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Chuquicamata is an example of open-pit mine
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Open-pit mine optimal scheduling (OPMOS)

Mines are described by means of a block model
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Open-pit mine optimal scheduling (OPMOS)

Blocks are extracted sequentially

Time t = t0, . . . ,T is discrete: T − t0 + 1 number of periods

The set of blocks extracted during period t is denoted by B(t)

Blocks are extracted sequentially under the following hypothesis:

only blocks at the surface may be extracted
capacity constraints: no more than a given number of blocks can be
extracted in one time unit (this number can be uncertain, due to
equipment failure)

cardinalB(t) ≤ capacity

slope constraints: a block cannot be extracted if the slope made with
one of its neighbours is too high, due to physical requirements
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Open-pit mine optimal scheduling (OPMOS)

Slope constraints are materialized
in the Chuquicamata mine
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Open-pit mine optimal scheduling (OPMOS)

Profit models capture economic data

Nathanael BEEKER, Michel DE LARA CERMICS, Université Paris-Est, France ()OVIMINE, Valparaiso, 9 January 2012 November 4, 2012 8 / 42



Open-pit mine optimal scheduling (OPMOS)

A profit model is built upon a block model

Each block b ∈ B is a three-dimensional cuboid

identified as b = (c , d) by

its column c ∈ C
its depth index d ∈ {1, . . . ,D}

containing attributes ωb(t) =
(
ω1

b(t), · · · , ωl
b(t)

)
∈ Rl

either intrinsic attributes (which do indeed depend upon block b)

ore grade (does not depend upon time t)
extraction cost (may depend upon time t)
density, volume, pollutants. . .

or external attributes

ore prices
capacity constraints

which gives its net value or worth

wb(t) = Worth(ωb(t)) = Price(t) · Ore(b)− Cost(b, t)
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Open-pit mine optimal scheduling (OPMOS)

An example of data file

X Y Z Density(t/m3) Tonelaje ValProc(US$) ValNOProc(US$)

4885 8250 735 2.7 72900 -437400 -72900
4915 8250 735 2.7 72900 -437400 -72900
4945 8250 735 2.7 72900 -437400 -72900
4975 8250 735 2.7 72900 -437400 -72900
5005 8250 735 2.7 72900 -437400 -72900
5035 8250 735 2.7 72900 -437400 -72900
5065 8250 735 2.7 72900 -437400 -72900
5125 8250 735 0.065 1755 -10530 -1755
5155 8250 735 0.187 5049 -30294 -5049
5185 8250 735 1.159 31293 -187758 -31293
5215 8250 735 2.267 61209 -367254 -61209
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Open-pit mine optimal scheduling (OPMOS)

Open-pit mine sequencing optimization
is the mathematical issue

block model + profit model

discount rate (for instance rf = 10%)

1 $ next year ≡ 1
1+10% $ seen from today

the net present value (NPV) of an admissible extraction sequence(
B(·) := B(t0), . . . ,B(T )

)
is the

discounted sum of extracted block values

T∑
t=t0

(
1

1 + rf
)t
∑

b∈B(t)

wb(t)

open-pit mine optimal scheduling:
admissible extraction sequences which
maximize the net present value (NPV)
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Optimal and heuristics simulation for the deterministic problem State of the art in numerical methods

State of the art in numerical methods

Size of instances:
Up to 5-10 millions blocks
Several dozens of years of exploitation

Exact methods: Integer linear programming
Up to 1,000 blocks

Authors Max size Optimality Time

Cacetta&Hill (2003) 209,664 2.5% 4h
Chicoisne et al. (2009) 5,000,000 3% 1h
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Optimal and heuristics simulation for the deterministic problem Adaptive stategies

Some algorithms may be seen as adaptive strategies

Myopic strategy: best top block selection

b?(t) = arg max
blocks b at the surface

wb(t)

k-step look ahead strategy
compute the NPV for all possible admissible selections of k blocks
ahead, and choose the optimal one

B?(t) = arg max
admissible B(t) at time t

∑
b∈B(t)

wb(t)

A strategy is designed off-line but is implemented on-line,
depending on the “state” at time t (adaptive)

Nathanael BEEKER, Michel DE LARA CERMICS, Université Paris-Est, France ()OVIMINE, Valparaiso, 9 January 2012 November 4, 2012 14 / 42



Optimal and heuristics simulation for the deterministic problem Index based heuristics

Multi-armed bandit
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Optimal and heuristics simulation for the deterministic problem Index based heuristics

Structure of a “jobs dynamical model”

Finite number of jobs j = 1, . . . , J

To each job j is attached a local state xj

At each time t, a decision c consists in selecting one of the jobs in
the set U = {1, . . . , J}
If the job j is selected at period t,

the local state xj(t) evolves according to a local dynamics Dynj , giving

the new state xj(t + 1) = Dynj

(
xj(t), ω(t)

)
, where the random

variables ω(t0), . . . , ω(T − 1) are independent,
other local states xi (t) do not change: xi (t + 1) = xi (t) for i 6= j
a reward Rewardj

(
xj(t), ω(t)

)
is obtained
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Optimal and heuristics simulation for the deterministic problem Index based heuristics

Structure of an index strategy

Finite number of jobs j = 1, . . . , J

To each job j is attached a local state xj

To each job j is attached an index function Indexj(xj) which depends
on the local state xj

At each time t, select the job with the highest index among all
Indexj

(
xj(t)

)
, j = 1, . . . , J

An index strategy is an example of decomposition-coordination:

decomposition: the global state is decomposed in J local states, each
with its dynamics,

coordination: the DM updates the maximum of the indexes and the
arg max, and takes the decision accordingly
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Optimal and heuristics simulation for the deterministic problem Index based heuristics

The Gittins index is specific

Indexj(x0
j ) = sup

stopping times τ
E


τ∑

t′=0

(
1

1 + rf
)t′
Rewardj

(
xj(t), ω(t)

)
τ∑

t′=0

(
1

1 + rf
)t′

 ,

where
xj(t ′ + 1) = Dynj

(
xj(t ′), ω(t)

)
, xj(0) = x0

j
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Optimal and heuristics simulation for the deterministic problem Index based heuristics

The Gittins index proves optimal under specific settings

Assumptions:

jobs dynamical model,

criterion of the form

E

[
+∞∑
t=0

(
1

1 + rf
)tRewardj

(
xj(t)(t), ω(t)

)]

Conclusion: a Gittins index strategy is optimal
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Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

The open-pit mine scheduling problems shares
characteristics with a job problem

Jobs = columns

Local state = depth of highest block

Criterion = NPV

Problem: slope restrictions, loss of the independence between jobs
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Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

Various index formulas can be imagined in mining

Indexc(x)

Nathanael BEEKER, Michel DE LARA CERMICS, Université Paris-Est, France ()OVIMINE, Valparaiso, 9 January 2012 November 4, 2012 21 / 42



Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

An index lower bound can be obtained for OPMOS

Define an index: Gittins index, top block value, etc.

The index with slope constraints strategy selects the column with the
highest index only among admissible columns

NPV ( index with slope constraints ) ≤ max
all strategies

NPV
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Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

A Gittins index upper bound can be obtained for OPMOS

Consider the optimal scheduling problem without slope constraints

Since the space of strategies is enlarged, the optimal value for the
scheduling problem without slope constraints is an upper bound for
the original optimal scheduling problem with slope constraints

In this case, we have a jobs dynamical model, with a criterion of the
discounted form: therefore, the Gittins index strategy is optimal

max
all strategies

NPV ≤ NPV ( Gittins index without slope constraints )
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Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

Numerical results

Mine Blocs Index TopoSort LP UBIndex

PM1 400 358.42 432.14 439.30 521.53
0.43s 307s 307s 0.08s

PM2 400 319.74 438.60 439.84 674.24
0.27s 375s 375s 0.07s

PM3 400 139.50 149.06 198.84 318.72
0.27s 362s 362s 0.07s

MM1 1125 744.78 820.05 894.15 1138.23
1.12s 3627s 3627s 0.14s

MM2 1125 346.72 315.70 513.38 1108.86
1.14s 4257s 4257s 0.14s

MarvSB 2800 157.8 N.A. N.A. 206.7
2.48s 0.32s

Marvin 53000 392.9 N.A. N.A. 488.5
1036.0s 15.1s
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Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

Ultimate profile after extraction with index strategy
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A new framework for the OPMOS problem with uncertainty OPMOS with uncertainty

When the block model is uncertain, a new problem arises

Uncertainty on

Ore grade: geostatistics (Kriging)

Prices: financials models

Capacity constraints (failures)

open-pit mine optimal scheduling with uncertainty
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A new framework for the OPMOS problem with uncertainty Scenarii based strategy design

Scenarii generation is a common practice

In practice : generation of scenarii by conditional simulation

A simulation technique developped by Journel (1983)

A reference article by Ravenscroft (1992)
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A new framework for the OPMOS problem with uncertainty Scenarii based strategy design

Sinces the nineties, scenarii-based strategies are designed

Denby and Schofield (1995): deterministic optimization on each
scenario, and combination by genetic algorithm

Dimitrakopoulos and Ramazan (2004): “probability constraints”

Dimitrakopoulos et al. (2007): maximum upside/minimum downside
approach

Boland et al. (2008): stochastic programming
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A new framework for the OPMOS problem with uncertainty A new framework

Scenarii are collections of uncertain attributes

Collection of ”uncertain” attributes at t:

ω(t) := (ωb(t))b∈B

Attributes up to t:
ωt := (ω(t0), . . . , ω(t))

Scenario:
ω(·) := (ω(t0), . . . , ω(T ))

Set of scenarii
Ω ⊂ RN·(T−t0)·l

Deterministic case when Ω is a singleton
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A new framework for the OPMOS problem with uncertainty A new framework

Uncertain attributes are numerous in mining

Attributes ωb(t) =
(
ω1

b(t), · · · , ωl
b(t)

)
∈ Rl

either intrinsic attributes (which do indeed depend upon block b)

ore grade (does not depend upon time t)
extraction cost (may depend upon time t)
density, volume, pollutants. . .

or external attributes

ore prices
capacity constraints
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A new framework for the OPMOS problem with uncertainty A new framework

A probabilistic formalism for offline information

Probability distribution on the set Ω of scenarii:

D(ωb(t), b ∈ B, t = t0, . . . ,T )

Example: the Gaussian case

(Ore(b))b∈B Gaussian vector of size N
of mean vector µ = (E[Ore(b)])b∈B
and covariance matrix Σ = (Cov(Ore(b),Ore(b′)))b,b′∈B

constant price Price(t) = Price and cost Cost(b, t) = Cost

no capacity failure

then wb(t), b ∈ B, t ∈ [t0, . . . ,T ] is
Gaussian vector of size N · (T − t0)
with mean vector and covariance matrix calculated with µ and Σ
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A new framework for the OPMOS problem with uncertainty A new framework

Online information feeds decision

Decision variable u(t) = B(t) ∈ B
(
t, ω(·)

)
⊂ B

corresponds to the blocks removed during period t = t0, . . . ,T

Via B
(
t, ω(·)

)
, we can possibly capture slope and capacity constraints

Past decisions

ut = (u(t0), . . . , u(t)) and u(·) = (u(t0), . . . , u(T ))

Information: It is a σ-algebra on the history space Ω× UT−t0+1
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A new framework for the OPMOS problem with uncertainty A new framework

Information patterns describe the interplay between
information and decision

Blind information pattern:

It = {Ω,∅} ⊗ {UT−t0+1,∅}

Clairvoyant information pattern:

It = σ({wb(s), b ∈ B, s = t0, . . . ,T} ⊗ {UT−t0+1,∅})

Blocks that have been removed up to period t are

X (t, ut−1) =
t⋃

s=t0

u(t) ⊂ B

Cumulative information pattern is

It = σ{ωb(s), u(s)|s = t0, . . . , t − 1, b ∈ X (us−1, s)}
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A new framework for the OPMOS problem with uncertainty A new framework

Decision rules is the appropriate notion of solution

A decision rule is a mapping

rule : {t0, . . . ,T} × Ω× UT−t0+1 → U

such that rule(t, ·) is measurable with respect to It
An admissible rule generates admissible decisions u(t), which satisfy
slopes and capacity constraints
The set of admissible rules is denoted Dad
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A new framework for the OPMOS problem with uncertainty A new framework

What is a policy?

Richard Bellman autobiography, Eye of the Hurricane

Again the intriguing thought: A solution is not merely a set of
functions of time, or a set of numbers, but a rule telling the
decisionmaker what to do; a policy.
’Do thus-and-thus if you find yourself in this portion of state
space with this amount of time left.’
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A new framework for the OPMOS problem with uncertainty A new framework

Controls may be open-loop or closed-loop

Open-loop strategy: rule only depends on t

Closed-loop strategy: rule depends on the information (may be
computationaly out of reach because of the size of information)

Open-loop with feedback optimization (OLFO)

Compute the information state, for instance the conditional law

Dt = D(ωb(t), b ∈ B, t = t0, . . . ,T | knowledge at time t)

Find a control sequence (u(t), . . . , u(T )) that minimizes in open-loop
the chosen criterion, using the information state
Apply the first decision u(t) of the sequence
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A new framework for the OPMOS problem with uncertainty A new framework

An objective function captures the economic goal

Objective or gain function Crit(u(·), ω(·)) to be maximized

Stochastic final pit

Crit(u(·), ω(·)) =
T∑

t=t0

∑
b∈u(t)

wb(t)

Net Present Value

Crit(u(·), ω(·)) =
T∑

t=t0

ρ(t)
∑

b∈u(t)

wb(t)

Inclusion of processing costs, storage. . .
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A new framework for the OPMOS problem with uncertainty A new framework

Under uncertainty, many criteria are possible
and they reflect risk attitudes

Unlike deterministic problem,
there are many ways to agregate uncertainties

Expected criterion: maxrule∈Dad EP[Crit(u(·), ω(·))]

Robust optimization: maxrule∈Dad minω(·)∈Ω Crit(u(·), ω(·))

Multiprior approach (different probabilities P forming a set P):
maxrule∈Dad minP∈P EP[Crit(u(·), ω(·))]

Given two parameters α ∈ R and p ∈ [0, 1], we define the probability
constraint P[Crit(u(·), ω(·)) ≤ α] ≤ p
Expected optimization problem under risk constraint:
maxrule∈Dad EP[Crit(u(·),w(·))] s.t. P[Crit(u(·), ω(·)) ≤ α] ≤ p
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A new framework for the OPMOS problem with uncertainty Applications

Scenarii-based strategy design generates open-loop control

Schematic representation of scenarii-based strategy design:

distribution D
sample−−−−→ (ωj(·))j∈J

compute−−−−−→ u(·)

This is an open-loop control
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A new framework for the OPMOS problem with uncertainty Applications

OLFO provides an adaptive suboptimal strategy

We propose an adaptive suboptimal strategy:

Dt0
sample−−−−→ (ωj(·))j∈J t0

compute−−−−−→ (ut0 (t0), . . . , ut0 (T ))
select−−−→ ut0 (t0)

↪→ Dt0+1 sample−−−−→ (ωj(·))j∈J t0+1
compute−−−−−→ (ut0+1(t0+1), . . . , ut0+1(T ))

select−−−→ ut0+2(t0+2)

· · ·

↪→ DT sample−−−−→ (ωj(·))j∈J T
compute−−−−−→ (uT (T ))

select−−−→ uT (T )
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A new framework for the OPMOS problem with uncertainty Applications

Index methods naturally extend to the stochastic case

Index methods naturally extend themself to the stochastic case with the
local state replaced by the information state

Indexu(Dt)

Cumulative information pattern
In the Gaussian case, use of the (discrete) Kalman filter

Dt → Dt+1
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Conclusion

Conclusion

Review of existing methods for the deterministic problem

Development and implementation of index strategies

Bibliographical review of literature on uncertainty

Developement of a theoretical framework for the uncertain case

Nathanael BEEKER, Michel DE LARA CERMICS, Université Paris-Est, France ()OVIMINE, Valparaiso, 9 January 2012 November 4, 2012 43 / 42


	Open-pit mine optimal scheduling (OPMOS)
	Optimal and heuristics simulation for the deterministic problem
	State of the art in numerical methods
	Adaptive stategies
	Index based heuristics
	Index heuristics for OPMOS

	A new framework for the OPMOS problem with uncertainty
	OPMOS with uncertainty
	Scenarii based strategy design
	A new framework
	Applications

	Conclusion

