# An Overview of <br> Decomposition/Coordination Methods <br> for Multistage Stochastic Optimization Problems 

M. De Lara, with P. Carpentier, J.-Ph. Chancelier

École des Ponts ParisTech and ENSTA ParisTech
BIRS-CMO, Oaxaca, 22-27 September 2019

## Motivation



## Lecture outline

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Summary and research agenda

## Outline of the presentation

Decomposition and coordination

## A brief insight into three decomposition methods

Summary and research agenda

## Outline of the presentation

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Summary and research agenda

## Temporal, scenario and spatial structures in

 multistage stochastic optimization problemsIn multistage stochastic optimization problems, we consider that the control variable

$$
\mathbf{U}_{t}^{i}(\omega)
$$

is indexed by

- Time/stages $t \in \mathbb{T}(=\{0, \ldots, T-1\})$
- Scenarios $\omega \in \Omega$
- Space/units $i \in \mathbb{I}(=\{1, \ldots, N\})$

The letter $U$ comes from the Russian word upravlenie for control

## Let us fix problem and notations

$$
\min _{\mathbf{U}, \mathbf{X}} \overbrace{\mathbb{E}\left(\sum_{i \in \mathbb{I}} \sum_{t \in \mathbb{T}} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right)}^{\text {additive costs }} \quad \text { subject to }
$$

dynamics constraints

$$
\underbrace{\mathbf{X}_{t+1}^{i}}_{\text {state }}=g_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \underbrace{\mathbf{W}_{t+1}}_{\text {uncertainty }}), \mathbf{X}_{0}^{i}=g_{-1}^{i}\left(\mathbf{W}_{0}\right)
$$

measurability constraints (nonanticipativity of the control $\mathbf{U}_{t}^{i}$ )

$$
\sigma\left(\mathbf{U}_{t}^{i}\right) \subset \sigma\left(\mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right) \Longleftrightarrow \mathbf{U}_{t}^{i}=\mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right)
$$

spatially coupling constraints

$$
\sum_{i \in \mathbb{I}} \Theta_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}\right)=0
$$

## Outline of the presentation

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Summary and research agenda

## Couplings for stochastic problems



$$
\min \mathbb{E}\left(\sum_{i} \sum_{t} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right)
$$

## Couplings for stochastic problems: in time



$$
\begin{aligned}
& \min \mathbb{E}\left(\sum_{i} \sum_{t} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right) \\
& \text { s.t. } \mathbf{X}_{t+1}^{i}=g_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)
\end{aligned}
$$

## Couplings for stochastic problems: in uncertainty



$$
\begin{gathered}
\min \mathbb{E}\left(\sum_{i} \sum_{t} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right) \\
\text { s.t. } \mathbf{X}_{t+1}^{i}=g_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right) \\
\mathbf{U}_{t}^{i}=\mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right)
\end{gathered}
$$

## Couplings for stochastic problems: in space



$$
\begin{gathered}
\min \mathbb{E}\left(\sum_{i} \sum_{t} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right) \\
\text { s.t. } \mathbf{X}_{t+1}^{i}=g_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right) \\
\mathbf{U}_{t}^{i}=\mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right) \\
\sum_{i} \Theta_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}\right)=0
\end{gathered}
$$

Can we decouple stochastic optimization problems?


$$
\begin{gathered}
\min \mathbb{E}\left(\sum_{i} \sum_{t} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right) \\
\text { s.t. } \mathbf{X}_{t+1}^{i}=g_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right) \\
\mathbf{U}_{t}^{i}=\mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right) \\
\sum_{i} \Theta_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}\right)=0
\end{gathered}
$$

## Sequential decomposition in time



$$
\begin{gathered}
\min \mathbb{E}\left(\sum_{i} \sum_{t} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right) \\
\text { s.t. } \mathbf{X}_{t+1}^{i}=g_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right) \\
\mathbf{U}_{t}^{i}=\mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right) \\
\sum_{i} \Theta_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}\right)=0 \\
\text { Dynamic Programming (DP) } \\
\text { Bellman (56) }
\end{gathered}
$$

## Parallel decomposition in uncertainty/scenarios



$$
\begin{gathered}
\min \mathbb{E}\left(\sum_{i} \sum_{t} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right) \\
\text { s.t. } \mathbf{X}_{t+1}^{i}=g_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right) \\
\mathbf{U}_{t}^{i}=\mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right) \\
\sum_{i} \Theta_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}\right)=0 \\
\text { Progressive Hedging } \\
\text { Rockafellar-Wets (91) }
\end{gathered}
$$

## Parallel decomposition in space/units



$$
\begin{gathered}
\min \mathbb{E}\left(\sum_{i} \sum_{t} L_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right)\right) \\
\text { s.t. } \mathbf{X}_{t+1}^{i}=g_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\right) \\
\mathbf{U}_{t}^{i}=\mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right) \\
\sum_{i} \Theta_{t}^{i}\left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}\right)=0 \\
\text { Price and Resource } \\
\text { Decompositions }
\end{gathered}
$$

## Decomposition-coordination: divide and conquer

- Temporal decomposition
- A state is an information summary
- Time coordination realized through Dynamic Programming, by value functions (of the state)
- Hard nonanticipativity constraints
- Scenario decomposition
- Along each scenario, subproblems are deterministic (powerful algorithms)
- Scenario coordination realized through Progressive Hedging, by updating nonanticipativity multipliers
- Soft nonanticipativity constraints
- Spatial decomposition
- By prices (multipliers of the spatial coupling constraint)
- By resources (splitting the spatial coupling constraint)


## Outline of the presentation

## Decomposition and coordination

A brief insight into three decomposition methods

Summary and research agenda

## Outline of the presentation

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Summary and research agenda

## Moving from tree to fan (and scenarios)

Equivalent formulations of the nonanticipativity constraints


- On a (scenario) tree, the nonanticipativity constraints

$$
\sigma\left(\mathbf{U}_{t}\right) \subset \sigma\left(\mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right)
$$

are "hardwired"

- On a fan, the nonanticipativity constraints write as linear equality constraints

$$
\mathbf{U}_{t}=\mathbb{E}\left(\mathbf{U}_{t} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right)
$$

## Progressive Hedging stands as a scenario decomposition method

Rockafellar-Wets (91) dualize the nonanticipativity constraints

$$
\mathbf{U}_{t}=\mathbb{E}\left(\mathbf{U}_{t} \mid \mathbf{W}_{0}, \ldots, \mathbf{W}_{t}\right)
$$

- When the criterion is strongly convex, one uses a Lagrangian relaxation (algorithm "à la Uzawa") to obtain a scenario decomposition
- When the criterion is linear, Rockafellar-Wets (91) propose to use an augmented Lagrangian, and obtain the Progressive Hedging algorithm

Data: step $\rho>0$, initial multipliers $\left\{\lambda_{s}^{(0)}\right\}_{s \in \mathbb{S}}$ and mean first decision $\overline{\mathbf{u}}^{(0)}$;
Result: optimal first decision $\mathbf{u}$;
repeat
forall scenarios $s \in \mathbb{S}$ do
Solve the deterministic minimization problem for scenario $s$, with a penalization $+\lambda_{s}^{(k)}\left(\mathbf{u}_{s}^{(k+1)}-\overline{\mathbf{u}}^{(k)}\right)$, and obtain optimal first decision $\mathbf{u}_{s}^{(k+1)}$;
Update the mean first decisions

$$
\overline{\mathbf{u}}^{(k+1)}=\sum_{s \in \mathbb{S}} \pi_{s} \mathbf{u}_{s}^{(k+1)}
$$

Update the multiplier by

$$
\lambda_{s}^{(k+1)}=\lambda_{s}^{(k)}+\rho\left(\mathbf{u}_{s}^{(k+1)}-\overline{\mathbf{u}}^{(k+1)}\right), \forall s \in \mathbb{S} ;
$$

until $\mathbf{u}_{s}^{(k+1)}-\sum_{s^{\prime} \in \mathbb{S}} \pi_{s^{\prime}} \mathbf{u}_{s^{\prime}}^{(k+1)}=0, \forall s \in \mathbb{S}$;

## Outline of the presentation

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Summary and research agenda

## We consider an additive model

Consider the following minimization problem

$$
\min _{u \in \mathcal{U}_{\mathrm{ad}} \subset \mathcal{U}} J(u) \text { subject to } \Theta(u)-\theta=0 \in \mathcal{V}
$$

for which exists a decomposition of the space $\mathcal{U}=\mathcal{U}^{1} \times \ldots \times \mathcal{U}^{N}$, so that $u \in \mathcal{U}$ writes $u=\left(u^{1}, \ldots, u^{N}\right)$ with $u^{i} \in \mathcal{U}^{i}$, and also

- $\mathcal{U}_{\mathrm{ad}}=\mathcal{U}_{\mathrm{ad}}^{1} \times \cdots \times \quad \mathcal{U}_{\mathrm{ad}}^{N}$

$$
\begin{aligned}
\mathcal{U}_{\mathrm{ad}}^{i} & \subset \mathcal{U}^{i} \\
u^{i} & \in \mathcal{U}^{i} \\
u^{i} & \in \mathcal{U}^{i}
\end{aligned}
$$

- $J(u)=J^{1}\left(u^{1}\right)+\cdots+J^{N}\left(u^{N}\right)$
- $\Theta(u)=\Theta^{1}\left(u^{1}\right)+\cdots+\Theta^{N}\left(u^{N}\right)$

Then the problem displays the following additive structure

$$
\min _{\substack{u^{1} \in \mathcal{U}_{\mathrm{ad}}^{1} \\ \vdots \\ u^{N} \in \mathcal{U}_{\mathrm{ad}}^{N}}} \sum_{i=1}^{N} J^{i}\left(u^{i}\right) \quad \text { subject to } \quad \sum_{i=1}^{N} \Theta^{i}\left(u^{i}\right)-\theta=0
$$

## Additive model - Price decomposition

$$
\min _{u \in \mathcal{U}_{\mathrm{ad}}} \sum_{i=1}^{N} J^{i}\left(u^{i}\right) \quad \text { subject to } \quad \sum_{i=1}^{N} \Theta^{i}\left(u^{i}\right)-\theta=0
$$

1. Form the Lagrangian of the problem

We assume that a saddle point exists, so that solving the initial problem is equivalent to

$$
\max _{\lambda \in \mathcal{V}} \min _{u \in \mathcal{U}_{\mathrm{ad}}} \sum_{i=1}^{N}\left(J^{i}\left(u^{i}\right)+\left\langle\lambda, \Theta^{i}\left(u^{i}\right)\right\rangle\right)-\langle\lambda, \theta\rangle
$$

2. Solve this problem by the Uzawa algorithm

$$
\begin{aligned}
& u^{i,(k+1)} \in \underset{u^{i} \in \mathcal{U}_{\mathrm{ad}}^{i}}{\arg \min } J^{i}\left(u^{i}\right)+\left\langle\lambda^{(k)}, \Theta^{i}\left(u^{i}\right)\right\rangle, \quad i=1 \ldots, N \\
& \lambda^{(k+1)}=\lambda^{(k)}+\rho\left(\sum_{i=1}^{N} \Theta^{i}\left(u^{i,(k+1)}\right)-\theta\right)
\end{aligned}
$$

## Additive model - Price decomposition



## Additive model - Resource allocation

$$
\min _{u \in \mathcal{U}_{\text {ad }}} \sum_{i=1}^{N} J^{i}\left(u^{i}\right) \quad \text { subject to } \quad \sum_{i=1}^{N} \Theta^{i}\left(u^{i}\right)-\theta=0
$$

1. Write the constraint in a equivalent manner by introducing new variables $v=\left(v^{1}, \ldots, v^{N}\right)$ (the so-called "allocation")

$$
\sum_{i=1}^{N} \Theta^{i}\left(u^{i}\right)-\theta=0 \quad \Leftrightarrow \quad \Theta^{i}\left(u^{i}\right)-v^{i}=0 \text { and } \sum_{i=1}^{N} v^{i}=\theta
$$

and minimize the criterion w.r.t. $u$ and $v$
$\min _{v \in \mathcal{V}^{N}} \sum_{i=1}^{N}\left(\min _{u^{i} \in \mathcal{U}_{\mathrm{ad}}^{i}} J^{i}\left(u^{i}\right)\right.$ s.t. $\left.\Theta^{i}\left(u^{i}\right)-v^{i}=0\right)$ s.t. $\sum_{i=1}^{N} v^{i}=\theta$

## Additive model - Resource allocation

$$
\begin{gathered}
\min _{v \in \mathcal{V}^{N}} \sum_{i=1}^{N}(\underbrace{\min _{u^{i} \in \mathcal{U}_{\mathrm{ad}}^{i}} J^{i}\left(u^{i}\right) \text { s.t. } \Theta^{i}\left(u^{i}\right)-v^{i}=0}_{G^{i}\left(v^{i}\right)}) \text { s.t. } \sum_{i=1}^{N} v^{i}=\theta \\
\min _{v \in \mathcal{V}^{N}} \sum_{i=1}^{N} G^{i}\left(v^{i}\right) \quad \text { s.t. } \quad \sum_{i=1}^{N} v^{i}=\theta
\end{gathered}
$$

2. Solve the last problem using a projected gradient method

$$
\begin{aligned}
& G^{i}\left(v^{i,(k)}\right)=\min _{u^{i} \in \mathcal{U}_{\mathrm{ad}}^{i}} J^{i}\left(u^{i}\right) \text { s.t. } \Theta^{i}\left(u^{i}\right)-v^{i,(k)}=0 \rightsquigarrow \lambda^{i,(k+1)} \\
& v^{i,(k+1)}=v^{i,(k)}+\rho\left(\lambda^{i,(k+1)}-\frac{1}{N} \sum_{j=1}^{N} \lambda^{j,(k+1)}\right)
\end{aligned}
$$

## Additive model - Resource allocation



## Preparing Pierre Carpentier's talk

We can also use price/resource decomposition to bound a minimization problem

$$
\begin{aligned}
V_{0}^{\star}= & \inf _{u^{1} \in \mathbb{U}_{\mathrm{ad}}^{1}, \cdots, u^{N} \in \mathbb{U}_{\mathrm{ad}}^{N}} \sum_{i=1}^{N} J^{i}\left(u^{i}\right) \\
& \text { s.t. } \underbrace{\left(\Theta^{1}\left(u^{1}\right), \cdots, \Theta^{N}\left(u^{N}\right)\right) \in S}_{\text {coupling constraint }}
\end{aligned}
$$

- $u^{i} \in \mathbb{U}^{i}$ be a local decision variable
- $J^{i}: \mathbb{U}^{i} \rightarrow \mathbb{R}, i \in \llbracket 1, N \rrbracket$ be a local objective function
- $\mathbb{U}_{\text {ad }}^{i}$ be a subset of the local decision set $\mathbb{U}^{i}$
- $\Theta^{i}: \mathbb{U}^{i} \rightarrow \mathcal{C}^{i}$ be a local constraint mapping
- $S$ be a subset of $\mathcal{C}=\mathcal{C}^{1} \times \cdots \times \mathcal{C}^{N}$

We denote by $S^{\circ}$ the polar cone of $S$

$$
S^{\circ}=\left\{p \in \mathcal{C}^{\star} \mid\langle p, r\rangle \leq 0, \forall r \in S\right\}
$$

## Price and resource local value functions

For each $i \in \llbracket 1, N \rrbracket$,

- for any price $p^{i} \in\left(\mathcal{C}^{i}\right)^{\star}$, we define the local price value

$$
\underline{V}_{0}^{i}\left[p^{i}\right]=\inf _{u^{i} \in \mathbb{U}_{\text {ad }}^{i}} J^{i}\left(u^{i}\right)+\left\langle p^{i}, \Theta^{i}\left(u^{i}\right)\right\rangle
$$

- for any resource $r^{i} \in \mathcal{C}^{i}$, we define the local resource value

$$
\bar{V}_{0}^{i}\left[r^{i}\right]=\inf _{u^{i} \in \mathbb{U}_{a d}^{i d}} J^{i}\left(u^{i}\right) \text { s.t. } \quad \Theta^{i}\left(u^{i}\right)=r^{i}
$$

Proposition (upper and lower bounds for optimal value)

- For any admissible price $p=\left(p^{1}, \cdots, p^{N}\right) \in S^{\circ}$
- For any admissible resource $r=\left(r^{1}, \cdots, r^{N}\right) \in S$

$$
\sum_{i=1}^{N} \underline{V}_{0}^{i}\left[p^{i}\right] \leq V_{0}^{\star} \leq \sum_{i=1}^{N} \bar{V}_{0}^{i}\left[r^{i}\right]
$$

## Outline of the presentation

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Summary and research agenda

## Brief literature review on dynamic programming

|  | Bellman | Puterman | Bertsekas <br> Schreve | Evstignev | Witsenhausen <br> (standard form) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1957 | 1994 | 1996 | 1976 | 1973 |
| State | $X$ | $X$ | $X$ | - | $\left(\omega, U_{1: t-1}\right)$ |
| Dynamics | $f(X, U, W)$ | $P_{x, x^{\prime}}^{u}$ | $f(X, U, W)$ | - | $X_{t}=\left(X_{t-1}, U_{t}\right)$ |
| Uncertainties | Indep. | - | $\rho$ | $(\Omega, \mathcal{F})$ | $(\Omega, \mathcal{F})$ |
| Cost | $\sum_{t}$ | $\sum_{t}$ | $\sum_{t}$ | $j(\omega, U)$ | $j(\omega, U)$ |
| Controls | $\gamma(X)$ | $\gamma(X) \gamma(H)$ | $\gamma(X) \gamma(H)$ | $\mathcal{F}_{t}$-meas. | $\gamma\left(x_{t}\right) \mathcal{I}_{t}$-meas. |
| History | - | $(X, U, \ldots)_{t}$ | $(W, U, \ldots)_{t}$ | - | $X_{t}$ |

## We introduce the history

- The timeline is

$$
w_{0} \rightsquigarrow u_{0} \rightsquigarrow w_{1} \rightsquigarrow u_{1} \rightsquigarrow \quad \ldots \quad \rightsquigarrow w_{T-1} \rightsquigarrow u_{T-1} \rightsquigarrow w_{T}
$$

- and the history is



## History is the largest state

The history follows the dynamics

$$
\begin{aligned}
h_{t+1} & =(\overbrace{w_{0}, u_{0}, w_{1}, u_{1}, \ldots, u_{t-1}, w_{t}}, u_{t}, w_{t+1}) \\
& =(h_{t}, \underbrace{u_{t}}_{\text {control }}, \underbrace{w_{t+1}}_{\text {uncertainty }})
\end{aligned}
$$

## We formulate a sequence of minimization problems over increasing history spaces

- Once given
- a criterion $j: \mathbb{H}_{T} \rightarrow \mathbb{R}$
- a sequence of stochastic kernels $\rho_{t: t+1}: \mathbb{H}_{t} \rightarrow \Delta\left(\mathbb{W}_{t+1}\right)$
- we define, for any history $h_{t}$, a minimization problem

$$
V_{t}\left(h_{t}\right)=\underbrace{\inf _{t: T-1} \in \Gamma_{t: T-1}}_{\text {history feedbacks }} \int_{\mathbb{H}_{T}} \overbrace{j\left(h_{T}^{\prime}\right)}^{\text {criterion }} \underbrace{\rho_{t: T}^{\gamma}\left(h_{t}, \mathrm{~d} h_{T}^{\prime}\right)}_{\text {controlled stochastic kernel }}
$$

There is a Bellman equation involving value functions over increasing history spaces without white noise assumption

$$
\begin{aligned}
& V_{T}=j \\
& V_{t}=\mathcal{B}_{t+1: t} V_{t+1}
\end{aligned}
$$

with

$$
\left(\mathcal{B}_{t+1: t} \varphi\right)\left(h_{t}\right)=\inf _{u_{t} \in \mathbb{U}_{t}} \int_{\mathbb{W}_{t+1}} \varphi\left(h_{t}, u_{t}, w_{t+1}\right) \rho_{t: t+1}\left(h_{t}, d w_{t+1}\right)
$$

## Preparing Jean-Philippe Chancelier's talk

## Towards state reduction by time blocks

- History $h_{t}$ is itself a canonical state variable, which lives in the history space $\mathbb{H}_{t}=\mathbb{W}_{0} \times \prod_{s=0}^{t-1}\left(\mathbb{U}_{s} \times \mathbb{W}_{s+1}\right)$
- However the size of this canonical state increases with $t$, which is a nasty feature for dynamic programming
- We will now
- introduce "state" spaces $\mathbb{X}_{t}$
- and then reduce the history with a mapping $\theta_{r}: \mathbb{H}_{r} \rightarrow \mathbb{X}_{r}$
- to obtain a compressed "state" variable $\theta_{t}\left(h_{t}\right)=x_{t} \in \mathbb{X}_{t}$
- but only at some specified times $0=t_{0}<t_{1}<\cdots<t_{N}=T$
- As an application, we will handle stochastic independence between time blocks but possible dependence within time blocks


## State reduction graphically

The triplet $\left(\theta_{r}, \theta_{t}, f_{r: t}\right)$ is a state reduction across $(r: t)$ if

- the following diagram, for the dynamics, commutes

$$
\begin{aligned}
& \mathbb{H}_{r} \times \mathbb{H}_{r+1: t} \xrightarrow{I_{d}} \mathbb{H}_{t}
\end{aligned}
$$

- the following diagrams, for the stochastic kernels, commute

$$
{\underset{\sim}{\mathbb{X}_{r}} \times \mathbb{H}_{r+1: s-1}}_{\mathbb{H}_{r} \times \mathbb{H}_{r+1: s-1} \xrightarrow{I_{d}} \Delta\left(\mathbb{W}_{s}\right)}^{\tilde{\rho}_{s-1: s}}
$$

## Bellman operator across $(r: t)$

$\mathcal{B}_{r: t}: \mathbb{L}_{+}^{0}\left(\mathbb{H}_{r}, \mathcal{H}_{r}\right) \rightarrow \mathbb{L}_{+}^{0}\left(\mathbb{H}_{t}, \mathcal{H}_{t}\right)$ is defined by

$$
\mathcal{B}_{r: t}=\mathcal{B}_{t+1: t} \circ \cdots \circ \mathcal{B}_{r: r-1},
$$

where the one time step operators $\mathcal{B}_{s: s-1}$ are

$$
\left(\mathcal{B}_{s: s-1} \varphi\right)\left(h_{s-1}\right)=\inf _{u_{s-1} \in \mathbb{U}_{s-1}} \int_{\mathbb{W}_{s}} \varphi\left(h_{s-1}, u_{s-1}, w_{s}\right) \rho_{s-1: s}\left(h_{s-1}, d w_{s}\right)
$$

## State reduction and Dynamic Programming

Denoting by $\theta_{r}^{\star}: \mathbb{L}_{+}^{0}\left(\mathbb{X}_{r}, \mathcal{X}_{r}\right) \rightarrow \mathbb{L}_{+}^{0}\left(\mathbb{H}_{r}, \mathcal{H}_{r}\right)$ the operator defined by

$$
\theta_{r}^{\star}\left(\widetilde{\varphi}_{r}\right)=\widetilde{\varphi}_{r} \circ \theta_{r}, \quad \forall \widetilde{\varphi}_{r} \in \mathbb{L}_{+}^{0}\left(\mathbb{X}_{r}, x_{r}\right),
$$

there exists a reduced Bellman operator across ( $r: t$ ) such that

$$
\theta_{t}^{\star} \circ \widetilde{\mathcal{B}}_{r: t}=\mathcal{B}_{r: t} \circ \theta_{r}^{\star},
$$

that is, the following diagram is commutative

$$
\underset{\uparrow}{\mathbb{L}_{+}^{0}\left(\mathbb{H}_{r}, \mathcal{H}_{r}\right)} \xrightarrow[36 / 39]{\mathcal{B}_{r: t}} \mathbb{L}
$$

## Outline of the presentation

## Decomposition and coordination <br> A brief insight into three decomposition methods

Summary and research agenda

We have sketched three main decomposition methods in multistage stochastic optimization

- time: Dynamic Programming
- scenario: Progressive Hedging
- space: decomposition by prices or by resources

Numerical walls are well-known

- in dynamic programming, the bottleneck is the dimension of the state
- in stochastic programming, the bottleneck is the number of stages


## Here is our research agenda for stochastic decomposition

- Designing risk criteria compatible with decomposition
- Combining different decomposition methods
- time: Dynamic Programming
- scenario: Progressive Hedging
- space: decomposition by prices or by resources
- to produce blends and tackle large scale energy applications
- time blocks + prices/resources
(talk of Jean-Philippe Chancelier)
- dynamic programming across time blocks
+ prices/resources decomposition by time block
- application to two time scales battery management
- time + space
(talk of Pierre Carpentier)
- nodal decomposition by prices or by resources
+ dynamic programming within node
- application to large scale microgrid management

