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H. S. Witsenhausen. On information structures, feedback and causality.
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Sequentiality and perfect memory are tacit assumptions
in control-oriented works on dynamic games

In control-oriented works on dynamic games (in particular,
stochastic control problems) one usually �nds a �dynamic
equation� describing the evolution of a �state� in response to
decision (control) variables of the players and to random
variables. One also �nds �output equations� which de�ne
output variables for a player as functions of the state, decision
and random variables. Then the information structure is de�ned
by allowing each decision variable to be any desired
(measurable) function of the output variables generated for that
player up to that time. Such a setup assumes that the time
order in which the various decisions variables are selected is
�xed in advance. It assumes that each player acts as if he had
responsability only for one station. It assumes that this station
has perfect memory.



Going beyond sequentiality and perfect memory

For large complex systems these tacit assumptions are unlikely
to hold. (. . . ) The order in which the various agents of the
various organizations will have to act cannot always be
predicted, and the information available to di�erent agents,
even of the same organization, may be noncomparable in the
sense that, of two agents, neither one knows everything his
colleague knows.



Kuhn's answer: games in extensive form

These di�culties in specifying the information structure of a
game were faced and overcome in the early days of game theory

I Von Neumann and Morgenstern (1944)
I �xed sequencing of decisions
I variables range over �nite sets

I Kuhn (1953)
I removes the restriction of �xed sequencing of decisions
I variables range over �nite sets

I Aumann (1964)
I �xed sequencing of decisions
I variables range over measurable sets



Witsenhausen's answer: games as multiple feedback loops

The decision process is considered as a feedback loop and the
game is characterized by its interaction with the policies of the
agents, without prejudging questions of chronological order.

In the Kuhn formulation,

the tree describing the game is an expression of the general
solution of the closed loop relations. (These relations map
information into decisions by the policies, and decisions into
information by the rules of the game). For any combination of
policies one can �nd the corresponding outcome by following
the tree along selected branches, and this is an explicit
procedure. Thus the di�culties that might arise in solving the
loop have been eliminated by de�ning the game in terms of a
general unique solution which must be found before the model
can be set up.
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We will distinguish an individual from an agent

I An individual who makes a �rst, followed by a second decision,
is represented by two agents (two decision makers)

I An individual who makes a sequence of decisions
� one for each period t = 0, 1, 2, . . . ,T − 1 �
is represented by T agents, labelled t = 0, 1, 2, . . . ,T − 1

I N individuals � each i of whom makes a sequence of decisions,
one for each period t = 0, 1, 2, . . . ,Ti − 1 �
is represented by

∏N

i=1 Ti agents, labelled by

(i , t) ∈
N⋃
j=1

{j} × {0, 1, 2, . . . ,Tj − 1}



Agents and decisions

I Let A be a �nite set, whose elements are called agents
(or decision-makers)

I Each agent a ∈ A is supposed to make one decision

ua ∈ Ua

I where Ua is the set of decisions for agent a
I and is equipped with a σ-�eld Ua



Decision space

I We de�ne the decision space as the product set

UA =
∏
b∈A

Ub

I equipped with the product decision �eld

UA =
⊗
b∈A

Ub



States of Nature

I A state of Nature (or uncertainty, or scenario) is

ω ∈ Ω

I where Ω is a measurable set, the sample space,
I equipped with a σ-�eld F

(at this stage of the presentation, we do not need probability
distribution, as we focus only on information)



History space

I The history space is the product space

H = UA × Ω =
∏
b∈A

Ub × Ω

I equipped with the product history �eld

H = UA ⊗ F =
⊗
b∈A

Ub ⊗ F



One agent, two possible decisions, two states of Nature

I Agents
A = {a}

I Decision set and �eld

Ua = {u1a , u2a} , Ua = {∅, {u1a , u2a}, {u1a}, {u2a}}

I Sample space and �eld

Ω = {ω1, ω2} , F = {∅, {ω1, ω2}, {ω1}, {ω2}}

I History space and �eld

H = Ua × Ω = {u1a , u2a} × {ω1, ω2} , H = 2H



Two agents, two possible decisions, two states of Nature

I Agents
A = {a, b}

I Decision sets and �elds

Ua = {u1a , u2a} , Ua = {∅, {u1a , u2a}, {u1a}, {u2a}}

and
Ub = {u1b, u2b} , Ub = {∅, {u1b, u2b}, {u1b}, {u2b}}

I Sample space and �eld

Ω = {ω1, ω2} , F = {∅, {ω1, ω2}, {ω1}, {ω2}}

I History space and �eld

H = Ua × Ub × Ω = {u1a , u2a} × {u1b, u2b} × {ω1, ω2} , H = 2H
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Information �elds

I The information �eld of agent a ∈ A is a σ-�eld

Ia ⊂ H

I In this representation, Ia is a sub�eld of the history �eld H

which represents the information available to agent a
when he makes a decision

I Therefore, the information of agent a may depend
I on the states of Nature
I and on other agents' decisions



Stochastic system

Stochastic system
A stochastic system is a collection consisting of

I a �nite set A of agents,
I states of Nature (Ω,F),
I decision sets, �elds and information �elds

{Ua,Ua, Ia}a∈A



One agent, two possible decisions, two states of Nature

I History space and �eld

H = Ua × Ω = {u1a , u2a} × {ω1, ω2} , H = 2H

I Agent a knows nothing

Ia = {∅,Ua} ⊗ {∅,Ω} = {∅, {u1a , u2a}} ⊗ {∅, {ω1, ω2}}

I Agent a knows the state of Nature

Ia ={∅,Ua} ⊗ 2Ω

={∅,Ua} ⊗ {∅, {ω1, ω2}, {ω1}, {ω2}}
= {∅, {u1a , u2a}}︸ ︷︷ ︸

undistinguishable

⊗{∅, {ω1, ω2}, {ω1}, {ω2}}︸ ︷︷ ︸
distinguishable



Two agents, two possible decisions, two states of Nature
Nested information �elds

I History space and �eld

H = Ua × Ub × Ω = {u1a , u2a} × {u1b, u2b} × {ω1, ω2} , H = 2H

I Agent a knows the state of Nature

Ia = {∅,Ua} × {∅,Ub} ⊗ {∅, {ω1, ω2}, {ω1}, {ω2}}

and agent b knows the state of Nature and what agent a does

Ib = {∅, {u1a , u2a}, {u1a}, {u2a}} × {∅,Ub} ⊗ {∅, {ω1, ω2}, {ω1}, {ω2}}

I In this example, information �elds are nested

Ia ⊂ Ib

meaning that agent b knows what agent a knows



Two agents, two decisions, two states of Nature
Non nested information �elds

I History space and �eld

H = Ua × Ub × Ω = {u1a , u2a} × {u1b, u2b} × {ω1, ω2} , H = 2H

I Agent a only knows the state of Nature

Ia = {∅,Ua} × {∅,Ub} ⊗ {∅, {ω1, ω2}, {ω1}, {ω2}}

and agent b only knows what agent a does

Ib = {∅, {u1a , u2a}, {u1a}, {u2a}} × {∅,Ub} ⊗ {∅, {ω1, ω2}}

I Information �elds are not nested,
as they cannot be compared by inclusion
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Handling subgroups of agents
by means of cylindric extensions

I Let C ⊂ A be a subset of agents
I We introduce the sub�eld UC of the decision �eld UA

UC =
⊗
c∈C

Uc ⊗
⊗
b 6∈C

{∅,Ub} ⊂ UA

I and the sub�eld DC of the history �eld H

DC = UC ⊗ {∅,Ω} =
⊗
c∈C

Uc ⊗
⊗
b 6∈C

{∅,Ub} ⊗ {∅,Ω} ⊂ UA ⊗ F = H

which contains the information provided by the decisions
of the agents in the subset C



We will consider stochastic systems that display
absence of self-information

Absence of self-information
A stochastic system displays absence of self-information when

Ia ⊂ UA\{a} ⊗ F

for any agent a ∈ A

I Absence of self-information means that the information of agent a
may depend on the states of Nature and on all the other agents'
decisions but not on his own decision

I Absence of self-information makes sense
once we have distinguished an individual from an agent
(else, it would lead to paradoxes)



Expressing dependencies

I The condition
Ib ⊂ Ia

formally expresses that what agent b knows is also known to agent a
I The condition

Db ⊂ Ia

formally expresses that what does agent b is known to agent a
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Strategies, policies, control laws, control designs

Strategy
A strategy (or policy, control law, control design) for agent a
is a measurable mapping

λa : (H,H)→ (Ua,Ua)

that maps histories into decisions of agent a

We denote the set of strategies of agent a by

Λa =
{
λa : (H,H)→ (Ua,Ua)

∣∣ λ−1a (Ua) ⊂ H
}

and the set of strategies of all agents is

ΛA =
∏
a∈A

Λa



Information fuels admissible strategies

Admissible strategy
An admissible strategy for agent a is a mapping

λa : (H,H)→ (Ua,Ua)

which is measurable w.r.t. the information �eld Ia of agent a, that is,

λ−1a (Ua) ⊂ Ia

This condition expresses the property that
an admissible strategy for agent a
may only depend upon the information Ia available to him



Set of admissible strategies

We denote the set of admissible strategies of agent a by

Λad
a =

{
λa : (H,H)→ (Ua,Ua)

∣∣ λ−1a (Ua) ⊂ Ia
}

and the set of admissible strategies of all agents is

Λad
A =

∏
a∈A

Λad
a



Pure and mixed strategies

I What we have called a strategy,
game theorists would call a pure strategy

I A mixed strategy (or randomized strategy) for agent a is
an element of ∆

(
Λa

)
, the set of probability distributions

over the set of strategies of agent a
I A mixed admissible strategy (or randomized admissible strategy)

for agent a is an element of ∆
(
Λad
a

)
,

the set of probability distributions
over the set of admissible strategies of agent a
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Solvability (I)

I In the Witsenhausen's intrinsic model,
agents make decisions in an order which is not �xed in advance

I Brie�y speaking, solvability is the property that,
for each state of Nature, the agents' decisions
are uniquely determined by their admissible strategies

I The solvability property is crucial to develop Witsenhausen's theory:
without the solvability property,
we would not be able to determine the agents decisions



Solvability (II)

The solvability problem consists in �nding
I for any collection λ = {λa}a∈A ∈ Λad

A of admissible policies
I for any state of Nature ω ∈ Ω

I decisions u ∈ UA satisfying the implicit (�closed loop�) equation

u = λ(u, ω)

or, equivalently,

ua = λa({ub}b∈A , ω) , ∀a ∈ A



Solvability and information patterns (I)

I Existence and uniqueness of the solutions of u = λ(u, ω)
are related to information patterns

I To illustrate the point, consider a stochastic system
with two agents a and b, and displaying absence of self-information

I Assuming that the σ-�elds Ua, Ub and F contain singletons,
admissible strategies λa and λb have the form

λa(u, ω) = λ̃a(ub, ω) , λb(u, ω) = λ̃b(ua, ω)

I Then, the equation u = λ(u, ω) becomes

ua = λ̃a(ub, ω) , ub = λ̃b(ua, ω)

which may display
I zero solution
I one solution (solvability)
I multiple solutions (undeterminacy)



Solvability and information patterns (II)

I Deadlock

Ia = {∅,Ua} ⊗ Ub ⊗ {∅,Ω} , Ib = Ua ⊗ {∅,Ub} ⊗ {∅,Ω}

in which case
ua = λ̃a(ub) , ub = λ̃b(ua)

may display zero solutions, one solution or multiple solutions,
depending on the functional properties of λ̃a and λ̃b

I Sequential

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib = Ua ⊗ {∅,Ub} ⊗ F

in which case
ua = λ̃a(ω) , ub = λ̃b(ua, ω)

always displays a unique solution (ua, ub),
whatever ω ∈ Ω and λ̃a and λ̃b



Now, we de�ne the solvability property

Solvability property
A stochastic system displays the solvability property when,
for any collection λ ∈ Λad

A of admissible strategies,
and for any state of Nature ω ∈ Ω,
there exists one, and only one, decision u ∈ UA
satisfying the implicit (�closed loop�) equation

u = λ(u, ω)



Solvability makes it possible to de�ne a solution map (I)

I Without the solvability property,
we would not be able to determine the agents decisions

I When the solvability property holds true,
we denote by Mλ(ω) the unique u ∈ UA such that

u = λ(u, ω) ⇐⇒ u = Mλ(ω)

I We thus obtain a mapping, called pre-solution map,

Mλ : Ω→ UA

I The solvability/measurability property holds true
when the pre-solution map Mλ : Ω→ UA
is measurable from (Ω,F) to (UA,UA), that is,

M−1λ (UA) ⊂ F



Solvability makes it possible to de�ne a solution map (II)

Solution map
Suppose that the solvability property holds true.
Thanks to the pre-solution map Mλ, we de�ne the solution map

Sλ : Ω→ H

that maps states of Nature towards histories, by

Sλ(ω) =
(
Mλ(ω), ω

)
, ∀ω ∈ Ω ,

that is,

(u, ω) = Sλ(ω) ⇐⇒ u = λ(u, ω) , ∀(u, ω) ∈ UA × Ω

We include the state of Nature ω in the image of Sλ(ω), so that we map
the set Ω towards the history space H, making it possible to interpret
Sλ(ω) as a history driven by the admissible strategy λ
(in classical control theory, a state trajectory is produced by a policy)



Outline of the presentation
Why the Witsenhausen intrinsic model?

Ingredients of Witsenhausen intrinsic model
Agents and decisions, Nature, history
Information �elds and stochastic systems
A glimpse at how to express dependencies

Strategies, solvability and causality
Strategies and admissible strategies
Solvability and solution map
Causality and solvability

Binary relations between agents
Precedence relation P
Subsystem relation S
Information-memory relation M
Decision-memory relation D

Typology of systems
Static team and static system
Station and sequential system
Partially nested systems
Hierarchical and parallel systems



Causality

In a causal system, agents are ordered, one playing after the other
with available information depending only on agents acting earlier,
but the order may depend upon the history



We lay out mathematical ingredients to de�ne causality:
Orderings and partial orderings

I Let O denote the set of total orderings of agents in A, that is,
injective mappings from {1, . . . ,A} to A, where A = card(A)

I For k ∈ {1, . . . ,A}, let Ok denote the set of k-orderings, that is,
injective mappings from {1, . . . , k} to A (thus O = OA)

I There is a natural mapping ψk from O to Ok ,
the restriction of any ordering of A to the domain set {1, . . . , k}



We lay out mathematical ingredients to de�ne causality:
History-orderings

I De�ne a history-ordering as a mapping ϕ : H→ O
from histories towards orderings

I Along each history h ∈ H, the agents are ordered by ϕ(h) ∈ O
I With any k ∈ {1, . . . ,A} and k-ordering ρk ∈ Ok ,

we associate the set Hϕk,ρk of histories that induce the same order
than ρk for the agents having a rank smaller or equal to k, that is,

Hϕk,ρk = {h ∈ H | ψk(ϕ(h)) = ρk}



Now, we de�ne causality

Causality
A stochastic system is causal
if there exists (at least one) history-ordering ϕ from H towards O,
with the property that for any k ∈ {1, . . . ,A} and ρk ∈ Ok ,
the set Hϕk,ρk satis�es

Hϕk,ρk ∩ G ∈ U{ρk (1),...,ρk (k−1)} ⊗ F , ∀G ∈ Iρk (k)

I In other words, when the �rst k agents are known and given by
(ρk(1), . . . , ρk(k)), the information Iρk (k) of the agent ρk(k) with
rank k depends at most on the decisions of agents ρk(1), . . . ,
ρk(k − 1)
with rank stricly less than k

I We say that a stochastic system is sequential if it is causal with a
constant history-ordering



Causality implies solvability

Proposition
Causality implies (recursive) solvability with a measurable solution map



A causal but non sequential system

I We consider a set of agents A = {a, b} with

Ua = {u1a , u2a} , Ub = {u1b, u2b} , Ω = {ω1, ω2}

I The agents' information �elds are given by

Ia = σ({u1a , u2a} × {u1b, u2b} × {ω2}, {u1a , u2a} × {u1b} × {ω1})
Ib = σ({u1a , u2a} × {u1b, u2b} × {ω1}, {u1a} × {u1b, u2b} × {ω2})

I When the state of Nature is ω2, agent a only sees ω2, whereas
agent b sees ω2 and the decision of a: thus a acts �rst, then b

I The reverse holds true when the state of Nature is ω1

I Thus, there are history-ordering mappings ϕ from H towards
{(a, b), (b, a)}, but they di�er according to history:

ϕ
(

(ua, ub, ω
2)
)

= (a, b) and ϕ
(

(ua, ub, ω
1)
)

= (b, a)

I The system is causal but not sequential
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What are the agents whose decisions might a�ect
the information of a focal agent?

I The precedence binary relation identi�es the agents
whose decisions in�uence the observations of a given agent

I For a given agent a ∈ A, we consider
the set Pa ⊂ 2A of subsets C ⊂ A of agents such that

Ia ⊂ UC ⊗ F =
⊗
c∈C

Uc ⊗
⊗
b 6∈C

{∅,Ub} ⊗ F

I Any subset C ∈ Pa contains agents whose decisions
a�ect the information Ia available to the focal agent a

I As the set Pa is stable under intersection,
the following de�nition makes sense



The precedence relation P

Precedence binary relation

1. For any agent a ∈ A, we de�ne the subset 〈a〉P ⊂ A of agents
as the intersection of subsets C ⊂ A of agents such that

Ia ⊂ UC ⊗ F

2. We de�ne a precedence binary relation P on A by

bP a ⇐⇒ b ∈ 〈a〉P

and we say that b is a predecessor of a (or a precedent of a)

In other words, the decisions of any predecessor of an agent a�ect the
information of this agent: any agent is in�uenced by his predecessors
(when they exist, because 〈a〉P might be empty)



Characterization of the predecessors of a focal agent

I For any agent a ∈ A, the subset 〈a〉P of agents
is the smallest subset C ⊂ A such that

Ia ⊂ UC ⊗ F

I In other words, 〈a〉P is characterized by

Ia ⊂ U〈a〉P ⊗ F and
(
Ia ⊂ UC ⊗ F ⇒ 〈a〉P ⊂ C

)



Potential for signaling

I Whenever 〈a〉P 6= ∅, there is a potential for signaling,
that is, for information transmission

I Indeed, any agent b in 〈a〉P in�uences the information Ia
upon which agent a bases his decisions

I Therefore, whenever agent b is a predecessor of agent a,
the former can, by means of his decisions, send a signal to the latter

I In case 〈a〉P = ∅, the decisions of agent a depend, at most,
on the state of Nature, and there is no room for signaling



Iterated predecessors

I Let C ⊂ A be a subset of agents
I We introduce the following subsets of agents

〈C 〉P =
⋃
b∈C

〈b〉P , 〈C 〉0P = C and 〈C 〉n+1

P =
〈
〈C 〉nP

〉
P
, ∀n ∈ N

that correspond to the iterated predecessors of the agents in C

I When C is a singleton {a}, we denote 〈a〉nP for 〈{a}〉nP



Successor relation P−1

I The converse of the precedence relation P
is the successor relation P−1 characterized by

bP−1 a ⇐⇒ aP b

I Quite naturally, b is a successor of a i� a is a predecessor of b
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A subsystem is a subset of agents closed w.r.t. information

We de�ne the information IC ⊂ H of the subset C ⊂ A of agents by

IC =
∨
b∈C

Ib

that is, the smallest σ-�elds that contains all the σ-�elds Ib, for b ∈ C

Subsystem
A nonempty subset C of agents in A is a subsystem if the information
�eld IC at most depends on the decisions of the agents in C , that is,

IC ⊂ UC ⊗ F

Thus, the information received by agents in C depends upon
states of Nature and decisions of members of C only



Generated subsystem

I The subsystem C generated by a nonempty subset C of agents in A
is the intersection of all subsystems that contain C ,
that is, the smallest subsystem that contain C

I A subset C ⊂ A is a subsystem i�
it coincides with the generated subsystem, that is,

C is a subsystem ⇐⇒ C = C



The subsystem relation S

Precedence binary relation
We de�ne the subsystem relation S on A by

bS a ⇐⇒ {b} ⊂ {a} , ∀(a, b) ∈ A2

Therefore, bS a means that
I agent b belongs to the subsystem generated by agent a
I or, equivalently, that the subsystem generated by agent a contains

the one generated by agent b



The subsystem relation S is a pre-order

Proposition
The subsystem relation S is a pre-order,
namely it is re�exive and transitive



Proposition

1. A subset C ⊂ A is a subsystem i� 〈C 〉P ⊂ C, that is,
i� the predecessors of agents in C belong to C:

C is a subsystem ⇐⇒ C = C ⇐⇒ 〈C 〉P ⊂ C

2. For any agent a ∈ A, the subsystem generated by agent a is
the union of {a} and of all his iterated predecessors, that is,

{a} =
⋃
n∈N
〈a〉nP



Subsystem and co-cycle property of the pre-solution map
I We suppose that the stochastic system {Ua,Ua, Ia}a∈A

displays the solvability property
I We consider a partition A = B ∪ C and write,

for an admissible strategy λ ∈ Λad
A ,

λ = (λB , λC ) where λB : UB×UC×Ω→ UB , λC : UB×UC×Ω→ UC

Proposition
If B is a subsystem, the strategy λB can be identi�ed with

λB : UB × Ω→ UB

and the pre-solution map has the following co-cycle property

M(λB ,λC )(ω) =
(
MλB (ω),M

λC

(
MλB

(ω),·
)(ω)

)
, ∀ω ∈ Ω

like a �ow property, in the sense that

M(λB ,λC )(ω) = (uB , uC ) ⇐⇒

{
uB = MλB (ω)

uC = λC
(
uB , uC , ω

)
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The information-memory relation M

Information-memory binary relation M

1. With any agent a ∈ A, we associate
the subset 〈a〉M of agents who pass on their information to a, that
is,

〈a〉M = {b ∈ A | Ib ⊂ Ia }

2. We de�ne an information memory binary relation M on A by

bM a ⇐⇒ b ∈ 〈a〉M ⇐⇒ Ib ⊂ Ia , ∀(a, b) ∈ A2

I When bM a, we say that
agent b information is remembered by or passed on to agent a,
or that
the information of agent b is embedded in the information of agent a

I When agent b belongs to 〈a〉M,
the information available to b is also available to agent a



The information memory relation M is a pre-order

Proposition
The information memory relation M is a pre-order,
namely M is re�exive and transitive
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The decision-memory relation D

We recall that the decision sub�eld Db is

Db = Ub ⊗
⊗
c 6=b

{∅,Uc} ⊗ {∅,Ω}

Decision-memory binary relation

1. With any agent a ∈ A, we associate

〈a〉D = {b ∈ A |Db ⊂ Ia }

the subset of agents b whose decision is passed on to a

2. We de�ne a decision-memory binary relation D on A by

bD a ⇐⇒ b ∈ 〈a〉D ⇐⇒ Db ⊂ Ia , ∀(a, b) ∈ A2



D ⊂ P

From
D〈a〉D = U〈a〉D ⊗ {∅,Ω} ⊂ Ia ⊂ U〈a〉P ⊗ F

we conclude that
〈a〉D ⊂ 〈a〉P , ∀a ∈ A

or, equivalently, that
D ⊂ P

I When bD a, we say that the decision of agent b
is remembered by or passed on to agent a, or that
the decision of agent b is embedded in the information of agent a

I If bD a, the decision made by agent b is passed on to agent a and,
by the fact that D ⊂ P, b is a predecessor of a

I However, the agent b can be a predecessor of a,
but his in�uence may happen without passing on his decision to a



Conclusion

With these four relations
I Precedence relation P

I Subsystem relation S

I Information-memory relation M

I Decision-memory relation D

we can provide a typology of systems
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Static team

Static team
A static team is a subset C of A such that 〈C 〉P = ∅, that is,
agents in C have no predecessors

I A static team necessarily is a subset of the largest static team
de�ned by

A0 = {a ∈ A | Ia ⊂
⊗
b∈A

{∅,Ub} ⊗ F} = {a ∈ A | 〈a〉P = ∅}

I When the whole set A of agents is a static team,
any agent a ∈ A has no predecessor: 〈a〉P = ∅, ∀a ∈ A

I A system is static if the set A of agents is a static team



Static team made of two agents

Two agents a, b form a static team i�

Ia ⊂ {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib ⊂ {∅,Ua} ⊗ {∅,Ub} ⊗ F

There is no interdependence between the decisions of the agents,
just a dependence upon states of Nature
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Station

A station is a subset of agents such that the set of information �elds
of these agents is totally ordered under inclusion (i.e., nested)

Station
A subset C of agents in A is a station

I i� the information-memory relation M induces a total order on C
(i.e., it consists of a chain of length m = card(C ))

I i� there exists an ordering (a1, . . . , am) of C such that

Ia1 ⊂ · · · ⊂ Iak ⊂ Iak+1
⊂ · · · ⊂ Iam

or, equivalently, that

ak−1 ∈ 〈ak〉M , ∀k = 2, . . . ,m

In other words, in a station,
the antecessor k − 1 is necessarily a predecessor of k



A station with two agents

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ {∅,Ω, {ω1}, {ω2}}

Ib = {∅,Ua, {u1a}, {u2a}} ⊗ {∅,Ub} ⊗ {∅,Ω, {ω1}, {ω2}}.

Ia ⊂ Ib may be interpreted in di�erent ways
I one may say that

agent a communicates his own information to agent b.
I If agent a is an individual at time t = 0,

while agent b is the same individual at time t = 1,
one may say that the information is not forgotten with time
(memory of past knowledge)



Sequential system

Sequential system
A system is sequential if there exists an ordering (a1, . . . , aA) of A
such that each agent ak is in�uenced
at most by the previous (former or antecessor) agents a1, . . . , ak−1,
that is,

〈a1〉P = ∅ and 〈ak〉P ⊂ {a1, . . . , ak−1} , ∀k = 2, . . . ,A

In other words, in a sequential system,
predecessors are necessarily antecessors



Example of sequential system with two agents

The set of agents A = {a, b} with information �elds given by

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib = Ua ⊗ {∅,Ub} ⊗ {∅,Ω}

forms a sequential system where
I agent a precedes agent b, because
〈a〉P = ∅ and 〈b〉P = {a}

I but Ia and Ib are not comparable:
agent a observes only the state of Nature,
whereas agent b observes only agent a's decision



Example of sequential system with two agents

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ {∅,Ω, {ω1}, {ω2}}

Ib = {∅,Ua, {u1a}, {u2a}} ⊗ {∅,Ub} ⊗ {∅,Ω, {ω1}, {ω2}}.

The system is sequential:

1. agent a observes the state of Nature
and makes his decision accordingly

2. agent b observes both agent a's decision and the state of Nature
and makes his decision accordingly
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Partially nested system

Partially nested system
A partially nested system is one for which
the precedence relation is included in the information-memory relation,
that is,

P ⊂M

I In a partially nested system, if agent a is a predecessor of agent b �
hence, a can in�uence b � then agent b knows what agent a knows

I In a partially nested system, any agent has access
to the information of those agents who are his predecessors
(and thus in�uence his own information)

I In other words, in a partially nested system,
predecessors are necessarily informers



Quasiclassical system

Quasiclassical system
A system is quasiclassical

I i� it is sequential and partially nested
I i� there exists an ordering (a1, . . . , aA) of A such that
〈a1〉P = ∅ and

〈ak〉P ⊂ {a1, . . . , ak−1} and 〈ak〉P ⊂ 〈ak〉M , ∀k = 2, . . . ,A

In other words, in a quasiclassical system,
predecessors are necessarily antecessors and
predecessors are necessarily informers



Classical system

Classical system
A system is classical

I i� there exists an ordering (a1, . . . , aA) of A for which
it is both sequential and such that Iak ⊂ Iak+1

for k = 1, . . . , n − 1
(station property)

I i� there exists an ordering (a1, . . . , aA) of A such that
〈a1〉P = ∅ and

〈ak〉P ⊂ {a1, . . . , ak−1} ⊂ {a1, . . . , ak−1, ak} ⊂ 〈ak〉M , ∀k = 2, . . . ,A

In other words, in a classical system,
predecessors are necessarily antecessors and
antecessors are necessarily informers

I A classical system is necessarily partially nested
because 〈ak〉P ⊂ 〈ak〉M for k = 1, . . . , n

I Hence, a classical system is quasiclassical



A classical system with two agents

I The set of agents A = {a, b} with information �elds given by

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib = Ua ⊗ {∅,Ub} ⊗ F

forms a classical system
I Indeed, �rst, the system is sequential as a precedes b because
〈a〉P = ∅ and a ∈ 〈b〉P:

I agent a observes the state of Nature
and makes his decision accordingly

I agent b observes both agent a's decision and the state of Nature
and makes his decision based on that information

I Second, one has that Ia ⊂ Ib (a ∈ 〈b〉M):
agent a communicates his own information to agent b



Subsystem inheritence

Theorem
Any of the properties static team, sequentiality, quasiclassicality,
classicality, causality of a system is shared by all its subsystems
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Hierarchical systems

Hierarchical system
A system is hierarchical when the set A of agents can be partitioned in
(nonempty) disjoint sets A0,. . . , AK as follows

A0 = {a ∈ A | 〈a〉P = ∅}
A1 = {a ∈ A | a 6∈ A0 and 〈a〉P ⊂ A0}

Ak+1 = {a ∈ A | a 6∈
k⋃
i=1

Aj and 〈a〉P ⊂
k⋃
i=1

Aj} , ∀k = 2, . . . ,K

for k = 2, . . . ,K

Agents in A0 form the largest static team (〈A0〉P = ∅)



Parallel coordinated systems

We consider the case when the set A of agents can be partitioned in
(nonempty) disjoint sets A0, A1, . . . , AK as follows

I A0 is the largest static team ( 〈A0〉P = ∅ )
I every subset A1 ∪ A0, . . . , AK ∪ A0 is a subsystem
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