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Outline of the presentation

@ Open-pit mine optimal scheduling (OPMOS)
© Optimal and heuristics simulation for the deterministic problem

© A new framework for the OPMOS problem with uncertainty

@ Conclusion
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Open-pit mine optimal scheduling (OPMOS)

Outline of the presentation

@ Open-pit mine optimal scheduling (OPMOS)
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Open-pit mine optimal scheduling (OPMOS)

Mines are described by means of a block model

1 2 3 @ s Columns

©) )

Diepth

\EIGELEEI DI DI SN VI SR DN VN®  OVIMINE, Valparaiso, 9 January 2012 November 4, 2012 5/ 42



Open-pit mine optimal scheduling (OPMOS)

Blocks are extracted sequentially

@ Timet=ty,..., T isdiscrete: T — tg+ 1 number of periods
@ The set of blocks extracted during period t is denoted by B(t)
@ Blocks are extracted sequentially under the following hypothesis:
e only blocks at the surface may be extracted
e capacity constraints: no more than a given number of blocks can be

extracted in one time unit (this number can be uncertain, due to
equipment failure)

cardinal B(t) < capacity

e slope constraints: a block cannot be extracted if the slope made with
one of its neighbours is too high, due to physical requirements
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Open-pit mine optimal scheduling (OPMOS)
Slope constraints are materialized
in the Chuquicamata mine
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Profit models capture economic data

Minarichness

o 1o = ki) 40 m €0
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Open-pit mine optimal scheduling (OPMOS)

A profit model is built upon a block model

Each block b € B is a three-dimensional cuboid
o identified as b = (¢, d) by
e its column c € C
o its depth index d € {1,...,D}
e containing attributes wp(t) = (wi(t), - ,wh(t)) € R/
o either intrinsic attributes (which do indeed depend upon block b)

@ ore grade (does not depend upon time t)
@ extraction cost (may depend upon time t)
@ density, volume, pollutants. ..

e or external attributes

@ ore prices
@ capacity constraints

e which gives its net value or worth

wp(t) = Worth(wy(t)) = Price(t) - Ore(b) — Cost(b, t)
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Open-pit mine optimal scheduling (OPMOS)

An example of data file

X Y Z Density(t/m3) Tonelaje ValProc(US$) ValNOProc (US$)

4885
4915
4945
4975
5005
5035
5065
5125
5155
5185
5215
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Open-pit mine optimal scheduling (OPMOS)

Open-pit mine sequencing optimization
is the mathematical issue

@ block model + profit model
e discount rate (for instance rr = 10%)
1 $ next year = ﬁ $ seen from today
@ the net present value (NPV) of an admissible extraction sequence
(B(:) :== B(to),...,B(T)) is the

discounted sum of extracted block values

-
1 t
;(1 + rf) bezl’)’%t) we(t)

open-pit mine optimal scheduling:
admissible extraction sequences which
maximize the net present value (NPV)
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Optimal and heuristics simulation for the deterministic problem

Outline of the presentation

© Optimal and heuristics simulation for the deterministic problem
@ State of the art in numerical methods
@ Adaptive stategies
@ Index based heuristics
@ Index heuristics for OPMQOS
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Optimal and heuristics simulation for the deterministic problem State of the art in numerical methods

State of the art in numerical methods

@ Size of instances:
Up to 5-10 millions blocks
Several dozens of years of exploitation

o Exact methods: Integer linear programming
Up to 1,000 blocks

Authors || Max size | Optimality | Time
Cacetta&Hill (2003) 209,664 2.5% 4h
Chicoisne et al. (2009) || 5,000,000 3% 1h

\EILENEC I DI SN VT SDIDE NN ®  OVIMINE, Valparaiso, 9 January 2012 November 4, 2012 13 / 42




Optimal and heuristics simulation for the deterministic problem Adaptive stategies

Some algorithms may be seen as adaptive strategies

@ Myopic strategy: best top block selection

b*(t) = arg max wp(t)
blocks b at the surface

@ k-step look ahead strategy
compute the NPV for all possible admissible selections of k blocks
ahead, and choose the optimal one

B*(t) = arg max Z wp(t)
admissible B(t) at time t beB(t)

@ A strategy is designed off-line but is implemented on-line,
depending on the “state” at time t (adaptive)
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il izsed) limsies
Multi-armed bandit

MULTI-ARMED
BANDIT
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Optimal and heuristics simulation for the deterministic problem Index based heuristics

Structure of a “jobs dynamical model”

@ Finite number of jobs j =1,...,J
@ To each job j is attached a local state Xx;

@ At each time t, a decision ¢ consists in selecting one of the jobs in
theset U={1,...,J}
o If the job j is selected at period t,

o the local state x;(t) evolves according to a local dynamics Dyn;, giving
the new state x;(t + 1) = Dyn; (x(t),w(t)), where the random
variables w(tp),...,w(T — 1) are independent,

o other local states x;(t) do not change: x;(t + 1) = x;(t) for i # j

e a reward Reward;(x;(t),w(t)) is obtained
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Structure of an index strategy

Finite number of jobs j =1,...,J

To each job j is attached a local state x;

To each job j is attached an index function Index;(x;) which depends
on the local state x;

At each time t, select the job with the highest index among all
Indexj-(xj-(t)), j=1,...,J

An index strategy is an example of decomposition-coordination:

@ decomposition: the global state is decomposed in J local states, each
with its dynamics,

@ coordination: the DM updates the maximum of the indexes and the
arg max, and takes the decision accordingly
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Optimal and heuristics simulation for the deterministic problem Index based heuristics

The Gittins index is specific

T Lty
Indexj-(xjp) = sup E | 5= — ; ;
stopping times T ¢
;)( 1+ rf)

where
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Optimal and heuristics simulation for the deterministic problem Index based heuristics

The Gittins index proves optimal under specific settings

Assumptions:
@ jobs dynamical model,

@ criterion of the form

“+o00

E Z( 1 i o )'Reward; (Xj(t)(t), w(t))

t=0

Conclusion: a Gittins index strategy is optimal
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Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

The open-pit mine scheduling problems shares
characteristics with a job problem

Jobs = columns
Local state = depth of highest block
Criterion = NPV

Problem: slope restrictions, loss of the independence between jobs

\EILENEC I DI SN VT SDIDE NN ®  OVIMINE, Valparaiso, 9 January 2012 November 4, 2012 20 / 42



izl it o QPIOS
Various index formulas can be imagined in mining

Index(x)
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Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

An index lower bound can be obtained for OPMQOS

o Define an index: Gittins index, top block value, etc.

@ The index with slope constraints strategy selects the column with the
highest index only among admissible columns

NPV (index with slope constraints) < max NPV

all strategies

\EILENEC I DI SN VT SDIDE NN ®  OVIMINE, Valparaiso, 9 January 2012 November 4, 2012 22 /42




Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

A Gittins index upper bound can be obtained for OPMOQOS

o Consider the optimal scheduling problem without slope constraints

@ Since the space of strategies is enlarged, the optimal value for the
scheduling problem without slope constraints is an upper bound for
the original optimal scheduling problem with slope constraints

@ In this case, we have a jobs dynamical model, with a criterion of the
discounted form: therefore, the Gittins index strategy is optimal

max NPV < NPV(Gittins index without slope constraints)

all strategies
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Optimal and heuristics simulation for the deterministic problem Index heuristics for OPMOS

Numerical results

] Mine \ Blocs H Index \ TopoSort \ LP UBIndex
PM1 400 358.42 | 432.14 439.30 | 521.53
0.43s 307s 307s 0.08s
PM2 400 319.74 | 438.60 439.84 | 674.24
0.27s 375s 375s 0.07s
PM3 400 139.50 | 149.06 198.84 | 318.72
0.27s 362s 362s 0.07s

MM1 1125 744.78 | 820.05 894.15 | 1138.23
1.12s 3627s 3627s | 0.14s
MM2 1125 346.72 | 315.70 513.38 | 1108.86
1.14s 4257s 4257s | 0.14s

MarvSB | 2800 157.8 N.A. N.A. 206.7
2.48s 0.32s
Marvin | 53000 || 392.9 N.A. N.A. 488.5
1036.0s 15.1s
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izl it o QPIOS
Ultimate profile after extraction with index strategy
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Outline of the presentation

© A new framework for the OPMOS problem with uncertainty
@ OPMOS with uncertainty
@ Scenarii based strategy design
@ A new framework
@ Applications
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QPSS with ity
When the block model is uncertain, a new problem arises

Uncertainty on
e Ore grade: geostatistics (Kriging)
@ Prices: financials models

e Capacity constraints (failures)

open-pit mine optimal scheduling with uncertainty
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Scenarii generation is a common practice

@ In practice : generation of scenarii by conditional simulation
@ A simulation technique developped by Journel (1983)
@ A reference article by Ravenscroft (1992)
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Sinces the nineties, scenarii-based strategies are designed

@ Denby and Schofield (1995): deterministic optimization on each
scenario, and combination by genetic algorithm

e Dimitrakopoulos and Ramazan (2004): “probability constraints”

e Dimitrakopoulos et al. (2007): maximum upside/minimum downside
approach

@ Boland et al. (2008): stochastic programming
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

Scenarii are collections of uncertain attributes

Collection of "uncertain” attributes at t:

w(t) := (wp(t))ber
Attributes up to t:
wt = (w(to), ..., w(t))

Scenario:

w(+) == (w(to),...,w(T))

Set of scenarii

Q C RN-(Tfto)-/

Deterministic case when € is a singleton
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

Uncertain attributes are numerous in mining

Attributes wp(t) = (wj(t), -+ ,wp(t)) € R!
e either intrinsic attributes (which do indeed depend upon block b)
o ore grade (does not depend upon time t)
e extraction cost (may depend upon time t)
e density, volume, pollutants. ..
@ or external attributes

e ore prices
@ capacity constraints
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A new framework for the OPMOS problem with uncertainty [EAREWRTETIIEVEIES

A probabilistic formalism for offline information

Probability distribution on the set Q of scenarii:

D(wp(t),be B, t =ty,..., T)

Example: the Gaussian case

@ (Ore(b))pen Gaussian vector of size N
of mean vector . = (E[Ore(b)])pen
and covariance matrix ¥ = (Cov(Ore(b), Ore(b')))p.cB

@ constant price Price(t) = Price and cost Cost(b,t) = Cost
@ no capacity failure

o then wp(t),b € B, t € [ty,..., T]is
Gaussian vector of size N - (T — tg)
with mean vector and covariance matrix calculated with y and
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

Online information feeds decision

o Decision variable u(t) = B(t) € B(t,w(-)) C B
corresponds to the blocks removed during period t = tg,..., T
e Via IB%(t,w(~)), we can possibly capture slope and capacity constraints

@ Past decisions

ut = (u(to),...,u(t)) and u(-) = (u(to),...,u(T))

e Information: 7 is a g-algebra on the history space Q x U7 ~fo+1
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

Information patterns describe the interplay between
information and decision

@ Blind information pattern:
T, = {Q,2} @ {UT 0+ &}
@ Clairvoyant information pattern:
Z: = o({wp(s),b € B,s = ty,..., T} @ {UT-0F o)
@ Blocks that have been removed up to period t are
X(t,ut™h) = O u(t)c B
s=tp

Cumulative information pattern is

T, = o{wp(s),u(s)ls = to,....t — 1,b € X(u15s)}
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

Decision rules is the appropriate notion of solution

@ A decision rule is a mapping
rule: {ty,..., T} x Qx UT-0tl LU

such that rule(t,-) is measurable with respect to Z;

@ An admissible rule generates admissible decisions u(t), which satisfy
slopes and capacity constraints
The set of admissible rules is denoted D¢
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

What is a policy?

Richard Bellman autobiography, Eye of the Hurricane

Again the intriguing thought: A solution is not merely a set of
functions of time, or a set of numbers, but a rule telling the
decisionmaker what to do; a policy.

‘Do thus-and-thus if you find yourself in this portion of state
space with this amount of time left.’
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

Controls may be open-loop or closed-loop

@ Open-loop strategy: rule only depends on t

o Closed-loop strategy: rule depends on the information (may be
computationaly out of reach because of the size of information)

@ Open-loop with feedback optimization (OLFO)

o Compute the information state, for instance the conditional law
D' = D(wp(t),b € B, t = to,..., T| knowledge at time t)
e Find a control sequence (u(t),...,u(T)) that minimizes in open-loop

the chosen criterion, using the information state
o Apply the first decision u(t) of the sequence
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

An objective function captures the economic goal

Objective or gain function Crit(u(:),w(:)) to be maximized
@ Stochastic final pit

T

criv(u(),w(-)) = > ws(t)

t=to beu(t)

@ Net Present Value

]
crit(u().w()) = S () 3 wi(t)

t=to beu(t)

@ Inclusion of processing costs, storage. ..
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A new framework for the OPMOS problem with uncertainty [ERARERTETLIEVEIES

Under uncertainty, many criteria are possible
and they reflect risk attitudes

Unlike deterministic problem,
there are many ways to agregate uncertainties

Expected criterion: max,y;ocpad EF [Crit(u(-),w(:))]

Robust optimization: max,,;ccpad Mingyeq Crit(u(-), w(-))
Multiprior approach (different probabilities P forming a set B):
MaXpyeeped Minpeg BF [Crit(u(:), w(-))]

Given two parameters « € R and p € [0, 1], we define the probability
constraint P[Crit(u(:),w(’)) <a] <p

Expected optimization problem under risk constraint:

MaX,y1ecpsd B [Crit(u(-), w(:))] s.t. P[Crit(u(-),w(’)) <a] <p
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Apiieaaie
Scenarii-based strategy design generates open-loop control

Schematic representation of scenarii-based strategy design:

sample

distribution D =772, (wj())jes <P, u(-)

This is an open-loop control
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Apiieaaie
OLFO provides an adaptive suboptimal strategy

We propose an adaptive suboptimal strategy:

sample
- =

D (@i ())jero <228 (uB(ko), ..., u®(T)) <% y(t)

s DL TR () s P (T (b4 1), ., uT(T)) S 2 (g

- DT sample (Wj('))jejT compute (UT(T)) select UT(T)
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Apiieaaie
Index methods naturally extend to the stochastic case

Index methods naturally extend themself to the stochastic case with the
local state replaced by the information state

Index, (D)

@ Cumulative information pattern
In the Gaussian case, use of the (discrete) Kalman filter

Dt N Dt+1
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Conclusion

Review of existing methods for the deterministic problem
Development and implementation of index strategies

Bibliographical review of literature on uncertainty

Developement of a theoretical framework for the uncertain case
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