions of agents a and b

$$
\mathfrak{R}_{\{a,b\}}=\mathfrak{U}_a\otimes \mathfrak{U}_b\otimes \mathfrak{F}=\mathfrak{R}
$$

KORK EX KEY KEY YOUR

Definition of predecessor, excluding Nature

Consider a subset B of $\{a, b\}$ \rightarrow B \in $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ \rightarrow and define

$$
\mathcal{H}_{B} = \prod_{c \in B} \mathcal{U}_{c} \otimes \prod_{c \notin B} \{\emptyset, \mathbb{U}_{c}\} \otimes \mathcal{F}
$$

Predecessor

For any agent $c \in \{a, b\}$, we define $\langle c \rangle_{\mathfrak{B}}$ as the intersection of all subsets B of $\{a, b\}$ such that $\mathcal{I}_c \subset \mathcal{H}_B$

$$
\langle c \rangle_{\mathfrak{P}} = \bigcap_{B, \, \mathfrak{I}_{\mathbf{c}} \subset \mathfrak{H}_{\mathbf{B}}} B
$$

When non empty, an element of $\langle c \rangle_{\mathfrak{B}}$ is called a predecessor of c

- \triangleright Nature has no predecessor: Nature plays before the agents (but is not necessarily revealed to the agents)
- \triangleright As an illustration, absence of "self-information" is equivalent to $c \not\in \langle c \rangle_{\mathfrak{B}}$, for any $c \in \{a, b\}$

Sequential and non-sequential information patterns

\triangleright Sequential patterns

- ► When $\langle a \rangle_{\mathfrak{N}} = \emptyset$ and $\langle b \rangle_{\mathfrak{N}} = \emptyset$, agent a and agent b both play first (static team)
- ► When $\langle a \rangle_{\mathfrak{N}} = \emptyset$ and $\langle b \rangle_{\mathfrak{N}} = \{a\},\$ agent a plays first, agent b plays second
- ► When $\langle a \rangle_{\mathfrak{m}} = \{b\}$ and $\langle b \rangle_{\mathfrak{m}} = \emptyset$, agent b plays first, agent a plays second
- \blacktriangleright Non-sequential pattern
	- \blacktriangleright When $\langle a \rangle_{\mathfrak{N}} = \{b\}$ and $\langle b \rangle_{\mathfrak{N}} = \{a\},\$ agent a and agent b
		- \triangleright can be in a deadlock (non causal system)
		- \triangleright or can be first and second agents depending on Nature's move (causal system)

KORK EX KEY KEY YOUR

Strategies and admissible strategies

Pure strategies

 \triangleright A (pure) strategy the agent a is a measurable mapping $\lambda_{\mathsf{a}}: \mathbb{U}_{\mathsf{a}} \times \mathbb{U}_{\mathsf{b}} \times \Omega \to \mathbb{U}_{\mathsf{a}} , \ \ \lambda_{\mathsf{a}}^{-1}(\mathfrak{U}_{\mathsf{a}}) \subset \mathcal{H}$ and the set of strategies of agent a is $\Lambda_a = \left\{ \lambda_a : (\mathbb{H}, \mathcal{H}) \to (\mathbb{U}_a, \mathcal{U}_a) \mid \lambda_a^{-1}(\mathcal{U}_a) \subset \mathcal{H} \right\}$ \triangleright A (pure) strategy of agent b is a measurable mapping $\lambda_b: \mathbb{U}_a \times \mathbb{U}_b \times \Omega \to \mathbb{U}_b$, $\lambda_b^{-1}(\mathcal{U}_b) \subset \mathcal{H}$ and the set of strategies of agent b is $\Lambda_a = \left\{ \lambda_a : (\mathbb{H}, \mathcal{H}) \to (\mathbb{U}_a, \mathcal{U}_a) \mid \lambda_b^{-1}(\mathcal{U}_a) \subset \mathcal{H} \right\}$

 \triangleright We denote the set of strategies of all agents in A by

$$
\Lambda_A=\Lambda_a\times\Lambda_b
$$

A O A Y A P A P A P A SHOP

Mixed strategies

- \triangleright A mixed strategy (or randomized strategy) for agent a is an element of $\Delta(\Lambda_a)$,the set of probability distributions over the set of strategies of agent a
- A mixed strategy (or randomized strategy) for agent b is an element of $\Delta(\Lambda_b)$,the set of probability distributions over the set of strategies of agent b
- \triangleright We denote the set of mixed strategies of *players* by

 $\Delta(\Lambda_a)\times \Delta(\Lambda_b)\subset \Delta(\Lambda_a\times \Lambda_b)$

KOR KERKER E VAN

We introduce admissible strategies to account for the interplay between decision and information

 \blacktriangleright Information is the fuel of strategies

Admissible strategy

An admissible strategy of the agent $c \in \{a, b\}$ is a mapping

 $\lambda_{c}:\mathbb{U}_{\mathfrak{o}}\times\mathbb{U}_{\mathfrak{b}}\times\Omega\to\mathbb{U}_{c}$ such that $\lambda_{c}^{-1}(\mathfrak{U}_{c})\subset\mathfrak{I}_{c}$

► The set of admissible strategies of the agent $c \in \{a, b\}$ is

 $\Lambda_c^{ad} = {\lambda_c | \mathbb{U}_a \times \mathbb{U}_b \times \Omega \rightarrow \mathbb{U}_c, \lambda_c^{-1}(\mathcal{U}_c) \subset \mathcal{I}_c}$

 \blacktriangleright The set of admissible strategies is

 $\Lambda^{ad} = \Lambda^{ad}_a \times \Lambda^{ad}_b$

 \blacktriangleright The set of mixed admissible strategies is

 $\Delta\big(\mathsf{\Lambda}^{ad}_a\big) \times \Delta\big(\mathsf{\Lambda}^{ad}_b\big) \subset \Delta\big(\mathsf{\Lambda}^{ad}_a \times \mathsf{\Lambda}^{ad}_b\big)$

KORKAR KERKER EL VOLO

Absence of "self-information" and structure of admissible strategies

> \blacktriangleright The information fields \mathcal{I}_a and \mathcal{I}_b display the absence of "self-information" when

> > $\mathcal{I}_a \subset \{\emptyset, \mathbb{U}_a\} \otimes \mathcal{U}_b \otimes \mathcal{F} \iff a \notin \langle a \rangle_m$

 $\mathcal{I}_b \subset \mathcal{U}_a \otimes {\emptyset}, \mathbb{U}_b$ $\otimes \mathcal{F} \iff b \notin \langle b \rangle_{\mathfrak{M}}$

 \triangleright When σ -fields include singletons and we exclude "self-information", then, for any admissible strategy λ_c of the agent $c \in \{a, b\}$, we have that the expression $\lambda_c(u_a, u_b, \omega)$ does not depend on u_c :

 $\lambda_a(\psi_4, u_b, \omega) = \lambda_a(u_b, \omega)$, $\lambda_b(u_a, \psi_6, \omega) = \lambda_b(u_a, \omega)$

KOD CONTRACT A ST AND KOD

Sequential patterns and structure of admissible strategies

► When $\langle a \rangle_{\mathfrak{N}} = \emptyset$ and $\langle b \rangle_{\mathfrak{N}} = \emptyset$

$$
\lambda_{a}(\mu_{a}',\mu_{b}',\omega)=\widetilde{\lambda_{a}}(\omega), \ \ \lambda_{b}(\mu_{a}',\mu_{b}',\omega)=\widetilde{\lambda_{b}}(\omega)
$$

$$
\triangleright \text{ When } \langle a \rangle_{\mathfrak{P}} = \emptyset \text{ and } \langle b \rangle_{\mathfrak{P}} = \{a\}
$$
\n
$$
\lambda_a(\mu_a, \mu_b, \omega) = \widetilde{\lambda_a}(\omega), \ \lambda_b(u_a, \mu_b, \omega) = \widetilde{\lambda_b}(u_a, \omega)
$$

► When $\langle a \rangle_{\mathfrak{N}} = \{b\}$ and $\langle b \rangle_{\mathfrak{N}} = \emptyset$ $\lambda_a(\psi_a, u_b, \omega) = \widetilde{\lambda_a}(u_b, \omega)$, $\lambda_b(\psi_a, \psi_b, \omega) = \widetilde{\lambda_b}(\omega)$

Non-sequential information patterns and structure of admissible strategies

When $\langle a \rangle_{\mathfrak{B}} = \{b\}$ and $\langle b \rangle_{\mathfrak{B}} = \{a\}$, agent a and agent b \blacktriangleright can be in a deadlock

 $\lambda_a(\psi_2, u_b, \omega) = \widetilde{\lambda}_a(u_b, \omega)$, $\lambda_b(u_a, \psi_2, \omega) = \widetilde{\lambda}_b(u_a, \omega)$

 \triangleright or can be first and second agents depending on Nature's move \blacktriangleright when Nature's move is ω^+ , agent *a* plays first, agent b plays second $\lambda_a(\psi_a, \psi_b, \omega^+) = \widetilde{\lambda_a}(\omega^+) , \ \ \lambda_b(u_a, \psi_b, \omega^+) = \widetilde{\lambda_b}(u_a, \omega^+)$

► when Nature's move is ω^- , agent b plays first, agent a plays second $\lambda_a(\mathcal{Y}_a, u_b, \omega^-) = \widetilde{\lambda_a}(u_b, \omega^-), \ \ \lambda_b(\mathcal{Y}_a, \mathcal{Y}_b, \omega^-) = \widetilde{\lambda_b}(\omega^-)$

A DIA K PIA A BIA A BIA A Q A CA

Solvability property

The information fields \mathcal{I}_a and \mathcal{I}_b display the solvability property when,

- ► for any couple $(\lambda_a, \lambda_b) \in \Lambda_a^{ad} \times \Lambda_b^{ad}$ of admissible strategies and any state of Nature $\omega \in \Omega$,
- \blacktriangleright there exists one, and only one, couple $(u_a, u_b) \in \mathbb{U}_a \times \mathbb{U}_b$ of decisions such that

 $u_a = \lambda_a(u_a, u_b, \omega)$

 $u_b = \lambda_b(u_a, u_b, \omega)$

KORK EX KEY KEY YOUR

Solvability property and solution map

Solution map

In case of solvability, we can define $\mathcal{S}_{(\lambda_{\bm a},\lambda_{\bm b})}(\omega)$, for any $\omega\in\Omega$, by

$$
S_{(\lambda_a,\lambda_b)}(\omega) = (u_a, u_b, \omega) \iff \begin{cases} u_a = \lambda_a(u_a, u_b, \omega) \\ u_b = \lambda_b(u_a, u_b, \omega) \end{cases}
$$

Hence, we obtain a mapping called the solution map

 $\mathcal{S}_{(\lambda_a,\lambda_b)} : \Omega \to \mathbb{U}_a \times \mathbb{U}_b \times \Omega$

 \blacktriangleright The solvability property holds true in the sequential cases

► The graph of $S_{(\lambda_a, \lambda_b)}$ belongs to $\mathcal{I}_a \vee \mathcal{U}_a \vee \mathcal{I}_b \vee \mathcal{U}_b$.

Co-cycle property of the solution map (I)

- ▶ We suppose that $\langle a \rangle_{\mathfrak{B}} = \{b\}$ and $\langle b \rangle_{\mathfrak{B}} = \emptyset$, that is, agent b plays first, agent a plays second
- ► We consider a couple $(\lambda_a, \lambda_b) \in \Lambda_a^{ad} \times \Lambda_b^{ad}$ of admissible strategies

Co-cycle property of the solution map

We have that

- **If** the strategy λ_b can be identified with $\lambda_b : \Omega \to \mathbb{U}_b$ and the partial solution map $|S_{\lambda_{\bm b}}:\Omega\to\mathbb{U}_b\times\Omega|$ is such that $|S_{\lambda_{\bm b}}(\omega)=(\lambda_b(\omega),\omega)$
- **If** the strategy λ_a can be identified with $\lambda_a: \mathbb{U}_b \times \Omega \to \mathbb{U}_a$
- \blacktriangleright the solution map has the following co-cycle property

$$
S_{(\lambda_a,\lambda_b)} = (\lambda_a \circ S_{\lambda_b}, S_{\lambda_b}) : \Omega \to \mathbb{U}_a \times (\mathbb{U}_b \times \Omega)
$$

$$
S_{(\lambda_a,\lambda_b)}(\omega) = \left(\lambda_a\left(\lambda_b(\omega),\omega\right),\lambda_b(\omega),\omega\right), \ \forall \omega \in \Omega
$$

A O A Y A P A P A P A SHOP

Co-cycle property of the solution map (II)

The co-cycle property

$$
S_{(\lambda_a,\lambda_b)}=(\lambda_a\circ S_{\lambda_b},S_{\lambda_b})
$$

is equivalent to

$$
S_{(\lambda_a,\lambda_b)}(\omega) = (u_a, u_b, \omega) \iff \begin{cases} (u_b, \omega) & = S_{\lambda_b}(\omega) \\ u_a & = \lambda_a(u_b, \omega) \end{cases}
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Outline of the presentation

[Introduction to games in intrinsic form](#page-2-0)

[Witsenhausen intrinsic model and game theory with information](#page-7-0)

[Nash equilibrium with information](#page-29-0)

[Witsenhausen intrinsic model and principal-agent models](#page-33-0)

[Games solvable by dynamic programming](#page-42-0)

[Open questions](#page-52-0)

Criteria composed with solution map

 \blacktriangleright Costs or payoffs are

 $i_a: \mathbb{U}_a \times \mathbb{U}_b \times \Omega \to \mathbb{R}$

 $i_b: \mathbb{U}_2 \times \mathbb{U}_b \times \Omega \to \mathbb{R}$

 \blacktriangleright Solution map is

$$
\textit{S}_{(\lambda_{\textbf{a}}, \lambda_{\textbf{b}})} : \Omega \rightarrow \mathbb{U}_{\textbf{a}} \times \mathbb{U}_{\textbf{b}} \times \Omega
$$

 \blacktriangleright The composition of criteria with the solution map provides random variables

> $j_a\circ S_{(\lambda_{\bm a},\lambda_{\bm b})}: \Omega\to \mathbb{R}$ $j_b\circ S_{(\lambda_{\bm a},\lambda_{\bm b})}: \Omega\to \mathbb{R}$

Pure Bayesian Nash equilibrium

We recall that player a has belief P_a and player b has belief P_b

Bayesian Nash equilibrium

We say that the couple $(\overline\lambda_a,\overline\lambda_b)\in\Lambda^{ad}_a\times\Lambda^{ad}_b$ of admissible strategies is a Bayesian Nash equilibrium if (in case of payoffs)

$$
\mathcal{E}_{\mathcal{P}_a} \Big[j_a \circ S_{(\overline{\lambda}_a, \overline{\lambda}_b)} \Big] \geq \mathcal{E}_{\mathcal{P}_a} \Big[j_a \circ S_{(\lambda_a, \overline{\lambda}_b)} \Big], \ \forall \lambda_a \in \Lambda_a^{ad}
$$

$$
\mathcal{E}_{\mathcal{P}_b} \Big[j_b \circ S_{(\overline{\lambda}_a, \overline{\lambda}_b)} \Big] \geq \mathcal{E}_{\mathcal{P}_b} \Big[j_b \circ S_{(\overline{\lambda}_a, \lambda_b)} \Big], \ \forall \lambda_b \in \Lambda_b^{ad}
$$

A DIA K PIA A BIA A BIA A Q A CA

Mixed Bayesian Nash equilibrium

We say that the couple of mixed admissible strategies $\left(\overline{\mu}_a,\overline{\mu}_b\right)\in \Delta\left(\Lambda_a^{ad}\right)\times \Delta\left(\Lambda_b^{ad}\right)$

is a Bayesian Nash equilibrium if (in case of payoffs)

$$
\int_{\Lambda_a^{ad} \times \Lambda_b^{ad}} \overline{\mu}_a(d\lambda_a) \otimes \overline{\mu}_b(d\lambda_b) \mathcal{E}_{\mathcal{P}_a} \left[j_a \circ S_{(\lambda_a, \lambda_b)} \right] \ge
$$
\n
$$
\int_{\Lambda_a^{ad} \times \Lambda_b^{ad}} \mu_a(d\lambda_a) \otimes \overline{\mu}_b(d\lambda_b) \mathcal{E}_{\mathcal{P}_a} \left[j_a \circ S_{(\lambda_a, \lambda_b)} \right], \ \forall \mu_a \in \Delta(\Lambda_a^{ad})
$$

$$
\int_{\Lambda_a^{ad} \times \Lambda_b^{ad}} \overline{\mu}_a(d\lambda_a) \otimes \overline{\mu}_b(d\lambda_b) \mathcal{E}_{\mathcal{P}_b} \left[j_b \circ S_{(\lambda_a, \lambda_b)} \right] \ge
$$
\n
$$
\int_{\Lambda_a^{ad} \times \Lambda_b^{ad}} \overline{\mu}_a(d\lambda_a) \otimes \mu_b(d\lambda_b) \mathcal{E}_{\mathcal{P}_b} \left[j_b \circ S_{(\overline{\lambda}_a, \lambda_b)} \right], \ \forall \mu_a \in \Delta(\Lambda_b^{ad})
$$

Outline of the presentation

[Introduction to games in intrinsic form](#page-2-0)

[Witsenhausen intrinsic model and game theory with information](#page-7-0)

[Nash equilibrium with information](#page-29-0)

[Witsenhausen intrinsic model and principal-agent models](#page-33-0)

[Games solvable by dynamic programming](#page-42-0)

[Open questions](#page-52-0)

Principal-agent models with two players

- A branch of Economics studies so-called principal-agent models
- \triangleright Principal-agent models display a general information structure, which can be transparently expressed thanks to Witsenhausen intrinsic model
- \blacktriangleright The model exhibits two players
	- **►** the principal Pr (leader), makes decisions $u_{\text{Pr}} \in \mathbb{U}_{\text{Pr}}$, where the set of decisions is equipped with a σ -field $\mathcal{U}_{\texttt{Pr}}$
	- ► the agent Ag (follower) makes decisions $u_{A_{\mathcal{R}}} \in \mathbb{U}_{A_{\mathcal{R}}}$, where the set of decisions is equipped with a σ -field \mathcal{U}_{Ag}

KORK EX KEY KEY YOUR

- \triangleright and Nature, corresponding to private information (or type) of the agent Ag
	- \blacktriangleright Nature selects $\omega \in \Omega$.

where Ω is equipped with a σ -field $\mathcal F$

Here is the most general information structure of principal-agent models

 $\mathcal{I}_{\text{Pr}} \subset \mathcal{U}_{\text{Ag}} \otimes \{\emptyset, \mathbb{U}_{\text{Pr}}\} \otimes \mathcal{F}$

 $\mathcal{I}_{Ag} \subset \{ \emptyset, \mathbb{U}_{Ag} \} \otimes \mathcal{U}_{\text{Pr}} \otimes \mathcal{F}$

- \triangleright By these expressions of the information fields
	- \blacktriangleright J_{Pr} of the principal Pr (leader)
	- \blacktriangleright $\mathcal{I}_{A\sigma}$ of the agent Ag (follower)
- \triangleright we have excluded self-information, that is, we suppose that the information of a player cannot be influenced by his actions

KORK EX KEY KEY YOUR

Classical information patterns in game theory

Now, we will make the information structure more specific

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

- \blacktriangleright Stackelberg leadership model
- \blacktriangleright Moral hazard
- \blacktriangleright Adverse selection
- \blacktriangleright Signaling

Stackelberg leadership model

- \blacktriangleright In the Stackelberg leadership model of game theory,
- \triangleright the follower Ag may partly observe the action of the leader Pr

 $\mathcal{I}_{Ag} \subset \{ \emptyset, \mathbb{U}_{Ag} \} \otimes \mathcal{U}_{Pr} \otimes \mathcal{F}$

 \triangleright whereas the leader Pr observes at most the state of Nature

 $\mathcal{I}_{\text{Pr}} \subset \{\emptyset, \mathbb{U}_{\text{Ag}}\} \otimes \{\emptyset, \mathbb{U}_{\text{Pr}}\} \otimes \mathcal{F}$

- \triangleright As a consequence, the system is sequential
	- \triangleright with the principal Pr as first player (leader)
	- and the agent Ag as second player (follower)
- \triangleright Stackelberg games can be solved by bi-level optimization, for some information structures, like when

 $\mathcal{I}_{\text{Pr}} \vee \{\emptyset, \mathbb{U}_{\text{Ag}}\} \otimes \mathcal{U}_{\text{Pr}} \otimes \{\emptyset, \Omega\} \subset \mathcal{I}_{\text{Ag}}$

A O A Y A P A P A P A SHOP

Moral hazard

- An insurance company (the principal Pr) cannot observe the efforts of the insured (the agent Ag) to avoid risky behavior
- \blacktriangleright The firm faces the hazard that insured persons behave "immorally" (playing with matches at home)
- \triangleright Moral hazard (hidden action) occurs when the decisions of the agent Ag are hidden to the principal Pr

 $\mathcal{I}_{\text{Pr}} \subset \{\emptyset, \mathbb{U}_{\text{Ag}}\} \otimes \{\emptyset, \mathbb{U}_{\text{Pr}}\} \otimes \mathcal{F}$

A O A Y A P A P A P A SHOP

- \blacktriangleright In case of moral hazard, the system is sequential with the principal as first player, (which does not preclude to choose the agent as first player in some special cases, as in a static team situation)
- \triangleright Moral hazard games can be solved by bi-level optimization, for some information structures

Adverse selection

- \blacktriangleright In the absence of observable information on potential customers (the agent Ag), an insurance company (the principal Pr) offers a unique price for a contract hence screens and selects the "bad" ones
- \blacktriangleright Adverse selection occurs when
	- \triangleright the agent Ag knows the state of nature (his type, or private information)

 $\{\emptyset, \mathbb{U}_{Ag}\}\otimes \{\emptyset, \mathbb{U}_{Pr}\}\otimes \mathcal{F}\subset \mathcal{I}_{Ag}$

(the agent Ag can possibly observe the principal Pr action) \triangleright but the principal Pr does not know the state of nature

 $\mathcal{I}_{\text{Pr}} \subset \mathcal{U}_{\text{Ag}} \otimes \{\emptyset, \mathbb{U}_{\text{Pr}}\} \otimes \{\emptyset, \Omega\}$

KORK EX KEY KEY YOUR

(the principal Pr can possibly observe the agent Ag action)

In case of adverse selection, the system may or may not be sequential

Signaling

- \blacktriangleright In biology, a peacock signals its "good genes" (genotype) by its lavish tail (phenotype)
- \blacktriangleright In economics, a worker signals his working ability (productivity) by his educational level (diplomas)
- \blacktriangleright There is room for signaling
	- \triangleright when the agent Ag knows the state of nature (his type)

 $\{\emptyset, \mathbb{U}_{\mathtt{A}\sigma}\}\otimes \{\emptyset, \mathbb{U}_{\mathtt{Pr}}\}\otimes \mathcal{F}\subset \mathcal{I}_{\mathtt{A}\sigma}$

(the agent Ag can possibly observe the principal Pr action) \triangleright whereas the principal Pr does not know the state of nature, but the principal Pr observes the agent Ag action

 $\mathcal{I}_{\text{Pr}} = \mathcal{U}_{\text{Ag}} \otimes \{\emptyset, \mathbb{U}_{\text{Pr}}\} \otimes \{\emptyset, \Omega\}$

KORK EX KEY KEY YOUR

as the agent Ag may reveal his type by his decision which is observable by the principal Pr

Signaling

 \blacktriangleright The system is sequential (with the agent as first player) when

 $\mathcal{I}_{A\sigma} = {\emptyset, \mathbb{U}_{A\sigma} \} \otimes {\emptyset, \mathbb{U}_{\Pr}} \otimes \mathcal{F}$

 \blacktriangleright The system is non causal when

 $\{\emptyset, \mathbb{U}_{Ag} \}\otimes \{\emptyset, \mathbb{U}_{Pr}\}\otimes \mathcal{F} \subsetneq \mathcal{I}_{Ag} \subset \{\emptyset, \mathbb{U}_{Ag}\} \otimes \mathcal{U}_{Pr} \otimes \mathcal{F}$

A DIA K PIA A BIA A BIA A Q A CA

Outline of the presentation

[Introduction to games in intrinsic form](#page-2-0)

[Witsenhausen intrinsic model and game theory with information](#page-7-0)

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

[Nash equilibrium with information](#page-29-0)

[Witsenhausen intrinsic model and principal-agent models](#page-33-0)

[Games solvable by dynamic programming](#page-42-0)

[Open questions](#page-52-0)

Stackelberg leadership model

- \blacktriangleright In the Stackelberg leadership model of game theory, we consider a leader Pr (principal) and a follower Ag (agent)
- ▶ We suppose that $\langle Pr \rangle_{\mathfrak{N}} = \emptyset$, that is, leader Pr plays first,

 $\mathcal{I}_{\texttt{Pr}} \subset \{\emptyset, \mathbb{U}_{\texttt{A}\sigma}\}\otimes \{\emptyset, \mathbb{U}_{\texttt{Pr}}\}\otimes \mathcal{F}$

► and that $\langle Ag \rangle_{\mathfrak{B}} \subset \{Pr\},\$ that is, follower Ag plays second

 $\mathcal{I}_{\text{Ag}} \subset \{\emptyset, \mathbb{U}_{\text{Ag}}\} \otimes \mathcal{U}_{\text{Pr}} \otimes \mathcal{F}$

KORK EX KEY KEY YOUR

We work on a reduced history space

- ▶ As both information fields $\mathcal{I}_{\texttt{Pr}} \subset \{\emptyset, \mathbb{U}_{\texttt{Ag}}\} \otimes \{\emptyset, \mathbb{U}_{\texttt{Pr}}\} \otimes \mathcal{F}$ and $\mathcal{I}_{Ag} \subset \{\emptyset, \mathbb{U}_{Ag}\}\otimes \mathcal{U}_{Pr} \otimes \mathcal{F}$ do not depend on \mathcal{U}_{Ag} , the actions of the follower Ag (agent) do not fuel strategies (via information), so that we introduce
- In the reduced history space $\widetilde{\mathbb{H}}$ (without the actions of the follower Ag) equipped with the reduced history field H

$$
\widetilde{\mathbb{H}} = \mathbb{U}_{\mathtt{Pr}} \times \Omega \ , \ \widetilde{\mathcal{H}} = \mathcal{U}_{\mathtt{Pr}} \otimes \mathcal{F}
$$

In and the reduced information fields \mathcal{I}_{Pr} **and** \mathcal{I}_{Ag} **defined by**

$$
\begin{array}{lll} \mathbb{J}_{\tt Pr}=&\{\emptyset,\mathbb{U}_{\tt Ag}\}\otimes \widetilde{\mathbb{J}}_{\tt Pr}&\text{with}\;\;\widetilde{\mathbb{J}}_{\tt Pr}\subset \{\emptyset,\mathbb{U}_{\tt Pr}\}\otimes \mathcal{F}\subset \widetilde{\mathcal{H}}\\ \mathbb{J}_{\tt Ag}=&\{\emptyset,\mathbb{U}_{\tt Ag}\}\otimes \widetilde{\mathbb{J}}_{\tt Ag}&\text{with}\;\;\widetilde{\mathbb{J}}_{\tt Ag}\subset \mathbb{U}_{\tt Pr}\otimes \mathcal{F}=\widetilde{\mathcal{H}}\\ \end{array}
$$

A O A Y A P A P A P A SHOP

Here is what become the admissible strategies on the reduced history space

We consider a couple $(\lambda_\texttt{Ag}, \lambda_\texttt{Pr}) \in \Lambda_\texttt{Ag}^{ad} \times \Lambda_\texttt{Pr}^{ad}$ of admissible strategies

As $\mathcal{I}_{Pr} = \{\emptyset, \mathbb{U}_{Ag}\}\otimes \widetilde{\mathcal{I}}_{Pr}$ with $\widetilde{\mathcal{I}}_{Pr} \subset \{\emptyset, \mathbb{U}_{Pr}\}\otimes \mathcal{F}$, the strategy λ_{Pr} of the leader Pr can be identified with

 $\widetilde{\lambda}_{\texttt{D}_{\texttt{r}}} : \Omega \to \mathbb{U}_{\texttt{Pr}}$

(indeed, the strategies of the leader Pr depend at most upon Nature) As $\mathcal{I}_{A\sigma} = \{\emptyset, \mathbb{U}_{A\sigma}\}\otimes \widetilde{\mathcal{I}}_{A\sigma}$, with $\widetilde{\mathcal{I}}_{A\sigma} \subset \mathcal{U}_{\text{Pr}}\otimes \mathcal{F}$, the strategy λ_{Ag} of the follower Ag can be identified with

 $\widetilde{\lambda}_{\mathtt{A}\sigma} : \mathbb{U}_{\mathtt{Pr}} \times \Omega \to \mathbb{U}_{\mathtt{A}\sigma}$

A O A G A 4 O A C A G A G A G A 4 O A C A

Therefore, we can work with reduced admissible strategies

 $(\widetilde{\lambda}_{\text{Ag}}, \widetilde{\lambda}_{\text{Pr}}) \in \widetilde{\Lambda}_{\text{Ag}}^{ad} \times \widetilde{\Lambda}_{\text{Pr}}^{ad}$

Strategy independence of conditional expectation (SICE)

Assumption SICE

There exists a probability \mathbb{Q} on $\mathbb{H} = \mathbb{U}_{\text{Pr}} \times \Omega$ such that

 $\mathcal{P}_{\texttt{Ag}} \circ \mathcal{S}_{\widetilde{\lambda}_{n}}^{-1}$ $\mathcal{L}_{\widetilde{\lambda}_{\texttt{Px}}}^{-1} = \mathcal{T}_{\widetilde{\lambda}_{\texttt{Px}}} \mathbb{Q}$ with $\mathcal{E}_{\mathbb{Q}}\big[\mathcal{T}_{\widetilde{\lambda}_{\texttt{Px}}} \mid \widetilde{\mathcal{I}}_{\texttt{Ag}}\big] > 0$, $\forall \widetilde{\lambda}_{\texttt{Pr}} \in \widetilde{\Lambda}_{\texttt{Pr}}^{ad}$

and that, under Q, the conditional expected gain of the follower Ag does not change when one adds to his information both the actions and the information available of the leader Pr, namely

 $\mathcal{E}_{\mathbb{Q}}\left[j_{\text{Ag}}(u_{\text{Ag}},\cdot)\mid \widetilde{\mathcal{I}}_{\text{Ag}}\right] = \mathcal{E}_{\mathbb{Q}}\left[j_{\text{Ag}}(u_{\text{Ag}},\cdot)\mid \widetilde{\mathcal{I}}_{\text{Ag}}\vee \widetilde{\mathcal{I}}_{\text{Pr}}\vee \widetilde{\mathcal{D}}_{\text{Pr}}\right], \ \ \forall u_{\text{Ag}} \in \mathbb{U}_{\text{Ag}}$

Bayesian Nash equilibria can be obtained by bi-level optimization under assumption SICE

Suppose assumption SICE holds true

 \triangleright The (upper level) optimization problem for the follower Ag

 $\min_{u_{\text{Ag}} \in \mathbb{U}_{\text{Ag}}} \mathcal{E}_{\mathbb{Q}} \left[j_{\text{Ag}}(u_{\text{Ag}}, \cdot) \mid \mathcal{I}_{\text{Ag}} \right]$

provides (under technical assumptions, by a measurable selection theorem) an \mathcal{I}_{Ag} -measurable solution

$$
\overline{\widetilde{\lambda}}_{Ag}: \mathbb{U}_{Pr} \times \Omega \to \mathbb{U}_{Ag} , \sigma(\overline{\widetilde{\lambda}}_{Ag}) \subset \widetilde{\mathfrak{I}}_{Ag}
$$

I Then, the (lower level) optimization problem for the leader Pr is

$$
\min_{\widetilde{\lambda}_{\text{Pr}} \in \widetilde{\Lambda}_{\text{Pr}}^{\text{ad}}} \mathcal{E}_{\mathcal{P}_{\text{Pr}}} \left[j_{\text{Pr}} \circ S_{(\overline{\widetilde{\lambda}}_{\text{Ag}}, \widetilde{\lambda}_{\text{Pr}})} \right]
$$

A O A G A 4 O A C A G A G A G A 4 O A C A

Here is what becomes the solution map on the reduced history space

> By sequentiality, the solution map $S_{(\lambda_{\text{AF}},\lambda_{\text{PF}})}$ satisfies the co-cycle property

> > $\mathcal{S}_{(\lambda_{\mathbf{A}\mathbf{g}},\lambda_{\mathbf{P}\mathbf{r}})} = (\lambda_{\mathtt{Ag}} \circ \mathcal{S}_{\lambda_{\mathtt{Pr}}}, \mathcal{S}_{\lambda_{\mathtt{Pr}}}) = (\lambda_{\mathtt{Ag}}, \mathrm{Id}_{\mathbb{U}_{\mathtt{Pr}} \times \Omega}) \circ \mathcal{S}_{\lambda_{\mathtt{Pr}}}$

► If we introduce a reduced solution map $S_{\widetilde{\lambda}_{\mathrm{Pr}}} = (\widetilde{\lambda}_{\mathrm{Pr}},\mathrm{Id}_{\Omega})$

$$
\Omega \stackrel{S_{\widetilde{\lambda}_{p_{\mathbf{r}}}}}{\longrightarrow} \mathbb{U}_{\text{Pr}} \times \Omega , \ \omega \mapsto \left(\widetilde{\lambda}_{\text{Pr}}(\omega), \omega\right),
$$

we can now write $S_{(\lambda_{\texttt{Ag}},\lambda_{\texttt{Pr}})}=(\widetilde{\lambda}_{\texttt{Ag}},\mathrm{Id}_{\mathbb{U}_{\texttt{Pr}}\times\Omega})\circ S_{\widetilde{\lambda}_{\texttt{Pr}}},$ that is,

$$
\mathcal{S}_{\left(\lambda_{\text{Ag}}, \lambda_{\text{Pr}} \right)}: \Omega \stackrel{\mathcal{S}_{\widetilde{\lambda}_{\text{Pr}}}}{\longrightarrow} \mathbb{U}_{\text{Pr}} \times \Omega \stackrel{(\widetilde{\lambda}_{\text{Ag}}, \text{Id}_{\mathbb{U}_{\text{Pr}}} \times \Omega)}{\longrightarrow} \mathbb{U}_{\text{Ag}} \times \mathbb{U}_{\text{Pr}} \times \Omega
$$

that is,

$$
S_{(\lambda_{Ag},\lambda_{Pr})}:\omega\mapsto\big(\widetilde{\lambda}_{Pr}(\omega),\omega\big)\mapsto\Big(\widetilde{\lambda}_{Ag}\big(\widetilde{\lambda}_{Pr}(\omega),\omega\big),\widetilde{\lambda}_{Pr}(\omega),\omega\Big)
$$

KORKAR KERKER EL VOLO

Strategy independence of conditional expectation (SICE)

Assumption SICE

There exists a probability \mathbb{Q} on $\widetilde{\mathbb{H}} = \mathbb{U}_{\texttt{Pr}} \times \Omega$ such that

$$
\mathcal{P}_{Ag} \circ S_{\widetilde{\lambda}_{P\mathbf{r}}}^{-1} = \mathcal{T}_{\widetilde{\lambda}_{P\mathbf{r}}} \mathbb{Q} \text{ with } \mathcal{E}_{\mathbb{Q}}\big[\mathcal{T}_{\widetilde{\lambda}_{P\mathbf{r}}} \mid \widetilde{\mathcal{I}}_{Ag}\big] > 0 \ , \ \forall \widetilde{\lambda}_{P\mathbf{r}} \in \widetilde{\Lambda}_{P\mathbf{r}}^{ad}
$$

and that

$$
\mathcal{E}_{\mathbb{Q}}\big[j_{Ag}(u_{Ag}, \cdot) \mid \widetilde{\mathcal{I}}_{Ag} \big] = \mathcal{E}_{\mathbb{Q}}\big[j_{Ag}(u_{Ag}, \cdot) \mid \widetilde{\mathcal{I}}_{Ag} \vee \widetilde{\mathcal{I}}_{Pr} \vee \widetilde{\mathcal{D}}_{Pr} \big], \ \ \forall u_{Ag} \in \mathbb{U}_{Ag}
$$

Under assumption SICE, we have that

$$
\mathcal{E}_{\mathcal{P}_{\mathbf{a}}}\Big[j_{\mathbf{a}} \circ S_{(\lambda_{\mathbf{a}},\lambda_{\mathbf{b}})}\Big] = \mathcal{E}_{\mathcal{P}_{\mathbf{a}}}\Big[j_{\mathbf{a}} \circ (\widetilde{\lambda}_{\text{Ag}},\mathrm{Id}_{\mathbb{U}_{\text{Pr}} \times \Omega}) \circ S_{\widetilde{\lambda}_{\text{Pr}}}\Big]
$$

$$
= \mathcal{E}_{\mathcal{P}_{\text{Ag}} \circ S_{\widetilde{\lambda}_{\text{Pr}}}}\Big[j_{\mathbf{a}} \circ (\widetilde{\lambda}_{\text{Ag}},\mathrm{Id}_{\mathbb{U}_{\text{Pr}} \times \Omega})\Big]
$$

$$
= \mathcal{E}_{\mathbb{Q}}\Big[\mathcal{T}_{\widetilde{\lambda}_{\text{Pr}}}j_{\mathbf{a}} \circ (\widetilde{\lambda}_{\text{Ag}},\mathrm{Id}_{\mathbb{U}_{\text{Pr}} \times \Omega})\Big]
$$

KORK STRAIN ABY COMPARING

Bayesian Nash equilibrium under assumption SICE

Bayesian Nash equilibrium

Under assumption SICE, the couple $(\lambda_{\texttt{Ag}}, \lambda_{\texttt{Pr}}) \in \Lambda_{\texttt{Ag}}^{ad} \times \Lambda_{\texttt{Pr}}^{ad}$ of reduced admissible strategies is a Bayesian Nash equilibrium if (in case of payoffs)

$$
\mathcal{E}_{\mathbb{Q}}\Big[j_{Ag}\circ (\overline{\widetilde{\lambda}}_{Ag},\mathrm{Id}_{\mathbb{U}_{\text{Pr}}\times\Omega})\Big]\geq\quad \mathcal{E}_{\mathbb{Q}}\Big[j_{Ag}\circ (\widetilde{\lambda}_{Ag},\mathrm{Id}_{\mathbb{U}_{\text{Pr}}\times\Omega})\Big]\\ \forall \widetilde{\lambda}_{Ag}\in \widetilde{\Lambda}^{ad}_{Ag}\\
$$

$$
\mathcal{E}_{\mathcal{P}_{\texttt{Pr}}}\Big[j_{\texttt{Pr}}\circ S_{(\overline{\widetilde{\lambda}}_{\texttt{Ag}}, \overline{\widetilde{\lambda}}_{\texttt{Pr}})}\Big] \geq \hspace{3mm} \mathcal{E}_{\mathcal{P}_{\texttt{Pr}}}\Big[j_{\texttt{Pr}}\circ S_{(\overline{\widetilde{\lambda}}_{\texttt{Ag}}, \widetilde{\lambda}_{\texttt{Pr}})}\Big] \\ \forall \widetilde{\lambda}_{\texttt{Pr}}\in \widetilde{\Lambda}_{\texttt{Pr}}^{\texttt{ad}}
$$

A O A G A 4 O A C A G A G A G A 4 O A C A

There exists an optimal strategy of the follower Ag that does not depend on the leader Pr strategy

$$
\begin{aligned} \min_{\widetilde{\lambda}_{A g} \in \widetilde{\Lambda}_{A g}^{\text{ad}}} \mathcal{E}_{\mathbb{Q}} \Big[j_{A g} \circ (\widetilde{\lambda}_{A g}, \mathrm{Id}_{\mathbb{U}_{P r} \times \Omega}) \Big] = \min_{\widetilde{\lambda}_{A g} \; , \; \widetilde{\lambda}_{A g}^{-1} (\mathcal{U}_{A g}) \subset \widetilde{\mathcal{I}}_{A g}} \mathcal{E}_{\mathbb{Q}} \Big[j_{A g} \circ (\widetilde{\lambda}_{A g}, \mathrm{Id}_{\mathbb{U}_{P r} \times \Omega}) \Big] \\ = \mathcal{E}_{\mathbb{Q}} \Big[\min_{u_{A g} \in \mathbb{U}_{A g}} \mathcal{E}_{\mathbb{Q}} \big[j_{A g} (u_{A g}, \cdot) \mid \widetilde{\mathcal{I}}_{A g} \big] \Big] \end{aligned}
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Outline of the presentation

[Introduction to games in intrinsic form](#page-2-0)

[Witsenhausen intrinsic model and game theory with information](#page-7-0)

[Nash equilibrium with information](#page-29-0)

[Witsenhausen intrinsic model and principal-agent models](#page-33-0)

[Games solvable by dynamic programming](#page-42-0)

[Open questions](#page-52-0)

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Research questions

 \blacktriangleright How should we talk about games using WIM?

- \triangleright Can we extend the Bayesian Nash Equilibrium concept to general risk measures?
- \blacktriangleright How does the notion of subgame perfect Nash equilibrium translate within this framework?

\triangleright WIM: game theoretical results

- \triangleright What would a Nash theorem be in the WIM setting?
- \triangleright When do we have a generalized "backward induction" mechanism?

 \triangleright Under proper sufficient conditions on the information structure (extension of perfect recall), can we restrict the search among behavioral strategies instead of mixed strategies?

\triangleright Applications of WIM

- \triangleright Can we re-organize the games bestiary using WIM?
- \triangleright Can we use the WIM framework for mechanism design?

We obtain a Nash theorem in the WIM setting

Theorem

Any finite, solvable, Witsenhausen game has a mixed NE

Proof

- \blacktriangleright The set of policies is finite, as policies map the finite history set towards finite decision sets
- \blacktriangleright To each policy profile, we associate a payoff vector
- \triangleright We thus obtain a matrix game and we can apply Nash theorem

KORK STRAIN ABY COMPARING

Generalized existence result Step one, discretization

 \blacktriangleright We introduce $g^{(n)}_a$ the injection from $\mathbb{U}_a^{(n)}$ into \mathbb{U}_a

$$
g_a^{(n)}: \mathbb{U}_a^{(n)} \hookrightarrow \mathbb{U}_a
$$

 \blacktriangleright We introduce $h^{(n)}$ that maps $\mathbb H$ into $\mathbb H^{(n)}$ with $h^{(n)}_{\mathbb H^{(n)}}=Id_{\mathbb H^{(n)}}$

$$
\blacktriangleright (\lambda_a^{ad})^{(n)} = \{\lambda_a \in \lambda_a^{(n)}, \sigma(g_a^{(n)} \circ \lambda_a \circ h^{(n)}) \subseteq \mathcal{I}_a\}
$$

Current difficulties:

- \blacktriangleright Definition of the discretization, in particular $h^{(n)}$, to obtain a limit
- \blacktriangleright Continuity of the solution map

$$
\Lambda_A\times\Omega\to\mathbb H~,~~(\lambda,\omega)\mapsto \mathcal S_\lambda(\omega)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Behavioral vs mixed strategies

 \blacktriangleright Mixed strategies are

 $\prod \Delta\big(\,\prod \,\Lambda_{a}^{ad}\big)$ p∈P a∈A^p

and reflect the synchronization of his agents by the player

 \triangleright Behavioral strategies are

 \prod \prod $\Delta(\Lambda_a^{ad})$ p∈P a∈A^p

and they do not require any correlating procedure

 \triangleright Under proper sufficient conditions on the information structure, we expect to prove that some games can be solved over the smaller set of behavioral strategies instead of the large set of mixed strategies

KEL KARIK KEL KEL KARIK

Applications

- \blacktriangleright The WIM is of particular interest for non sequential games
- \blacktriangleright In particular we envision applications for networks, auctions and decentralized energy systems

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Mechanism design presented in the intrinsic framework

- \blacktriangleright The designer (= principal) can extend the natural history set, by offering new decisions to every agent (messages)
- \blacktriangleright He is free to extend the information fields of the agents as he wishes

KORK STRAIN ABY COMPARING

 \blacktriangleright He can partly shape the objective functions of the players

Thank you :-)