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Temporal, scenario and spatial structures in
multistage stochastic optimization problems

In multistage stochastic optimization problems,
the control variable

Ui
t(ω)

is indexed by

▶ Time/stages t ∈ T (= J0,T − 1K)
▶ Scenarios ω ∈ Ω

▶ Space/units/agents i ∈ I

The letter U comes from the Russian word upravlenie for control
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Let us fix problem and notations

min
U

additive costs︷ ︸︸ ︷
E
[∑

i∈I

∑

t∈T
Lit(H

i
t ,U

i
t ,Wt+1)

]
subject to

dynamics constraints

Hi
t+1︸ ︷︷ ︸

history

= g i
t (H

i
t ,U

i
t , Wt+1︸ ︷︷ ︸

uncertainty

) , Hi
0 = W0

measurability constraints (nonanticipativity of the control Ui
t)

σ
(
Ui

t

)
⊂ σ(W0, . . . ,Wt) ⇐⇒ Ui

t = E
[
Ui

t

∣∣W0, . . . ,Wt

]

spatially coupling constraints

∑

i∈I
Θi

t(H
i
t ,U

i
t ,Wt+1) = 0
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Couplings for stochastic problems

unit

time

uncertainty

min E
∑

i

∑

t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 =

(
Hi

t ,U
i
t ,Wt+1

)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]

∑

i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0
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Couplings for stochastic problems: in time
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Couplings for stochastic problems: in uncertainty

unit

time

uncertainty

min E
∑
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∑
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Couplings for stochastic problems: in space

unit

time

uncertainty

min E
∑

i

∑

t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]

∑

i
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i
t ,U

i
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Can we decouple stochastic optimization problems?

unit

time

uncertainty

min E
∑

i

∑

t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]

∑

i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0
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Decomposition-coordination: divide and conquer
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Sequential decomposition in time

unit

time

uncertainty

min E
∑

i

∑

t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]
∑

i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0

Dynamic Programming
[Bellman, 1957]

a

aR. E. Bellman. Dynamic Programming.
Princeton University Press, Princeton, N.J.,
1957
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Parallel decomposition in uncertainty/scenarios

unit

time

uncertainty

min E
∑

i

∑

t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]

∑

i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0

Progressive Hedging
[Rockafellar and Wets, 1991]

a

aR. Rockafellar and R. J.-B. Wets.
Scenarios and policy aggregation in
optimization under uncertainty.
Mathematics of operations research, 16(1):
119–147, 1991
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Parallel decomposition in space/units

unit

time

uncertainty

min E
∑

i

∑

t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]

∑

i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0

Price/ Resource
decompositionsa

a[Carpentier, Cohen, and Culioli, 1995]
Stochastic optimal control and
decomposition-coordination methods In:
Recent Developments in Optimization,
Roland Durier and Christian Michelot
(Eds.), Springer-Verlag, Berlin, 1995
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Decomposition-coordination: divide and conquer

▶ Temporal decomposition
▶ A state is an information summary
▶ Time coordination realized through Dynamic Programming,

by value functions (of the state)
▶ Hard nonanticipativity constraints

▶ Scenario decomposition
▶ Along each scenario, subproblems are deterministic

(powerful algorithms)
▶ Scenario coordination realized through Progressive Hedging,

by updating nonanticipativity multipliers
▶ Soft nonanticipativity constraints

▶ Spatial decomposition
▶ By prices (multipliers of the spatial coupling constraint)
▶ By resources (splitting the spatial coupling constraint)
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Moving from tree to fan (and scenarios)
Equivalent formulations of the nonanticipativity constraints

t=0 t=1 t=2 t=3 t=T t=0 t=1 t=2 t=3 t=T

N scenarios Scenarios tree

▶ On a (scenario) tree,
the nonanticipativity constraints

σ
(
Ut

)
⊂ σ(W0, . . . ,Wt)

are “hardwired”

▶ On a fan,
the nonanticipativity constraints
write as linear equality constraints

Ut = E
[
Ut

∣∣W0, . . . ,Wt

]
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Progressive Hedging stands as
a scenario decomposition method

[Rockafellar and Wets, 1991] dualize the nonanticipativity constraints

Ut = E
[
Ut

∣∣W0, . . . ,Wt

]

with (random processes) multipliers, information price system

In summary, the price systems [. . . ] are the ones that
would charge for hindsight everything it might be worth.
They do therefore truly embody the value of information
in the uncertain environment.

▶ When the criterion is strongly convex,
one uses a Lagrangian relaxation (algorithm “à la Uzawa”)
to obtain a scenario decomposition

▶ When the criterion is linear, Rockafellar-Wets (91)
propose to use an augmented Lagrangian,
and obtain the Progressive Hedging algorithm
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Data: step ρ > 0, initial multipliers
{
λ
(0)
s

}
s∈S

and mean first decision ū(0);
Result: optimal first decision u;
repeat

forall scenarios s ∈ S do
Solve deterministic minimization problem for scenario s,

with a penalization +λ
(k)
s

(
u
(k+1)
s − ū(k)

)
,

and obtain optimal first decision u
(k+1)
s ;

Update the mean first decisions by

ū(k+1) =
∑

s∈S
πsu

(k+1)
s ;

Update the multiplier by

λ
(k+1)
s = λ

(k)
s + ρ

(
u
(k+1)
s − ū(k+1)

)
, ∀s ∈ S ;

until u
(k+1)
s −∑

s′∈S πs′u
(k+1)
s′ = 0 , ∀s ∈ S;
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We consider an additive model
Consider the following minimization problem

min
u∈Uad⊂U

J(u) subject to Θ(u)− θ = 0 ∈ V

for which exists a decomposition of the space U = U1 × . . .× UN ,
so that u ∈ U writes u =

(
u1, . . . , uN

)
with ui ∈ U i , and also

▶ Uad = U1
ad × · · · × UN

ad U i
ad ⊂ U i

▶ J(u) = J1(u1) + · · ·+ JN(uN) ui ∈ U i

▶ Θ(u) = Θ1(u1) + · · ·+ΘN(uN) ui ∈ U i

Then the problem displays the following additive structure

min
u1∈U1

ad...
uN∈UN

ad

N∑

i=1

J i (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0
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Additive model — Price decomposition I

min
u∈Uad

N∑

i=1

J i (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0

1. Form the Lagrangian of the problem
We assume that a saddle point exists,
so that solving the initial problem is equivalent to

max
λ∈V

min
u∈Uad

N∑

i=1

(
J i (ui ) +

〈
λ, Θi (ui )

〉)
−
〈
λ, θ

〉

2. Solve this problem by the Uzawa algorithm

ui ,(k+1) ∈ argmin
ui∈U i

ad

J i (ui ) +
〈
λ(k), Θi (ui )

〉
, i = 1 . . . ,N

λ(k+1) = λ(k) + ρ

( N∑

i=1

Θi
(
ui ,(k+1)

)
− θ

)
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Additive model — Price decomposition II

Subproblem 1 Subproblem i Subproblem N

Coordination

min J1(u1) + 〈λ(k),Θ1(u1)〉 min J i(ui) + 〈λ(k),Θi(ui)〉 min JN(uN) + 〈λ(k),ΘN(uN)〉

ΘN(uN,(k))

λ(k+1) = λ(k) + ρ

(∑
Θi
(
ui,(k+1)

)
− θ

)

Θi(ui,(k)) λ(k)

λ(k)Θ1(u1,(k)) λ(k)
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Additive model — Resource allocation I

min
u∈Uad

N∑

i=1

J i (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0

1. Write the constraint in a equivalent manner by introducing
new variables v = (v1, . . . , vN) (the so-called “allocation”)

N∑

i=1

Θi (ui )− θ = 0 ⇔ Θi (ui )− v i = 0 and
N∑

i=1

v i = θ

and minimize the criterion w.r.t. u and v

min
v∈VN

N∑

i=1

(
min

ui∈U i
ad

J i (ui ) s.t. Θi (ui )− v i = 0
)

s.t.
N∑

i=1

v i = θ
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Additive model — Resource allocation II

min
v∈VN

N∑

i=1

(
min

ui∈U i
ad

J i (ui ) s.t. Θi (ui )− v i = 0

︸ ︷︷ ︸
G i (v i )

)
s.t.

N∑

i=1

v i = θ

⇕
min
v∈VN

N∑

i=1

G i (v i ) s.t.
N∑

i=1

v i = θ

2. Solve the last problem using a projected gradient method

G i (v i ,(k)) = min
ui∈U i

ad

J i (ui ) s.t. Θi (ui )− v i ,(k) = 0 ⇝ λi ,(k+1)

v i ,(k+1) = v i ,(k) + ρ

(
λi ,(k+1) − 1

N

N∑

j=1

λj ,(k+1)

)
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Additive model — Resource allocation III

Subproblem i

Coordination

Subproblem 1 Subproblem N

vi,(k+1) = vi,(k) + ρ

(
λi,(k+1) − 1

N

∑
λj,(k+1)

)

λ1,(k) v1,(k)

vi,(k)
λN,(k)

λi,(k)

vN,(k)

min J1(u1)

s.t. Θ1(u1)− v1,(k) = 0

min J i(ui)

s.t. Θi(ui)− vi,(k) = 0

min JN(uN)

s.t. ΘN(uN)− vN,(k) = 0
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Preparing Pierre Carpentier’s talk
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We can also use price/resource decomposition
to bound a minimization problem

V ∗
0 = inf

u1∈U1
ad,··· ,uN∈U

N
ad

N∑

i=1

J i (ui )

s.t.
(
Θ1(u1), · · · ,ΘN(uN)

)
∈ S︸ ︷︷ ︸

coupling constraint

▶ ui ∈ U i be a local decision variable

▶ J i : U i → R, i ∈ J1,NK be a local objective function

▶ U i
ad be a subset of the local decision set U i

▶ Θi : U i → C i be a local constraint mapping

▶ S be a subset of C = C1 × · · · × CN

We denote by So the polar cone of S

So =
{
p ∈ C⋆ |

〈
p, r

〉
≤ 0 , ∀r ∈ S

}

25 / 43



Price and resource local value functions
For each i ∈ J1,NK,
▶ for any price pi ∈ (C i )⋆, we define the local price value

V i
0[p

i ] = inf
ui∈U i

ad

J i (ui ) +
〈
pi , Θi (ui )

〉

▶ for any resource r i ∈ C i , we define the local resource value

V
i
0[r

i ] = inf
ui∈U i

ad

J i (ui ) s.t. Θi (ui ) = r i

Proposition (upper and lower bounds for optimal value)

▶ For any admissible price p = (p1, · · · , pN) ∈ So

▶ For any admissible resource r = (r1, · · · , rN) ∈ S
N∑

i=1

V i
0[p

i ] ≤ V ∗
0 ≤

N∑

i=1

V
i
0[r

i ]
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Brief literature survey on dynamic programming

Bellman Puterman Bertsekas Evstignev Witsenhausen
Schreve (standard form)

1957 1994 1996 1976 1973
State X X X – (ω,U1:t−1)

Dynamics f (X ,U,W ) Pu
x,x′ f (X ,U,W ) – Xt = (Xt−1,Ut)

Uncertainties Indep. – ρ (Ω,F) (Ω,F)
Cost

∑
t

∑
t

∑
t j(ω,U) j(ω,U)

Controls γ(X ) γ(X ) γ(H) γ(X ) γ(H) Ft -meas. γ(xt) It -meas.
History – (X ,U, . . .)t (W ,U, . . .)t – Xt
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We introduce the history

▶ The timeline is

w0 ⇝ u0 ⇝ w1 ⇝ u1 ⇝ . . . ⇝ wT−1 ⇝ uT−1 ⇝ wT

▶ and the history is

history︷︸︸︷
ht = (

uncertainty︷︸︸︷
w0 ,

control︷︸︸︷
u0 ,

uncertainty︷︸︸︷
w1 , u1, . . . , ut−1,wt)

∈ Ht = W0 ×
t−1∏

s=0

( Us︸︷︷︸
control
space

× Ws+1︸ ︷︷ ︸
uncertainty

space

)
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History is the largest state

The history follows the dynamics

ht+1 = (

history ht︷ ︸︸ ︷
w0, u0,w1, u1, . . . , ut−1,wt , ut ,wt+1)

=
(
ht , ut︸︷︷︸

control

, wt+1︸︷︷︸
uncertainty

)

30 / 43



We formulate a sequence of minimization problems
over increasing history spaces

▶ Once given
▶ a (measurable) criterion j : HT → R
▶ a sequence of stochastic kernels ρt:t+1 : Ht → ∆(Wt+1)

▶ we define, for any history ht , a minimization problem

Vt(ht)︸ ︷︷ ︸
value

function

= inf
γ,history
feedbacks

∫

HT

criterion︷ ︸︸ ︷
j(h′T ) ργt:T (ht ,dh

′
T )︸ ︷︷ ︸

controlled
stochastic kernel
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There is a Bellman equation involving
value functions over increasing history spaces
without white noise assumption

VT = j

Vt = Bt+1:tVt+1

where the Bellman operator Bt+1:t is given by

(
Bt+1:tφ

)
(ht) = inf

ut∈Ut

∫

Wt+1

φ(ht , ut ,wt+1)ρt:t+1(ht , dwt+1)
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Preparing Jean-Philippe Chancelier’s talk
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Towards state reduction by time blocks

▶ History ht is itself a canonical state variable,
which lives in the history space
Ht = W0 ×

∏t−1
s=0(Us ×Ws+1)

▶ However the size of this canonical state increases with t,
which is a nasty feature for dynamic programming

▶ We will now, but only at some specified times r in
0 = t0 < t1 < · · · < tN = T
▶ introduce “state” spaces Xr

▶ and then reduce the history with a mapping θr : Hr → Xr

▶ to obtain a compressed “state” variable θr (hr ) = xr ∈ Xr

▶ As an application, we will handle
stochastic independence between time blocks
but possible dependence within time blocks
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Graphical sketch of state reduction
The triplet (θr , θt , fr :t) is a state reduction across (r : t) if

▶ the following diagram, for the dynamics, is commutative

Hr ×Hr+1:t Ht

Xr ×Hr+1:t Xt

θr Id

Id

θt

fr:t

▶ the following diagram, for the stochastic kernels,
is commutative

Hr ×Hr+1:s−1 ∆(Ws)

Xr ×Hr+1:s−1

θr Id

ρs−1:s

ρ̃s−1:s
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Bellman operator across (r : t)

Br :t : L0
+(Hr ,Hr ) → L0

+(Ht ,Ht) is defined by

Br :t = Bt+1:t ◦ · · · ◦ Br :r−1 ,

where the one time step operators Bs:s−1 are

(
Bs:s−1φ

)
(hs−1) = inf

us−1∈Us−1

∫

Ws

φ(hs−1, us−1,ws)ρs−1:s(hs−1, dws)
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Graphical sketch of Bellman operator reduction

Supposing a state reduction across (r : t), and denoting by
θ⋆r : L0

+(Xr ,Xr ) → L0
+(Hr ,Hr ) the operator defined by

θ⋆r (φ̃r ) = φ̃r ◦ θr , ∀φ̃r ∈ L0
+(Xr ,Xr ) ,

then there exists a reduced Bellman operator across (r : t) such that

θ⋆t ◦ B̃r :t = Br :t ◦ θ⋆r ,

that is, the following diagram is commutative

L0
+(Hr,Hr) L0

+(Ht,Ht)

L0
+(Xr,Xr) L0

+(Xt,Xt)

Br:t

θ⋆r

B̃r:t

θ⋆t
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We have sketched three main decomposition methods
in multistage stochastic optimization

▶ time: Dynamic Programming

▶ scenario: Progressive Hedging

▶ space: decomposition by prices or by resources

Numerical walls are well-known
▶ in dynamic programming,

the bottleneck is the dimension of the state

▶ in stochastic programming,
the bottleneck is the number of stages
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Here is our research agenda for stochastic decomposition

▶ Designing risk criteria compatible with decomposition
▶ Combining different decomposition methods

▶ time: Dynamic Programming
▶ scenario: Progressive Hedging
▶ space: decomposition by prices or by resources

▶ to produce blends and tackle large scale energy applications
▶ time blocks + prices/resources

(talk of Jean-Philippe Chancelier)
▶ dynamic programming across time blocks

+ prices/resources decomposition by time block
▶ application to two time scales battery management

▶ time + space
(talk of Pierre Carpentier)
▶ nodal decomposition by prices or by resources

+ dynamic programming within node
▶ application to large scale microgrid management
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Time block decomposition

[Carpentier, Chancelier, De Lara, Martin, and Rigaut, 2023]1

0 = t0 t1 t2 tN−1 T = tN

BtN :tN−1Bt2:t1Bt1:t0 θtN−1

XtN−1

θtN

XtN

B̃tN :tN−1

θt2

Xt2

B̃t2:t1

θt1

Xt1

θt0

Xt0

B̃t1:t0

1P. Carpentier, J.-P. Chancelier, M. De Lara, T. Martin, and T. Rigaut.
Time Block Decomposition of Multistage Stochastic Optimization Problems.
Journal of Convex Analysis, 30(2), 2023
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Mix of spatial and temporal decompositions
[Carpentier, Chancelier, De Lara, and Pacaud, 2020]2

[Pacaud, De Lara, Chancelier, and Carpentier, 2022]3

HOUSE 

SOLAR PANEL

HOUSE 

HOUSE 

HOUSE 

BATTERY

HOUSE 

BATTERY

HOUSE 

SOLAR PANEL

V 1
0 V 1

1 V 1
2 V 1

T

V 2
0 V 2

1 V 2
2 V 2

T

VN
0 VN

1 VN
2 VN

T

time

space

p1

p2

pN

2P. Carpentier, J.-P. Chancelier, M. De Lara, and F. Pacaud. Mixed spatial
and temporal decompositions for large-scale multistage stochastic optimization
problems. Journal of Optimization Theory and Applications, 186(3):985–1005,
2020

3F. Pacaud, M. De Lara, J.-P. Chancelier, and P. Carpentier. Distributed
multistage optimization of large-scale microgrids under stochasticity. IEEE
Transactions on Power Systems, 37(1):204–211, 2022 42 / 43
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