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Ingredients for a general optimization problem

inf
u∈Uad

J(u)

▶ Optimization space U , optimization variables u ∈ U

▶ Constraints u ∈ Uad ⊂ U (admissible set)

▶ Criterion J : U → R ∪ {+∞}

As a remark, we have

inf
u∈Uad

J(u) = inf
u∈U

(
J(u) + ιUad (u)

)
ιUad being the indicator function of the set Uad

ιUad (u) =

{
0 if u ∈ Uad

+∞ if u ̸∈ Uad
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Some classes of optimization problems in finite dimension

inf
u∈Uad

J(u)

▶ Linear programming
▶ Optimization space U = RN

▶ Criterion J is linear (affine)
▶ Constraint set Uad defined by a finite number of linear equations

(equalities and inequalities)

▶ Combinatorial optimization
▶ Optimization space U is discrete (binary {0, 1}N , integer ZN , etc.)

▶ Convex optimization
▶ Optimization space U = RN

▶ Criterion J is a convex function
▶ Constraint set Uad is convex
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Some useful formulas in optimization

▶ Linearity formula. For any function f : X → R ∪ {+∞} we have

inf
x∈X

(
a+ f (x)

)
= a+ inf

x∈X
f (x) , ∀a ∈ R

inf
x∈X

αf (x) = α inf
x∈X

f (x) , ∀α ≥ 0

▶ Tower formula. For any function h : X × Y → R ∪ {+∞} we have

inf
(x,y)∈X×Y

h(x , y) = inf
x∈X

(
inf
y∈Y

h(x , y)
)
= inf

y∈Y

(
inf
x∈X

h(x , y)
)

▶ Interchange formula. For any function f : X → R ∪ {+∞} and any
function g : Y → R ∪ {+∞} we have

inf
(x,y)∈X×Y

(
f (x) + g(y)

)
= inf

x∈X
f (x) + inf

y∈Y
g(y)

Exercise*

Give proofs for the tower and interchange formulas

P. Carpentier Review of convexity and optimization IMCA 2024 7 / 48



Interchange in a stochastic framework

Consider a finite set S of scenarios equipped with a probability1 {πs}s∈S.
For each scenario s ∈ S, we have

▶ a cost function fs : Xs → R ∪ {+∞}
▶ depending on a control xs ∈ Xs

We have

inf
{xs}s∈S∈

∏
s∈S Xs

(∑
s∈S

πs fs(xs)

)
=

∑
s∈S

πs

(
inf

xs∈Xs

fs(xs)

)
that is, the operator inf and the operator E can be interchanged.

1that is, πs ≥ 0 and
∑

s∈S πs = 1
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Convex sets

Let N ∈ N∗. We consider sets of the Euclidian space RN

▶ The set C ⊂ RN is convex if we have

∀(x1, x2) ∈ C × C , ∀t ∈ [0, 1] , tx1 + (1− t)x2 ∈ C

▶ A segment is convex

▶ A hyperplane is convex2

▶ An affine subspace3 is convex

▶ An intersection of convex sets is convex

Exercise*

Give the proof of the last statement

2Hyperplane H =
{
x ∈ RN

∣∣ ⟨x , y⟩+ b = 0
}
with y ∈ RN\{0} and b ∈ R

3intersection of hyperplanes
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Definitions of convex functions

Let C ⊂ RN be an nonempty convex set of RN , where N ∈ N∗,
and f : C → R be a function

▶ The function f is convex on C if,
for any x1 ∈ C , x2 ∈ C and any t ∈ [0, 1],

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

▶ The function f is strictly convex on C if,
for any x1 ∈ C , x2 ∈ C , x1 ̸= x2, and any t ∈]0, 1[,

f (tx1 + (1− t)x2) < tf (x1) + (1− t)f (x2)

▶ The function f is a-strongly convex on C (of modulus a > 0) if,
for any x1 ∈ C , x2 ∈ C and any t ∈ [0, 1],

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)−
a

2
t(1− t)∥x1 − x2∥2
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Exercises

Let C ⊂ RN be an nonempty set of RN , where N ∈ N∗

▶ Show that a function f : C → R is convex if and only if
its epigraph4 is a convex set of RN × R

▶ Show that a function f : C → R is a-strongly convex
if and only if g(x) = f (x)− a

2
∥x∥2 is convex

▶ If f : C → R is convex, show that f is not strictly convex if and only if
there exists a nonempty convex set C ′ ⊂ C over which f is affine

4epif =
{
(x , y) ∈ RN × R

∣∣ f (x) ≤ y
}
⊂ RN × R
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Convexity for differentiable multivariate functions
The Hessian matrix Hf (x) of a twice differentiable (C 2) function
f : RN → R is the N × N symmetric matrix given by

Hf (x) =

{
∂2f

∂xi∂xj
(x)

}
(i,j)∈{1,...,N}2

Proposition

Let C ⊂ RN be an nonempty convex set of RN , where N ∈ N∗

▶ A C 2 function f : RN → R is convex on C if and only if
the Hessian matrix Hf (x) is positive for all x ∈ C

▶ A C 2 function f : RN → R is a-strongly convex on C if and only if
the eigenvalues of the Hessian matrix Hf (x) are uniformly bounded
below by a > 0 on C

Exercise

Let Q be a N × N symmetric matrix and f (x) = 1
2
x⊤Qx , where x⊤ is the

transpose of the vector x . Give conditions on the smallest eigenvalue of Q so

that the function f is convex, or strictly convex, or a-strongly convex
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Operations preserving convexity

Proposition

Let (fi )i∈I be a family of convex functions indexed by i ∈ I
Then supi∈I fi is a convex function

Proposition

Let (fi )i=1,...,n be convex functions
Let (αi )i=1,...,n be nonnegative numbers
Then

∑n
i=1 αi fi is a convex function

Proposition

Let f : RN → R be convex
Let A be a N ×M matrix and b ∈ RN

Then y ∈ RM 7→ f (Ay + b) is a convex function

Exercise*

Give a proof of the first proposition
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Coercivity

Definition

A function f : RN → R ∪ {+∞} is coercive on a set C ⊂ RN if

lim
x∈C ,∥x∥→+∞

f (x) = +∞

Proposition

A a-strongly convex differentiable function is coercive

Exercise*

Give a proof of the proposition
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Minimum

Definition
We say that u∗ ∈ U is a global minimum of the optimization problem

inf
u∈Uad

J(u)

if we have

u∗ ∈ Uad and J(u∗) ≤ J(u) , ∀u ∈ Uad

In this case, we write
J(u∗) = min

u∈Uad
J(u)
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Existence and uniqueness of a minimum

We consider the finite dimensional optimization problem

inf
u∈Uad

J(u) with Uad ⊂ U = RN

Proposition

If the constraint set Uad is compact (bounded and closed) and
if the criterion J is continuous, then there exists a global minimum

Proposition

If the constraint set Uad is closed and if the criterion J is continuous
and coercive on Uad , then there exists a global minimum

Proposition

If the constraint set Uad is closed and convex and if the criterion J
is strictly convex, then the global minimum (if it exists) is unique
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Exercise

We consider the optimization problem

inf
u∈Uad

J(u)

Give an example

▶ of continuous criterion J and of constraint set Uad for which there is no
minimum

▶ of criterion J and of compact constraint set Uad for which there is no
minimum

▶ of continuous criterion J and of unbounded and closed constraint set Uad

for which there is no minimum

▶ of convex criterion J and of constraint set Uad for which there is more
than one minimum

▶ of strictly convex criterion J and of constraint set Uad for which there is
more than one minimum
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Local minimum

Definition
We say that u∗ ∈ U is a local minimum of the optimization problem

inf
u∈Uad

J(u)

if there exists a neighborhood V of u∗ in Uad such that

u∗ ∈ Uad and J(u∗) ≤ J(u) , ∀u ∈ V

Proposition

If the constraint set Uad is convex and if the criterion J is convex,
then a local minimum is a global minimum
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Optimization over an admissible set

We consider the optimization problem

inf
u∈Uad

J(u)

From now, Uad is a non empty convex set of RN

In the case where function J is differentiable, we denote by ∇J(u) ∈ RN

its gradient at point u:

lim
t>0,t→0

J(u + td)− J(u)

t
= ∇J(u)⊤d , ∀d ∈ RN
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First-order optimality conditions

Proposition

Assume that J is differentiable and Uad is a convex set
Let u∗ ∈ Uad . Then a necessary condition for u∗ to be
a local minimum of J over the set Uad is that

∇J(u∗)⊤(u − u∗) ≥ 0 ∀u ∈ Uad

Exercise*

Show that, in the case where Uad = RN , this optimality condition reduces to

the standard stationarity condition ∇J(u∗) = 0

Proposition

Assume moreover that J is a convex function
Let u∗ ∈ Uad . Then a sufficient condition for u∗ to be
a global minimum of J over the set Uad is that

∇J(u∗)⊤(u − u∗) ≥ 0 ∀u ∈ Uad
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Standard projected gradient algorithm

We suppose that J is differentiable with gradient Lipschitz of
modulus L,5 a-strongly convex and that Uad is a convex set

Then, for a step size ρ such that

0 < ρ < 2a/L2

the following algorithm converges towards the unique minimum u∗ of

inf
u∈Uad

J(u)

Data: Initial control u(0), step ρ
Result: optimal control u∗

repeat
u(k+1) = projUad

(
u(k) − ρ∇J(u(k))

)
(gradient step w.r.t. u)

until some convergence criterion is met;

Algorithm 1: Projected gradient algorithm

5that is,
∥∥∇J(u)−∇J(v)

∥∥ ≤ L∥u − v∥
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Optimization under equality constraints

We consider the optimization problem

inf
u∈RN

J(u)

under the explicit constraint

Θ(u) = 0

where Θ is a function with values in RM

Θ = (Θ1, . . . ,ΘM) : RN → RM

whose components are Θj : RN → R, j = 1, . . . ,M

Otherwise stated, the admissible set Uad is in this case

Uad =
{
u ∈ RN | Θ(u) = 0

}
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Sufficient condition for qualification

Definition

Let u∗ ∈ RN . The equality constraints Θ(u) = 0 are said to be regular
at u∗ if, when Θ(u∗) = 0, the function Θ is differentiable at u∗ and
the vectors ∇Θj(u

∗), j ∈ {1, . . . ,M}, are linearly independent

Let u∗ ∈ RN . In case

▶ either the equality constraints Θ(u) = 0 are regular at u∗

▶ or the function Θ is affine

we say that the equality constraints Θ(u) = 0 are qualified at u∗
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First-order necessary optimality conditions

Proposition

Let u∗ ∈ RN . We suppose that

▶ the criterion J and the constraints Θ are differentiable

▶ the equality constraints Θ(u) = 0 are qualified at u∗

Then a necessary condition for u∗ to be a local minimum of J
over the set Uad =

{
u ∈ RN | Θ(u) = 0

}
is that there exists

a vector λ∗ of RM , called Lagrange multiplier, such that

∇J(u∗) +
[
Θ′(u∗)

]⊤
λ∗ = 0 and Θ(u∗) = 0

These first-order optimality conditions are called
Karush-Kuhn-Tucker (KKT) optimality conditions
(specialized for equality constraints)
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First-order sufficient optimality conditions

Proposition

Let u∗ ∈ RN . We suppose that

▶ the criterion J is convex and differentiable

▶ the function Θ is affine

Then a sufficient condition for u∗ to be a global minimum of J
over the set Uad =

{
u ∈ RN | Θ(u) = 0

}
is that there exists

a vector λ∗ of RM , called Lagrange multiplier, such that

∇J(u∗) +
[
Θ′(u∗)

]⊤
λ∗ = 0 and Θ(u∗) = 0

Remark. Using the Lagrangian function L(u, λ) = J(u) + λ⊤Θ(u),6

the conditions above can be written as

∇uL(u
∗, λ∗) = ∇J(u∗) +

[
Θ′(u∗)

]⊤
λ∗ = 0

∇λL(u
∗, λ∗) = Θ(u∗) = 0

The first-order optimality conditions express the stationarity of the Lagrangian

6introduced in the next part of the course
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Duality gap

Consider a function ϕ : X × Y → R and two sets X ⊂ X and Y ⊂ Y

We minimize in the variable x and maximize in the variable y

Definition

inf
x∈X

sup
y∈Y

ϕ(x , y)− sup
y∈Y

inf
x∈X

ϕ(x , y)

is called the duality gap

Proposition

The duality gap is always positive, that is,

inf
x∈X

sup
y∈Y

ϕ(x , y) ≥ sup
y∈Y

inf
x∈X

ϕ(x , y)

Exercise*

Give a proof of the proposition
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Saddle-point
Consider a function ϕ : X × Y → R and two sets X ⊂ X and Y ⊂ Y

Definition

We say that (x̄ , ȳ) ∈ X × Y is a saddle-point of ϕ on X × Y if

▶ y 7→ ϕ(x̄ , y) achieves its maximum on Y at ȳ

▶ x 7→ ϕ(x , ȳ) achieves its minimum on X at x̄

or, equivalently

ϕ(x , ȳ) ≥ ϕ(x̄ , ȳ) ≥ ϕ(x̄ , y) , ∀(x , y) ∈ X × Y

Proposition

When there exists a saddle-point, there is no duality gap
(that is, the duality gap is equal to zero)

Exercise*

Give a proof of the proposition
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Existence of a saddle point

Consider a function ϕ : X × Y → R and two sets X ⊂ X and Y ⊂ Y

Proposition

Suppose that function ϕ is

▶ continuous

▶ convex in the variable x

▶ concave in the variable y

and that X and Y are convex closed sets such that

▶ there exists a ŷ ∈ Y such that lim∥x∥→+∞ ϕ(x , ŷ) = +∞,
or the set X is bounded

▶ there exists a x̂ ∈ X such that lim∥y∥→+∞ ϕ(x̂ , y) = −∞,
or the set Y is bounded

Then, there exists a saddle point for the function ϕ on X × Y
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Optimization under equality constraints

We consider the original optimization problem

inf
u∈RN

J(u)

under the equality constraint

Θ(u) = 0

where Θ = (Θ1, . . . ,ΘM) : RN → RM
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Lagrangian

Definition

The Lagrangian L : RN × RM → R is defined by

L(u, λ) = J(u) + λ⊤Θ(u) = J(u) +
M∑
j=1

λjΘj(u)

The variables λ ∈ RM are called (Lagrange) multipliers
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Primal problem

Definition
The primal optimization problem is

inf
u∈RN

sup
λ∈RM

L(u, λ) = inf
u∈RN

sup
λ∈RM

(
J(u) +

M∑
j=1

λjΘj(u)

)

Proposition

The original and the primal problems have the same solutions (in u ∈ RN)

Exercise*

Give a proof of the proposition
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Dual problem

Definition
The dual optimization problem is

sup
λ∈RM

inf
u∈RN

L(u, λ) = sup
λ∈RM

inf
u∈RN

(
J(u) +

M∑
j=1

λjΘj(u)

)

Definition

The dual function is ψ : RM → R ∪ {−∞} given by

ψ(λ) = inf
u∈RN

L(u, λ) (1)

hence is concave

Proposition

When there exists a saddle-point for the Lagrangian,
primal and dual problems are equivalent (no duality gap)
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First-order optimality conditions and saddle point

Proposition

We suppose that

▶ the criterion J is differentiable and convex

▶ the function Θ is affine

Let u∗ ∈ RN be a minimum of J on the set
{
u ∈ RN | Θ(u) = 0

}
Then, there exists a vector λ∗ of RM (Lagrange multiplier) such that

• u 7→ L(u, λ∗) achieves a minimum at u∗ over RN

• λ 7→ L(u∗, λ) achieves a maximum at λ∗ over RM

that is, (u∗, λ∗) is a saddle point of the Lagrangian L

These two conditions are equivalent to

∇uL(u
∗, λ∗) = 0 = ∇J(u∗) +

[
Θ′(u∗)

]⊤
λ∗

∇λL(u
∗, λ∗) = 0 = Θ(u∗)
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Existence of a minimum and of a saddle point

inf
u∈RN

J(u) subject to Θ(u) = 0 ∈ RM

Proposition

We suppose that

▶ the criterion J is differentiable and a-strongly convex

▶ the function Θ is affine

Then

▶ there exists a unique minimum u∗ ∈ RN of J on the set{
u ∈ RN | Θ(u) = 0

}
▶ and there exists a vector λ∗ of RM (Lagrange multiplier)

such that (u∗, λ∗) is a saddle point of the Lagrangian L
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Uzawa algorithm (dual gradient ascent algorithm)

We suppose that

▶ the criterion J is differentiable and a-strongly convex

▶ the function Θ is affine, with norm κ

Then, when 0 < ρ < 2a/κ2, the following algorithm converges towards
the unique minimum u∗ of

inf
u∈RN

J(u) subject to Θ(u) = 0

Data: Initial multiplier λ(0), step ρ, tolerance ϵ > 0
Result: minimum and multiplier;
repeat

u(k) = argminu∈RN L(u, λ(k)) (primal minimization w.r.t. u)

λ(k+1) = λ(k) + ρΘ(u(k)) (dual gradient step w.r.t. λ)
until

∥∥Θ(u(k))
∥∥ < ϵ;

Algorithm 2: Uzawa algorithm
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Uzawa algorithm and basic decomposition mechanism

Consider the optimization problem

inf
(u,v)∈RN×RP

J(u) + G (v) subject to Θ(u) + Ψ(v) = 0

whose Lagrangian is L(u, v , λ) = J(u) + G (v) +
(
Θ(u) + Ψ(v)

)⊤
λ

The primal minimization w.r.t. (u, v) in Uzawa algorithm is

L(u(k), v (k), λ(k)) = min
(u,v)∈RN×RP

J(u) + G (v) +
(
Θ(u) + Ψ(v)

)⊤
λ(k)

= min
u∈RN

J(u) + Θ(u)⊤λ(k)︸ ︷︷ ︸
subproblem in u

+ min
v∈RP

G (v) + Ψ(v)⊤λ(k)︸ ︷︷ ︸
subproblem in v

by the interchange formula

The primal minimization problem splits into 2 independent subproblems!
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Augmented Lagrangian in case of equality constraints

Definition

Let r > 0. The augmented Lagrangian Lr : RN × RM → R is defined by

Lr (u, λ) = max
q∈RM

(
L(u, q)− 1

2r

∥∥λ− q
∥∥2) = J(u) +Θ(u)⊤λ+

r

2

∥∥Θ(u)
∥∥2

The associated dual function ψr : RM → R ∪ {−∞}

ψr (λ) = inf
u∈RN

Lr (u, λ)

is the Moreau-Yosida regularization of the dual function ψ in (1)

ψ(λ) = inf
u∈RN

L(u, λ)

and the Lagrangian L and the augmented Lagrangian Lr have
the same set of saddle points, with better mathematical properties
for the augmented Lagrangian (stability, differentiability. . . )
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