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Motivation

We consider a peer-to-peer microgrid where houses share equipments and

exchange energy, and we formulate it as a large-scale stochastic optimization

problem
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How to manage it in an (sub)optimal manner?
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Motivation

We will see that, for a large district microgid, e.g.
▶ 48 buildings

▶ 16 batteries

▶ 71 edges network

methods mixing temporal decomposition (dynamic programming) and
spatial decomposition (price or resource allocation) give better results
than the standard SDDP algorithm (implemented using approximations)

▶ in terms of CPU time: ×3 faster

SDDP CPU time: 453’ Decomp CPU time: 128’

▶ in terms of cost gap: 1.5% better

SDDP policy cost: 3550 Decomp policy cost: 3490
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An abstract optimization problem
We consider the following optimization problem

V ∗
0 = min

u1∈U1
ad,··· ,uN∈UN

ad

N∑
i=1

J i (ui )

s.t.
(
Θ1(u1), · · · ,ΘN(uN)

)
∈ S︸ ︷︷ ︸

coupling constraint

with

▶ ui ∈ U i be a local decision variable

▶ J i : U i → R, i ∈ J1,NK be a local objective

▶ U i
ad be a subset of U i

▶ Θi : U i → C i be a local constraint mapping

▶ S be a subset of C = C1 × · · · × CN

We denote by So the polar cone of S

So =

{
(p1, . . . , pN) ∈ C⋆ s.t.

N∑
i=1

〈
pi , r i

〉
≤ 0 ∀(r1, . . . , rN) ∈ S

}
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Price and resource value functions

For each i ∈ J1,NK,
▶ for any price pi ∈ (C i )⋆, we define the local price value

V i
0[p

i ] = min
ui∈U i

ad

J i (ui ) +
〈
pi , Θi (ui )

〉
▶ for any resource r i ∈ C i , we define the local resource value

V
i

0[r
i ] = min

ui∈U i
ad

J i (ui ) s.t. Θi (ui ) = r i

Theorem 1 (Upper and lower bounds for optimal value)
For any
▶ admissible price p = (p1, · · · , pN) ∈ So

▶ admissible resource r = (r1, · · · , rN) ∈ S
N∑
i=1

V i
0[p

i ] ≤ V ∗
0 ≤

N∑
i=1

V
i

0[r
i ]
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The case of multistage stochastic optimization I

Assume that the local price value

V i
0[p

i ] = min
ui∈U i

ad

J i (ui ) +
〈
pi , Θi (ui )

〉
,

corresponds to a stochastic optimal control problem

V i
0[P

i ](x i0) = min
Xi ,Ui

E
[T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) +

〈
Pi
t , Θ

i
t(X

i
t ,U

i
t)
〉
+ K i (Xi

T )

]
s.t. Xi

t+1 = g i
t (X

i
t ,U

i
t ,Wt+1) , Xi

0 = x i0

σ(Ui
t) ⊂ σ(W0, · · · ,Wt)

This local control problem can be effectively solved at optimality by
Dynamic Programming (DP) under restrictive assumptions:

▶ the dimension of the state variable x i is small

▶ the noise process W is a white noise process

▶ the price process Pi follows a dynamics in small dimension

DP leads to a collection
{
V i

t [P
i ]
}
t∈J0,TK of local price value functions
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The case of multistage stochastic optimization II

Similar considerations hold true for the local resource value

V
i

0[r
i ] = min

ui∈U i
ad

J i (ui ) s.t. Θi (ui ) = r i

considered as a stochastic optimal control problem

V
i
0[R

i ](x i0) = min
Xi ,Ui

E
[T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (Xi

T )

]
s.t. Xi

t+1 = g i
t (X

i
t ,U

i
t ,Wt+1) , Xi

0 = x i0

σ(Ui
t) ⊂ σ(W0, · · · ,Wt)

Θi
t(X

i
t ,U

i
t) = Ri

t

This local control problem can be solved by Dynamic Programming,

hence a collection
{
V

i

t [R
i ]
}
t∈J0,TK of local resource value functions
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Mix of spatial and temporal decompositions I

For any admissible price process P ∈ So and any admissible resource
process R ∈ S , we have bounds of the optimal value V ∗

0

N∑
i=1

V i
0[P

i ](x i
0) ≤ V ∗

0 ≤
N∑
i=1

V
i
0[R

i ](x i
0)

1. To obtain the bounds, we perform spatial decompositions giving
▶ a collection

{
V i

0[P
i ](x i

0)
}
i∈J1,NK of price local values

▶ a collection
{
V

i
0[R

i ](x i
0)
}
i∈J1,NK of resource local values

The computation of these local values can be performed in parallel

2. To compute each local value, we perform temporal decomposition
based on Dynamic Programming. For each i , we obtain
▶ a sequence

{
V i

t [P
i ]
}
t∈J0,TK of price local value functions

▶ a sequence
{
V

i
t [R

i ]
}
t∈J0,TK of resource local value functions

The computation of these local values functions is done sequentially
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Mix of spatial and temporal decompositions II
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Figure: The case of price decomposition
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The case of deterministic price and resource processes I

We assume that W is a white noise process, and we restrict ourselves to
deterministic admissible processes p ∈ So and r ∈ S

▶ The local value functions V i
t [p

i ] and V
i

t [r
i ] are easy to compute

because they only depend on the local state variable x i

▶ It is easy to obtain tighter bounds by maximizing the lower bound
w.r.t. prices and minimizing the upper bound w.r.t. resources

sup
p∈So

N∑
i=1

V i
0[p

i ](x i
0) ≤ V ∗

0 ≤ inf
r∈S

N∑
i=1

V
i
0[r

i ](x i
0)

But limiting ourselves to deterministic processes could prove restrictive. . .
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The case of deterministic price and resource processes II

The local value functions V i
t [p

i ] and V
i

t [r
i ] allow the computation of

global policies by solving static optimization problems

▶ In the case of local price value functions, the policy is obtained as

γ
t
(x1t , · · · , xNt ) ∈ argmin

u1t ,··· ,uNt

E
[ N∑
i=1

Lit(x
i
t , u

i
t ,Wt+1) +

N∑
i=1

V i
t+1[p

i ]
(
Xi
t+1

)]
s.t. Xi

t+1 = g i
t (x

i
t , u

i
t ,Wt+1) , ∀i ∈ J1,NK(

Θt(x
1
t , u

1
t ), · · · ,Θt(x

N
t , uNt )

)
∈ St

▶ Another policy based on local resource value functions is available

Estimating the expected cost of these two policies by Monte Carlo
simulation leads to statistical upper bounds of the optimal cost
of the problem since the two policies are admissible
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Progress status

▶ First, we have highlighted lower and upper bounds for
a global optimization problem with coupling constraints
thanks to two spatial decomposition schemes

– price decomposition
– resource decomposition

▶ Second, we have computed the lower and upper bounds
by dynamic programming (temporal decomposition)

▶ Third, we have devised two online policies for the global problem
based on the price and resource Bellman value functions

▶ Now, we apply these decomposition schemes
to large-scale microgrids
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Network and flows

Directed graph G = (V, E)

Fi

Qe

▶ Qe
t flow through edge e,

▶ Fi
t flow imported at node i

Let A be the node-edge incidence matrix

Each node corresponds to a
building with its own devices
(battery, hot water tank,
solar panel. . . )

Each edge allows energy
exchanges between two
nodes

At each time t ∈ J0,T − 1K,
the Kirchhoff current law
couples node and edge flows

AQt + Ft = 0 at time t

or equivalently

AQ+ F = 0
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Optimization problem at a given node
At each node i ∈ V, given a node flow process Fi , we minimize the house cost

J i
V(F

i ) = min
Xi ,Ui

E
[T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) + K i (Xi

T )

]
subject to, for all t ∈ J0,T − 1K

i) nodal dynamics constraints (battery, hot water tank)

Xi
t+1 = g i

t (X
i
t ,U

i
t ,W

i
t+1)

ii) non-anticipativity constraints (future remains unknown)

σ(Ui
t) ⊂ σ(W0, · · · ,Wt+1)

iii) nodal load balance equations (demand - production = import)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = Fi

t

Remarks

▶ Local noise Wi
t in the formulation of problem at node i

▶ Global noise Wt = (W1
t+1, . . . ,W

N
t+1) in the non-anticipativity constraint
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Transportation cost and global optimization problem

We define the network cost as the sum over time and edges of the costs
of flows Qe

t through the edges of the network

JE(Q) = E
[T−1∑
t=0

∑
e∈E

let (Q
e
t )

]
This transportation cost is additive in space, in time and in uncertainty!

The global optimization problem is obtained by gathering all elements

V ∗
0 = min

F,Q

∑
i∈V

J iV(F
i ) + JE(Q)

s.t. AQ+ F = 0
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Price and resource decompositions
The formalism developed previously leads to the following

▶ Price problem:

V 0[p] = min
F,Q

∑
i∈V

J i
V(F

i ) + JE(Q) +
〈
p, AQ+ F

〉
=
∑
i∈V

(
min
Fi

J i
V(F

i ) +
〈
pi , Fi〉)︸ ︷︷ ︸

Node i ’s subproblem

+
(
min
Q

JE(Q) +
〈
A⊤p, Q

〉)
︸ ︷︷ ︸

Network subproblem

▶ Resource problem:

V 0[r ] = min
F,Q

∑
i∈V

J i
V(F

i ) + JE(Q) s.t. Ar + F = 0 , Q = r

=
∑
i∈V

(
min
Fi

J i
V(F

i ) s.t. Fi = −(Ar)i
)

+
(
min
Q

JE(Q) s.t. Q = r
)

Objective
Find deterministic processes p̂ and r̂ with a gap as small as possible

sup
p

V 0[p] ≤ V ♯
0 ≤ inf

r
V 0[r ]
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Different urban configurations

3-Nodes 6-Nodes 12-Nodes

24-Nodes 48-Nodes

with battery and solar panels at some nodes
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Problem settings

Thanks to the periodicity of demands and electricity tariffs, the microgrid
management problem can be solved day by day

▶ One day horizon with a 15mn time step: T = 96

▶ Weather corresponds to a sunny day in Paris (June 28, 2015)

▶ We mix three kinds of buildings

1. battery + electrical hot water tank
2. solar panel + electrical hot water tank
3. electrical hot water tank

and suppose that all consumers are commoners sharing their devices
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Electrical and thermal demands uncertainty
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Algorithms implemented on the problem

SDDP
We use the SDDP algorithm to solve the problem globally. . .

▶ but noises W1
t , · · · ,WN

t are independent node by node, so that the support
size of the noise may be huge (|supp(Wi

t)|N). We must resample the noise
to be able to compute the cuts

Price decomposition
Spatial decomposition and maximization w.r.t. a deterministic price p

▶ Each nodal subproblem solved by a DP-like method

▶ Maximisation w.r.t. p by Quasi-Newton (BFGS) method

p(k+1) = p(k) + ρ(k)H(k)∇V 0[p
(k)]

▶ Oracle ∇V 0[p] estimated by Monte Carlo (Nscen = 1, 000)

Resource decomposition
Spatial decomposition and minimization w.r.t. a deterministic resource process r
with a similar implementation to the price decomposition
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Exact upper and lower bounds on the global problem

Network 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes
State dim. |X| 4 8 16 32 64

SDDP time 1’ 3’ 10’ 79’ 453’
SDDP LB 225.2 455.9 889.7 1752.8 3310.3

Price time 6’ 14’ 29’ 41’ 128’
Price LB 213.7 447.3 896.7 1787.0 3396.4

Resource time 3’ 7’ 22’ 49’ 91’
Resource UB 253.9 527.3 1053.7 2105.4 4016.6

For the 48-Nodes microgrid,

▶ price decomposition gives a (slightly) better exact lower bound than SDDP

3310.3︸ ︷︷ ︸
V 0[sddp]

≤ 3396.4︸ ︷︷ ︸
V 0[price]

≤ V ∗
0 ≤ 4016.6︸ ︷︷ ︸

V 0[resource]

▶ price decomposition is more than 3 times faster than SDDP
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Time evolution
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Policy evaluation by Monte Carlo (1,000 scenarios)

3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP policy 226 ± 0.6 471 ± 0.8 936 ± 1.1 1859 ± 1.6 3550 ± 2.3

Price policy 228 ± 0.6 464 ± 0.8 923 ± 1.2 1839 ± 1.6 3490 ± 2.3
Gap +0.9 % -1.5% -1.4% -1.1% -1.7%

Resource policy 229 ± 0.6 471 ± 0.8 931 ± 1.1 1856 ± 1.6 3503 ± 2.2
Gap +1.3 % 0.0% -0.5% -0.2% -1.2%

All the cost values above are statistical upper bounds of V ∗
0

For the 48-Nodes microgrid,

▶ price policy beats SDDP policy and resource policy

V ∗
0 ≤ 3490︸︷︷︸

C [price]

≤ 3503︸︷︷︸
C [resource]

≤ 3550︸︷︷︸
C [sddp]

▶ the exact upper bound given by resource decomposition is not so tight

3396.4︸ ︷︷ ︸
V 0[price]

≤ V ∗
0 ≤ 3490︸︷︷︸

C [price]

≤ 3503︸︷︷︸
C [resource]

≤ 4016.6︸ ︷︷ ︸
V 0[resource]

gap <3% ≈ 3% >18%
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Motivation for decentralized information
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Centralized information structure

Up to now, we have studied the following problem

VC
0 = min

F,Q

(∑
i∈V

min
Xi ,Ui

E
[T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) + K i (Xi

T )

]
︸ ︷︷ ︸

J iV (Fi )

+E
[T−1∑

t=0

∑
e∈E

l et (Q
e
t )

]
︸ ︷︷ ︸

JE (Q)

)

subject to, for all t ∈ J0,T − 1K and for all i ∈ V

AQt + Ft = 0 (network constraints)

Xi
t+1 = g i

t (X
i
t ,U

i
t ,W

i
t+1) (nodal dynamic constraints)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = Fi

t (nodal balance equation)

σ(Ui
t) ⊂ σ(W0, · · · ,Wt+1) (information constraints)

with Wt = (W1
t , . . . ,W

N
t ): global noise process
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Decentralized information structure

Consider now the following problem

VD
0 = min

F,Q

(∑
i∈V

min
Xi ,Ui

E
[T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) + K i (Xi

T )

]
︸ ︷︷ ︸

J iV (Fi )

+E
[T−1∑

t=0

∑
e∈E

l et (Q
e
t )

]
︸ ︷︷ ︸

JE (Q)

)

subject to, for all t ∈ J0,T − 1K and for all i ∈ V

AQt + Ft = 0 (network constraints)

Xi
t+1 = g i

t (X
i
t ,U

i
t ,W

i
t+1) (nodal dynamic constraints)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = Fi

t (nodal balance equation)

σ(Ui
t) ⊂ σ(Wi

0, · · · ,Wi
t+1) (information constraints)

that is, the local control Ui
t is a feedback w.r.t. local noises (Wi

0, . . . ,W
i
t+1)

For such a problem, there is no Dynamic Programming Principle. . .
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Bounds in the decentralized case I

Consider the lower bound obtained with a deterministic price process p

V 0[p] =
∑
i∈V

V i
0[p

i ] + V E
0 [p] , with

V i
0 [p

i ] = min
Xi ,Ui ,Fi

E
[T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) +

〈
pi
t , F

i
t

〉
+ K i (Xi

T )

]
s.t. Xi

t+1 = g i
t (X

i
t ,U

i
t ,W

i
t+1) , Xi

0 = x i
0

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = Fi

t

σ(Ui
t) ⊂ σ(W1, . . . ,Wt+1)

P. Carpentier Mixing Spatial and Temporal Decomposition Methods IMCA 2024 35 / 45



Bounds in the decentralized case I

Consider the lower bound obtained with a deterministic price process p

V 0[p] =
∑
i∈V

V i
0[p

i ] + V E
0 [p] , with

V i
0 [p

i ] = min
Xi ,Ui ,Fi

E
[T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) +

〈
pi
t , F

i
t

〉
+ K i (Xi

T )

]
s.t. Xi

t+1 = g i
t (X

i
t ,U

i
t ,W

i
t+1) , Xi

0 = x i
0

∆i
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i
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t

σ(Ui
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1, . . . ,W
i
t+1)

Replacing the global σ-field σ(W1, . . . ,Wt+1) by the local σ-field
σ(Wi

1, . . . ,W
i
t+1) does not make any change in this local subproblem

The lower bound V 0[p] is the same for both information structures

A similar conclusion holds true for the upper bound V 0[r ]
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Bounds in the decentralized case II

Since Wt = (W1
t , . . . ,W

N
t ), for all i , we have the inclusion of σ-fields

σ(Wi
0, . . . ,W

i
t) ⊂ σ(W0, . . . ,Wt)

We deduce that the admissible control set in case of a decentralized
information structure is smaller that the one in case of a centralized
information structure, and hence

VC
0 ≤ VD

0

Finally, we obtain the following sequence of inequalities

sup
p

V 0[p] ≤ VC
0 ≤ VD

0 ≤ inf
r

V 0[r ]
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Bounds in the decentralized case III

sup
p

V 0[p] ≤ VC
0 ≤ VD

0 ≤ inf
r

V 0[r ]

▶ We have seen on the numerical experiments that the lower bound
was close from the optimal value VC

0 in the centralized case

sup
p

V 0[p] ≤ VC
0︸ ︷︷ ︸

≈3%

▶ What can we say about the upper bound and the optimal value VD
0

in the decentralized case?

VC
0 ≤ inf

r
V 0[r ]︸ ︷︷ ︸

≈18%

, VD
0 ≤ inf

r
V 0[r ]︸ ︷︷ ︸

Value of the gap?
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Analysis of the decentralized case I

Consider the decentralized information structure

σ(Ui
t) ⊂ σ(Wi

0, . . . ,W
i
t+1)

and the constraints that have to be met at node i

Xi
t+1 = g i

t (X
i
t ,U

i
t ,W

i
t+1) (nodal dynamic constraints)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = Fi

t (nodal balance equation)

▶ Thanks to the nodal dynamic constraints, the state Xi
t is

measurable w.r.t. the σ-field σ(Wi
0, . . . ,W

i
t)

▶ Thanks to the nodal balance equation, the node flow Fi
t is

measurable w.r.t. the σ-field σ(Wi
0, . . . ,W

i
t+1)
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Analysis of the decentralized case II

Suppose that (W1, · · · ,WN) are independent random processes
Otherwise stated, we add an independence assumption in space

At time t, consider now the global coupling constraints AQt + Ft = 0.
Summing these constraints leads to the aggregate coupling constraint∑

i∈V

Fi
t = 0

Since Fi
t is measurable w.r.t. the σ-field σ(Wi

0, . . . ,W
i
t+1) and from the

independence assumption in space, we deduce that the random variables
Ft (and hence Qt) are in fact deterministic variables
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Analysis of the decentralized case III

According to this conclusion, under the space independence assumption,
in case of a decentralized information structure, the global minimisation
problem depends on deterministic node flows f and edge flows q variables

VD
0 = min

f ,q

(∑
i∈V

J iV(f
i ) + JE(q)

)
s.t. Aq + f = 0

= inf
r

(∑
i∈V

(
min
fi

J iV(f
i ) s.t. f i = −(Ar)i

)
+

(
min
q

JE(q) s.t. q = r
))

= inf
r
V 0[r ]

The upper bound infr V 0[r ] and the optimal value VD
0 are the same
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Information gap

Recall the sequence of inequalities relating optimal values and bounds

sup
p

V 0[p] ≤ VC
0 ≤ VD

0 ≤ inf
r

V 0[r ]

Gathering all the theoretical and numerical results obtained, we have

sup V 0[p] ≤ VC
0︸ ︷︷ ︸

≈3%

, VC
0 ≤ VD

0︸ ︷︷ ︸
≈18%

, VD
0 = inf V 0[r ]

that provides a way to quantify the information gap in our application.
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Conclusions

▶ We have two algorithms that decompose spatially and temporally
a large-scale optimization problem under coupling constraints.

▶ In our case study, price decomposition beats SDDP for large
instances (≥ 24 nodes)

– in computing time (more than twice faster)
– in precision (more than 1% better)

▶ Price decomposition gives (in a surprising way) a tight lower bound,
whereas the upper bound given by resource decomposition is weak
(which is understandable on the case study)

▶ We have studied the case of a decentralized information structure
to explain this weakness

P. Carpentier Mixing Spatial and Temporal Decomposition Methods IMCA 2024 43 / 45



Future works

▶ Obtaining tighter bounds (mainly for resource decomposition)

If we select properly price P and resource R processes among the
class of Markovian processes (instead of deterministic ones) we can
obtain “better” nodal value functions (with an extended local state)

▶ Solving large problems with a large number of time steps

Prospective investment studies in the energy field at the European
scale involve both a large spatial dimension (dozens of countries)
and an optimization horizon of several years that must be finely
discretized (tens of thousands of time steps). Now, the goal is to
mix spatial decomposition and time-block decomposition
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Journal of Optimization Theory and Applications, 186, 985–1005, 2020
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