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A linear control-oriented stochastic model

Controls: u1 ∈ U1 = R and u2 ∈ U2 = R

Random issue: ω = (x0, v) ∈ Ω = R × R

State equations

{
x1 = x0 + u0

x2 = x1 − u1 .

Output equations

{
y0 = x0

y1 = x1 + v .

H. S. Witsenhausen. A counterexample in stochastic
optimal control. SIAM J. Control, 6(1):131–147,
1968.
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A LQG problem with linear solution

x0 and v are Gaussian independent.

inf E(k2u2
0 + x2

2) ,
{
x1 = x0 + u0

x2 = x1 − u1

{
u0 measurable w.r.t. y0 = x0

u1 measurable w.r.t. (y0, y1) = (x0, x1 + v) .

Solution u0 = ψ1(y0), u1 = ψ2(y0, y1) , where ψ1 and
ψ2 are affine functions.

Classical information pattern
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Still LQG but. . . nonlinear solution!

x0 and v are Gaussian independent.

inf E(k2u2
0 + x2

2) ,
{
x1 = x0 + u0

x2 = x1 − u1

{
u0 measurable w.r.t. y0 = x0

u1 measurable w.r.t. y1 = x1 + v .

Solution u0 = ψ1(y0), u1 = ψ2(y1) is known to exist
and to be (highly) nonlinear!

The Witsenhausen counterexample
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Classical information pattern

• Sequential and memory of past knowledge:
1. agent 0 observes y0;
2. agent 1 observes y0 and y1.

• Stochastic dynamic programming, HJB. . . :
value function parameterized by the state (usually
finite dimensional);
infimum taken over the controls.
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Nonclassical information patterns

• In the sequential case, no memory of past
knowledge: agent 1 observes y1.

• Signaling/dual effect of control:
direct cost minimization versus
indirect effect on output available for control.

• Interaction between information and control.
• Stochastic dynamic programming due to

sequentiality but value function parameterized by
the distribution of the state (infinite dimensional);
infimum taken over controls mappings (idem).

Witsenhausen H. S. A standard form for sequential
stochastic control. Mathematical Systems Theory,
7(1):5–11, (1973).
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Functional dependence of E(X | Y ) on

the conditioning random variable Y

Let X and Y be two random variables on a
probability space (Ω,F ,P). Assume X integrable.

E(X | Y ) is σ(Y )-measurable, hence a function of Y :

E(X | Y ) = f(Y ) , P − a.s.

However, f depends functionaly on Y :

E(X | Y )(ω) = fY (Y (ω)) for P almost allω
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If X and Y are discrete random variables

= E(X | Y = y)

=
∑

x′

x′P(X = x′ | Y = y)

=
∑

x′

x′
∫

Ω 1x′(X(ω))1y(Y (ω))P(dω)∫
Ω 1y(Y (ω))P(dω)

depends on the mapping Y : Ω → R.
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Infimum over variables versus over mappings

inf
ψ:X→U

∑

x∈X

∑

y∈Y

J(ψ(x), x, y) =
∑

x∈X


 inf
u∈U

∑

y∈Y

J(u, x, y)




is the elementary version of measurable selection
theorems of the type

inf
ψ�Z

E[J(·, ψ(·))] = E[ inf
u∈U

E[J(·, u) | Z]]

where ψ � Z means that the mapping ψ : Ω → U is
measurable with respect to the random variable Z.
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ON VARIABLES
AND

RANDOM VARIABLES
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Primitive random variables

State and output equations: relations between simple
variables 




x1 = x0 + u0

x2 = x1 − u1

y0 = x0

y1 = x1 + v .

We endow X0 = R and V = R with two probabilities
with finite second moments. The coordinate mappings
X0 and V become independent random variables,
following the tradition to label random variables by
capital letters (x0 and v are simple variables).
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Policies, control designs, information patterns

At this stage, only X0 and V are random variables.

u0, u1, x1, x2, y0, y1 are “variables” belonging to the
spaces U0 = U1 = X1 = X2 = Y0 = Y1 = R.

These (simple) variables have to be turned into
random variables U0, U1, X1, X2, Y0, Y1 (capital
letters) to give a meaning to E(k2U 2

0 +X2
2).

There are two ways to do this, that we label by
policies or by control designs.
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Policies

A policy is a random variable
(U0, U1) : Ω → U0 × U1.

We write thus equalities between random variables as:




X1 = X0 + U0

X2 = X1 − U1

Y0 = X0

Y1 = X1 + V .

There remains to express the information pattern,
namely how U0 and U1 may depend upon the other
random variables, especially the observations Y0 and
Y1, and possibly upon themselves.

Information patternsandoptimal stochastic control problems – p.14/51



Information patterns and policies

Let G0 and G1 be two subfields of F .

The following optimization problem is well defined:

inf
U0�G0,U1�G1

E(k2U 2
0 + (X1 − U1)

2)

In doing so, we restrict the class of policies to those
such that U0 � G0, U1 � G1.

For instance, the Witsenhausen counterexample is

inf
U0�Y0,U1�Y1

E(k2U 2
0 + (X1 − U1)

2) .

It means that the first decision u0 may only depend
upon Y0, and u1 upon Y1.
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σ-fields versus signals

While policies are related to σ-fields, control designs
make use of signals. A signal is a measurable
mapping Y : Ω → Y, where Y is a measurable space:
in all generality, it is a random element, and usually a
random variable.

To any signal is associated the subfield σ(Y )
generated by Y .

Not all σ-fields may be obtained as σ(Y ), where Y
takes value in a Borel space. Counterexample is given
by the σ-field consisting of countable subsets and
their complements.
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Control design

A control design is a measurable mapping
(ψ1, ψ2) : X0×X1×X2×U0×U1×Y0×Y1 → U0×U1.

We write thus relationships between random variables




U0 = ψ1(X0, X1, X2, U0, U1, Y0, Y1)

U1 = ψ2(X0, X1, X2, U0, U1, Y0, Y1)

X1 = X0 + U0

X2 = X1 − U1

Y0 = X0

Y1 = X1 + V .

Information patternsandoptimal stochastic control problems – p.17/51



Information patterns and control designs

Notice that the first two equations are implicit ones
and may not admit solutions: intricacies of stochastic
control. . . (step by step solution in case of causality).

These equations U0 = ψ1(X0, . . .). . . express the
information pattern, namely how U0 and U1 depend
functionaly upon the other random variables.

For instance, the Witsenhausen counterexample is

inf
ψ1�y0,ψ2�y1

E(k2U 2
0 + (X1 − U1)

2)

It means that ψ1 depends only upon y0, and ψ2

depends only upon y1.
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INFORMATION PATTERNS
IN THE

LINEAR-QUADRATIC GAUSSIAN EXAMPLE
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Information patterns

Let G0 and G1 be two subfields of F , where

G0 = σ(Y0) and G1 =





σ(Y0, U0, Y1)

or σ(Y0, Y1)

or σ(U0, Y1)

or σ(Y1)

Recall that




Y0 = X0

X1 = X0 + U0

Y1 = X1 + V = X0 + U0 + V .
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Exploiting sequentiality

inf
U0�G0,U1�G1

E[k2U 2
0 + (X1 − U1)

2]

= inf
U0�G0

(
k2E[U 2

0 ] + inf
U1�G1

E[(X1 − U1)
2]

)

by sequentiality

= inf
U0�G0

(
k2E[U 2

0 ] + E[
(
X1 − E(X1 | G1)

)2
]
)

by definition of E(X1 | G1)

= inf
U0�G0

(
k2E[U 2

0 ] + E[var[X1 | G1]]
)
.
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The dual effect of U0

infU0�G0,U1�G1
E[k2U 2

0 + (X1 − U1)
2]

= infU0�G0
E[k2 U 2

0︸︷︷︸
pointwise
dependence
on U0

+ var[V | G1]︸︷︷︸
functional
dependence
on U0

]

= infU0�G0
E[k2U 2

0 + (V − E(V | G1))
2] .

(1)

where

G1 = σ(Y0, U0, Y1) , σ(Y0, Y1) , σ(U0, Y1) , σ(Y1) .
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We used a trick. . .

−(X1 − E(X1 | G1)) = Y1 −X1 − E(Y1 −X1 | G1)

since Y1 � G1

= V − E(V | G1)

so that

E[(X1 − E(X1 | G1))
2] = E[(V − E(V | G1))

2]

= E[V 2] − (E(V | G1))
2 .

Information patternsandoptimal stochastic control problems – p.23/51



Strictly classical pattern:

perfect recall plus control transmission

G0 = σ(Y0) and G1 = σ(Y0, U0, Y1) .

We have

G1 = σ(X0, U0, X0 + U0 + V ) = σ(X0, V )

Notice that G1, which seemed to depend upon policies
U0 and U1 (or upon control designs ψ1 and ψ2), is in
fact policy independent: absence of dual effect.

K. Barty, P. Carpentier, J-P. Chancelier, G. Cohen,
M. De Lara, and T. Guilbaud. Dual effect free
stochastic controls. To be published in Annals of
Operation Research, 2005.
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Thus,

var[V | X0, V ] = E[V 2 | X0, V ] − E[V | X0, V ]2

= V 2 − V 2 = 0

and (??) is

inf
U0�G0,U1�G1

E[k2U 2
0 + (X1 − U1)

2]

= inf
U0�G0

E[k2U 2
0 + var[V | X0, V ]] = k2 inf

U0�X0

E[U 2
0 ] .

The solution is U0 = 0 and

U1 = E(X1 | X0, V ) = X1 = X0 + U0 = X0 = Y0 .
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Classical pattern: perfect recall

G0 = σ(Y0) and G1 = σ(Y0, Y1) = σ(X0, U0 + V ) .

Since U0 � σ(X0), there exists a measurable ψ1 such
that U0 = ψ1(X0). Thus, V = U0 + V − ψ1(X0) is
σ(X0, U0 + V )-measurable and we can write

G1 = σ(Y0, Y1) = σ(X0, U0 + V ) = σ(X0, V ) .

This absence of dual effect is related to the linear
structure of the problem.
Thus (??) has the same solution U0 = 0 and U1 = Y0.
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Policy independence of conditional expectation

H. S. Witsenhausen. On policy independence of
conditional expectations. Information and Control,
28(1):65–75, 1975.

“If an observer of a stochastic control system observes
both the decision taken by an agent in the system and
the data that was available for this decision, then the
conclusions that the observer can draw do not depend
on the functional relation (policy, control law) used by
this agent to reach his decision. ”

A weaker form of absence of dual effect is when the
conditional expectation E[V | G1] can be expressed
without functional dependence upon U0.
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Nonclassical pattern: control recall

In this nonclassical pattern

G0 = σ(Y0) and G1 = σ(U0, Y1)

G1 = σ(U0, Y1) = σ(U0, X0+U0+V ) = σ(U0, X0+V )

and thus

E[V | G1] = E[V | U0, X0 + V ] .

The control variable enters a conditioning term: this is
an example of the so called dual effect where the
decision has an impact on future decisions by
providing more or less information, in addition to
contributing to cost minimization.
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ε-optimal policies

Bismut, J., An example of interaction between
information and control: the transparency of a game
Automatic Control, IEEE Transactions on Volume 18,
Issue 5, Oct. 1973, 518 - 522

For ε > 0, take

U0 = εY0 = εX0 and U1 =
U0

ε
= X0

which yields the cost

k2U 2
0 + (X0 + U0 − U1)

2 = ε2(k2 + 1)X2
0
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Nonclassical pattern: no recall

G0 = σ(Y0) and G1 = σ(Y1) = σ(X0 + U0 + V )

and E[V | G1] = E[V | X0 + U0 + V ].

Notice that, since U0 � X0, we may take
X1 = X0 + U0 instead of U0 as “control variable”:

inf
U0�G0,U1�G1

E[k2U 2
0 + (X1 − U1)

2] =

inf
X1�X0

E[k2(X1 −X0)
2 + var[V | X1 + V ]] .
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Signalling

inf
X1�X0

E[k2(X1 −X0)
2 + var[V | X1 + V ]]

Setting X1 = 0 kills the var[V | X1 + V ] term, but has
a cost k2X2

0 .
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EQUIVALENT STOCHASTIC CONTROL
PROBLEMS:

FROM DYNAMIC TO STATIC PROBLEMS

H. S. Witsenhausen. Equivalent stochastic control
problems. Mathematics of Control, Signals, and
Systems, 1(1):3–7, 1988.
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Criterion and observations

We write the criterion k2u2
0 + (x1 − u1)

2 as
J : Y0 × U0 × U1 → R:

(y0, u0, u1) 7→ k2u2
0 + (y0 + u0 − u1)

2 .

The observations under open-loop control
u ∈ U0 × U1 are given by

Φu : X0×V → Y0×Y1 , (x0, v) 7→ (x0, x0+u0+v) .
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Probabilities

P denotes the standard Gaussian probability on the
probability space Ω = X0 × V, that is

P(dx0dv) =
1

2π
exp(−

x2
0 + v2

2
)dx0dv .

Q0(dy0) and Q1(dy1) are standard Gaussian
probabilities on Y0 and Y1 and

Q(dy0dy1) =
1

2π
exp(−

y2
0 + y2

1

2
)dy0dy1

= Q0(dy0) ⊗ Q1(dy1) .

Information patternsandoptimal stochastic control problems – p.34/51



Control design

Let γ0 : Y0 → U0 and γ1 : Y0 × Y1 → U1 be two

measurable mappings, and denote γ
def
= (γ0, γ1).

With X0 and V the coordinate mappings on X0 × V,
we define the policies and the closed-loop
observations by

Y0 = X0

U0 = γ0(Y0)

Y1 = X0 + U0 + V = X0 + γ0(Y0) + V

U1 = γ1(Y0, Y1) = γ1(Y0, X0 + γ0(Y0) + V ) .

Thus defined, Y0 and Y1 are random variables which
depend upon γ.
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Cost criterion

The random cost is J(Y0, U0, U1), the expectation of
which we try and minimize over all designs γ0 and γ1.

Noticing that

J(Y0, U0, U1) = J(Y0, γ0(Y0), γ1(Y0, Y1)) ,

we define

Jγ : Y0×Y1 → R , (y0, y1) 7→ J(y0, γ0(y0), γ1(y0, y1)) .
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Radon-Nikodym density

For all u ∈ U0 × U1, we define T u : Y0 × Y1 → R+

(y0, y1) 7→ exp(−
−y2

1 + (y1 − y0 − u0)
2

2
)

and T γ(y0, y1) = T γ0(y0)(y0, y1).

We can show that the distribution Y?(P) of the
observations has density T γ with respect to Q:

Y?(P)(dy0dy1) = T γ0(y0)(y0, y1) exp(−
y2

0 + y2
1

2
)
dy0dy1

2π
= T γ(y0, y1)Q(dy0dy1) .
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Reduction to an equivalent static problem

EP (J(Y0, U0, U1))

= EP (Jγ(Y0, Y1)) by definition of Jγ

= EY?(P) (Jγ) by definition of probability image

= EQ (T γJγ) by Y?(P) = T γQ

=

∫

Y0×Y1

J(y0, γ0(y0), γ1(y0, y1))T
γ0(y0)(y0, y1)︸ ︷︷ ︸

new cost

Q0(dy0)Q1(dy1) .
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A static problem

Introducing a new cost

J̃(u0, u1, y0, y1)
def
= J(y0, u0, u1)T

u0(y0, y1)

the original optimization problem becomes now a
static problem:

inf
γ0,γ1

∫

Y0×Y1

J̃(γ0(y0), γ1(y0, y1), y0, y1)Q0(dy0)Q1(dy1) .

Indeed, the observations are just noise y0 and y1, not
dynamical quantities affected by the controls.

Information patternsandoptimal stochastic control problems – p.39/51



Information structure

Let g : Y0 × Y1 → G be a measurable mapping:
• G = Y0 × Y1 and g(y0, y1) = (y0, y1);
• G = Y1 and g(y0, y1) = y1.

Let the information structure be captured by

u0 = φ0(y0) and u1 = φ1(g(y0, y1))

where φ0 : Y0 → U0, φ1 : G → U1.

γ0 = φ0 and γ1 = φ1 ◦ g .
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Exploiting sequentiality

inf
φ0 :

�

0 →

�

0 ,

φ1 :

�

→

�

1

∫

Y0×Y1

J̃(φ0(y0), φ1(g(y0, y1)), y0, y1)Q(dy0dy1)

= inf
φ0:Y0→U0

∫

Y0×Y1

Q(dy0dy1)

inf
u1∈U1

EQ

[
J̃(φ0(y0), u1, y0, y1) | g(y0, y1)

]
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Value function, state

inf
u1∈U1

EQ

[
J̃(φ0(y0), u1, y0, y1) | g(y0, y1)

]

= inf
u1∈U1

∫

Y0×Y1

J̃(φ0(y
′
0), u1, y

′
0, y

′
1)Q

g(dy′0dy
′
1, g(y0, y1))

= W1(φ0(·),Q
g(·, g(y0, y1))

where the value function W1(φ0(·), ρ) is defined over
• φ0 : Y0 → U0 and
• ρ distribution over Y0 × Y1.
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Policy independence of conditional

expectations holds true when

EQ

[
J̃(φ0(y0), u1, y0, y1) | g(y0, y1)

]

= EQ

[
J̃(u0, u1, y0, y1) | g(y0, y1)

]
u0=φ0(y0)

=

∫

Y0×Y1

J̃(φ0(y0), u1, y
′
0, y

′
1)Q

g(dy′0dy
′
1, g(y0, y1))

so that the value function can be defined as

W1(u0, ρ) = inf
u1∈U1

∫

Y0×Y1

J̃(u0, u1, y
′
0, y

′
1)ρ(dy

′
0dy

′
1)

over u0 ∈ U0 and ρ distribution over Y0 × Y1.
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Classical pattern

EQ

[
J̃(φ0(y0), u1, y0, y1) | y0, y1

]

= J̃(φ0(y0), u1, y0, y1)

= EQ

[
J̃(u0, u1, y0, y1) | y0, y1

]
u0=φ0(y0)
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Nonclassical pattern

EQ

[
J̃(φ0(y0), u1, y0, y1) | y1

]

=

∫

Y0

J̃(φ0(y
′
0), u1, y

′
0, y1)Q0(dy

′
0)

6= EQ

[
J̃(u0, u1, y0, y1) | y1

]
u0=φ0(y0)

=

∫

Y0

J̃(φ0(y0), u1, y
′
0, y1)Q0(dy

′
0)
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Comparison

Compared to the classical patter, there still is a
backward stochastic dynamic programming principle
but on a huger set consisting of mappings, and no
longer on variables.
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DEFINING INFORMATION:
A BRIEF OVERVIEW
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Three options for a structure on information

Information is a collection G of subsets of Ω (G ⊂ 2Ω)
called events. The more events, the more information.

• G is an algebra: non empty, stable under
complementation and finite union.

• G is a partition field (or π-field): non empty,
stable under complementation and unlimited
union.

• G is a σ-algebra (or σ-field, or even a field).

In any case, G is a lattice:

1. ∧ is the intersection of fields;

2. ∨ is the smallest field generated by the union.
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Alternative definitions

Information equivalence partition function partition field

relation with

on Ω of Ω domain Ω on Ω

Notation

�

(Ωi)i∈I X : Ω →

�

X

Example Ω × Ω (Ω) X : Ω → {0} {∅, Ω}

universal trivial constant trivial

Example {(ω, ω) | ω ∈ Ω} ({ω})ω∈Ω X = Id Ω 2Ω

equality discrete identity discrete

Correspond. classes atoms singletons atoms

pre-images B ∈ X

�

ω ⊂ Ω, ω ∈ Ω {Ωi, i ∈ I} X−1(x), x ∈

�

X ∩ B = {∅, B}

indistinguishable elements same image belong to

ω′

�

ω ∃i ∈ I , {ω, ω′} ⊂ Ωi X(ω) = X(ω′) same atom
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Operations on information

Information equivalence partition function partition field

relation with

on Ω of Ω domain Ω on Ω

Notation

�

(Ωi)i∈I X : Ω →
�

X

Compare

�

X ⊂

�

Y ΩX
i ∩ ΩY

j ∈ {∅, ΩX
i } ∃ϕ :

�
→

�

X ⊂ Y

classes inclusion X = ϕ(Y )

Or

�

X ∩

�

Y ΩX
i ∩ ΩY

j (X, Y ) X ∨ Y

intersection of classes Ω →

�

×

�

generated by

X ∪ Y

And (

�

X ∪

�

Y )∞ X ∧ Y = X ∩ Y

closure intersection
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Problem: the lattice is not distributive

Equipped with the operators ∧ and ∨, the set of all
partition fields is a lattice. However, it is not
distributive.

Indeed, the following inclusions




G ∧ (G ′ ∨ G ′′) ⊃ (G ∧ G ′) ∨ (G ∧ G ′′)

G ∨ (G ′ ∧ G ′′) ⊂ (G ∨ G ′) ∧ (G ∨ G ′′)

hold true, but not the equalities in general.

Information patternsandoptimal stochastic control problems – p.51/51


	
ormalsize A linear control-oriented stochastic model
	
ormalsize A LQG problem with linear solution
	
ormalsize Still LQG butldots nonlinear solution!
	
ormalsize Classical information pattern
	
ormalsize Nonclassical information patterns
	
ormalsize Plan
	
ormalsize Functional dependence of $EE ( X mid Y)
$ on \ the conditioning random variable $Y$
	
ormalsize 
	
ormalsize Infimum over variables emph {versus} over mappings
	
ormalsize 
	
ormalsize Primitive random variables
	
ormalsize Policies, control designs, information patterns
	
ormalsize Policies
	
ormalsize Information patterns and policies
	
ormalsize $sigma $-fields emph {versus} signals
	
ormalsize Control design
	
ormalsize Information patterns and control designs
	
ormalsize 
	
ormalsize Information patterns
	
ormalsize Exploiting sequentiality
	
ormalsize The dual effect of $U_0$
	
ormalsize We used a trickldots 
	
ormalsize Strictly classical pattern:\ perfect recall plus control transmission
	
ormalsize 
	
ormalsize Classical pattern: perfect recall
	
ormalsize Policy independence of conditional expectation
	
ormalsize Nonclassical pattern: control recall
	
ormalsize $varepsilon $-optimal policies
	
ormalsize Nonclassical pattern: no recall
	
ormalsize Signalling
	
ormalsize 
	
ormalsize Criterion and observations
	
ormalsize Probabilities
	
ormalsize Control design
	
ormalsize Cost criterion
	
ormalsize Radon-Nikodym density
	
ormalsize Reduction to an equivalent static problem
	
ormalsize A static problem
	
ormalsize Information structure
	
ormalsize Exploiting sequentiality
	
ormalsize Value function, state
	
ormalsize Policy independence of conditional\expectations holds true when
	
ormalsize Classical pattern
	
ormalsize Nonclassical pattern
	
ormalsize Comparison
	
ormalsize 
	
ormalsize Three options for a structure on information
	
ormalsize Alternative definitions
	
ormalsize Operations on information
	
ormalsize Problem: the lattice is emph {not} distributive

