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Motivation

We consider a peer-to-peer microgrid where houses exchange energy,

and we formulate it as a large-scale stochastic optimization problem
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How to manage such network in an (almost)
optimal way?



Mix of spatial and temporal decompositions
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Figure: The case of price decomposition



Increase in execution time with state dimension
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Multistage stochastic optimal control formulation

▶ Let T ≥ 1 be an integer (finite) representing the horizon
▶ At each discrete time stage t ∈ J0,T−1K, a decision-maker

(DM) makes a decision and gets a reward as follows
▶ At the beginning of the time interval [t, t+1[,

the DM selects an arm a ∈ A (finite set)
▶ At the end of the time interval [t, t+1[, the arm a delivers a

random variable Wa
t+1 ∈ {B, G}, (“bad” B, “good” G)

▶ The corresponding probabilities are unknown to the DM

pa = (pBa, pGa) = (P
{
Wa

t+1 = B
}
,P

{
Wa

t+1 = G
}
) ∈ Σ

where Σ =
{
p = (pB, pG) ∈ R2

+

∣∣ pB + pG = 1
}

is the one-dimensional simplex

▶ We suppose that the DM holds a prior beta distribution
πa
0 = β(nBa, nGa) over the unknown pa = (pBa, pGa) ∈ Σ



Decision model for arm selection

▶ We consider a sequence U = {Ut}t∈J0,T−1K of r.v

on the probability space (Ω,F ,P), where
▶ Ut = {Ua

t}a∈A, ∀t ∈ J0,T − 1K
▶ Ua

t ∈ {0, 1}, ∀a ∈ A, ∀t ∈ J0,T − 1K
▶ Values Ua

t ∈ {0, 1} represent that,
at the beginning of the time interval [t, t+1[,
▶ either arm a has been selected (Ua

t = 1)
▶ or arm a has not been selected (Ua

t = 0)

▶ Since, at each given time, one and only one arm has to be
selected, we add the constraint∑

a∈A
Ua

t = 1 , ∀t ∈ J0,T − 1K

This way of modeling the selection of a unique arm
is not the most common in the bandit literature



Multistage stochastic optimal problem

We formulate a maximization problem
V0(π0) = V0

(
(nBa0 )a∈A, (n

Ga
0 )a∈A

)
=

sup

∫
∆(Σ)A

∏
a∈A

β(nBa0 ,nGa0 )( dpa)︷ ︸︸ ︷
πa
0(dp

a) E{pa}a∈A︸ ︷︷ ︸
probabilistic model

[ T−1∑
t=0

∑
a∈A

decision︷︸︸︷
Ua

t Lat (W
a
t+1)︸ ︷︷ ︸

reward

]

The supremum is taken over U = {Ua
t}a∈A,t∈J0,T−1K

subject to constraints (∀t ∈ J0,T − 1K)∑
a∈A

Ua
t = 1 (only one arm is selected)

σ(Ut) ⊂ σ(U0, {Ua
0W

a
1}a∈A , . . . ,Ut−1,

{
Ua

t−1W
a
t

}
a∈A)︸ ︷︷ ︸

inclusion of σ-algebras

(information)
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Dynamic programming and arm decomposition (1/2)

By weak duality — for the the coupling constraint
∑

a∈AUa
t = 1

with a deterministic multiplier µt — we obtain the upper bound

V0

(
(nBa0 )a∈A, (n

Ga
0 )a∈A

)
≤ inf

µ∈RT

(∑
a∈A

V a
0 [µ](n

Ba
0 , nGa0 )︸ ︷︷ ︸

arm a value function

+
T−1∑
t=0

µt

)

where, for any vector µ = {µt}t∈J0,T−1K ∈ RT of multipliers,

V a
T [µ](n

Ba, nGa) = 0 , ∀(nBa, nGa) ∈ N× N

V a
t [µ](n

Ba, nGa) = max
{
V a
t+1[µ](n

Ba, nGa),−µt

+
nBa

nBa + nGa
(
Lat (B) + V a

t+1[µ](n
Ba + 1, nGa)

)
+

nGa

nBa + nGa
(
Lat (G) + V a

t+1[µ](n
Ba, nGa + 1)

)}



Dynamic programming and arm decomposition (2/2)
▶ The global stochastic optimal control problem V0(π0) is,

theoretically, solvable by dynamic programming using
value functions {Vt}t∈J0,T K :

∏
a∈A∆(Σ) → R ∪ {+∞}

▶ However, computing V0(π0) using Dynamic Programming
faces the curse of dimensionality, as the priors are of the form
π0 = {πa

0}a∈A ∈
∏

a∈A∆(Σ)
▶ The DeCo algorithm consists in replacing

Vt+1

({
πa
t+1

}
a∈A

)
⇝

∑
a∈A

V a
t+1[µ](π

a
t+1)

for a suitable vector µ ∈ RT in order compute a policy by

Ut(πt) ∈ argmax
ut={uat }a∈A∈{0,1}A∑

a∈A uat=1

(
L̃t(πt , ut)

+

∫
∆(Σ)

∑
a∈A V a

t+1[µ](π
a
t+1)︷ ︸︸ ︷

Vt+1(πt+1) kt( dπt+1 | πt , ut)
)



The DeCo algorithm as a nonstationary index policy

For a suitable value of µ, when the state of the multi-armed bandit
is given by (nBa, nGa)a∈A at stage t,
the DeCo algorithm selects an arm

A∗
t [µ]

({
(nBa, nGa)

}
a∈A

)
∈ argmax

a∈A

[
(expected reward)

nBa

nBa + nGa
Lat (B) +

nGa

nBa + nGa
Lat (G)

+

(value
nBa

nBa + nGa
V a
t+1[µ](n

Ba+1, nGa) +

of
nGa

nBa + nGa
V a
t+1[µ](n

Ba, nGa+1)

information) − V a
t+1[µ](n

Ba, nGa)
]
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Numerical experiments (small number |A| of arms)

The DeCo algorithm compared to
brute force Bf algorithm (global DP)
for small number |A| of arms and short horizon T

arms |A| horizon T DeCo Bf

3 10 6.411 6.409
3 20 13.458 13.465

5 10 6.645 6.659

Comparison in term of
estimated total expected reward (higher is better)



Numerical experiments (small number |A| of arms)

The DeCo algorithm compared to Bf algorithm and others
for |A| = 2 arms and horizon T up to 100
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Numerical experiments for larger number |A| of arms

Bf cannot be used anymore because of the curse of dimensionality
FH-Gittins is used as a proxy supposed to be close to the
optimal solution

arms |A| horizon T DeCo FH-Gittins

5 20 14.21 14.28
5 40 29.85 30.06

15 20 14.59 14.67
15 40 31.54 31.63

Comparison in term of
estimated total expected reward (higher is better)
The performance of DeCo is close to the optimal solution while
keeping the computational cost reasonable



Numerical experiments: comparison with other methods

▶ We then tested DeCo against
▶ Thomson Sampling (Ts) [10, 2]
▶ Kullback-Leibler upper-confidence bound (Kl-Ucb) [3]
▶ Information-Directed Sampling (IDS) [9]3

▶ Finite Horizon Gittins index (FH-Gittins) [6, 8, 7]
▶ In the case of two arms, exact DP

▶ The solutions U = {Ua
t}a∈A,t∈J0,T−1K are compared

using the Expected Bayesian Regret given by

R(U) =

∫
∆(Σ)A

∏
a∈A

πa
0(dp

a)

{
E{pa}a∈A

[T−1∑
t=0

∑
a∈A

(
UBa,a

t −Ua
t

)
Wa

t+1

]}

▶ Lat equal to 1 on G and 0 on B
▶ Ba: best arm policy is, for all a ∈ A, given by

UBa,a
t = 1 ⇐⇒ a ∈ argmaxa′∈A p

a′

G
▶ the prior is supposed to be the uniform distribution for all arms

3For IDS we used the library [1]



Numerical experiments: comparison with other methods

The two arms case where brute force algorithm can be used
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Numerical experiments: comparison with other methods

Increasing the number of arms

(a) 5 arms

0 20 40 60 80 100
0

5

10

horizon T

E
x
p
ec
te
d
B
a
y
es
ia
n
R
eg
re
t

Ts

Kl-Ucb

DeCo

Ids

(b) 10 arms
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(c) 20 arms
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On all cases, DeCo

▶ beats both Ts and Kl-Ucb with a comfortable margin

▶ and is comparable to IDS



Numerical experiments: comparison with other methods

▶ On all cases, DeCo beats both Ts and Kl-Ucb with a
comfortable margin, and is comparable to IDS

▶ For the two arms case DeCo is very close to the optimal
solution, computed by DP
(we used the Julia BinaryBandit library)

▶ Expected Bayesian Regret is numerically obtained by
Monte Carlo simulations
▶ Expectation with respect to the prior:

a sample of size 1000
▶ Expectation with respect to the arms parameters:

a sample of size 1000 or of size 100 (for large T )
▶ Same samples for all the evaluated policies



Numerical experiments: DeCoprovides a lower bound
▶ RLb: lower bound provided by DeCo(using the dual bound)

R(U) ≥ RLb =
|A|

|A|+ 1
T −

(∑
a∈A

V a
0 [µ

∗](πa
0) +

T−1∑
t=0

µ∗
t

)
▶ RLb, DeCo, Ts and Kl-Ucb regret as a function of the

number of arms for T = 100 and T = 500
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The lower bound is of no use (lower than 0) for |A| ≤ 5
When |A| ↑ the regrets of DeCo and RLb become quite
close, which indicates that DeCo is close to being optimal
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Conclusion (pros)

▶ The numerical results illustrate the value
of the decomposition-coordination approach
(observed in other applications):
DeCo is a simple algorithm and
its performances are close to the optimal Bayesian solution
for several configurations of arms and horizons,
while keeping the computing time reasonable

▶ Empirically, DeCo offers performances comparable to
FH-Gittins but with a much smaller computation burden

▶ DeCo can deal with time varying reward functions,
and can even include a final reward

▶ In particular, DeCo can be applied to nonstationary settings,
whereas FH-Gittins cannot



Conclusion (cons)

▶ As of now, the approach main limitation is that
the horizon T is supposed to be known in advance
and to be reasonably small, whereas
many multi-armed bandit algorithms
do not require T as an input

▶ In addition, the usage of dynamic programming
might make DeCo too burdensome
for some applications with long horizon T

▶ Also, since the DeCo algorithm requires a Bayesian prior,
the question of the impact of a wrong prior
on the performance is left open



Conclusion (perspectives)

▶ We could explore the possibility to adapt the multiplier µ
as time goes on and we receive bandit feedback

▶ Further works include
▶ a theoretical analysis of the DeCo policy
▶ and an extension to the discounted infinite horizon case
▶ as well as adapting the heuristic to other use cases
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The DeCo algorithm

▶ DeCo (decomposition-coordination algorithm)

▶ Stands for the decentralized control policy
obtained by arm decomposition

▶ By contrast with the (brute force)
dynamic programming solution (Bf),
we have to solve Bellman equations for each arm,
=⇒ dynamic programming with state of dimension 2

no matter the number of arms
▶ The DeCo algorithm is made of

▶ an offline computation phase
▶ an online computation phase



Offline phase of the DeCo algorithm

Minimization of the dual function

φ(µ) =

(∑
a∈A V a

0 [µ](π
a
0) +

∑T−1
t=0 µt

)
for a given family {πa

0}a∈A =
{
β(nBa0 , nGa0 )

}
a∈A of beta priors

Multiplier

(µ
(k)
t )t∈J0,T−1K

· · ·
Arm 1, compute

V 1
t [µ

k]
Arm A compute

V A
t [µk]

Monte Carlo estimation

∆
(k)
t = E

[ A
∑

a=1

U
a,(k)
t

(

·
)

− 1

]

, ∀t ∈ J0, T −1K

µ
(k+1)
t = µ

(k)
t − ρt∆

(k)
t



Offline phase of the DeCo algorithm (continued)

1. Choose an initial vector µ(0) ∈ RT of multipliers.

2. Iteration k , given multipliers µ(k) ∈ RT , compute the Bellman
functions

{
V a
t [µ

(k)]
}
t∈J0,T K,a∈A and optimal controls.

▶ The computation is performed in parallel, arm per arm.
▶ V a

t [µ
(k)] is to be evaluated only on the finite grid

{(nBa0 + nBa, nGa0 + nGa) | nBa + nGa ≤ t}.
▶ If all the arms share the same prior and instantaneous reward,

then all the arms share the same sequence of Bellman value
functions.



Offline phase of the DeCo algorithm (continued)

3. Once gotten
{
V a
t [µ

(k)]
}
a∈A at time t = 0 and iteration k

▶ update the multipliers by a gradient step to obtain µ(k+1)

▶ The gradient of the dual function φ with respect to the
multipliers is obtained by computing the expectation of the
dualized constraint.

▶ Numerically, the expectation is obtained by Monte Carlo
simulations.

▶ The gradient phase can be replaced by a more sophisticated
algorithm such as the conjugate gradient or the quasi-Newton
method.

▶ In some of our numerical experiments, we use a solver (limited
memory Bfgs) of the Modulopt library from Inria [4]. To
obtain a global O(T 3) running time, the computing budget
allocated to this iterated gradient phase does not depend on T .

4. Stop the iterations (stopping criterion) or go back to 2 with
multiplier µ(k+1).



Online phase of the DeCo algorithm

▶ The global stochastic optimal control problem is, theoretically,
solvable by dynamic programming

▶ Using the Bellman value functions {Vt}t∈J0,T K, an optimal
policy would be given by the feedback (where
πt = {πa

t }a∈A =
{
β(nBat , nGat )

}
a∈A)

Ut(πt) ∈ argmax
ut={uat }a∈A∈{0,1}A∑

a∈A uat=1

(
L̃t(πt , ut)

+

∫
∆(Σ)

Vt+1(πt+1)kt( dπt+1 | πt , ut)
)

▶ The DeCo algorithm consists in replacing the Bellman value
function Vt+1 by

∑
a∈A V a

t+1[µ], using the collection{
V a
t+1[µ]

}
a∈A, of Bellman value functions given by the offline

phase and a suitable vector µ ∈ RT



Online phase of the DeCo algorithm (continued)

▶ We obtain the following policy: when the state of the
multi-armed bandit is given by (nBa, nGat )a∈A at time t,
the DeCo algorithm selects an arm A∗

t [µ]
({

(nBa, nGat )
}
a∈A

)
in

argmax
a∈A

[
− V a

t+1[µ](n
Ba, nGa)

+
nBa

nBa + nGa
(
Lat (B) + V a

t+1[µ](n
Ba+1, nGa)

)
+

nGa

nBa + nGa
(
Lat (G) + V a

t+1[µ](n
Ba, nGa+1)

)]
▶ This is a nonstationary index policy

▶ The DeCo policy used in numerical experiments is the
policy A∗[µ∗],
where µ∗ is given by the offline phase of the DeCo algorithm



Interpretation
▶ The index in DeCo is the sum of an exploration term

and of an exploitation term

▶ We define the value of the information to be gained from
pulling arm a at time t as

δat [µ](n
Ba, nGa) =

nBa

nBa + nGa
V a
t+1[µ](n

Ba + 1, nGa)

+
nGa

nBa + nGa
V a
t+1[µ](n

Ba, nGa + 1)− V a
t+1[µ](n

Ba, nGa)

▶ Using δat [µ](n
Ba, nGa), we can write

V a
t [µ](n

Ba, nGa) = V a
t+1[µ](n

Ba, nGa)

+
(
δat [µ](n

Ba, nGa) +
nBa

nBa + nGa
Lat (B) +

nGa

nBa + nGa
Lat (G)− µt

)+

▶ The arm is pulled in the decomposed problem only if the sum
of the information gain (δt) and the expected reward is
greater than µt



Interpretation (continued)
▶ µt interpreted as an equilibrium price of a “bandit market”
▶ Each bandit is handled by an independent profit maximizing

agent, which is required to pay the market price µt to pull the
arm of its bandit at time t

▶ This is different but connected to the fair charge metaphore
proposed in [11] for the Gittins index. Here the price depends
on a market made of several arms, whereas for the Gittins
index, the fair charge is arm specific.

▶ Last, the selected arm (in online phase) is the one maximizing

δat [µ](n
Ba, nGa)︸ ︷︷ ︸

exploration

+
nBa

nBa + nGa
Lat (B) +

nGa

nBa + nGa
Lat (G)︸ ︷︷ ︸

exploitation

▶ Such exploration term is reminiscent of the exploration term
encountered in UCB. Also, [5] refers to a learning component
in the Gittins index as the difference between the index value
and the immediate expected reward. More recently, the notion
of information gain is also important in [9].



Computational complexity

▶ Solving the global maximization problem by DP
is only possible for |A| small and T small
computational cost O((2|A|)T )

▶ FH-Gittins: time complexity O(T 6)

▶ DeCo: DP phase cost running time O(T 3)
indeed for each time t ∈ J1,T K, we need a grid of T × T
for the 2 dimensional prior parameter
(number of successes and failures)

▶ In the experiment, we fixed the number of gradient calls,
so that the overall computing cost was O(T 3) in time
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Probabilistic model

▶ Let Σ =
{
p = (pB, pG) ∈ R2

+

∣∣ pB + pG = 1
}

be the one-dimensional simplex

▶ For any p = (pB, pG) ∈ Σ, we consider on the space {B, G}T
the probability B(pB, pG) =

⊗T
t=1

(
pBδB + pGδG

)
—

probability law of a sequence of independent (Bernoulli)
random variables with values in {B, G}

▶ For {pa}a∈A =
{
(pBa, pGa)

}
a∈A ∈

∏
a∈AΣ,

▶ we consider the probability
⊗

a∈A B(pBa, pGa) on the product

space
∏

a∈A{B, G}T — which corresponds to independence
between arms in A

▶ we denote by E{pa}a∈A
the corresponding mathematical

expectation

▶ We suppose that the DM holds a prior πa
0 over the

unknown pa = (pBa, pGa) ∈ Σ, for every arm a ∈ A
In practice, we consider a beta distribution β(nB, nG) on Σ,
with positive integers nB > 0 and nG > 0 as parameters



Probabilistic model (continued)

▶ We consider the probability space (Ω,F ,P) where
▶ Ω =

∏
a∈A Σ× {B, G}T ,

▶ F = 2Ω,
▶ P =

⊗
a∈A πa

0

(
d(pBa, pGa)

)
⊗ B(pBa, pGa).

▶ Then, Wa = {Wa
t }t∈J1,T K denotes the coordinate mappings

for every arm a ∈ A, with Wa
t a random variable having values

in the set {B, G}.
▶ For a given family {(p̄aB, p̄aG)}a∈A ∈

∏
a∈AΣ and for

πa
0 = δ(p̄aB ,p̄aG), for every arm a ∈ A, the family {Wa

t }a∈A,t∈J1,T K
consists of independent random variables, where Wa

t has
(Bernouilli) probability distribution with parameter p̄aG ∈ [0, 1],
that is, P

(
Wa

t = B
)
= 1− p̄aG and P

(
Wa

t = G
)
= p̄aG. With this

probabilistic model, we represent the sequential independent
outcomes of |A| independent arms.



Information and admissible controls

▶ The DM observes the random variable
Yt+1 =

{
Ua

tW
a
t+1

}
a∈A, ∀t ∈ J0,T − 1K

▶ When the arm a has been selected at stage t (Ua
t = 1),

the DM observes the outcome of the r.v. Wa
t+1 ∈ {B, G}.

▶ When the arm a has not been selected at stage t (Ua
t = 0),

the DM observes nothing.

▶ The admissible controls U = {Ut}t∈J0,T−1K are those that
satisfy

σ(Ut) ⊂ σ(Y0,U0,Y1, . . . ,Ut−1,Yt) , ∀t ∈ J0,T − 1K ,

where σ(Z) ⊂ F is the σ-field generated by the random
variable Z on the probability space (Ω,F ,P).



Random rewards

▶ We consider given a family {Lat}a∈A,t∈J0,T−1K
of instantaneous reward functions Lat : {B, G} → R,

▶ The total random reward associated with the
control U = {Ut}t∈J0,T−1K is given by

T−1∑
t=0

∑
a∈A

Ua
tL

a
t (W

a
t+1)

▶ When the arm a has been selected at stage t (Ua
t = 1),

the r.v. Wa
t+1 materializes and the DM receives the payoff

1× Lat (W
a
t+1) = Ua

tL
a
t (W

a
t+1).

▶ When the arm a has not been selected at stage t (Ua
t = 0),

the DM receives the payoff 0 = Ua
tL

a
t (W

a
t+1).



Optimality criteria in the Bayesian framework

▶ Let π0 = {πa
0}a∈A ∈

∏
a∈A∆(Σ) be the family of initial priors.

▶ ∆(Σ): set of probability distributions on Σ.

▶ We formulate a maximization problem

V0(π0) = sup

∫
∆(Σ)A

∏
a∈A

πa
0( dp

a)E{pa}a∈A

[ T−1∑
t=0

∑
a∈A

Ua
tL

a
t (W

a
t+1)

]

▶ The supremum is taken over U = {Ua
t}a∈A,t∈J0,T−1K

subject to constraints∑
a∈A

Ua
t = 1 , ∀t ∈ J0,T − 1K

σ(Ut) ⊂ σ(Y0,U0,Y1, . . . ,Ut−1,Yt) , ∀t ∈ J0,T − 1K
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