IMCA Instituto de Matemática

Smart Energy and Stochastic Optimization ⋄ SHORT COURSES

Review of convexity and optimization

P. Carpentier — J. P. Chancelier — M. De Lara

Cermics, ENPC, IP Paris, France

November 26, 2024

[Optimization problems, convex functions, local and global minima](#page-2-0)

[First-order optimality conditions](#page-20-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Optimization problems, convex functions, local and global minima](#page-2-0)

[First-order optimality conditions](#page-20-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Optimization problems, convex functions, local and global minima](#page-2-0) [Optimization problems](#page-3-0)

[Convex sets and convex functions](#page-8-0) [Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0)

[Optimization over an admissible set](#page-21-0) [Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Duality gap and saddle-points](#page-31-0) [Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0) [Augmented Lagrangian](#page-45-0)

Ingredients for a general optimization problem

 $\inf_{u \in U^{ad}} J(u)$

▶ Optimization space U , optimization variables $u \in U$

▶ Constraints $u \in U^{ad} \subset \mathcal{U}$ (admissible set)

$$
\blacktriangleright \text{ Criterion } J: \mathcal{U} \to \mathbb{R} \cup \{+\infty\}
$$

As a remark, we have

$$
\inf_{u \in U^{ad}} J(u) = \inf_{u \in U} \left(J(u) + \iota_{U^{ad}}(u) \right)
$$

 $\iota_{U^{\mathsf{ad}}}$ being the indicator function of the set U^{ad}

$$
\iota_{U^{ad}}(u) = \begin{cases} 0 & \text{if } u \in U^{ad} \\ +\infty & \text{if } u \notin U^{ad} \end{cases}
$$

Some classes of optimization problems in finite dimension

$$
\inf_{u\in U^{ad}}J(u)
$$

▶ Linear programming

- \blacktriangleright Optimization space $\mathcal{U} = \mathbb{R}^N$
- \blacktriangleright Criterion *J* is linear (affine)
- ▶ Constraint set U^{ad} defined by a finite number of linear equations (equalities and inequalities)

\blacktriangleright Combinatorial optimization

▶ Optimization space U is discrete (binary $\{0,1\}^N$, integer \mathbb{Z}^N , etc.)

▶ Convex optimization

- \blacktriangleright Optimization space $\mathcal{U} = \mathbb{R}^N$
- \blacktriangleright Criterion *J* is a convex function
- ▶ Constraint set U^{ad} is convex

Some useful formulas in optimization

▶ Linearity formula. For any function $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ we have

$$
\inf_{x \in \mathcal{X}} \left(a + f(x) \right) = a + \inf_{x \in \mathcal{X}} f(x), \ \forall a \in \mathbb{R}
$$

$$
\inf_{x \in \mathcal{X}} \alpha f(x) = \alpha \inf_{x \in \mathcal{X}} f(x), \qquad \forall \alpha \ge 0
$$

▶ Tower formula. For any function $h: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ we have

$$
\inf_{(x,y)\in\mathcal{X}\times\mathcal{Y}} h(x,y) = \inf_{x\in\mathcal{X}} \left(\inf_{y\in\mathcal{Y}} h(x,y) \right) = \inf_{y\in\mathcal{Y}} \left(\inf_{x\in\mathcal{X}} h(x,y) \right)
$$

▶ Interchange formula. For any function $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ and any function $g: \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ we have

$$
\inf_{(x,y)\in\mathcal{X}\times\mathcal{Y}}\big(f(x)+g(y)\big)=\inf_{x\in\mathcal{X}}f(x)+\inf_{y\in\mathcal{Y}}g(y)
$$

Exercise*

Give proofs for the tower and interchange formulas

Interchange in a stochastic framework

Consider a finite set S of scenarios equipped with a probability¹ $\{\pi_s\}_{s\in\mathbb{S}}$. For each scenario $s \in \mathbb{S}$, we have

- ▶ a cost function $f_s: \mathcal{X}_s \to \mathbb{R} \cup \{+\infty\}$
- ▶ depending on a control $x_s \in \mathcal{X}_s$

We have

$$
\inf_{\{x_s\}_{s\in\mathbb{S}}\in\prod_{s\in\mathbb{S}}\mathcal{X}_s}\left(\sum_{s\in\mathbb{S}}\pi_s f_s(x_s)\right) = \sum_{s\in\mathbb{S}}\pi_s\left(\inf_{x_s\in\mathcal{X}_s}f_s(x_s)\right)
$$

that is, the operator inf and the operator E can be interchanged.

$$
{}^1{\rm that}~{\rm is},~\pi_s\geq 0~{\rm and}~\sum_{s\in \mathbb{S}}\pi_s=1
$$

[Optimization problems, convex functions, local and global minima](#page-2-0)

[Optimization problems](#page-3-0) [Convex sets and convex functions](#page-8-0)

[Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0)

[Optimization over an admissible set](#page-21-0) [Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Duality gap and saddle-points](#page-31-0) [Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0) [Augmented Lagrangian](#page-45-0)

Convex sets

Let $\mathcal{N}\in\mathbb{N}^*.$ We consider sets of the Euclidian space \mathbb{R}^{N}

▶ The set $C \subset \mathbb{R}^N$ is convex if we have

 $\forall (x_1, x_2) \in C \times C$, $\forall t \in [0, 1]$, $tx_1 + (1 - t)x_2 \in C$

▶ A segment is convex

- \blacktriangleright A hyperplane is convex²
- An affine subspace³ is convex
- ▶ An intersection of convex sets is convex

Exercise*

Give the proof of the last statement

 \mathcal{P}^2 Hyperplane $H = \{x \in \mathbb{R}^N \, \big| \, \langle x, y \rangle + b = 0 \}$ with $y \in \mathbb{R}^N \backslash \{0\}$ and $b \in \mathbb{R}^N$

3 intersection of hyperplanes

Definitions of convex functions

Let $C \subset \mathbb{R}^N$ be an nonempty convex set of \mathbb{R}^N , where $N \in \mathbb{N}^*,$ and $f: C \to \mathbb{R}$ be a function

 \triangleright The function f is convex on C if. for any $x_1 \in C$, $x_2 \in C$ and any $t \in [0, 1]$,

$$
f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)
$$

 \blacktriangleright The function f is strictly convex on C if, for any $x_1 \in \mathcal{C}$, $x_2 \in \mathcal{C}$, $x_1 \neq x_2$, and any $t \in]0,1[$,

$$
f(tx_1+(1-t)x_2) < tf(x_1)+(1-t)f(x_2)
$$

 \blacktriangleright The function f is a-strongly convex on C (of modulus $a > 0$) if, for any $x_1 \in C$, $x_2 \in C$ and any $t \in [0, 1]$,

$$
f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)-\frac{a}{2}t(1-t)\|x_1-x_2\|^2
$$

Exercises

Let $C \subset \mathbb{R}^N$ be an nonempty set of \mathbb{R}^N , where $N \in \mathbb{N}^*$

- ▶ Show that a function $f: C \to \mathbb{R}$ is convex if and only if its epigraph 4 is a convex set of $\mathbb{R}^N\times\mathbb{R}$
- ▶ Show that a function $f: C \to \mathbb{R}$ is a-strongly convex if and only if $g(x) = f(x) - \frac{a}{2} ||x||^2$ is convex
- ▶ If $f: C \to \mathbb{R}$ is convex, show that f is not strictly convex if and only if there exists a nonempty convex set $C' \subset C$ over which f is affine

$$
{}^{4}\text{epi} f = \{(x, y) \in \mathbb{R}^{N} \times \mathbb{R} \mid f(x) \leq y\} \subset \mathbb{R}^{N} \times \mathbb{R}
$$

P. Carpentier **[Review of convexity and optimization](#page-0-0) IMCA 2024** 12 / 48

Convexity for differentiable multivariate functions

The Hessian matrix $\mathcal{H}_f(x)$ of a twice differentiable (\mathcal{C}^2) function $f:\mathbb{R}^N\rightarrow\mathbb{R}$ is the $N\times N$ symmetric matrix given by

$$
\mathcal{H}_f(x) = \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right\}_{(i,j) \in \{1,\dots,N\}^2}
$$

Proposition

Let $C \subset \mathbb{R}^N$ be an nonempty convex set of \mathbb{R}^N , where $N \in \mathbb{N}^*$

- A C^2 function $f : \mathbb{R}^N \to \mathbb{R}$ is convex on C if and only if the Hessian matrix $\mathcal{H}_f(x)$ is positive for all $x \in C$
- A C^2 function $f : \mathbb{R}^N \to \mathbb{R}$ is a-strongly convex on C if and only if the eigenvalues of the Hessian matrix $\mathcal{H}_f(x)$ are uniformly bounded below by $a > 0$ on C

Exercise

Let Q be a $N \times N$ symmetric matrix and $f(x) = \frac{1}{2}x^{\top} Qx$, where x^{\top} is the transpose of the vector x . Give conditions on the smallest eigenvalue of Q so that the function f is convex, or strictly convex, or a-strongly convex

Operations preserving convexity

Proposition

Let $(f_i)_{i\in I}$ be a family of convex functions indexed by $i \in I$ Then $\sup_{i \in I} f_i$ is a convex function

Proposition

Let $(f_i)_{i=1,...,n}$ be convex functions Let $(\alpha_i)_{i=1,...,n}$ be nonnegative numbers Then $\sum_{i=1}^{n} \alpha_i f_i$ is a convex function

Proposition

Let $f : \mathbb{R}^N \to \mathbb{R}$ be convex Let A be a $N\times M$ matrix and $b\in\mathbb{R}^N$ Then $y \in \mathbb{R}^M \mapsto f(Ay + b)$ is a convex function

Exercise*

Give a proof of the first proposition

[Optimization problems, convex functions, local and global minima](#page-2-0)

[Optimization problems](#page-3-0) [Convex sets and convex functions](#page-8-0)

[Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0)

[Optimization over an admissible set](#page-21-0) [Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Duality gap and saddle-points](#page-31-0) [Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0) [Augmented Lagrangian](#page-45-0)

Coercivity

Definition A function $f:\mathbb{R}^N\to\mathbb{R}\cup\{+\infty\}$ is coercive on a set $\mathcal{C}\subset\mathbb{R}^N$ if

 $\lim_{x \in C, ||x|| \to +\infty} f(x) = +\infty$

Proposition

A a-strongly convex differentiable function is coercive

Exercise* Give a proof of the proposition

Minimum

Definition

We say that $u^* \in \mathcal{U}$ is a global minimum of the optimization problem

 $\inf_{u \in U^{ad}} J(u)$

if we have

 $u^*\in U$ $\hspace{.15cm}\textsf{and}\hspace{.15cm} \hspace{.15cm} J(u^*)\leq J(u)\;,\;\;\forall u\in\mathit{U}^\mathit{ad}$

In this case, we write

$$
J(u^*) = \min_{u \in U^{ad}} J(u)
$$

Existence and uniqueness of a minimum

We consider the finite dimensional optimization problem

$$
\inf_{u \in U^{ad}} J(u) \quad \text{with} \quad U^{ad} \subset \mathcal{U} = \mathbb{R}^N
$$

Proposition

If the constraint set U^{ad} is compact (bounded and closed) and if the criterion J is continuous, then there exists a global minimum

Proposition

If the constraint set U^{ad} is closed and if the criterion J is continuous and coercive on U^{ad} , then there exists a global minimum

Proposition

If the constraint set U^{ad} is closed and convex and if the criterion J is strictly convex, then the global minimum (if it exists) is unique

Exercise

We consider the optimization problem

 $\inf_{u\in U^{ad}}J(u)$

Give an example

- \triangleright of continuous criterion J and of constraint set U^{ad} for which there is no minimum
- \triangleright of criterion J and of compact constraint set U^{ad} for which there is no minimum
- \triangleright of continuous criterion J and of unbounded and closed constraint set U^{ad} for which there is no minimum
- \triangleright of convex criterion J and of constraint set U^{ad} for which there is more than one minimum
- \triangleright of strictly convex criterion J and of constraint set U^{ad} for which there is more than one minimum

Local minimum

Definition

We say that $u^* \in \mathcal{U}$ is a local minimum of the optimization problem

 $\inf_{u \in U^{ad}} J(u)$

if there exists a neighborhood $\mathcal V$ of u^* in $\mathcal U^{ad}$ such that

$$
u^* \in U^{ad} \text{ and } J(u^*) \leq J(u) , \ \forall u \in \mathcal{V}
$$

Proposition

If the constraint set U^{ad} is convex and if the criterion J is convex, then a local minimum is a global minimum

[Optimization problems, convex functions, local and global minima](#page-2-0)

[First-order optimality conditions](#page-20-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Optimization problems, convex functions, local and global minima](#page-2-0)

[Optimization problems](#page-3-0) [Convex sets and convex functions](#page-8-0) [Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0)

[Optimization over an admissible set](#page-21-0)

[Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Duality gap and saddle-points](#page-31-0) [Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0) [Augmented Lagrangian](#page-45-0)

Optimization over an admissible set

We consider the optimization problem

$$
\inf_{u\in U^{ad}}J(u)
$$

From now, U^{ad} is a non empty convex set of \mathbb{R}^N

In the case where function J is differentiable, we denote by $\nabla J(u) \in \mathbb{R}^N$ its gradient at point u :

$$
\lim_{t>0,t\to 0}\frac{J(u+td)-J(u)}{t}=\nabla J(u)^{\top}d\ ,\ \ \forall d\in\mathbb{R}^N
$$

First-order optimality conditions

Proposition

Assume that J is differentiable and $\, U^{ad}$ is a convex set Let $u^* \in U^{ad}$. Then a necessary condition for u^* to be a local minimum of J over the set U^{ad} is that

$$
\nabla J(u^*)^\top (u-u^*) \geq 0 \quad \forall u \in U^{ad}
$$

Exercise*

Show that, in the case where $U^{ad} = \mathbb{R}^N$, this optimality condition reduces to the standard stationarity condition $\nabla J(u^*) = 0$

Proposition

Assume moreover that J is a convex function Let $u^* \in U^{ad}$. Then a sufficient condition for u^* to be a global minimum of J over the set U^{ad} is that

$$
\nabla J(u^*)^\top (u-u^*) \geq 0 \quad \forall u \in U^{ad}
$$

Standard projected gradient algorithm

We suppose that J is differentiable with gradient Lipschitz of modulus $L,^5$ a-strongly convex and that U^{ad} is a convex set

Then, for a step size ρ such that

$$
0 < \rho < 2a/L^2
$$

the following algorithm converges towards the unique minimum u^* of

 $\inf_{u \in U^{ad}} J(u)$

Data: Initial control $u^{(0)}$, step ρ Result: optimal control u^* repeat $u^{(k+1)} = \text{proj}_{U^{ad}}\left(u^{(k)} - \rho \nabla J(u^{(k)})\right)$ (gradient step w.r.t. u) until some convergence criterion is met; Algorithm 1: Projected gradient algorithm

 5 that is, $\|\nabla J(u) - \nabla J(v)\| \leq L \|u - v\|$

[Optimization problems, convex functions, local and global minima](#page-2-0)

[Optimization problems](#page-3-0) [Convex sets and convex functions](#page-8-0) [Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0) [Optimization over an admissible set](#page-21-0) [Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Duality gap and saddle-points](#page-31-0) [Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0) [Augmented Lagrangian](#page-45-0)

Optimization under equality constraints

We consider the optimization problem

 $\inf_{u \in \mathbb{R}^N} J(u)$

under the explicit constraint

 $\Theta(u) = 0$

where Θ is a function with values in \mathbb{R}^M

$$
\Theta=(\Theta_1,\ldots,\Theta_M):\mathbb{R}^N\to\mathbb{R}^M
$$

whose components are $\Theta_j:\mathbb{R}^{\textsf{N}}\rightarrow\mathbb{R}$, $j=1,\ldots,M$

Otherwise stated, the admissible set $\, U^{{\rm ad}}$ is in this case

$$
U^{\text{ad}} = \left\{ u \in \mathbb{R}^N \mid \Theta(u) = 0 \right\}
$$

Sufficient condition for qualification

Definition

Let $u^* \in \mathbb{R}^N$. The equality constraints $\Theta(u) = 0$ are said to be regular at u^* if, when $\Theta(u^*)=0$, the function Θ is differentiable at u^* and the vectors $\nabla \Theta_j(u^*), \, j \in \{1,\ldots,M\},$ are linearly independent

Let $u^* \in \mathbb{R}^N$. In case

- ightharpoonup either the equality constraints $\Theta(u) = 0$ are regular at u^*
- \triangleright or the function Θ is affine

we say that the equality constraints $\Theta(u)=0$ are qualified at u^*

First-order necessary optimality conditions

Proposition

Let $u^* \in \mathbb{R}^N$. We suppose that

- \triangleright the criterion *J* and the constraints Θ are differentiable
- **►** the equality constraints $\Theta(u) = 0$ are qualified at u^*

Then a necessary condition for u^* to be a local minimum of J over the set $U^{{\rm ad}}=\left\{ \left. u\in{\mathbb R}^N\mid\Theta(u)=0\right\} \right.$ is that there exists a vector λ^* of \mathbb{R}^M , called Lagrange multiplier, such that

$$
\nabla J(u^*) + \left[\Theta'(u^*)\right]^\top \lambda^* = 0 \quad \text{and} \quad \Theta(u^*) = 0
$$

These first-order optimality conditions are called Karush-Kuhn-Tucker (KKT) optimality conditions (specialized for equality constraints)

First-order sufficient optimality conditions

Proposition

Let $u^* \in \mathbb{R}^N$. We suppose that

- \blacktriangleright the criterion I is convex and differentiable
- ▶ the function Θ is affine

Then a sufficient condition for u^* to be a global minimum of J over the set $U^{{\rm ad}}=\left\{ \left. u\in \mathbb{R}^{\mathsf{N}}\mid \Theta(u)=0\right\} \right.$ is that there exists a vector λ^* of \mathbb{R}^M , called Lagrange multiplier, such that

$$
\nabla J(u^*) + \left[\Theta'(u^*)\right]^\top \lambda^* = 0 \quad \text{and} \quad \Theta(u^*) = 0
$$

<u>Remark</u>. Using the Lagrangian function $L(u, \lambda) = J(u) + \lambda^\top \Theta(u),^6$ the conditions above can be written as

$$
\nabla_u L(u^*, \lambda^*) = \nabla J(u^*) + \left[\Theta'(u^*)\right]^\top \lambda^* = 0
$$

$$
\nabla_\lambda L(u^*, \lambda^*) = \Theta(u^*) = 0
$$

The first-order optimality conditions express the stationarity of the Lagrangian

⁶introduced in the next part of the course

[Optimization problems, convex functions, local and global minima](#page-2-0)

[First-order optimality conditions](#page-20-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Optimization problems, convex functions, local and global minima](#page-2-0)

[Optimization problems](#page-3-0) [Convex sets and convex functions](#page-8-0) [Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0)

[Optimization over an admissible set](#page-21-0) [Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0) [Duality gap and saddle-points](#page-31-0)

[Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0) [Augmented Lagrangian](#page-45-0)

Duality gap

Consider a function $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and two sets $X \subset \mathcal{X}$ and $Y \subset \mathcal{Y}$

We minimize in the variable x and maximize in the variable y

Definition

$$
\inf_{x \in X} \sup_{y \in Y} \phi(x, y) - \sup_{y \in Y} \inf_{x \in X} \phi(x, y)
$$

is called the duality gap

Proposition

The duality gap is always positive, that is,

$$
\inf_{x \in X} \sup_{y \in Y} \phi(x, y) \ge \sup_{y \in Y} \inf_{x \in X} \phi(x, y)
$$

Exercise*

Give a proof of the proposition

Saddle-point

Consider a function $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and two sets $X \subset \mathcal{X}$ and $Y \subset \mathcal{Y}$

Definition

We say that $(\bar{x}, \bar{y}) \in X \times Y$ is a saddle-point of ϕ on $X \times Y$ if

▶ $y \mapsto \phi(\bar{x}, y)$ achieves its maximum on Y at \bar{y}

▶ $x \mapsto \phi(x, \bar{y})$ achieves its minimum on X at \bar{x}

or, equivalently

$$
\phi(x,\bar{y}) \ge \phi(\bar{x},\bar{y}) \ge \phi(\bar{x},y) , \ \forall (x,y) \in X \times Y
$$

Proposition

When there exists a saddle-point, there is no duality gap (that is, the duality gap is equal to zero)

Exercise*

Give a proof of the proposition

Existence of a saddle point

Consider a function $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and two sets $X \subset \mathcal{X}$ and $Y \subset \mathcal{Y}$

Proposition

Suppose that function ϕ is

- \blacktriangleright continuous
- \triangleright convex in the variable x
- \triangleright concave in the variable y

and that X and Y are convex closed sets such that

- ▶ there exists a $\hat{y} \in Y$ such that $\lim_{||x|| \to +\infty} \phi(x, \hat{y}) = +\infty$, or the set X is bounded
- **►** there exists a $\hat{x} \in X$ such that $\lim_{\|y\| \to +\infty} \phi(\hat{x}, y) = -\infty$, or the set Y is bounded

Then, there exists a saddle point for the function ϕ on $X \times Y$

[Optimization problems, convex functions, local and global minima](#page-2-0)

[Optimization problems](#page-3-0) [Convex sets and convex functions](#page-8-0) [Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0) [Optimization over an admissible set](#page-21-0) [Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0) [Duality gap and saddle-points](#page-31-0) [Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0) [Augmented Lagrangian](#page-45-0)

Optimization under equality constraints

We consider the **original** optimization problem

 $\inf_{u \in \mathbb{R}^N} J(u)$

under the equality constraint

 $\Theta(u) = 0$ where $\Theta = (\Theta_1, \ldots, \Theta_M) : \mathbb{R}^N \to \mathbb{R}^M$

Lagrangian

Definition

The Lagrangian $L: \mathbb{R}^N \times \mathbb{R}^M \rightarrow \mathbb{R}$ is defined by

$$
L(u, \lambda) = J(u) + \lambda^{\top} \Theta(u) = J(u) + \sum_{j=1}^{M} \lambda_j \Theta_j(u)
$$

The variables $\lambda \in \mathbb{R}^M$ are called (Lagrange) multipliers

Primal problem

Definition The **primal** optimization problem is

$$
\inf_{u \in \mathbb{R}^N} \sup_{\lambda \in \mathbb{R}^M} L(u, \lambda) = \inf_{u \in \mathbb{R}^N} \sup_{\lambda \in \mathbb{R}^M} \left(J(u) + \sum_{j=1}^M \lambda_j \Theta_j(u) \right)
$$

Proposition

The original and the primal problems have the same solutions (in $u\in\mathbb{R}^N)$

Exercise* Give a proof of the proposition

Dual problem

Definition

The **dual** optimization problem is

$$
\sup_{\lambda \in \mathbb{R}^M} \inf_{u \in \mathbb{R}^N} L(u, \lambda) = \sup_{\lambda \in \mathbb{R}^M} \inf_{u \in \mathbb{R}^N} \left(J(u) + \sum_{j=1}^M \lambda_j \Theta_j(u) \right)
$$

Definition

The dual function is $\psi: \mathbb{R}^M \to \mathbb{R} \cup \{-\infty\}$ given by

$$
\psi(\lambda) = \inf_{u \in \mathbb{R}^N} L(u, \lambda) \tag{1}
$$

hence is concave

Proposition

When there exists a saddle-point for the Lagrangian, primal and dual problems are equivalent (no duality gap)

First-order optimality conditions and saddle point

Proposition

We suppose that

- \blacktriangleright the criterion J is differentiable and convex
- \blacktriangleright the function Θ is affine

Let $u^* \in \mathbb{R}^N$ be a minimum of J on the set $\{u \in \mathbb{R}^N \mid \Theta(u) = 0\}$ Then, there exists a vector λ^* of \mathbb{R}^M (Lagrange multiplier) such that

- $u \mapsto L(u, \lambda^*)$ achieves a minimum at u^* over \mathbb{R}^N
- $\bullet\;\lambda\mapsto L(u^*,\lambda)$ achieves a maximum at λ^* over \mathbb{R}^M that is, (u^*, λ^*) is a saddle point of the Lagrangian L

These two conditions are equivalent to

$$
\nabla_{u}L(u^*,\lambda^*)=0=\nabla J(u^*)+\left[\Theta'(u^*)\right]^\top\lambda^*
$$

$$
\nabla_{\lambda}L(u^*,\lambda^*)=0=\Theta(u^*)
$$

Existence of a minimum and of a saddle point

$$
\inf_{u \in \mathbb{R}^N} J(u) \quad \text{subject to} \quad \Theta(u) = 0 \in \mathbb{R}^M
$$

Proposition

We suppose that

- \blacktriangleright the criterion J is differentiable and a-strongly convex
- ▶ the function Θ is affine

Then

▶ there exists a unique minimum $u^* \in \mathbb{R}^N$ of J on the set $\{u \in \mathbb{R}^N \mid \Theta(u) = 0\}$

▶ and there exists a vector λ^* of \mathbb{R}^M (Lagrange multiplier) such that (u^*,λ^*) is a saddle point of the Lagrangian L

[Optimization problems, convex functions, local and global minima](#page-2-0)

[Optimization problems](#page-3-0) [Convex sets and convex functions](#page-8-0) [Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0)

[Optimization over an admissible set](#page-21-0) [Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Duality gap and saddle-points](#page-31-0) [Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0) [Augmented Lagrangian](#page-45-0)

Uzawa algorithm (dual gradient ascent algorithm)

We suppose that

 \blacktriangleright the criterion J is differentiable and a-strongly convex

 \blacktriangleright the function Θ is affine, with norm κ

Then, when $0<\rho<$ 2a $/\kappa^2$, the following algorithm converges towards the unique minimum u^* of

 $\inf_{u \in \mathbb{R}^N} J(u)$ subject to $\Theta(u) = 0$

Data: Initial multiplier $\lambda^{(0)}$, step ρ , tolerance $\epsilon > 0$ Result: minimum and multiplier; repeat $u^{(k)} = \arg \min_{u \in \mathbb{R}^N} L(u, \lambda^{(k)})$ (primal minimization w.r.t. u) $\lambda^{(k+1)} = \lambda^{(k)} + \rho \Theta(u^{(k)})$ (dual gradient step w.r.t. λ) until $\left\|\Theta(u^{(k)})\right\| < \epsilon;$

Algorithm 2: Uzawa algorithm

Uzawa algorithm and basic decomposition mechanism

Consider the optimization problem

$$
\inf_{(u,v)\in\mathbb{R}^N\times\mathbb{R}^P}J(u)+G(v) \text{ subject to } \Theta(u)+\Psi(v)=0
$$

whose Lagrangian is $\mathcal{L}(u,\mathsf{v},\lambda)=\mathcal{J}(u)+\mathcal{G}(\mathsf{v})+\big(\Theta(u)+\Psi(\mathsf{v})\big)^\top\lambda$

The primal minimization w.r.t. (u, v) in Uzawa algorithm is

$$
L(u^{(k)}, v^{(k)}, \lambda^{(k)}) = \min_{(u,v) \in \mathbb{R}^N \times \mathbb{R}^P} J(u) + G(v) + (\Theta(u) + \Psi(v))^{\top} \lambda^{(k)}
$$

=
$$
\underbrace{\min_{u \in \mathbb{R}^N} J(u) + \Theta(u)^{\top} \lambda^{(k)}}_{\text{subproblem in } u} + \underbrace{\min_{v \in \mathbb{R}^P} G(v) + \Psi(v)^{\top} \lambda^{(k)}}_{\text{subproblem in } v}
$$

by the interchange formula

The primal minimization problem splits into 2 independent subproblems!

[Optimization problems, convex functions, local and global minima](#page-2-0)

[Optimization problems](#page-3-0) [Convex sets and convex functions](#page-8-0) [Existence and uniqueness of a solution](#page-14-0)

[First-order optimality conditions](#page-20-0)

[Optimization over an admissible set](#page-21-0) [Optimization under equality constraints](#page-25-0)

[Lagrangian duality and Uzawa algorithm](#page-30-0)

[Duality gap and saddle-points](#page-31-0) [Lagrangian duality under equality constraints](#page-35-0) [Uzawa algorithm](#page-42-0)

[Augmented Lagrangian](#page-45-0)

Augmented Lagrangian in case of equality constraints

Definition

Let $r>0.$ The augmented Lagrangian $L_r:\mathbb{R}^N\times\mathbb{R}^M\rightarrow\mathbb{R}$ is defined by

$$
L_r(u, \lambda) = \max_{q \in \mathbb{R}^M} \left(L(u, q) - \frac{1}{2r} ||\lambda - q||^2 \right) = J(u) + \Theta(u)^\top \lambda + \frac{r}{2} ||\Theta(u)||^2
$$

The associated dual function $\psi_{\bm r}:\mathbb{R}^M\to\mathbb{R}\cup\{-\infty\}$

$$
\psi_r(\lambda)=\inf_{u\in\mathbb{R}^N}L_r(u,\lambda)
$$

is the Moreau-Yosida regularization of the dual function ψ in [\(1\)](#page-39-0)

$$
\psi(\lambda)=\inf_{u\in\mathbb{R}^N}L(u,\lambda)
$$

and the Lagrangian L and the augmented Lagrangian L_r have the same set of saddle points, with better mathematical properties for the augmented Lagrangian (stability, differentiability. . .)

Some references

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

J. Borwein, A. Lewis. Convex Analysis. Springer, 2006.

F. Bonnans, J.-C. Gilbert, C. Lemaréchal, C. Sagastizabal. Numerical Optimization. Theoretical and Practical Aspects. Springer, 2006.

J. Nocedal, S.J. Wright. Numerical Optimization. Springer, 2006.

A. Ruszczynski. Nonlinear Optimization. Princeton University Press, 2006.