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Outline of the presentation

In decision-making, risk and time are bedfellows,
but for the fact that an uncertain outcome is revealed after the decision

The talk moves along the number of decision stages: 1,2, more

Working out static examples

Two-stage linear stochastic programs

Two-stage stochastic programs and scenario decomposition

Two-stage stochastic programs with risk
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Working out classical examples

We will work out classical examples in Stochastic Optimization

I the blood-testing problem
static, only risk

I the newsvendor problem
static, only risk
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The blood-testing problem (R. Dorfman)

I A large number N of possibly diseased individuals
are subjected to a blood test

I Blood-testing method:
the blood samples of k individuals are pooled together
and analyzed together
I If the pool test is negative,

this one test suffices for the k individuals
I If the pool test is positive,

each of the k > 1 individuals must be tested separately,
and k + 1 tests are required, in all
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The blood-testing problem
is a static stochastic optimization problem

I Data:
I A large number N of individuals are subjected to a blood test
I The probability that the test is positive is p ∈]0, 1[ (small),

the same for all individuals
(a positive test means that the target individual has a specific
disease; the prevalence of the disease in the population is p)

I Individuals are stochastically independent

I Blood-testing method:
the blood samples of k individuals are pooled and analyzed together
I If the test is negative, this one test suffices
I If the test is positive, k + 1 tests are required, in all

I Optimization problem:
I Find the value of k which minimizes the expected number of tests
I Find the minimal expected number of tests
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What is a possible stochastic model?

I Sample space Ω (describes all possible outcomes)

I Primitive random variables (a way to describe relevant outcomes)

I Probability P on Ω (assigns weights to all possible outcomes)

Once equipped with a stochastic model,

I the number of diseased individuals in a group is a random variable,
which depends on the number k of individuals

I hence, the total number of tests is a random variable

Tk : Ω→ N

which depends on the number k of individuals,
with probability distribution P ◦ T−1

k on N,
hence mathematical expectation E(Tk)
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What is the expected number E(Tk) of tests?

I For the first pool {1, . . . , k}, the test is
I negative with probability (1− p)k (by independence) → 1 test
I positive with probability 1− (1− p)k → k + 1 tests

I When the pool size k is small,
compared to the number N of individuals,
the blood samples {1, . . . ,N} are split in approximately N/k groups,
so that the expected number of tests is

E(Tk) = J(k) ≈ N

k
[1× (1− p)k + (k + 1)× (1− (1− p)k)]
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The expected number E(Tk) of tests
displays a marked hollow
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In army practice, R. Dorfman achieved savings up to 80%

I The expected number of tests is

J(k) ≈ N

k
[1× (1− p)k + (k + 1)× (1− (1− p)k)]

I For small p,
J(k)/N ≈ 1/k + kp

I so that the optimal number of individuals per group is k∗ ≈ 1/
√
p

I and the minimal expected number of tests is about

J∗ ≈ J(k∗) ≈ 2
√
p × N < N

I William Feller reports that, in army practice,
R. Dorfman achieved savings up to 80%,
compared to making N tests (the worst case solution)
(take p = 1/100, giving k∗ = 11 ≈ 1/

√
1/100 = 10 and J∗ ≈ N/5)
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The optimal number Tk∗ of tests is a random variable
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What about risk?

I The optimal number of individuals per group is 11
if one minimizes the mathematical expectation E
of the number of tests
(see also the top right histogram above)

I But if one minimizes the Tail Value at Risk at level λ = 5%
of the number of tests (more on TVaRλ later),
numerical calculation show that, in the range from 2 to 33,
the optimal number of individuals per group is 5
(see also the bottom left histogram above)

I The bottom left histogram is more tight (less spread)
than the top right histogram
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The “newsboy problem” is now coined
the “newsvendor problem” ;-)
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The (single-period) newsvendor problem stands as
a classic in stochastic optimization

I Each morning, the newsvendor must decide how many copies
u ∈ U = {0, 1, 2 . . .} of the day’s paper to order:
u is the decision variable

I The newsvendor will meet a demand w ∈W = {0, 1, 2 . . .}:
the variable w is the uncertainty

I The newsvendor faces an economic tradeoff
I she pays the unitary purchasing cost c per copy
I she sells a copy at price p
I if she remains with an unsold copy, it is worthless (perishable good)

I The newsvendor’s costs j(u,w) depend both
on the decision u and on the uncertainty w :

j(u,w) = cu︸︷︷︸
purchasing

− p min{u,w}︸ ︷︷ ︸
selling

= max{cu − pu, cu − pw}
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What is an “optimal” solution to the newsvendor problem?
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For you, Nature is rather random or hostile?
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The newsvendor reveals her attitude towards risk in how
she aggregates outcomes with respect to uncertainty

I In the robust or pessimistic approach,
the (paranoid?) newsvendor minimizes the worst costs

min
u∈U

max
w∈W

j(u,w)︸ ︷︷ ︸
worst costs J(u)

as if Nature were malevolent

I In the stochastic or expected approach, the newsvendor solves

min
u∈U

EW[j(u,W)]︸ ︷︷ ︸
expected costs J(u)

as if Nature played stochastically (casino)
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If the newsvendor minimizes the worst costs

I We suppose that
I the demand w belongs to a set W = [[w [,w ]]]
I the newsvendor knows the set [[w [,w ]]]

I The worst costs are

J(u) = max
w∈W

j(u,w) = max
w∈[[w[,w]]]

[cu−p min{u,w}] = cu−p min{u,w [}

I Show that the order u∗ = w [ minimizes the above expression J(u)

I Once the newsvendor makes the optimal order u∗ = w [,
the optimal costs are

j(u∗, ·) : w ∈ [[w [,w ]]] 7→ −(p − c)w [

which, here, are no longer uncertain
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Does it pay to be so pessimistic?
Not if demands are drawn independently from a probability distribution
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If the newsvendor minimizes the expected costs

I We suppose that
I the demand is a random variable, denoted W
I the newsvendor knows

the probability distribution PW of the demand W

I The expected costs are

J(u) = EW[j(u,W)] = EW[cu − p min{u,W}]

I Find an order u∗ which minimizes the above expression J(u)
I by calculating J(u + 1)− J(u)
I then using the decumulative distribution function u 7→ P(W > u)

P(W > u?) ≈ c

p
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Here is an example of probability distribution and
of decumulative distribution for the demand
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Here stand some steps of the computation

J(u) = cu − pE[min{u,W}]
min{u,W} = u1{u<W} + W1{u≥W}

min{u + 1,W} = (u + 1)1{u+1≤W} + W1{u+1>W}

= (u + 1)1{u<W} + W1{u≥W}

min{u + 1,W} −min{u,W} = 1{u<W}

J(u + 1)− J(u) = c − pE[1{u<W}] = c − pP(W > u) ↑ with u

I If P(W > 0) = 1, then J(1)− J(0) = c − p < 0

I J(u + 1)− J(u)→u→+∞ c > 0
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Characterization of the optimal decision u∗

I Define the cut-off decisions u?[ and u?] by

u?[ = max{u , P(W > u) >
c

p
}
(
u ≤ u?[ ⇐⇒ J(u + 1) < J(u)

)
u?] = min{u , P(W > u) <

c

p
}
(
u ≥ u?] ⇐⇒ J(u + 1) > J(u)

)
I An optimal decision u∗ satisfies

u∗ ∈ {u?[ + 1, . . . , u?]} and J(u∗) = min{J(u?[ + 1), J(u?])}

I The optimal decision u∗ is unique if and only if u?[ + 1 = u?],
that is, if and only if

P(W > u? − 1) >
c

p
> P(W > u?)

I Once the newsvendor makes the optimal order u∗,
the optimal costs are the random variable

j(u∗,W) = cu∗ − p min{u∗,W}
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The distribution of the optimal costs displays lower costs
than with the naive deterministic solution u = E[W]
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The cumulated profits over 365 days reveal
that it pays to do stochastic optimization
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The ”deterministic” solution is optimal
for the ”deterministic” criterion

When you insert the mean value W = EW[W] into the cost function

j(u,w) ↪→ j(u,W)

I you obtain the ”deterministic” criterion

J(u) = j(u,W)

I hence the ”deterministic” optimization problem

min
u∈U

J(u) = min
u∈U

j(u,W)

I and a ”deterministic” optimal solution u that solves

J(u) = j(u,W) = min
u∈U

j(u,W)
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The ”stochastic” solution is optimal
for the ”stochastic” criterion

When you insert the random variable W into the cost function

j(u,w) ↪→ j(u,W)

I you obtain the ”stochastic” criterion

J̃(u) = EW[j(u,W)]

I hence the ”stochastic” optimization problem

min
u∈U

J̃(u) = min
u∈U

EW[j(u,W)]

I and a ”stochastic” optimal solution ũ that solves

J̃(ũ) = EW[j(ũ,W)] = min
u∈U

EW[j(u,W)]
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Optimality is relative to a criterion

solution
”deterministic” u ”stochastic” ũ

”deterministic” criterion J optimal suboptimal

”stochastic” criterion J̃ suboptimal optimal
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Optimality is relative to a criterion

solution
”deterministic” u ”stochastic” ũ

”deterministic” criterion J j(u,W) ≤ j(ũ,W)

”stochastic” criterion J̃ EW[j(u,W)] ≥ EW[j(ũ,W)]

Interpretation problems occur when one compares values J(u) and J̃(u),
instead of solutions u and ũ
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Optimality is relative to a criterion

I The ”deterministic” optimal solution u
achieves lower ”deterministic” costs than
the ”stochastic” optimal solution ũ

j(u,W) = min
u∈U

j(u,W) ≤ j(ũ,W)

I The ”stochastic” optimal solution ũ
achieves lower ”expected” costs than
the ”deterministic” optimal solution u

EW[j(ũ,W)] = min
u∈U

EW[j(u,W)] ≤ EW[j(u,W)]

I Interpretation problems occur
when one confuses solutions and criteria
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When the solution of a deterministic optimization problem
looks (wrongly) optimistic

I The ”deterministic” optimal solution u
seems to achieve less costs than
the ”stochastic” optimal solution ũ because

j(u,W) = min
u∈U

j(u,W)︸ ︷︷ ︸
−44.968856

≤ EW[j(ũ,W)] = min
u∈U

EW[j(u,W)]︸ ︷︷ ︸
−41.259519

I But this (true) inequality
cannot sustain a comparison between solutions
because the criterion has changed

”deterministic” solution︷ ︸︸ ︷
j(u,W) = min

u∈U
j(u,W)︸ ︷︷ ︸

”deterministic” criterion

≤
”stochastic” solution︷ ︸︸ ︷

EW[j(ũ,W)] = min
u∈U

EW[j(u,W)]︸ ︷︷ ︸
”stochastic” criterion
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To asses the solutions of a stochastic optimization problem
you need a proper stochastic benchmark

I In fact, the ”deterministic” optimal solution u
achieves lower expected costs than
the ”stochastic” optimal solution ũ because

EW[j(ũ,W)] = min
u∈U

EW[j(u,W)]︸ ︷︷ ︸
−41.259519

≤ EW[j(u,W)]︸ ︷︷ ︸
−32.498824

I and the full picture is the following

j(u,W) = min
u∈U

j(u,W)︸ ︷︷ ︸
−44.968856

≤ EW[j(ũ,W)] = min
u∈U

EW[j(u,W)]︸ ︷︷ ︸
−41.259519

≤ EW[j(u,W)]︸ ︷︷ ︸
−32.498824
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When deterministic optimization is (wrongly) optimistic
Let W be a random variable with mean W = EW[W], and suppose that
w 7→ j(u,w) is convex, for all decision u. Then, by Jensen inequality,

inf
u∈U

j(u,EW[W])︸ ︷︷ ︸
”deterministic” optimization problem

≤ inf
u∈U

EW[j(u,W)]︸ ︷︷ ︸
”stochastic” optimization problem

I If we suppose that the infima are minima, this gives

j(u,W)︸ ︷︷ ︸
”deterministic”
optimal solution

= min
u∈U

j(u,W) ≤ EW[j(u∗,W)]︸ ︷︷ ︸
”stochastic”

optimal solution

= min
u∈U

EW[j(u,W)]

I we immediately deduce that the ”deterministic” optimal costs
are less than the “expected” optimal costs

overly optimistic︷ ︸︸ ︷
j(u,W) ≤ EW[j(u∗,W)]

wrongly optimistic︷ ︸︸ ︷
≤ EW[j(u,W)]

Thus, with an improper benchmark, you may jump to wrong conclusions
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Where do we stand after having worked out two examples?

I When you move from deterministic optimization
to optimization under uncertainty,
you come accross the issue of risk attitudes

I Risk is in the eyes of the beholder ;-)
and materializes in the a priori knowledge on the uncertainties
I either probabilistic/stochastic

I independence and Bernoulli distributions in the blood test example
I uncertain demand faced by the newsvendor

modeled as a random variable
I or set-membership

I uncertain demand faced by the newsvendor modeled by a set

I In the end, when doing stochastic (cost) minimization,
selecting a “good” decision among many
resorts to selecting a “good” histogram of costs among many
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Where have we gone till now? And what comes next

I We have seen two examples of optimization problems
with a single deterministic decision variable,
and with a criterion including a random variable

I Now, we will turn to optimization problems
with two decision variables,
the first one deterministic and the second one random
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What awaits us

I We will lay out two ways to move
from one-stage deterministic optimization problems
to two-stage stochastic linear programs
I in one, we start from a deterministic convex piecewise linear program

(without constraints)
I in the other, we start from a deterministic linear program

with constraints

I We will outline the L-shaped method
to solve such two-stage linear stochastic programs
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We revisit the newsvendor problem
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Writing the newsvendor problem
as a linear program, in three steps

I We consider the stochastic optimization problem

min
u∈R

J(u) = EP[j(u,W)]

I where the decision variable u takes continuous real values, and

j(u,w) = cu − p min{u,w}

I and we show in three steps how to rewrite this problem
as a linear program
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Step 1: exploiting convex piecewise linearity of the criterion

First, we write

j(u,w) =cu − p min{u,w}
= max{cu − pu, cu − pw}
= min

v∈R
{v | v ≥ cu − pu , v ≥ cu − pw}
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Step 2: exploiting convexity
of the mathematical expectation

I We suppose that the demand W
can take a finite number S of possible values {w s , s ∈ S}

I where s denotes a scenario in the finite set S (S=card(S))

I and we denote πs the probability of scenario s, with∑
s∈S

πs = 1 and πs ≥ 0 , ∀s ∈ S
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Step 2: exploiting convexity
of the mathematical expectation

Second, we deduce

J(u) =EP[j(u,W)]

=
∑
s∈S

πs j(u,w s)

=
∑
s∈S

πs min
v s∈R
{v s | v s ≥ cu − pu , v s ≥ cu − pw s}

= min
(v s )s∈S∈RS

∑
s∈S

πsv s

under the constraints

v s ≥ cu − pu , v s ≥ cu − pw s , ∀s ∈ S
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Step 3: exploiting min min = min

Third, we minimize with respect to the original decision u ∈ U

min
u∈U

J(u) = min
u∈U,(v s )s∈S∈RS

∑
s∈S

πsv s

v s ≥ cu − pu , ∀s ∈ S
v s ≥ cu − pw s , ∀s ∈ S

This is a linear program
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The revisited newsvendor problem example
is a special case of a general mechanism
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From convex piecewise linear to linear programming

I The convex piecewise linear program (polyhedral)

min
x∈Rn

max
i=1,...,m

〈ci , x〉+ bi

I can be written as the linear program

min
x∈Rn

min
v∈R

v

v ≥ 〈ci , x〉+ bi , i = 1, . . . ,m
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From stochastic convex piecewise linear programming
to stochastic linear programming

I The stochastic convex piecewise linear program

min
x∈Rn

∑
s∈S

πs max
i=1,...,m

〈csi , x〉+ bsi

I can be written as the stochastic linear program

min
x∈Rn

min
(v s )s∈S∈RS

∑
s∈S

πsv s

v s ≥ 〈csi , x〉+ bsi , i = 1, . . . ,m , s ∈ S
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We revisit the newsvendor problem
when she/he is offered the possibility
to adjust after observing the demand
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We change the newsvendor problem
by adding a constraint

I We consider the stochastic optimization problem

min
u∈R
u≥W

J(u) = EP[j(u,W)]

I where the decision variable u takes continuous real values
and must satisfy the constraint u ≥W

I and where the cost function is now

j(u,w) = cu − pw
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The solution is over conservative

I If we suppose that the demand W
can take a finite number S of possible values w s , s ∈ S
I where s denotes a scenario in the finite set S (S=card(S))
I and we denote πs the probability of scenario s, with∑

s∈S

πs = 1 and πs > 0 , ∀s ∈ S

I then the stochastic optimization problem becomes

min
u∈R

∑
s∈S

πs j(u,w s)

under the constraints

u ≥ w s , ∀s ∈ S

I with (pessimistic) solution u∗ = maxs∈S w
s
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One way out consists in offering the newsvendor
a second (recourse) decision

I In the morning,
the newsvendor can order a quantity u0 ∈ R+ of product,
at unitary cost c0 > 0

I In the afternoon,
the newsvendor can order a quantity u1 ∈ R+ of product,
at unitary cost c1 > c0 > 0

I The constraints are now

u0 + u1 ≥W

I and the cost function is now

j(u0, u1,w) = c0u0 + c1u1 − pw
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Writing the newsvendor problem with recourse

I In the formulation

min
u0∈R

{us
1}s∈S∈R

S

∑
s∈S

πs j(u0, u
s
1,w

s)

under the constraints

u0 + us1 ≥ w s , ∀s ∈ S

I we express the fact that
I the decision u0 is the first one,

made before the demand materializes
I the decisions us

1 are the second ones,
made after the demand materializes
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The revisited newsvendor problem example
is a special case of a general mechanism



58/120

From linear to stochastic programming

I The linear program

min
x∈Rn
〈c , x〉
Ax + b ≥ 0 (∈ Rm)

I becomes a stochastic program

min
x∈Rn

∑
s∈S

πs 〈cs , x〉

Asx + bs ≥ 0 , ∀s ∈ S

I We observe that there are as many (vector) inequalities
as there are possible scenarios s ∈ S

Asx + bs ≥ 0 , ∀s ∈ S

and these inequality constraints can delineate
an empty domain for optimization
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Recourse variables need be introduced for feasability issues

I We introduce a recourse variable y = {y s}s∈S and the program

min
x,{y s}s∈S

∑
s∈S

πs
(
〈cs , x〉+ 〈ps , y s〉

)
y s ≥ 0 , ∀s ∈ S

Asx + bs + y s ≥ 0 , ∀s ∈ S

I so that the inequality Asx + bs + y s ≥ 0 is now possible,
at (unitary recourse) price vector p = {ps}s∈S

I Observe that such stochastic programs are huge problems,
with solution

(
x , {y s}s∈S

)
, but remain linear
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Two-stage stochastic programs with recourse can
become deterministic non-smooth convex problems

I The following function of x is convex, but nonsmooth

Qs(x)︸ ︷︷ ︸
value function

= min{〈ps , y〉 , y ≥ 0,Asx + bs + y ≥ 0}

I The original two-stage stochastic program with recourse

min
x,{y s}s∈S

∑
s∈S

πs
[
〈cs , x〉+ 〈ps , y s〉

]
y s ≥ 0 , ∀s ∈ S

Asx + bs + y s ≥ 0 , ∀s ∈ S

now becomes the deterministic nonsmooth convex program

min
x

∑
s∈S

πs
[
〈cs , x〉+ Qs(x)

]
I An optimal solution is now more likely to be an inner solution

(more robust)
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Roger Wets example

http://cermics.enpc.fr/~delara/TEACHING_PAST/

CEA-EDF-INRIA_2012/Roger_Wets1.pdf
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Robustification and convexification
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A linear problem in a deterministic framework

Two (normalized) actions x1, x2 of decarbonization, with

I (x1, x2) ∈ ∆ = {(x1, x2) | 0 ≤ x1, x2 , x1 + x2 ≤ 1} (simplex)
(third action x3 ≥ 0 corresponds to the statu quo,
with x1 + x2 + x3 = 1)

I respective unitary costs c1, c2

I respective unitary emissions reductions e1, e2

I emissions reduction target e#

min
(x1,x2)∈∆

c1x1 + c2x2

s.t. e1x1 + e2x2 ≥ e# (emissions reductions)

For instance, in a taxi company, x1 and x2 represent
fractions of vehicles switched from thermal to electric or hybrid
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Solutions (extreme) of the deterministic approach

Figure: Variables domain and solutions of the deterministic approach
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Fomulation of the multi-scenario approach
I We consider

I a finite set S of scenarios (future uncertainties)
I a family {es1 , es2 , c s1 , c s2 , ps}s∈S of possible values for

unitary emissions reduction factors es1 , e
s
2 , unitary costs c s1 , c

s
2 ,

and for the price ps of CO2 emission rights
I a family {πs}s∈S of nonnegative numbers summing to one,

where πs represents the probability of the scenario s
I and we set the stochastic optimization problem,

with a new recourse decision variable qs ,
representing buying emission rights after uncertainty is resolved

min
(x1,x2)∈∆,{qs}s∈S∈RS

+

∑
s∈S

πs [cs1x1 + cs2x2 + ps
emission rights︷︸︸︷

qs ]

s.t. es1x1 + es2x2 + qs ≥ e# , ∀s ∈ S

m

min
(x1,x2)∈∆

c̄1x1 + c̄2x2 +
∑
s∈S

πsps

convexification term︷ ︸︸ ︷
[e# − es1x1 − es2x2]+
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Fomulation of the multi-scenario approach
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2 ,

and for the price ps of CO2 emission rights
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where πs represents the probability of the scenario s
I and we set the stochastic optimization problem,

with a new recourse decision variable qs ,
representing buying emission rights after uncertainty is resolved

min
(x1,x2)∈∆,{qs}s∈S∈RS

+

∑
s∈S

πs [cs1x1 + cs2x2 + ps
emission rights︷︸︸︷

qs ]

s.t. es1x1 + es2x2 + qs ≥ e# , ∀s ∈ S
m

min
(x1,x2)∈∆

c̄1x1 + c̄2x2 +
∑
s∈S

πsps

convexification term︷ ︸︸ ︷
[e# − es1x1 − es2x2]+
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Solution (inner) of the stochastic approach

Figure: Variables domain and solution of the stochastic approach
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A quadratic toy problem
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A quadratic toy problem

Let c > 0 , d1 ≥ 0 , d2 ≥ 0

I Show that the (worst case) optimization problem

min
x∈R

1

2
cx2

x ≥ d1

x ≥ d2

has (worst case) solution

x̄ = max{d1, d2}

I What happens if we allow room for recourse?
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A quadratic toy problem with recourse

Let c > 0 , d1 ≥ 0 , d2 ≥ 0 , p1 > 0 , p2 > 0

I Show that the (stochastic) optimization problem

min
(x,y1,y2)∈R3

1

2

(
cx2 + p1y

2
1 + p2y

2
2

)
x + y1 = d1

x + y2 = d2

has a solution x∗ given by

x∗ =
p1

c + p1 + p2
d1 +

p2

c + p1 + p2
d2 +

c

c + p1 + p2
0

I Therefore, x∗ belongs to the convex generated by {0, d1, d2}, that is,

x∗ ∈ [0,max{d1, d2}]

I Compare with the (worst case) solution x̄ = max{d1, d2}
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Two stage stochastic optimization for fixing energy reserves
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Two stage stochastic optimization
for fixing energy reserves

I We formulate the determination of the level of energy reserves
in a day-ahead market
as a two stage stochastic optimization problem

I A decision has to be made at night of day J:
which quantity of the cheapest energy production units (reserve)
has to be mobilized
to meet a demand that will materialize at morning of day J + 1?

I Excess reserves are penalized

I Demand unsatisfied by reserves
has to be covered by costly extra units (recourse variables)

Hence, there is a trade-off to be assessed by optimization
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Stages

There are two stages, represented by the letter t (for time)

I t = 0 corresponds to night of day J

I t = 1 corresponds to morning of day J + 1
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Probabilistic model

I Demand, materialized on the morning of day J + 1,
takes a finite number S of possible values w s , where
s denotes a scenario in the finite set S (S=card(S))

I πs is the probability of scenario s

∀s ∈ S , πs > 0 ,
∑
s∈S

πs = 1

I Notice that we do not consider scenarios with zero probability
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Decision variables

I The decision variables are
I the scalar Q0 (reserve)
I the finite family (Qs

1)s∈S of scalars (recourse variables)

where
I at stage t = 0, the energy reserve is Q0

I at stage t = 1, a scenario s materializes
and the demand w s is observed,
so that one decides of the recourse quantity Qs

1

knowing the demand w s

I The decision variables can be considered as indexed by a tree with
I one root (corresponding to the index 0):

Q0 is attached to the root of the tree
I and as many leafs as scenarios in S

(each leaf corresponding to the index 1, s) :
each Qs

1 is attached to the leaf corresponding to s
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Optimization problem formulation

I The balance equation between supply and demand is

Q0 + Qs
1 = w s , ∀s ∈ S

I Energies mobilized at stages t = 0 and t = 1 differ
in terms of capacities and costs
I at stage t = 0, the energy production

I has maximal capacity Q]
0

I costs c0(Q0) to produce the quantity Q0

I at stage t = 1, the energy production
I has unbounded capacity
I costs c1(Q1) to produce the quantity Q1



77/120

Optimization problem formulation

We formulate the stochastic optimization problem

min
Q0,{Qs

1}s∈S

∑
s∈S

πs [c0(Q0) + c1(Qs
1)]

s.t. 0 ≤ Q0 ≤ Q]
0

0 ≤ Qs
1 ∀s ∈ S

w s = Q0 + Qs
1 ∀s ∈ S

I Here, we look for energy reserve Q0 and recourse energy Qs
1

so that the balance equation is satisfied (at stage t = 1)
at minimum expected cost

I By weighing each scenario s with its probability πs ,
the optimal solution (Q∗0 , (Q

s
1
∗)s∈S)

performs a compromise between scenarios
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Stochastic linear program
I We write the stochastic linear program

min
x,{y s}s∈S

∑
s∈S

πs
(
〈cs , x〉+ 〈ps , y s〉

)
x ≥ 0

Ax = b
T sx + W sy s = hs , ∀s ∈ S

I as a one-stage program

min
x

∑
s∈S

πs
(
〈cs , x〉+ Qs(x)

)
x ≥ 0

Ax = b

I where the second-stage value function Qs is given by

∀s ∈ S , Qs(x) = min
y s
〈ps , y s〉

T sx + W sy s = hs
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See the slides for the L-shaped method
by Vincent Leclère
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Where have we gone till now? And what comes next

I We have arrived at optimization problems
with two decision variables
I a first one deterministic
I a second one random (as it is indexed by the scenarios)

I We have presented a resolution method adapted to the linear case

I No, we move to possibly
nonlinear two stage stochastic optimization problems

I We will present resolution methods that, somehow surprisingly,
relax the assumption that the first decision variable is deterministic
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What awaits us

I We present a general form of two-stage stochastic programs
and we discuss different forms of the nonanticipativity constraint

I We show a scenario decomposition resolution method
adapted to two-stage stochastic programs that are strongly convex

I We outline the Progressive Hedging resolution method,
adapted to two-stage stochastic linear programs
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Finite scenarios case
Nonanticipativity constraint
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The finite scenarios case

I Probability space
(
S, 2S, {πs}s∈S

)
,

where s denotes a scenario in the finite set S
and πs is the probability of scenario s, with∑

s∈S
πs = 1 and πs > 0 , ∀s ∈ S

I Decision random variables
U0 : S→ U0, U1 : S→ U1, that is,
U0 = {us0}s∈S ∈ US

0, U1 = {us1}s∈S ∈ US
1
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Nonanticipativity constraint (finite scenarios case)

I Probability space
(
S, 2S, {πs}s∈S

)
I Real-valued decision random variables

U0 : S→ U0 = Rn0 , U1 : S→ U1 = Rn1 , that is,
U0 = {us0}s∈S ∈ US

0, U1 = {us1}s∈S ∈ US
1

Nonanticipativity constraint

⇐⇒ the random variable U0 is deterministic

⇐⇒ U0 = E(U0)

⇐⇒ us0 =
∑
s′∈S

πs′us
′

0 , ∀s ∈ S

⇐⇒ us0 = us
′

0 , ∀s ∈ S , ∀s ′ ∈ S
⇐⇒ ∃u0 ∈ U0 , us0 = u0 , ∀s ∈ S
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We formulate a two-stage stochastic optimization problem
on a tree

I Data

Criterion j : U0︸︷︷︸
initial

decision

×

recourse
variable︷︸︸︷
U1 × S︸︷︷︸

scenario

→ R ∪ (+∞)

and set-valued mapping U1 : U0 × S→ 2U1

I Stochastic optimization problem

min
u0,{us

1}s∈S

∑
s∈S

πs j s
(
u0, u

s
1

)
u0 ∈ U0

us1 ∈ U s
1

(
u0

)
, ∀s ∈ S

I Solutions
(
u0, {us1}s∈S

)
are naturally indexed by a tree

I with one root
I and S = card(S) leaves
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We start with a two-stage stochastic optimization problem
formulated on a tree

Criterion j : X︸︷︷︸
initial

decision

×

recourse
variable︷︸︸︷

Y × S︸︷︷︸
scenario

→ R ∪ (+∞)

and set-valued mapping Y : X× S→ 2Y

I Stochastic optimization problem

min
x,{y s}s∈S

∑
s∈S

πs j s
(
x , y s

)
x ∈ X
y s ∈ Ys

(
x
)
, ∀s ∈ S

I Solutions
(
x , {y s}s∈S

)
are naturally indexed by a tree

I with one root
I and S = card(S) leaves
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We transform the two-stage stochastic optimization
problem by extending the solution space

I We consider initial decisions {x s}s∈S and the problem

min
x,{x s}s∈S,{y s}s∈S

∑
s∈S

πs j s
(
x s , y s

)
x s ∈ X , ∀s ∈ S
y s ∈ Ys(x s) , ∀s ∈ S
x s = x , ∀s ∈ S
x ∈ X

I This problem has the same solutions
(
x , {y s}s∈S

)
as the original one
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Scenarios can be organized like a fan or like a tree

t�✁ t�✂ t�✄ t�☎ t�✆ t�✁ t�✂ t�✄ t�☎ t�✆

◆ ✝✞✟✠✡☛☞✌✝ ❙✞✟✠✡☛☞✌✝ ✍☛✟✟
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We transform the two-stage stochastic optimization
problem from a tree to a fan

I We consider initial decisions {x s}s∈S and the problem

min
{x s}s∈S,{y s}s∈S

∑
s∈S

πs j s
(
x s , y s

)
x s ∈ X , ∀s ∈ S
y s ∈ Ys(x s) , ∀s ∈ S
x s =

∑
s′∈S π

s′x s
′
, ∀s ∈ S

I Solutions {x s , y s}s∈S are naturally indexed by a fan
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Primal and dual problems

I The primal problem is

min
{x s ,y s}s∈S

max
{λs}s∈S

∑
s∈S

πs
(
j s
(
x s , y s

)
+ λs

(
x s −

∑
s′∈S

πs′x s
′))

x s ∈ X , ∀s ∈ S
y s ∈ Ys(x s) , ∀s ∈ S

I The dual problem is

max
{λs}s∈S

min
{x s ,y s}s∈S

∑
s∈S

πs
(
j s
(
x s , y s

)
+ λs

(
x s −

∑
s′∈S

πs′x s
′))

x s ∈ X , ∀s ∈ S
y s ∈ Ys(x s) , ∀s ∈ S
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We can translate the multipliers λs in the dual problem

I Denote by X : S→ X the random variable X(s) = x s , s ∈ S
I Denote by Λ : S→ R the random variable Λ(s) = λs , s ∈ S

∑
s∈S

πsλs
(
x s −

∑
s′∈S

πs′x s
′)

=E
[
Λ
(
X− E[X]

)]
=E
[
ΛX
]
− E[Λ]E[X]

=E
[(

Λ− E[Λ]
)
X
]

=
∑
s∈S

πs
(
λs −

∑
s′∈S

πs′λs
′)

︸ ︷︷ ︸
projected multiplier λ

s

x s



96/120

Restricting the multiplier

Then the dual problem is

max
{λs}s∈S

min
{x s ,y s}s∈S

∑
s∈S

πs
(
j s
(
x s , y s

)
+
(
λs −

∑
s′∈S

πs′λs
′)
x s
)

x s ∈ X , ∀s ∈ S
y s ∈ Ys(x s) , ∀s ∈ S
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The dual problem can be decomposed scenario by scenario

I The dual problem

max
{λs}s∈S

min
{x s ,y s}s∈S

∑
s∈S

πs
(
j s
(
x s , y s

)
+
(
λs −

∑
s′∈S

πs′λs
′)
x s
)

x s ∈ X , ∀s ∈ S
y s ∈ Ys(x s) , ∀s ∈ S

I is equivalent to

max{λs}s∈S

∑
s∈S

πs min(x s ,y s )

(
j s
(
x s , y s

)
+
(
λs −

∑
s′∈S π

s′λs
′)
x s
)

x s ∈ X
y s ∈ Ys(x s)
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Under proper assumptions
— to be seen later, as they require recalls in duality theory —
the dual problem can be solved by an algorithm “à la Uzawa”

yielding the following
scenario decomposition algorithm
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Scheme of the scenario decomposition algorithm

Data: step ρ > 0, initial multipliers
{
λs(0)

}
s∈S and first decision x̄(0);

Result: optimal first decision x;
repeat

forall scenarios s ∈ S do
Solve the deterministic minimization problem for scenario s,

with a penalization +λs(k)

(
xs(k+1) − x̄(k)

)
,

and obtain optimal first decision xs(k+1);

Update the mean first decisions

x̄(k+1) =
∑
s∈S

πsxs(k+1) ;

Update the multipliers by

λs(k+1) = λs(k) + ρ
(
xs(k+1) − x̄(k+1)

)
, ∀s ∈ S ;

until xs(k+1) −
∑

s′∈S π
s′xs

′

(k+1) = 0 , ∀s ∈ S;
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Recalls and exercises on continuous optimization

http://cermics.enpc.fr/~delara/TEACHING/slides_optimization.pdf
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Progressive Hedging

Rockafellar, R.T., Wets R. J-B.
Scenario and policy aggregation in optimization under uncertainty,

Mathematics of Operations Research, 16, pp. 119-147, 1991

http://cermics.enpc.fr/~delara/TEACHING/

CEA-EDF-INRIA_2012/Roger_Wets4.pdf
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The “plus” of Progressive Hedging

I In addition to the variables x s , we introduce a new variable x̄ ,
so that the non-anticipativity constraint becomes x s = x̄

I We dualize this constraint with an augmented Lagrangian term,
yielding to an optimization problem with variables x ·, x̄ , λ

I When the multiplier λ is fixed,
we minimize the primal problem which, unfortunately,
is not separable with respect to scenarios s

I Luckily, we recover separability by solving sequentially
“à la Gauss-Seidel”

minx· L(x ·, x̄(k), λ(k))
minx̄ L(x ·(k+1), x̄ , λ(k))

because the first problem is separable with respect to scenarios s
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Scheme of the Progressive Hedging algorithm

Data: penalty r > 0, initial multipliers
{
λs(0)

}
s∈S and first decision

x̄(0);
Result: optimal first decision x;
repeat

forall scenarios s ∈ S do
Solve the deterministic minimization problem for scenario s,

with penalization +λs(k)

(
xs(k+1) − x̄(k)

)
+ r

2

∥∥∥xs(k+1) − x̄(k)

∥∥∥2

,

and obtain optimal first decision xs(k+1);

Update the mean first decisions

x̄(k+1) =
∑
s∈S

πsxs(k+1) ;

Update the multipliers by

λs(k+1) = λs(k) + r
(
xs(k+1) − x̄(k+1)

)
, ∀s ∈ S ;

until xs(k+1) −
∑

s′∈S π
s′xs

′

(k+1) = 0 , ∀s ∈ S;
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What awaits us

I We show how we can also obtain two-stage risk-averse programs,
when we handle risk by means of the Tail Value at Risk
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What happens if we want to minimize risk,
not mathematical expectation?

I Instead of minimizing the mathematical expectation

E[C] (=
∑
s∈S

πsCs)

I we want to minimize the Tail Value at Risk (at level λ ∈ [0, 1[),
given by the Rockafellar-Uryasev formula

TVaRλ[C] = inf
r∈R

{
E[(C− r)+]

1− λ
+ r

}
I whose limit cases are mean and worst case

TVaR0[C] = E[C]

TVaR1[C] = lim
λ→1

TVaRλ[C] = sup
ω∈Ω

C(ω)
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Minimizing the Tail Value at Risk of costs:
convex piecewise linear programming formulation

I The risk-averse stochastic convex piecewise linear program

min
x∈Rn

min
r∈R

{
r +

1

1− λ
∑
s∈S

πs
(

max
i=1,...,m

〈csi , x〉+ bsi − r
)

+

}

I can be written as the convex piecewise linear program

min
x∈Rn

min
r∈R

min
(us )s∈S∈RS

r +
1

1− λ
∑
s∈S

πs(us − r)+

us ≥ 〈cs1 , x〉+ bs1 , ∀s ∈ S
...
us ≥ 〈csm , x〉+ bsm , ∀s ∈ S
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Minimizing the Tail Value at Risk of costs:
linear programming formulation

I The risk-averse stochastic convex piecewise linear program

min
x∈Rn

min
r∈R

{
r +

1

1− λ
∑
s∈S

πs
(

max
i=1,...,m

〈csi , x〉+ bsi − r
)

+

}

I can be written as the linear program

min
x∈Rn

min
r∈R

min
(v s )s∈S∈RS

r +
1

1− λ
∑
s∈S

πsv s

v s ≥ 〈cs1 , x〉+ bs1 − r , ∀s ∈ S
...
v s ≥ 〈csm , x〉+ bsm − r , ∀s ∈ S

v s ≥ 0 , ∀s ∈ S
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How to use risk-averse stochastic programming in practice?

I Denote by x∗λ the (supposed unique) solution

I As 1− λ measures the upper probability of risky events,
start with λ = 0 and display, to the decision-maker,
the risk-neutral solution x∗0 and the probability distribution
(histogram) of the random costs

s 7→ max
i=1,...,m

〈csi , x∗0 〉+ bsi

I Then move to the confidence level λ = 0.99 (only events with
probability less than 1% are considered), and do the same

I For a range of possible values for λ, display, to the decision-maker,
the solution x∗λ and the histogram of the random costs

s 7→ max
i=1,...,m

〈csi , x∗λ〉+ bsi

I The decision-maker should choose his confidence level λ



112/120

We can also minimize the mean costs,
while controlling for large costs

I Instead of only minimizing the mathematical expectation

E[C] (=
∑
s∈S

πsCs)

I we add the constraint that the Tail Value at Risk (at level λ ∈ [0, 1[)
is not too large

TVaRλ[C] = inf
r∈R

{
E[(C− r)+]

1− λ
+ r

}
≤ C ]

I We can also choose to minimize a mixture

θE[C]+(1− θ)TVaRλ[C] = inf
r∈R

{
θE[C] + (1− θ)

E[(C− r)+]

1− λ
+ (1− θ)r

}
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Minimizing a mixture:
convex piecewise linear programming formulation

I The risk-averse stochastic convex piecewise linear program

min
x∈Rn

min
r∈R

{
θ
∑
s∈S

πs max
i=1,...,m

〈csi , x〉+ bsi

+(1− θ)r +
1− θ
1− λ

∑
s∈S

πs
(

max
i=1,...,m

〈csi , x〉+ bsi − r
)

+

}

I can be written as the convex piecewise linear program

min
x∈Rn

min
r∈R

min
(us )s∈S∈RS

∑
s∈S

πs

{
θus + (1− θ)r +

1− θ
1− λ

(us − r)+

}
us ≥ 〈cs1 , x〉+ bs1 , ∀s ∈ S
...
us ≥ 〈csm , x〉+ bsm , ∀s ∈ S
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Minimizing a mixture:
linear programming formulation

I The risk-averse stochastic convex piecewise linear program

min
x∈Rn

min
r∈R

{
θ
∑
s∈S

πs max
i=1,...,m

〈csi , x〉+ bsi

+(1− θ)r +
1− θ
1− λ

∑
s∈S

πs
(

max
i=1,...,m

〈csi , x〉+ bsi − r
)

+

}

I can be written as the linear program

min
x∈Rn

min
r∈R

min
(us )s∈S∈RS

min
(v s )s∈S∈RS

∑
s∈S

πs

{
θus + (1− θ)r +

1− θ
1− λ

v s

}
us ≥ 〈cs1 , x〉+ bs1 , ∀s ∈ S
...
us ≥ 〈csm , x〉+ bsm , ∀s ∈ S
v s ≥ us − r , ∀s ∈ S
v s ≥ 0 , ∀s ∈ S
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How to use risk-averse stochastic programming in practice?

I Denote by x∗λ,θ the (supposed unique) solution

I As 1− λ measures the upper probability of risky events,
let the decision-maker choose a confidence level λ
— λ = 0.99 (only events with probability less than 1% are
considered), λ = 0.95, λ = 0.90, for instance

I Start with θ = 0 and display, to the decision-maker,
the risk-neutral solution x∗λ,0 (which does not depend on λ)
and the probability distribution (histogram) of the random costs

s 7→ max
i=1,...,m

〈
csi , x

∗
λ,0

〉
+ bsi

I Increase θ from 0 to 1, and display, to the decision-maker,
the solution x∗λ,θ and the histogram of the random costs

s 7→ max
i=1,...,m

〈
csi , x

∗
λ,θ

〉
+ bsi

I The decision-maker reveals his confidence level λ
and his mixture (θ, 1− θ) as he selects his prefered histogram
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Outline of the presentation

Working out static examples
The blood-testing problem
The newsvendor problem
Discussing how to assess that a solution is optimal

Two-stage linear stochastic programs
Moving from deterministic convex piecewise linear programs
Moving from linear programs with constraints
Examples
The L-shaped method

Two-stage stochastic programs and scenario decomposition
Two-stage stochastic programs and nonanticipativity constraint
Scenario decomposition resolution methods
Progressive Hedging

Two-stage stochastic programs with risk
Moving from deterministic convex piecewise linear programs
Moving from linear programs with constraints
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Minimizing the Tail Value at Risk of costs:
linear programming formulation

I The risk-averse stochastic linear program with recourse

min
x,{y s}s∈S

min
r∈R

{
r +

1

1− λ
∑
s∈S

πs
(
〈cs , x〉+ 〈ps , y s〉

)
+

}

I can be written as the linear program

min
x,{y s}s∈S

min
r

min
(v s )s∈S

r +
1

1− λ
∑
s∈S

πsv s

v s − 〈cs , x〉 − 〈ps , y s〉 ≥ 0 , ∀s ∈ S
v s ≥ 0 , ∀s ∈ S
y s ≥ 0 , ∀s ∈ S

Asx + bs + y s ≥ 0 , ∀s ∈ S
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Minimizing a mixture:
linear programming formulation

I The risk-averse stochastic linear program with recourse

min
x,{y s}s∈S

min
r∈R

{
θ
∑
s∈S

πs
(
〈cs , x〉+ 〈ps , y s〉

)
+ (1− θ)r +

1− θ
1− λ

∑
s∈S

πs
(
〈cs , x〉+ 〈ps , y s〉

)
+

}

I can be written as the linear program

min
x,{y s}s∈S

min
r

min
(us ,v s )s∈S

∑
s∈S

πs

{
θus + (1− θ)r +

1− θ
1− λ

v s

}
us − 〈cs , x〉 − 〈ps , y s〉 ≥ 0 , ∀s ∈ S

v s − us + r ≥ 0 , ∀s ∈ S
v s ≥ 0 , ∀s ∈ S
y s ≥ 0 , ∀s ∈ S

Asx + bs + y s ≥ 0 , ∀s ∈ S
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What land have we covered?

I We have introduced one and two-stage
optimization problems under uncertainty

I Thanks to a general framework, using risk measures,
stochastic and robust optimization
appear as (important) special cases

I We have presented resolution methods by scenario decomposition
for two-stage optimization problems

I Dealing with multi-stage optimization problems
requires specific tools, as is the notion of state
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“Self-promotion, nobody will do it for you” ;-)
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