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4/ 43



Outline of the presentation

Decomposition and coordination
The three dimensions of stochastic optimization problems
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Temporal, scenario and spatial structures in
multistage stochastic optimization problems

In multistage stochastic optimization problems,
the control variable

Ui(w)
is indexed by
» Time/stages t € T (= [0, T —1])
» Scenarios w € 2
» Space/units/agents | € T

The letter U comes from the Russian word upravienie for control
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Let us fix problem and notations

additive costs

mUin E [Z Z LI(HL, UL, W, ) subject to
i€ teT

dynamics constraints

i1 =g(HLUL Wy ), Hy=W,
——

history uncertainty
measurability constraints (nonanticipativity of the control U%)

o(U}) Co(Wo,...,W,) < U, =E[U,|Wo,...,W,]
spatially coupling constraints

> OLH], U, W, 1) =0
€T
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Outline of the presentation

Decomposition and coordination

A bird's eye view of decomposition methods: the cube
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Couplings for stochastic problems

it . - minEY S Li(H], UL, We,1)

7 time

/uncertainty
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Couplings for stochastic problems: in time

w T minEY YL (HL UL W)
it

T st Hb = (HLUL W)

/uncerfainty
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Couplings for stochastic problems: in uncertainty
min B> > L (H], UL, W,41)
i t

~~~~~~~~~~~~~~~ st Hipy = (H, U, Weyp)

U, =E[U}{|Wo,...,W,]

uncertainty
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Couplings for stochastic problems: in space
min B> > L (H], UL, W,41)
i t
s.t. H;.:+1 = (Hlt7 Uéawt-i-l)
U, =E[U}|Wo,...,W,]

Z @lt(Hltv Ult’ Wip1) =0

/uncertainty
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Can we decouple stochastic optimization problems?
min B> > L (H], UL, W,41)
i t
s.t. H;.:+1 = (Hlt7 Uéawt-i-l)
U, =E[U}|Wo,...,W,]

Z @;f(H;.*? U;H Wiy1) =0

/uncerfainty
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Decomposition-coordination: divide and conquer

10 / 43



Sequential decomposition in time

\ /]

754
/1]

,{44444

ncertainty

/

NN

min B> > L (H}, UL, W,41)
i t

s.t. H£+1 = (H;.“v U{HWH-]-)

Uj =E[U|Wo,...,W,]

> Ou(HL Uy Weir) =0

Dyngmic Programming
[Bellman, 1957]

°R. E. Bellman. Dynamic Programming.
Princeton University Press, Princeton, N.J.,
1957
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Parallel decomposition in uncertainty/scenarios

min B> > L (H], UL, Wy41)
i t

unit i 1 1
A s.t. H’t+1 = (Hlt7 UltaWH—l)
| U, =E[U|Wo,...,W,]
O
= > OLHL UL W) =0
i . .
——4 | L] Progressive Hedging
» [Rockafellar and Wets, 1991]°
P -
L‘\\v °R. Rockafellar and R. J.-B. Wets.
/ — | fime Scenarios and policy aggregation in
uncertainty optimization under uncertainty.

Mathematics of operations research, 16(1):
119-147, 1991

10 / 43



Parallel decomposition in space/units

min B> > L (H], UL, We.;)
i t

s.t. H;':+1 = (th Uéth-i-l)
U, =E[U}|Wo,...,W,]

> OHHL UL W) =0
Price/ Resource
decompositions?

?[Carpentier, Cohen, and Culioli, 1995]
Stochastic optimal control and
decomposition-coordination methods /n:
Recent Developments in Optimization,
Roland Durier and Christian Michelot
(Eds.), Springer-Verlag, Berlin, 1995

uncertainty

10 / 43



Decomposition-coordination: divide and conquer

» Temporal decomposition

» A state is an information summary

» Time coordination realized through Dynamic Programming,
by value functions (of the state)
» Hard nonanticipativity constraints

» Scenario decomposition

» Along each scenario, subproblems are deterministic
(powerful algorithms)

» Scenario coordination realized through Progressive Hedging,
by updating nonanticipativity multipliers
> Soft nonanticipativity constraints
» Spatial decomposition
» By prices (multipliers of the spatial coupling constraint)
> By resources (splitting the spatial coupling constraint)
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Outline of the presentation

A brief insight into three decomposition methods
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Outline of the presentation

A brief insight into three decomposition methods
Scenario decomposition methods
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Moving from tree to fan (and scenarios)

Equivalent formulations of the nonanticipativity constraints

» On a (scenario) tree,
the nonanticipativity constraints

o(U¢) C o(Wo,...,W,)

P are “hardwired”
< A » On a fan,

1 the nonanticipativity constraints
write as linear equality constraints

Ut:E[Ut|W0,...,Wt]

1 =l 1= 1 T H il 2 =T

Nscenarios Scenarios tree
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Progressive Hedging stands as
a scenario decomposition method

[Rockafellar and Wets, 1991] dualize the nonanticipativity constraints
U =E[U: |Wo,...,W,]

with (random processes) multipliers, information price system
In summary, the price systems [...] are the ones that
would charge for hindsight everything it might be worth.
They do therefore truly embody the value of information
in the uncertain environment.

» When the criterion is strongly convex,
one uses a Lagrangian relaxation (algorithm “a la Uzawa")
to obtain a scenario decomposition

» When the criterion is linear, Rockafellar-Wets (91)
propose to use an augmented Lagrangian,
and obtain the Progressive Hedging algorithm
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Data: step p > 0, initial multipliers {)\go)}ses
and mean first decision a(®);

Result: optimal first decision u;

repeat

forall scenarios s € S do
Solve deterministic minimization problem for scenario s,

with a penalization +A{ (ugk“) _ l—,(k)),

and obtain optimal first decision ugkﬂ);

Update the mean first decisions by

Gkl — Zﬂsugk+1) :

seS

Update the multiplier by

AT =\ p(ugkﬂ) —alt) [ vse S

until ugkﬂ) - ves wslugf(H) =0, Vses;
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Outline of the presentation

A brief insight into three decomposition methods

Spatial (price/resource) decomposition methods
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We consider an additive model

Consider the following minimization problem

i bject t —0= v
uEZ/erdnCUJ(u) subject to  O(u) 0€

for which exists a decomposition of the space U = Ut x ... xuN,

so that u € U writes u = (ul,...,uN) with v’ € U, and also
> Upg = UL x--x U Uz cUu
> J(u) = JHub)+ -+ JV(WN) ueu
> O(u) = O ut) +--- +ON(N) ueu
Then the problem displays the following additive structure
N N
min Z Ji(u")  subject to Z O'(u')—6=0
utellyy =1 i-1

uNEZ/l:Id
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Additive model — Price decomposition

N
min ZJ (u") subject to Z@i(ui)—H:O

u€eEU, ad —1
=

1. Form the Lagrangian of the problem
We assume that a saddle point exists,
so that solving the ,ivnitial problem is equivalent to

max min <Ji(ui) + (X, @i(ui)>> — (A 0)

AEV uEU,q 4
i=1

2. Solve this problem by the Uzawa algorithm

w1 € arg min Ji(u') + </\(k)7 @i(ui)> , i=1...,N
uel!y

A1) — y\(K) +p<ze < k+1)) 9>

i=1
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Additive model — Price decomposition [l
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Additive model — Resource allocation

N N
i Ji(u")  subject t O'(u)—0=0
urgblfgd 2 (u") subject to ,z_; (u")

1. Write the constraint in a equivalent manner by introducing

new variables v = (v!,..., v/) (the so-called “allocation”)

N N
Z@i(ui)—0:0 & O'(u)—vi=0 and Zv’:e
i=1 i=1
and minimize the criterion w.r.t. v and v

N - . . - - .
min Z ( min J'(uv') st. ©'(u') —Vv' = 0) s.t. Zv’ =0

N i i
veV i u'eu! , i—1
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Additive model — Resource allocation [

N N
min, 2 ( IngZ{nI Ji(u') st. ©'(v) — v = O) s.t. ; vl =460
Gi(v))
N I N
vnewr}v 2 G'(v') st ; vi=140

2. Solve the last problem using a projected gradient method
G'(vK)) = min J'(u') s.t. O'(u) = v =0 ~s N(KHD

u' EU’

Y1) — is(k) 4 p< (k1) _ Z)\J (k+1) >
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Additive model — Resource allocation I
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Preparing Pierre Carpentier’s talk
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We can also use price/resource decomposition
to bound a minimization problem

Vi = E:J’
uleuld,- u"’eua"gl pt

st. (O'(u'),--,0NWY)) es

coupling constraint

u' € U' be a local decision variable

J:U" — R, i € [1,N] be a local objective function
U! | be a subset of the local decision set U’

©':U" — C' be a local constraint mapping

S be a subset of C =C! x --- x CV

vVvYvyVvyy

We denote by S° the polar cone of S
°={pecC|{p,r)<0, VreS}
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Price and resource local value functions
For each i € [1, N],
» for any price p' € (C')*, we define the local price value
Volp'l = inf  Ji(u') +(p', ©'(d))
uiel
» for any resource r' € C', we define the local resource value

Volrl= inf Ji(u) st ©/(u)=r

ueu! ,

Proposition (upper and lower bounds for optimal value)
» For any admissible price p = (p*,--- ,pN) € S°

> For any admissible resource r = (r*,--- ,rV) € S

N N
D Vel < Vg < Y Volr]
i=1 i=1
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Outline of the presentation

A brief insight into three decomposition methods

Time decomposition methods
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Brief literature survey on dynamic programming

Bellman Puterman Bertsekas Evstignev Witsenhausen
Schreve (standard form)
1957 1994 1996 1976 1973
State X X X - (w, Ul:tfl)
Dynamics f()(7 U, W) P:x’ f(X, U, W) = Xt = (thl, Ut)
Uncertainties Indep. - P (Q,]‘—) (Q,]‘—)
Cost Zt Zt Zz j(w, U) Jj(w, U)
Controls ~v(X) v(X) v(H) | ~(X)~v(H) | F¢-meas. ~(x¢) Zt-meas.
History - (X, U,...)t (W7 U,‘..)t - Xt
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We introduce the history

» The timeline is
wp ~> Ug ~> Wy ~> U ~ ~ Wro1 v U1 v W
» and the history is

history uncertainty control uncertainty

~= o N e
ht = ( wo , Up w1 yUry ..., Ur—1, Wf)
t—1
€ Hy =Wy X Us x W
t 0 H}( s s+1 )

control  uncertainty
space space
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History is the largest state

The history follows the dynamics

history h:
ht+1 — (W07 UO; Wl; U]_, ) ut717 W;a ut7 Wt+1)
= (hi‘v Ug » Wit )
~ SN~

control uncertainty
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We formulate a sequence of minimization problems
over increasing history spaces

» Once given
> a (measurable) criterion j: Hr — R
> a sequence of stochastic kernels py.ri1 1 Hy = A(Wei1)

» we define, for any history h;, a minimization problem

criterion
. v ol /
Vi(he) = inf J(h7) pe.(he,dh7)
~——" 7,history Hr —————
value feedbacks controlled
function stochastic kernel
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There is a Bellman equation involving
value functions over increasing history spaces
without white noise assumption

Vr=J
Vi = Bti1:t Vit

where the Bellman operator B;1.+ is given by

(Bt+1:t90)(ht) = uig}i{t /W <P(ht7 Ug, Wt+1)Pt:t+1(ht7 th+1)
t+1
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Preparing Jean-Philippe Chancelier's talk
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Towards state reduction by time blocks

» History h; is itself a canonical state variable,
which lives in the history space
He = Wo x [1ZoUs x Ws1)
» However the size of this canonical state increases with t,
which is a nasty feature for dynamic programming
> We will now, but only at some specified times r in
O=t<ti<---<tn=T
» introduce “state” spaces X,
» and then reduce the history with a mapping 0, : H, — X,
> to obtain a compressed “state” variable 0,(h,) = x, € X,
P As an application, we will handle
stochastic independence between time blocks
but possible dependence within time blocks
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Graphical sketch of state reduction
The triplet (0,, 6;, f,+) is a state reduction across (r:t) if

» the following diagram, for the dynamics, is commutative

1,
H’I’ X HrJrl:t —d> Ht

0, 1y 0;
Xr X HT+1:t * Xt

» the following diagram, for the stochastic kernels,
is commutative

Hr X Hr+1:s—l & A(Ws)
0
Xr X HrJrl:sfl
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Bellman operator across (r:t)

Byt : L (H,, H,) — LO (He, He) is defined by
Br:t = Bt—l—l:t ©--+0 Br:r—l )

where the one time step operators Bs.s_1 are

(Bs:s—IQO)(hs—l) = inf / ©(hs—1, us—1, Ws)ps—1:s(hs—1, dws)
W

Us—1€Us—1
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Graphical sketch of Bellman operator reduction

Supposing a state reduction across (r:t), and denoting by
07 : L8 (X,,X,) — L9 (H,, H,) the operator defined by

0:(&r) = Broby , ¥, € LY(X,X,),
then there exists a reduced Bellman operator across (r:t) such that
0F 0By =Brrobr,
that is, the following diagram is commutative

Br:t

L9 (Hy, H,) —=ts 19 (Hy, H,)
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Outline of the presentation

Summary and research agenda
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We have sketched three main decomposition methods
in multistage stochastic optimization

» time: Dynamic Programming
P scenario: Progressive Hedging
P space: decomposition by prices or by resources

Numerical walls are well-known
» in dynamic programming,
the bottleneck is the dimension of the state

P in stochastic programming,
the bottleneck is the number of stages
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Here is our research agenda for stochastic decomposition

» Designing risk criteria compatible with decomposition
» Combining different decomposition methods
» time: Dynamic Programming
» scenario: Progressive Hedging
» space: decomposition by prices or by resources
P to produce blends and tackle large scale energy applications
» time blocks + prices/resources
(talk of Jean-Philippe Chancelier)

» dynamic programming across time blocks
+ prices/resources decomposition by time block
> application to two time scales battery management

» time + space
(talk of Pierre Carpentier)

» nodal decomposition by prices or by resources
+ dynamic programming within node
> application to large scale microgrid management
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Time block decomposition

[Carpentier, Chancelier, De Lara, Martin, and Rigaut, 2023]*

B, 1, B+, Biyity
Xyy —————0 Xy - o Xy - Xy, — Xy
¥ - I 4 N4 \
A A A A A
B:,. ' B.,. ' L By,
Ht\) t1:to | 'L)tx EltL 0, : ‘gt\,,‘ tnitn -1 Ht\

% { % { : | % ______ _"—‘_)

0=t t ta tver T=ty

ip, Carpentier, J.-P. Chancelier, M. De Lara, T. Martin, and T. Rigaut.
Time Block Decomposition of Multistage Stochastic Optimization Problems.
Journal of Convex Analysis, 30(2), 2023
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Mix of spatial and temporal decompositions

[Carpentier, Chancelier, De Lara, and Pacaud, 2020]?
[Pacaud, De Lara, Chancelier, and Carpentier, 2022]3

2P. Carpentier, J.-P. Chancelier, M. De Lara, and F. Pacaud. Mixed spatial
and temporal decompositions for large-scale multistage stochastic optimization
problems. Journal of Optimization Theory and Applications, 186(3):985-1005,
2020

3F. Pacaud, M. De Lara, J.-P. Chancelier, and P. Carpentier. Distributed
multistage optimization of large-scale microgrids under stochasticity. /EEE
Transactions on Power Svstems 37(1):204-211 2022 42 /43
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