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Here are the ingredients for
a general abstract optimization problem

inf
w∈Wad

J(w)

▶ Optimization set W(= RN) containing optimization variables
w ∈ W

▶ A criterion J : W → R ∪ {+∞}
▶ Constraints of the form w ∈ Wad ⊂ W



Examples of classes of optimization problems

inf
w∈Wad

J(w)

▶ Linear programming
▶ Optimization set W = RN

▶ Criterion J is linear (affine)
▶ Constraints Wad defined by

a finite number of linear (affine) equalities and inequalities

▶ Convex optimization
▶ Criterion J is a convex function
▶ Constraints Wad define a convex set

▶ Combinatorial optimization
▶ Optimization set W is discrete (binary {0, 1}N , integer ZN , etc.)
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Convex sets

Let N ∈ N∗. We consider subsets of the Euclidian space RN

▶ The subset C ⊂ RN is convex if for any x1 ∈ C , x2 ∈ C and
t ∈ [0, 1], we have that tx1 + (1− t)x2 ∈ C

▶ An intersection of convex sets is convex

▶ A segment is convex

▶ A hyperplane is convex (H ⊂ RN is a hyperplane if there exists
y ∈ RN\{0} and b ∈ R such that H =

{
x ∈ RN

∣∣ ⟨x , y⟩+ b = 0
}
)

▶ An affine subspace (intersection of hyperplanes) is convex



Linear and affine functions

Consider a function f : RN → R
▶ The function f is linear if, for any x1 ∈ RN , x2 ∈ RN

and t1 ∈ R, t2 ∈ R,

f (t1x1 + t2x2) = t1f (x1) + t2f (x2)

▶ The function f is affine if, for any x1 ∈ RN , x2 ∈ RN and t1 ∈ R,
t2 ∈ R such that t1 + t2 = 1,

f (t1x1 + t2x2) = t1f (x1) + t2f (x2)

Exercise. Show that f : RN → R is affine if and only if
g(x) = f (x)− f (0) is linear



Convex functions (definitions)
Let C ⊂ RN be an nonempty convex subset of RN , where N ∈ N∗,
and f : C → R be a function

▶ The function f is affine if, for any x1 ∈ C , x2 ∈ C and t ∈ R,

f (tx1 + (1− t)x2) = tf (x1) + (1− t)f (x2)

▶ The function f is convex if, for any x1 ∈ C , x2 ∈ C and t ∈ [0, 1],

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

▶ The function f is strictly convex if,
for any x1 ∈ C , x2 ∈ C , x1 ̸= x2, and t ∈]0, 1[,

f (tx1 + (1− t)x2) < tf (x1) + (1− t)f (x2)

▶ The function f is strongly convex (of modulus a > 0) if,
for any x1 ∈ C , x2 ∈ C and t ∈ [0, 1],

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)−
a

2
t(1− t)∥x1 − x2∥2



Exercises

Let C ⊂ RN be an nonempty subset of RN , where N ∈ N∗

▶ Show that both definitions of an affine function coincide
when C = RN

▶ Show that a function f : C → R is convex if and only if
its epigraph is a convex set subset of RN × R

▶ Show that a function f : C → R is strongly convex of modulus a > 0
if and only if g(x) = f (x)− a

2∥x∥
2 is convex

▶ If f : C → R is convex, show that f is not strictly convex if and only
there exists a nonempty convex subset C ′ ⊂ C over which f is affine



Convex functions on the real line

Proposition

Let I ⊂ R be an nonempty interval

▶ A C 1 function f : I → R is convex
if and only if f ′ is increasing on I

▶ A C 2 function f : I → R is convex
if and only if f ′′(x) ≥ 0, for all x ∈ I

▶ Let a > 0. A C 2 function f : I → R is a-strongly convex
if and only if f ′′(x) ≥ a, for all x ∈ I

▶ A C 1 function f : I → R is strictly convex if and only if
f is convex and
the set {x ∈ I | f ′′(x) = 0} is either empty or is a singleton

Exercise. Study the family of functions fα :]0,+∞[→ R given by
fα(x) = xα. For which values of the parameter α is the function fα
convex? For a given a > 0, for which values of the parameter α is the
function fα strongly convex of modulus a? Provide an example of a
strictly convex function which is not strongly convex.



Convexity for multivariate functions
The Hessian matrix Hf (x) of a C 2 function f : RN → R
is the N × N symmetric matrix given by

Hf (x) =

{
∂2f

∂x i∂x j
(x)

}
(i,j)∈{1,...,N}2

Proposition

Let C ⊂ RN be an nonempty convex subset of RN , where N ∈ N∗

▶ A C 2 function f : RN → R is convex on C if and only if the
symmetric Hessian matrix Hf (x) is positive for all x ∈ C

▶ A C 2 function f : RN → R is strongly convex of modulus a > 0
on C if and only if the eigenvalues of the symmetric Hessian
matrix Hf (x) are uniformly bounded below by a > 0 on C

Exercise. Let Q be a N × N symmetric matrix and f (x) = 1/2x ′Qx ,
where x ′ is the transpose of the vector x . Give conditions on the smallest
eigenvalue of Q so that the function f is convex, or strictly convex, or
strongly convex of modulus a.



Operations on functions preserving convexity

Proposition

Let (fi )i∈I be a family of convex functions
Then supi∈I fi is a convex function

Proposition

Let (fi )i=1,...,n be convex functions
Let (αi )i=1,...,n be nonnegative numbers
Then

∑m
i=1 αi fi is a convex function

Proposition

Let f : RN → R be convex
Let A be a N ×M matrix and b ∈ RN

Then y ∈ RM 7→ f (Ay + b) is a convex function
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Coercivity

Definition

A function f : RN → R is coercive if

lim
∥x∥→+∞

f (x) = +∞

Proposition

A strongly convex function is coercive



Minimum

Definition

We say that w∗ ∈ W is a (global) minimum
of the optimization problem infw∈Wad J(w) if

w∗ ∈ Wad and J(w∗) ≤ J(w) , ∀w ∈ Wad

In this case, we write
J(w∗) = min

w∈Wad
J(w)



Existence and uniqueness of a minimum
We consider the optimization problem

inf
w∈Wad

J(w) where Wad ⊂ W = RN

Proposition

If the criterion J is continuous and the constraint set Wad is compact
(bounded and closed), then there is a minimum

Proposition

If the constraint set Wad is closed and the criterion J is continuous and
coercive, then there is a minimum

Proposition

If the constraint set Wad is convex, and if the criterion J is strictly
convex,
a minimum is necessarily unique



Exercises

We consider the optimization problem

inf
w∈Wad

J(w)

Give an example

▶ of continuous criterion J and of constraint set Wad

for which there is no minimum

▶ of criterion J and of compact constraint set Wad

for which there is no minimum

▶ of continuous criterion J
and of unbounded and closed constraint set Wad

for which there is no minimum

▶ of convex criterion J and of constraint set Wad

for which there is more than one minimum

▶ of strictly convex criterion J and of constraint set Wad

for which there is more than one minimum



Local minimum

Definition
We say that w∗ ∈ W is a local minimum of the optimization problem
infw∈Wad J(w) if there exists a neighborhood V of w∗ in Wad such that

w∗ ∈ Wad and J(w∗) ≤ J(w) , ∀w ∈ V

Proposition

If the constraint set Wad is convex, and if the criterion J is convex,
a local minimum is a global minimum
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More on the magic formulas in the coming slides

tower formula

inf
(a,b)∈A×B

h(a, b) = inf
a∈A,b∈B

h(a, b) = inf
a∈A

(
inf
b∈B

h(a, b)
)

linearity formula

inf
a∈A

λf (a) = λ inf
a∈A

f (a) , ∀λ ≥ 0

independence formula

inf
(a,b)∈A×B

(
f (a) + g(b)

)
= inf

a∈A,b∈B

(
f (a) + g(b)

)
= inf

a∈A
f (a) + inf

b∈B
g(b)



Tower formula

For any function
h : A× B →]−∞,+∞]

we have

inf
a∈A,b∈B

h(a, b) = inf
a∈A

(
inf
b∈B

h(a, b)
)

and if B(a) ⊂ B, ∀a ∈ A, we have

inf
a∈A,b∈B(a)

h(a, b) = inf
a∈A

(
inf

b∈B(a)
h(a, b)

)



Independence

• For any functions

f : A →]−∞,+∞] , g : B →]−∞,+∞]

we have

inf
a∈A,b∈B

(
f (a) + g(b)

)
= inf

a∈A
f (a) + inf

b∈B
g(b)

• For any finite set S, any functions fs : As →]−∞,+∞]
and any nonnegative scalars πs ≥ 0, for s ∈ S, we have

inf
{as}s∈S∈

∏
s∈S As

∑
s∈S

πs fs(as) =
∑
s∈S

πs inf
as∈As

fs(as)
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Duality gap

Consider a function
ϕ : X × Y → R

Proposition

We have the inequality

inf
x
sup
y
ϕ(x , y) ≥ sup

y
inf
x
ϕ(x , y)

Notice that we minimize in the first variable x (primal variable)
and maximize in the second variable y (dual variable)

Definition
The duality gap is

inf
x
sup
y
ϕ(x , y)− sup

y
inf
x
ϕ(x , y) ≥ 0



Saddle-point

Definition

We say that (x̄ , ȳ) ∈ X × Y is a saddle-point if

▶ y 7→ ϕ(x̄ , y) achieves a maximum at ȳ

▶ x 7→ ϕ(x , ȳ) achieves a minimum at x̄

or, equivalently
ϕ(x , ȳ) ≥ ϕ(x̄ , ȳ) ≥ ϕ(x̄ , y)

Proposition

When there exists a saddle-point, there is no duality gap
(that is, the duality gap is zero)



Existence of a saddle point

Proposition

Suppose that ϕ : X × Y → R
▶ is continuous,

▶ convex-concave (convex in the variable x , concave in the variable y),

▶ there exists two convex closed sets X ⊂ X and Y ⊂ Y such that
▶ there exists a x̂ ∈ X such that lim∥y∥→+∞ ϕ(x̂ , y) = −∞,

or the set Y is bounded,
▶ there exists a ŷ ∈ Y such that lim∥x∥→+∞ ϕ(x , ŷ) = +∞,

or the set X is bounded.

Then, there exists a saddle point for the function ϕ on X × Y
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Optimization under equality constraints

▶ We consider the optimization problem

inf
w∈RN

J(w)

under the constraint

Θ(w) = 0

where Θ = (Θ1, . . . ,ΘM) : RN → RM

▶ The Lagrangian L : RN × RM → R is defined by

L(w , λ) = J(w) + ⟨λ,Θ(w)⟩ = J(w) +
M∑
j=1

λjΘj(w)



Primal problem

Definition
The primal optimization problem is

inf
w∈RN

sup
λ∈RM

L(w , λ) = inf
w∈RN

sup
λ∈RM

(
J(w) +

M∑
j=1

λjΘj(w)
)

Proposition

The original and the primal optimization problems
have the same solutions (in w ∈ RN)



Dual problem

Definition
The dual optimization problem is

sup
λ∈RM

inf
w∈RN

L(w , λ) = sup
λ∈RM

inf
w∈RN

(
J(w) +

M∑
j=1

λjΘj(w)
)

Definition

The dual function is ψ : RM → R ∪ {−∞} given by

ψ(λ) = inf
w∈RN

L(w , λ) = inf
w∈RN

(
J(w) +

M∑
j=1

λjΘj(w)
)
,

hence is concave

Proposition

When there exists a saddle-point for the Lagrangian,
primal and dual problems are equivalent



First-order optimality conditions and saddle point

Proposition

We suppose that

▶ the criterion J is differentiable and convex

▶ in the equality constraints Θ(w) = 0, the function Θ is affine

Let w∗ ∈ RN be a minimum of J, among the w such that Θ(w) = 0.
Then, there exists a vector λ∗ of RM (Lagrange multiplier) such that
(w∗, λ∗) is a saddle point of the Lagrangian L, that is,

w 7→ L(w , λ∗)

achieves a minimum at w∗, and

λ 7→ L(w∗, λ)

achieves a maximum at λ∗



Existence of a minimum and of a saddle point

Proposition

We suppose that

▶ the criterion J is differentiable and strongly convex

▶ in the equality constraints Θ(w) = 0, the function Θ is affine

Then

▶ there exists a unique minimum w∗ ∈ RN of J
among the w such that Θ(w) = 0

▶ there exists a vector λ∗ of RM (Lagrange multiplier) such that
(w∗, λ∗) is a saddle point of the Lagrangian L
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The Uzawa algorithm or dual gradient algorithm

We suppose that

▶ the criterion J is differentiable and a-strongly convex

▶ in the equality constraints Θ(w) = 0,
the function Θ is affine, with norm κ

Then, when 0 < ρ < 2a/κ2, the following algorithm converges
towards the (unique) minimum of

inf
w∈RN

J(w) , Θ(w) = 0

Data: Initial multiplier λ(0), step ρ
Result: minimum and multiplier;
repeat

u(k) = argminu∈RN L(w , λ(k)) (minimization w.r.t. the first
variable) ;
λ(k+1) = λ(k) + ρΘ(w (k)) (gradient step for the second variable) ;

until Θ(w (k)) = 0;

Algorithm 1: Dual Gradient Algorithm
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Optimization under equality constraints

We consider the optimization problem

inf
w∈RN

J(w)

under the constraint

Θ(w) = 0

where Θ is a function with values in RM

Θ = (Θ1, . . . ,ΘM) : RN → RM

whose components are denoted by Θj , where j runs from 1 to M



Sufficient condition for qualification
in case of equality constraints

Definition

Let w∗ ∈ RN . The equality constraints Θ(w) = 0 are said to be regular
at w∗ if, when Θ(w∗) = 0, the function Θ is differentiable at w∗

and the vectors ∇Θj(w
∗), j ∈ {1, . . . ,M}, are linearly independent

Let w∗ ∈ RN . In case

▶ either the equality constraints Θ(w) = 0 are regular at w∗

▶ or the function Θ is affine

we say that the equality constraints Θ(w) = 0 are qualified at w∗



Lagrangian

Definition

The Lagrangian L : RN × RM → R is defined by

L(w , λ) = J(w) + ⟨Θ(w), λ⟩ = J(w) +
M∑
j=1

λjΘj(w)

The variables λ are called (Lagrange) multipliers



First-order optimality conditions (necessary)
Karush-Kuhn-Tucker (KKT) optimality conditions

Proposition

We suppose that the criterion J is differentiable. Let w∗ ∈ RN .
If the equality constraints Θ(w) = 0 are qualified at w∗,
then a necessary condition for w∗ to be a local minimum of J,
among the w such that Θ(w) = 0,
is that there exists a vector λ∗ of RM (Lagrange multiplier) such that

∂L

∂w
(w∗, λ∗) = 0 and

∂L

∂λ
(w∗, λ∗) = 0

expressing the first-order optimality conditions
(KKT optimality conditions)



First-order optimality conditions (sufficient)

Proposition

Let w∗ ∈ RN . We suppose that

▶ the criterion J is differentiable and convex

▶ in the equality constraints Θ(w) = 0, the function Θ is affine

Then a sufficient condition for w∗ to be a minimum of J,
among the w such that Θ(w) = 0,
is that there exists a vector λ∗ of RM (Lagrange multiplier) such that

∂L

∂w
(w∗, λ∗) = 0 and

∂L

∂λ
(w∗, λ∗) = 0



Outline of the presentation

Optimization problems, convex functions, local and global minima

Magic formulas in optimization

Lagrangian duality (the case of equality constraints) and Uzawa algorithm

More on convexity and duality



Outline of the presentation

Optimization problems, convex functions, local and global minima
Convex functions
Existence and uniqueness of a minimum

Magic formulas in optimization

Lagrangian duality (the case of equality constraints) and Uzawa algorithm
Duality gap and saddle-points
Lagrangian duality (the case of equality constraints)
Uzawa algorithm
First-order optimality conditions (the case of equality constraints)

More on convexity and duality
Duality in convex analysis
Dual optimization problems
Classic Lagrangian duality (the case of inequality constraints)



Extended real valued functions

R = [−∞,+∞] = R ∪ {−∞} ∪ {+∞}

For any set W and extended real valued function h : W → R
▶ the epigraph is

epi h =
{
(w , t) ∈ W × R

∣∣ h(w) ≤ t
}
⊂ W × R

▶ the effective domain is

dom h =
{
w ∈ W

∣∣ h(w) < +∞
}
⊂ W

▶ the function is said to be proper
if it never takes the value −∞ and if it takes at least one finite value

h is proper ⇐⇒ −∞ < h and dom h ̸= ∅



Moreau additions, characteristic function
and constraints in optimization

▶ The Moreau lower and upper addition extend the usual addition with

(+∞)∔ (−∞) = (−∞)∔ (+∞) = +∞
(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

▶ For any subset W ⊂ W, the indicator function ιW : W → R is

ιW (w) =

{
0 if w ∈ W

+∞ if w ̸∈ W

and, for any function h : W → R, we have

inf
w∈W

h(w) = inf
w∈W

(
h(w)∔ ιW (w)

)



Duality in convex analysis



Extended real valued convex and lsc functions

Let X be a (real) vector space

Convex function

A function f : X → R is said to be convex
if its epigraph epi f is a convex subset of X × R

Let X be a topological (real) vector space

Lower semi continuous (lsc) function = closed function

A function f : X → R is said to be lower semi continuous (lsc) or closed
if its epigraph epi f is a closed subset of X × R



Bilinear duality, primal and dual spaces

▶ Let X and Y be two (real) vector spaces that are paired:
▶ there exists a bilinear form ⟨·, ·⟩ : X × Y → R and locally convex

topologies that are compatible in the sense
that the continuous linear forms on X are the functions
x ∈ X 7→ ⟨x , y⟩, for all y ∈ Y,
and that the continuous linear forms on Y are the functions
y ∈ Y 7→ ⟨x , y⟩, for all x ∈ X

▶ The space X is called the primal space

▶ The space Y is called the dual space



Subdifferential of a function

Subdifferential

The subdifferential of a function f : X → R at x ∈ X is the subset

∂f (x) =
{
y ∈ Y

∣∣ f (x ′)− ⟨x ′, y⟩ ≥ f (x)− ⟨x , y⟩ , ∀x ′ ∈ X
}

y ∈ ∂f (x) ⇐⇒ f (x ′) ≥ f (x) + ⟨x ′ − x , y⟩︸ ︷︷ ︸
affine function of x′

sharp at x ∈ X

, ∀x ′ ∈ X

Subdifferential and argmin

0 ∈ ∂f (x̄) ⇐⇒ x̄ ∈ argmin
x∈X

f (x)



The Fenchel conjugacy

▶ The Fenchel conjugacy ⋆ is defined,
for any functions f : X → R and g : Y → R, by

f ⋆(y) = sup
x∈X

(
⟨x , y⟩ − f (x)

)
, ∀y ∈ Y

g⋆′
(x) = sup

y∈Y

(
⟨x , y⟩ − g(y)

)
, ∀x ∈ X

f ⋆⋆
′
(x) = sup

y∈Y

(
⟨x , y⟩ − f ⋆(y)

)
, ∀x ∈ X

▶ The Fenchel biconjugate f ⋆⋆
′
is closed convex and satisfies

f ⋆⋆
′
≤ f

(it is not necessarily the best closed convex lower approximation,
as illustrated by closed convex valley functions)



The Fenchel conjugacy and closed convex functions

Theorem
▶ The Fenchel conjugacy induces a one-to-one correspondence

between the proper closed convex functions on X
and the proper closed convex functions on Y

▶ For any function f : X → [−∞,+∞], we have

f is closed convex proper or f ≡ −∞ or f ≡ +∞ ⇐⇒ f ⋆⋆
′
= f

▶ For any function f : X →]−∞,+∞], we have

f is closed convex ⇐⇒ f ⋆⋆
′
= f



Subdifferential and Fenchel conjugacy

y ∈ ∂f (x) ⇐⇒ f (x) + f ⋆(y) = ⟨x , y⟩

∂f (x) ̸= ∅ =⇒ f ⋆⋆
′
(x) = f (x)
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Dual problems: perturbation scheme [Rockafellar, 1974]

sets optimization primal pairing dual

set W space X X ⟨·, ·⟩↔ Y space Y
variables decision perturbation ⟨x , y⟩ sensitivity

w ∈ W x ∈ X ∈ R y ∈ Y
bivariate Rockafellian Lagrangian
functions R : W ×X → R L : W ×Y → R
definition L(w , y) =

infx∈X
{
R(w , x)− ⟨x , y⟩

}
property −L(w , ·) =

(
R(w , ·)

)⋆
property −L(w , ·) is ⋆′-convex

(hence L(w , ·) is concave usc)

univariate perturbation function dual function
functions φ : X → R ψ : Y → R
definition φ(x) = infw∈W R(w , x) ψ(y) = infw∈W L(w , y)
property −ψ = φ⋆

▶ Anchor 0 ∈ X and dual maximization problem (weak duality)
φ⋆⋆′

(0) = supy∈Y
{
−ψ(y)

}
≤ infw∈W R(w , 0) = φ(0)

▶ Strong duality iff φ is ⋆-convex at 0 iff φ⋆⋆′
(0) = φ(0)



Dual problems given by Fenchel conjugacy

▶ Set W, function h : W → R and original minimization problem

inf
w∈W

h(w)

▶ Embedding/perturbation scheme given by a nonempty set X ,
an anchor x ∈ X and a Rockafellian R : W ×X → R such that

h(w) = R(w , x) , ∀w ∈ W

▶ Paired spaces X and Y, and Lagrangian L : W ×Y → R given by

L(w , y) = inf
x∈X

{
R(w , x)− ⟨x − x , y⟩

}
▶ Original minimization problem

inf
w∈W

sup
y∈Y

L(w , y) = inf
w∈W

h(w)



Duality gap

▶ Dual maximization problem

sup
y∈Y

inf
w∈W

L(w , y)

▶ Weak duality always holds true

sup
y∈Y

inf
w∈W

L(w , y) ≤ inf
w∈W

h(w)

When it exists, the duality gap is the nonnegative difference

▶ Strong duality holds true, or there is no duality gap, when

sup
y∈Y

inf
w∈W

L(w , y) = inf
w∈W

h(w)



Abstract Karush-Kuhn-Tucker (KKT) condition



Karush-Kuhn-Tucker (KKT) condition

Abstract Karush-Kuhn-Tucker (KKT) condition

The couple (w , y) ∈ W × Y satisfies the KKT condition
if (w , y) is a saddle point of the Lagrangian L, that is,

▶ the function W ∋ w 7→ L(w , y) achieves a minimum at w

▶ the function Y ∋ y 7→ L(w , y) achieves a maximum at y



Strong duality and KKT condition under convexity

Theorem [Rockafellar, 1974, Theorem 15, p. 40]

Suppose that the function x 7→ R(w , x) is closed convex

Then, the following conditions are equivalent

1. There is no duality gap
and w ∈ argminw∈W h(w)
and y ∈ argmaxy∈Y infw∈W L(w , y)

2. The couple (w , y) ∈ W × Y satisfies the KKT condition



Strong duality and KKT condition under convexity

Theorem [Rockafellar, 1974, Corollary 15A, p. 40]

Suppose that there is no duality gap
and w ∈ argminw∈W h(w)

Then, the following conditions are equivalent

1. w ∈ argminw∈W h(w)

2. there exists y ∈ Y such that
the couple (w , y) ∈ W × Y satisfies the KKT condition



Sensitivity analysis



Subdifferential of the perturbation function
(sensitivity analysis)

The perturbation function is

φ(x) = inf
w∈W

R(w , x) , ∀x ∈ X

Theorem [Rockafellar, 1974, Theorem 16, p. 40]

For y ∈ Y, the following conditions are equivalent

1. y ∈ argmaxy∈Y infw∈W L(w , y) and
maxy∈Y infw∈W L(w , y) = infw∈W h(w)

2. y ∈ ∂φ(x)

3. infw∈W h(w) = infw∈W L(w , y)



Subdifferential of the perturbation function
(sensitivity analysis)
The convex case

Theorem [Rockafellar, 1974, Theorem 18, p. 41]

Suppose that

▶ the function R : W ×X → R is convex

▶ there exists w ∈ W such that the function x 7→ R(w , x)
is bounded above in a neighborhood of x

Then there exists y ∈ Y such that

1. y ∈ argmaxy∈Y infw∈W L(w , y) and
maxy∈Y infw∈W L(w , y) = infw∈W h(w)

2. y ∈ ∂φ(x)

3. infw∈W h(w) = infw∈W L(w , y)



Dual problems with general couplings



Dual problems: perturbation scheme [Rockafellar, 1974]

▶ Set W, function h : W → R
and original minimization problem

inf
w∈W

h(w)

▶ Embedding/perturbation scheme given by
a nonempty set X (perturbations), an element x ∈ X (anchor)
and a function (Rockafellian) R : W ×X → R such that

h(w) = R(w , x)

▶ Perturbation function

φ(x) = inf
w∈W

R(w , x)

▶ Original minimization problem

φ(x) = inf
w∈W

R(w , x) = inf
w∈W

h(w)



Dual problems: conjugacy, weak and strong duality

▶ Coupling X c↔ Y, and Lagrangian L : W ×Y → R given by

L(w , y) = inf
x∈X

{
R(w , x)∔

(
−c(x , y)

)}
▶ Dual function

ψ(y) = −φc(y) = inf
w∈W

L(w , y)

▶ Dual maximization problem (weak duality)

φcc′(x) = sup
y∈Y

{
c(x , y) ·+ ψ(y)

}
≤ inf

w∈W
h(w) = φ(x)

▶ Strong duality holds true when φ is c-convex at x , that is,

φcc′(x) = sup
y∈Y

{
c(x , y) ·+ ψ(y)

}
= inf

w∈W
h(w) = φ(x)



Dual problems: perturbation scheme [Rockafellar, 1974]

sets optimization primal coupling dual

set W set X X c↔ Y set Y
variables decision perturbation c(x , y) sensitivity

w ∈ W x ∈ X ∈ R y ∈ Y
bivariate Rockafellian Lagrangian
functions R : W ×X → R L : W ×Y → R
definition L(w , y) =

infx∈X

{
R(w , x)∔

(
−c(x , y)

)}
property −L(w , ·) =

(
R(w , ·)

)c
property −L(w , ·) is c ′-convex
univariate perturbation function dual function
functions φ : X → R ψ : Y → R
definition φ(x) = infw∈W R(w , x) ψ(y) = infw∈W L(w , y)
property −ψ = φc

▶ Anchor x ∈ X and dual maximization problem (weak duality)
φcc′(x) = supy∈Y

{
c(x , y) ·+ ψ(y)

}
≤ infw∈W R(w , x) = φ(x)

▶ Strong duality iff φ is c-convex at x iff φcc′(x) = φ(x)
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Classic Lagrangian duality

▶ Let θ = (θ1, . . . , θp) : W → Rp be a mapping, and x ∈ Rp

▶ We consider the optimization problem

min
θ(w)≤x

h(w) = min
θ1(w)≤x1

...
θp(w)≤xp

h(w)

▶ In that case, take the perturbation scheme with X = Rp and

R(w , x) = h(w)∔ ι{θ(w)≤x} = h(w)∔
p∑

j=1

ι{θj (w)≤xj}

▶ which gives the Lagrangian L : W ×Y → R, with Y = Rp and

L(w , y) = h(w) + ⟨θ(w)− x , y⟩ = h(w) +

p∑
j=1

yj
(
θj(w)− x

)



Slater qualification constraint
The convex case

Theorem [Rockafellar, 1974, p. 45]

Suppose that

▶ the functions h and θ1, . . . , θp are is convex

▶ there exists w ∈ W such that

θ1(w) < x1, . . . , θp(w) < xp

Then there exists y ∈ Y such that

1. y ∈ argmaxy∈Y infw∈W L(w , y) and
maxy∈Y infw∈W L(w , y) = infw∈W h(w)

2. y ∈ ∂φ(x)

3. infw∈W h(w) = infw∈W L(w , y)
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