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A battery management problem over a long time horizon

We present a battery management problem over several years

▶ optimize long-term investment decisions
— here the renewal of a battery in an energy system

▶ but the optimal long-term decisions highly depend
on short-term operating decisions
— here the way the battery is operated in real-time.
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Battery management involves two time scales

▶ When to renew a battery (long term decision – day)?

▶ How to control the battery (short time decision – 1
2 hour)?

▶ Impact of the battery control on aging?

Large number of stages: 350, 400 = 7300︸︷︷︸
days

× 48︸︷︷︸
1
2hours

Fortunately the problem displays a two-time-scale structure. . .
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We decompose the two time scales

Fast time scale: 1
2 hour (battery charge/discharge)

Slow time scale: day (battery renewal)

▶ Using Dynamic Programming, we compute Bellman value functions
Vd at the slow time scale, each computation involving a stochastic
multistage optimization problem at the fast time scale

▶ We propose numerical schemes providing upper and lower bounds of
the family of daily Bellman value functions Vd , based on resource
and price decomposition/coordination techniques
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We introduce notations for two time scales

Time is described by to indices (d ,m) ∈ T

T = {0, . . . ,D} × {0, . . . ,M} ∪ {(D + 1, 0)}

1. Battery charge, decision every half hour m ∈ {0, . . . ,M}
of every day d ∈ {0, . . . ,D}
→ half hours in day d are (d , 0), (d , 1),. . . , (d ,M)

2. Renewal of the battery, decision every day d ∈ {0, . . . ,D + 1}
→ Start of days are (0, 0),. . . , (d , 0),. . . , (D + 1, 0)

3. Compatibility between days:1 (d ,M + 1) = (d + 1, 0)

Equipped with the lexicographical order, T is a totally ordered set

(d ,m) < (d ′,m′) ⇐⇒ (d < d ′) ∨
(
d = d ′ ∧m < m′)

1
It could be practical to add a time interval between (d,M + 1) and (d + 1, 0): we will not detail this point
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Lecture outline

Two-time-scale battery management problem

Resource and price decomposition methods
Time blocks and resource decomposition
Time blocks and price decomposition
Producing fast time-scale policies

Managing a battery over 20 years
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Outline of the presentation

Two-time-scale battery management problem

Resource and price decomposition methods

Managing a battery over 20 years
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Physical model: a home with load, solar panel and storage

▶ Two-time-scale uncertainties
▶ Dd,m: Net demand (= ELd,m − ESd,m)

▶ Pb
d : Uncertain battery price

▶ Two-time-scale controls
▶ EB

d,m: Battery charge/discharge

▶ EE
d,m: National grid import

▶ Rd : Battery renewal

▶ Two-time-scale states
▶ Sd,m: Battery state of charge
▶ Hd,m: Battery health
▶ Cd : Battery capacity
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Fast time scale: system operation

▶ The national grid import ensures energy balance

EE
d,m = Dd,m + (EB

d,m)
+ − (EB

d,m)
−

and induces an operating cost

πe
d,m ×

(
Dd,m + (EB

d,m)
+ − (EB

d,m)
−)

▶ The battery state of charge and health evolve at the fast time scale

Sd,m+1 = Sd,m + ρc(EB
d,m)

+ − ρd(EB
d,m)

−

Hd,m+1 = Hd,m − (EB
d,m)

+ − (EB
d,m)

−

whereas the battery capacity remains unchanged at this scale

Cd,m+1 = Cd

−→ (Sd,m+1,Hd,m+1,Cd,m+1) = φ(Sd,m,Hd,m,Cd ,E
B
d,m)
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Slow time scale: renewal model

▶ At the end of every day d , we can buy a new battery at cost Pb
d × Rd

Storage capacity: Cd+1 =

{
Rd , if Rd > 0

Cd , otherwise

▶ A new battery can make a maximum number of cycles Nc (Rd ):

Storage health: Hd+1,0 =

{
2× Nc (Rd )× Rd , if Rd > 0

Hd,M , otherwise

▶ A new battery is empty

Storage state of charge: Sd+1,0 =

{
0 , if Rd > 0

Sd,M , otherwise

−→ (Sd+1,0,Hd+1,0,Cd+1) = ψ(Sd,M ,Hd,M ,Cd ,Rd )
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We build an optimization problem at the daily scale

▶ Uncertainties

Wd =

(
Dd,0, . . . ,Dd,m, . . . ,Dd,M−1,

(
Dd,M

Pb
d

))
▶ Controls

Ud =

(
EB
d,0, . . . ,E

B
d,m, . . . ,E

B
d,M−1,

(
EB
d,M

Rd

))
▶ States and dynamics

Xd =
(
Sd,0,Hd,0,Cd

)
and Xd+1 =

composition of φ and ψ︷ ︸︸ ︷
fd
(
Xd ,Ud ,Wd

)
▶ Objective to be minimized

E
( D∑

d=0

(
Pb
d × Rd +

M∑
m=0

πe
d,m ×

(
Dd,m + (EB

d,m)
+ − (EB

d,m)
−)

︸ ︷︷ ︸
Ld (Xd ,Ud ,Wd )

)
+ K(XD+1)

)
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Two-time-scale non standard stochastic control problem

We now write the associated stochastic multistage optimization problem,
whose optimal value is a function V e of the initial state xO

Pe : V e(x0) = min
(X0:D+1,U0:D )

E
( D∑

d=0

Ld(Xd ,Ud ,Wd) + K(XD+1)

)
s.t X0 = x0 , Xd+1 = fd(Xd ,Ud ,Wd)

Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M)

σ(Ud,m) ⊂ σ
(
Wd′,m′ , (d ′,m′) ≤ (d ,m)

)
Pe is a non standard SOC problem: the nonanticipativity constraint
is written every half hour whereas dynamics is written every day!
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Bellman equation with daily time blocks

The Bellman value functions V e
d associated to Problem Pe are obtained by setting

V e
D+1 = K and, for d = D, . . . , 0, by computing recursively

V e
d (x) = min

(Xd+1,Ud )
E
[
Ld (x ,Ud ,Wd ) + V e

d+1(Xd+1)
]

s.t Xd+1 = fd (x ,Ud ,Wd )

σ(Ud,m) ⊂ σ(Wd,0, . . . ,Wd,m) , ∀m ∈ {0, . . . ,M}

Time Block Independence Assumption
{Wd}d=0,...,D is a sequence of daily independent random vectors

Proposition ([Carpentier et al, JCA 2023])
Under the Time Block Independence Assumption, the value V e

0 (x0) of the Bellman
value function at time d = 0 is the optimal value V e(x0) of Pe
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We introduce price/resource daily decompositions

The main practical difficulty is the large number of stages
(D ×M = 350, 400)! To overcome this, we appeal to decomposition
methods.

Decomposition is done on the dynamics Xd+1 = fd(Xd ,Ud ,Wd)

1. Resource decomposition: we choose resources (targets) Rd+1

and we split the dynamic constraints in

Xd+1 = Rd+1 , Rd+1 = fd(Xd ,Ud ,Wd)

2. Price decomposition: we choose prices (weights) Λd+1

and we dualize the dynamic constraints〈
Λd+1, fd(Xd ,Ud ,Wd)− Xd+1

〉
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Relaxation of the stochastic control problem

A new difficulty arises, in resource decomposition

The optimization subproblems in the resource decomposition method
involve equality constraints between random variables

Rd+1 = fd(Xd ,Ud ,Wd)

which are almost always impossible to satisfy for a given resource

To solve this new difficulty, we relax the optimization problem Pe by
rewriting the dynamic constraints as inequality constraints

Xd+1 ≤ fd(Xd ,Ud ,Wd)

that is, we enlarge the admissible set of the problem

J.-P. Chancelier Mixing Time Blocks and Price/Resource Decompositions Methods IMCA 2024 15 / 41



Relaxation of the stochastic control problem

We consider the following relaxed optimization problem

P i : V i(x0) = min
(X0:D+1,U0:D )

E
( D∑

d=0

Ld(Xd ,Ud ,Wd) + K(XD+1)

)
s.t Xd+1 ≤ fd(Xd ,Ud ,Wd)

σ(Ud,m) ⊂ σ
(
Wd′,m′ , (d ′,m′) ≤ (d ,m)

)
σ(Xd+1) ⊂ σ

(
Wd′,m′ , (d ′,m′) ≤ (d ,M)

)
and the associated sequence of Bellman value functions

V i
d(x) = min

(Xd+1,Ud )
E
[
Ld(x ,Ud ,Wd) + V i

d+1(Xd+1)
]

s.t Xd+1 ≤ fd(x ,Ud ,Wd)

σ(Ud,m) ⊂ σ(Wd,0, . . . ,Wd,m)

σ(Xd+1) ⊂ σ(Wd,0, . . . ,Wd,M)
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Monotonicity-inducing Assumtion

Assumption 1 (Monotonicity-inducing)

1. The final cost function K is nonincreasing on its effective domain:

∀(x , x ′) ∈ (domK )2 , x ≤ x ′ =⇒ K (x) ≥ K (x ′)

2. ∀d ∈ J0,DK, the effective domain of V e
d

is induced by the effective domain of the instantaneous cost Ld

domV e
d = {x ∈ X | ∃U s.t. E[Ld(x ,ud ,wd)] < +∞}

3. ∀d ∈ J0,DK, ∀(x ′, x) ∈ (domV e
d )

2 with x ′ ≥ x,
for any admissible control ud s.t. E [Ld(x ,ud ,wd)] < +∞,
there exists an admissible control random ũd s.t.

fd(x
′, ũd ,wd) ∈ domV e

d+1 and fd(x
′, ũd ,wd) ≥ fd(x ,ud ,wd)

Ld(x
′, ũd ,wd) ≤ Ld(x ,ud ,wd)
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Equivalence between the initial and the relaxed problem

Proposition ([Rigaut et al, 2023])
Under the monotonicity-inducing Assumtion 1, the value functions V e

d are
nonincreasing on their effective domains

∀(x ′, x) ∈ (domV e
d )

2 , x ≤ x ′ =⇒ V e
d (x) ≥ V e

d (x
′)

Proposition ([Rigaut et al, 2023])
Under the monotonicity-inducing Assumtion 1,

V i
d = V e

d , ∀d ∈ {0, . . . ,D + 1}

Proposition ([Rigaut et al, 2023])
The battery management problem satisfies the monotonicity-inducing Assumtion 1.
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Lecture outline

Two-time-scale battery management problem

Resource and price decomposition methods
Time blocks and resource decomposition
Time blocks and price decomposition
Producing fast time-scale policies

Managing a battery over 20 years
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We introduce price/resource daily decompositions

We present two decomposition algorithms to compute
upper and lower bounds of the Bellman value functions V i

d

Decomposition is done on the dynamics Xd+1 ≤ fd(x ,Ud ,Wd)

1. Resource decomposition: choosing deterministic resources
(targets) rd+1 and splitting the dynamic constraints in

Xd+1 = rd+1 , rd+1 ≤ fd(Xd ,Ud ,Wd)

gives upper bounds of the Bellman value functions V i
d

2. Price decomposition: choosing deterministic prices
(weights) λd+1 ≤ 0 and dualizing the dynamic constraints

⟨λd+1 | fd(Xd ,Ud ,Wd)− Xd+1⟩

gives lower bounds of the Bellman value functions V i
d
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Lecture outline

Two-time-scale battery management problem

Resource and price decomposition methods
Time blocks and resource decomposition
Time blocks and price decomposition
Producing fast time-scale policies

Managing a battery over 20 years
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Resource decomposition mechanism

V i
d (xd ) = min

(Xd+1,Ud )
E
[
Ld (xd ,Ud ,Wd ) + V i

d+1(Xd+1)
]

s.t Xd+1 ≤ fd (xd ,Ud ,Wd ) (Bellman equation)

= min
Rd+1

(
min
Ud

E
[
Ld (xd ,Ud ,Wd ) + V i

d+1(Rd+1)
])

s.t Rd+1 ≤ fd (xd ,Ud ,Wd ) (stochastic resource)

≤ min
rd+1

(
min
Ud

E
[
Ld (xd ,Ud ,Wd ) + V i

d+1(rd+1)
])

s.t rd+1 ≤ fd (xd ,Ud ,Wd ) (deterministic resource)

= min
rd+1

(
min
Ud

(
E
[
Ld (xd ,Ud ,Wd )

]
s.t rd+1 ≤ fd (xd ,Ud ,Wd )

)
︸ ︷︷ ︸

LR
d
(xd ,rd+1)

+V i
d+1(rd+1)

)
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Relaxed deterministic resource decomposition

We introduce a relaxed deterministic resource intraday problem

LR
d (xd , rd+1) =min

Ud

E
[
Ld(xd ,Ud ,Wd)

]
s.t fd(xd ,Ud ,Wd) ≥ rd+1

σ(Ud,m) ⊂ σ(Wd,0:m)

and the associated Bellman recursion

V
R
d (xd) = min

rd+1

LR
d (xd , rd+1) + V

R
d+1(rd+1)

Proposition ([Rigaut et al, 2023])
The Bellman value functions V

R
d are upper bounds to the Bellman value

functions V i
d of Problem P i

V
R
d ≥ V i

d , ∀d ∈ {0, . . . ,D + 1}
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Efficiency of deterministic resource decomposition

Easy to compute by dynamic programming︷ ︸︸ ︷
V

R
d (xd) = min

rd+1

LR
d (xd , rd+1)︸ ︷︷ ︸

Hard to compute

+V
R
d+1(rd+1)

It is challenging to compute the intraday function value LR
d (xd , rd+1)

for each couple (xd , rd+1) and each day d , but

▶ we can exploit periodicity of the problem, that is, compute the
functions LR

d for I typical days and not for all the D days

▶ for some components of the state, the intraday function LR
d

depends on xd − rd+1 rather than (xd , rd+1)

▶ we can parallelize the computation of LR
d on several days

Note that we can use any suitable method to solve the multistage intraday
problems LR

d (SDP, SDDP, scenario tree methods, PH,. . . )
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Lecture outline

Two-time-scale battery management problem

Resource and price decomposition methods
Time blocks and resource decomposition
Time blocks and price decomposition
Producing fast time-scale policies

Managing a battery over 20 years
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Price decomposition mechanism

V i
d (xd ) = min

(Xd+1,Ud )
E
[
Ld (xd ,Ud ,Wd ) + V i

d+1(Xd+1)
]

s.t Xd+1 ≤ fd (xd ,Ud ,Wd ) (Bellman equation)

≥ max
Λd+1≤0

min
(Xd+1,Ud )

E
[
Ld (xd ,Ud ,Wd ) + V i

d+1(Xd+1)

+ ⟨Λd+1, fd (xd ,Ud ,Wd )− Xd+1⟩
]

(duality)

= max
Λd+1≤0

min
Ud

E
[
Ld (xd ,Ud ,Wd ) + ⟨Λd+1, fd (xd ,Ud ,Wd )⟩

+ min
Xd+1

(
−⟨Λd+1,Xd+1⟩+ V i

d+1(Xd+1)
)]

(Fenchel)

≥ max
λd+1≤0

min
Ud

E
[
Ld (xd ,Ud ,Wd ) + ⟨λd+1, fd (xd ,Ud ,Wd )⟩

]
−

(
V e
d+1

)⋆
(λd+1) (deterministic price)

= max
λd+1≤0

(
min
Ud

E
[
Ld (xd ,Ud ,Wd ) + ⟨λd+1, fd (xd ,Ud ,Wd )⟩

]
︸ ︷︷ ︸

LP
d
(xd ,λd+1)

−
(
V i
d+1

)⋆
(λd+1)

)
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Relaxed deterministic price decomposition

We introduce a relaxed deterministic price intraday problem

LP
d (xd , λd+1) = min

Ud

E
[
Ld(xd ,Ud ,Wd) + ⟨λd+1, fd(xd ,Ud ,Wd)⟩

]
s.t. σ(Ud,m) ⊂ σ(Wd,0:m)

and the associated Bellman recursion

VP
d (xd) = max

λd+1≤0
LP
d (xd , λd+1)−

(
VP

d+1

)⋆
(λd+1)

Proposition ([Rigaut et al, 2023])
The Bellman value functions VP

d are lower bounds to the Bellman value
functions V i

d of Problem P i

VP
d ≤ V i

d , ∀d ∈ {0, . . . ,D + 1}
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Efficiency of deterministic price decomposition

Easy to compute by dynamic programming︷ ︸︸ ︷
VP

d (xd) = max
λd+1≤0

LP
d (xd , λd+1)︸ ︷︷ ︸

Hard to compute

−
(
VP

d+1

)⋆
(λd+1)

It is challenging to compute the intraday function value LP
d (xd , λd+1)

for each couple (xd , λd+1) and each day d , but

▶ we can exploit periodicity of the problem, that is, compute the
functions LP

d for I typical days and not for all the D days

▶ we can parallelize the computation of LP
d on several days

▶ we can use any suitable method to solve the multistage intraday
problems LP

d (SDP, SDDP, scenario tree methods, PH,. . . )
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Lecture outline

Two-time-scale battery management problem

Resource and price decomposition methods
Time blocks and resource decomposition
Time blocks and price decomposition
Producing fast time-scale policies

Managing a battery over 20 years
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Value functions V P
d and V

R

d yield bounds

By resource and price decompositions, we have obtained Bellman
functions that bound the Bellman value functions V i

d of the relaxed
problem P i

V P
d ≤ V i

d ≤ V
R

d

Under the monotonicity-inducing assumption we obtain bounds
on the Bellman value functions V e

d of the original problem Pe

V P
d ≤ V e

d ≤ V
R

d

Finally, under the time block independence assumption,
the resource and price Bellman value functions at the initial day
bound the optimal value function of Problem Pe

V P
0 ≤ V e ≤ V

R

0
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Value functions V P
d and V

R

d yield admissible policies

Having at disposal the resource and price Bellman value functions V P
d

and V
R

d , we can solve the following subproblems on all days d

min
Ud

E
[
Ld(x ,Ud ,Wd) + Ṽd+1

(
fd(x ,Ud ,Wd)

)]
s.t σ(Ud,m) ⊂ σ(Wd,0:m)

with Ṽd+1 = V P
d+1 or Ṽd+1 = V

R

d+1, and obtain resource and price
policies at the fast time scale

Simulating the battery management problem along several noise scenarios
by applying the resource and price policies, we compute the associated
average costs, which are (statistical) upper bounds of the optimal cost of
Problem Pe
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Lecture outline

Two-time-scale battery management problem

Resource and price decomposition methods

Managing a battery over 20 years
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We present numerical results for one use case

1. Net demand (demand minus solar production) from an industrial site

2. Managing battery charge, health and renewal on 20 years
to show that resource and price decompositions scale
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Managing battery charge, health an renewal

▶ 20 years, 7300 days, 350, 400 half hours, 4 periodicity classes

▶ Battery capacity between 0 and 1, 500 kWh

▶ Scenarios for batteries prices

SDP fail to solve such a problem over hundreds of thousands of stages!
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Resource decomposition is numerically tractable

Resource decomposition

Computing Bellman value functions by Dynamic Programming takes 25 min︷ ︸︸ ︷
V

R

d (xd) = min
rd+1

LRd (xd , rd+1)︸ ︷︷ ︸
Computing each LR

d (·, ·) takes 45 min

+V
R

d+1(rd+1)

▶ Complexity: 25 min + D × 45 min

▶ With I periodicity classes: 25 min + I × 45 min (I ≪ D)

▶ With parallelization: 25 min + 45 min
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Price decomposition is numerically tractable

Price decomposition

Computing Bellman value functions by Dynamic Programming takes 100 min︷ ︸︸ ︷
V P

d (xd) = max
λd+1≤0

LPd (xd , λd+1)︸ ︷︷ ︸
Computing LP

d (·, ·) takes 15 min

−
(
V P

d+1

)⋆
(λd+1)

▶ Complexity: 100 min + D × 15 min

▶ With I periodicity classes:: 100 min + I × 15 min

▶ With parallelization: 100 min + 15 min
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Intraday functions

Resource (left) and price (right) intraday functions for each trimester
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Bellman value functions

Resource and price Bellman value functions at initial day
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Scenario simulation

We draw two battery price scenario and solar/demand scenario over 20 years
and simulate the policies obtained by price and resource decomposition

Price decomposition slightly outperforms resource decomposition

Scenario 1 Scenario 2
Total cost (resource) 2.757 M$ 2.825 M$

Total cost (price) 2.722 M$ 2.820 M$
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Conclusions

1. We have solved problems with hundreds of thousands of time steps
using the resource and price decomposition algorithms

2. We have designed control strategies
for charging/aging/renewing batteries

3. We have used our algorithm to obtain results
beyond the reach of algorithms that are sensitive
to the number of time steps (SDP, SDDP)
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