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Ingredients for a general optimization problem

inf J(u)

ueyad

» Optimization space U, optimization variables u € U
> Constraints u € U*? C U (admissible set)

» Criterion J : U — RU {+o0}

As a remark, we have

inf J(u) = ngi; (J(u) + Luad(u))

ueyad

tys=d being the indicator function of the set U??

0 if ue U™
LUad(u) = +oo if u g Uad
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Some classes of optimization problems in finite dimension

ulen(fad J(U)
» Linear programming
» Optimization space = R
» Criterion J is linear (affine)
» Constraint set U?? defined by a finite number of linear equations
(equalities and inequalities)

» Combinatorial optimization
> Optimization space U is discrete (binary {0,1}", integer Z", etc.)

» Convex optimization
» Optimization space U = RV
» Criterion J is a convex function
» Constraint set U is convex

P. Carpentier Review of convexity and optimization IMCA 2024

6 /48



Some useful formulas in optimization
» Linearity formula. For any function f : X — R U {400} we have

Xlgﬁ( (a+ f(x)) :a+X|2£(f(x), VaeR

. o S
X|2fvon"(x) olegfY f(x), Ya >0

» Tower formula. For any function h: X x Y — R U {400} we have

inf _h = inf (inf h — inf (inf h
(y) ey () e (ylgy (x:¥)) ey (X'QX (x,¥))

» Interchange formula. For any function f : X — R U {+o00} and any
function g : ) — R U {+0o0} we have

inf  (f — inf f inf
(X’y)'gXXy( (x) +&(y)) = inf () + inf g(y)

Exercise*

Give proofs for the tower and interchange formulas
IMCA 2024

P. Carpentier Review of convexity and optimization

7/48



Interchange in a stochastic framework

Consider a finite set S of scenarios equipped with a probability! {ms}scs.
For each scenario s € S, we have

» a cost function f5 : X5 — RU {+oc0}
» depending on a control xs € X

We have

inf T fs(Xs = s | inf fo(Xs
{Xs}sesEHsesXS(Z ( )> Z (XSeXS ( ))

seS seS

that is, the operator inf and the operator E can be interchanged.

Lthat is, ms > 0 and Zses s =1
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Convex sets

Let N € N*. We consider sets of the Euclidian space RV

» The set C C RV is convex if we have

V(x1,%) € CxC, Vte[0,1], ta+(1—t)xx e C

> A segment is convex
» A hyperplane is convex?
» An affine subspace3 is convex

» An intersection of convex sets is convex

Exercise*
Give the proof of the last statement

2Hyperplane H = {x € RN | (x, y) +b=0} with y € RM\{0} and b € R
Sintersection of hyperplanes
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Definitions of convex functions

Let C C RN be an nonempty convex set of RV, where N € N*,
and f : C — R be a function

» The function f is convex on C if,
forany x; € C, xp € C and any t € [0,1],

f(txa + (1 — t)xe) < tf(x1) + (1 — t)f(x)

» The function f is strictly convex on C if,
forany x; € C, x2 € C, x; # xp, and any t €]0, 1],

f(txa+ (1 —t)x) < tf(x) + (1 — t)f(x)

» The function f is a-strongly convex on C (of modulus a > 0) if,
forany x; € C, x, € C and any t € [0,1],

f(tba +(1—t)x) < tf(a)+ (1 —t)f(x) — gt(l — )| — xo?
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Exercises

Let C C RY be an nonempty set of RV, where N € N*

» Show that a function f : C — R is convex if and only if
its epigraph* is a convex set of RV x R

» Show that a function f : C — R is a-strongly convex
if and only if g(x) = f(x) — 2||x||* is convex

» Iff: C — R is convex, show that f is not strictly convex if and only if
there exists a nonempty convex set C' C C over which f is affine

tepif = {(x,y) e RV xR|f(x) <y} CRN xR
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Convexity for differentiable multivariate functions
The Hessian matrix H(x) of a twice differentiable (C?) function
f:RN — R is the N x N symmetric matrix given by

2
1) = { )

}(/,j)e{l,..A,N}2

Proposition

Let C C RN be an nonempty convex set of RN, where N € N*
» A C? function f : RN — R is convex on C if and only if
the Hessian matrix H¢(x) is positive for all x € C

» A C? function f : RN — R is a-strongly convex on C if and only if
the eigenvalues of the Hessian matrix Hr(x) are uniformly bounded
below by a > 0 on C

Exercise

Let Q be a N x N symmetric matrix and f(x) = %XT Qx, where x" is the
transpose of the vector x. Give conditions on the smallest eigenvalue of Q so
that the function f is convex, or strictly convex, or a-strongly convex
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Operations preserving convexity

Proposition

Let (f;)ic; be a family of convex functions indexed by i € /
Then sup;¢, fj is a convex function

Proposition

Let (f;)i=1,....n be convex functions
Let (aj)i=1,...,» be nonnegative numbers
Then Z7=1 «;f; is a convex function

Proposition

Let f : RY — R be convex
Let A bea N x M matrix and b € RV
Then y € RM — f(Ay + b) is a convex function

Exercise*
Give a proof of the first proposition
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Coercivity

Definition
A function f : RV — R U {400} is coercive on a set C C RV if

lim f(x) =+o0
x€C,||x||—=+o0

Proposition J

A a-strongly convex differentiable function is coercive

Exercise*
Give a proof of the proposition
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Minimum

Definition
We say that u* € U is a global minimum of the optimization problem

inf J(u)

ue yad
if we have
v e U™ and  J(u*) < J(u), Yue UM

In this case, we write

J(u*) = min J
(u7) = min J(u)

P. Carpentier Review of convexity and optimization IMCA 2024 17 / 48



Existence and uniqueness of a minimum

We consider the finite dimensional optimization problem
inf J(u) with U*? cuU =RV
ueyad
Proposition

If the constraint set U2 is compact (bounded and closed) and
if the criterion J is continuous, then there exists a global minimum

Proposition

If the constraint set U2 is closed and if the criterion J is continuous
and coercive on U??, then there exists a global minimum

Proposition

If the constraint set U2 is closed and convex and if the criterion J
is strictly convex, then the global minimum (if it exists) is unique
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Exercise

We consider the optimization problem

inf J(u)

ueyad
Give an example

> of continuous criterion J and of constraint set U?® for which there is no
minimum

» of criterion J and of compact constraint set U*® for which there is no
minimum

> of continuous criterion J and of unbounded and closed constraint set U*?
for which there is no minimum

> of convex criterion J and of constraint set U for which there is more
than one minimum

> of strictly convex criterion J and of constraint set U for which there is
more than one minimum
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Local minimum

Definition

We say that u* € U is a local minimum of the optimization problem

inf J(u)

ue yad

if there exists a neighborhood V of u* in U?? such that

u* € U and J(u*) < J(u), YueV

Proposition

If the constraint set U2 is convex and if the criterion J is convex,
then a local minimum is a global minimum
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Optimization over an admissible set

We consider the optimization problem

inf J(u)

ueyad

From now, U2? is a non empty convex set of RN

In the case where function J is differentiable, we denote by VJ(u) € RV
its gradient at point u:

im J(u+td) — J(u)

=VJ(u)'d, vd e RN
t>0,t—0 t
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First-order optimality conditions

Proposition

Assume that J is differentiable and U2? is a convex set
Let u* € U??. Then a necessary condition for u* to be
a local minimum of J over the set U?? is that

VI(w) (u—u*)>0 VYue U™

Exercise*
Show that, in the case where U*? = R", this optimality condition reduces to
the standard stationarity condition VJ(u™) =0

Proposition

Assume moreover that J is a convex function
Let u* € U?@. Then a sufficient condition for u* to be
a global minimum of J over the set U?? is that

VJ(w) (u—u*)>0 Vue U™

P. Carpentier Review of convexity and optimization IMCA 2024 24 / 48



Standard projected gradient algorithm

We suppose that J is differentiable with gradient Lipschitz of
modulus L% a-strongly convex and that U3¢ is a convex set

Then, for a step size p such that
0<p<2a/l?
the following algorithm converges towards the unique minimum u* of

inf J(u)

ue yad

Data: Initial control u(©), step p
Result: optimal control u*
repeat
ult) = proj e (u — pVI(u9)) (gradient step w.r.t. u)
until some convergence criterion is met;

Algorithm 1: Projected gradient algorithm

Sthat is, ||[VJ(u) — VJ(V)|| < Lflu— v
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Optimization under equality constraints
We consider the optimization problem

inf J
uleanN (U)

under the explicit constraint
O(u)=0

where © is a function with values in RM
©=(04,...,0y) : RV - RV

whose components are ©; : RNV R, j=1,....,.M

Otherwise stated, the admissible set U24 is in this case

U = {UGRN | e(u):o}
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Sufficient condition for qualification

Definition

Let u* € RN, The equality constraints @(u) = 0 are said to be regular
at u* if, when ©(u*) = 0, the function © is differentiable at v* and
the vectors VO;(u*), j € {1,..., M}, are linearly independent

Let u* € RV, In case
> either the equality constraints ©(u) = 0 are regular at u*
» or the function © is affine
we say that the equality constraints ©(u) = 0 are qualified at u*
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First-order necessary optimality conditions

Proposition

Let u* € RN. We suppose that
» the criterion J and the constraints © are differentiable
> the equality constraints ©(u) = 0 are qualified at u*

Then a necessary condition for u* to be a local minimum of J
over the set U = {u € RV | ©(u) = 0} is that there exists
a vector \* of RM, called Lagrange multiplier, such that

V() + [©(u)] A" =0 and O(u*) =0

These first-order optimality conditions are called
Karush-Kuhn-Tucker (KKT) optimality conditions
(specialized for equality constraints)
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First-order sufficient optimality conditions

Proposition

Let u* € RN. We suppose that
» the criterion J is convex and differentiable
» the function © is affine

Then a sufficient condition for u* to be a global minimum of J
over the set U = {u € RV | ©(u) = 0} is that there exists
a vector \* of RM, called Lagrange multiplier, such that

T

VJ(u*)+ [©'(u")] A*=0 and O(u*) =0

Remark. Using the Lagrangian function L(u, \) = J(u) + AT ©(u),°
the conditions above can be written as

Vul(u*, X)) = V(") + [Gl(u*)} A =0
Vial(u", X)) =0(w")=0

The first-order optimality conditions express the stationarity of the Lagrangian

Sintroduced in the next part of the course
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Duality gap
Consider a function ¢ : X x Y - R and twosets X C X and Y C )Y

We minimize in the variable x and maximize in the variable y
Definition

inf sup ¢(x,y) — sup lnf o(x,y)
xeX yey

is called the duality gap

Proposition
The duality gap is always positive, that is,

inf sup ¢(x,y) > sup |nf o(x,y)
XGXyey yGYX

Exercise*
Give a proof of the proposition
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Saddle-point
Consider a function ¢ : X x Y - R and twosets X C X and Y C )Y

Definition

We say that (x,¥) € X x Y is a saddle-point of ¢ on X x Y if
» y — ¢(X,y) achieves its maximum on Y at y
> x — ¢(x,¥) achieves its minimum on X at X

or, equivalently

¢(x,7) 2 (%,7) = 6(X,y), V(x,y) € X XY

Proposition

When there exists a saddle-point, there is no duality gap
(that is, the duality gap is equal to zero)

Exercise*
Give a proof of the proposition
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Existence of a saddle point

Consider a function ¢ : X x Y - R andtwosets X C X and Y C )

Proposition
Suppose that function ¢ is
» continuous
» convex in the variable x
> concave in the variable y
and that X and Y are convex closed sets such that
> there exists a y € Y such that lim 5400 (X, ) = +00,
or the set X is bounded

> there exists a X € X such that lim), 4o ¢(X,y) = —00,
or the set Y is bounded

Then, there exists a saddle point for the function  on X x Y
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Optimization under equality constraints

We consider the original optimization problem

inf J(u)

u€RN
under the equality constraint
O(u)=0
where © = (©4,...,0y) : RV — RM
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Lagrangian

Definition
The Lagrangian L : RN x RM — R is defined by
M

L(u, ) = J(u) + ATO(u) = J(u) + > A8;(u)

j=t

The variables A € RM are called (Lagrange) multipliers
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Primal problem

Definition
The primal optimization problem is

inf sup L(u,\) = inf sup (J(u)+§;xjej(u))

u€ERN )y crM uERN \ crM

The original and the primal problems have the same solutions (in u € RV)

Proposition J

Exercise*
Give a proof of the proposition
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Dual problem
Definition

The dual optimization problem is

M
sup inf L(u,A) = sup inf (J(u)—}-Z)\j@j(u))
j=1

A€RM u€RN AERM UERY

Definition
The dual function is ¢ : RM — R U {—oc0} given by

Y(A) = inf L(u,N\)

ueRN

hence is concave

Proposition

When there exists a saddle-point for the Lagrangian,
primal and dual problems are equivalent (no duality gap)
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First-order optimality conditions and saddle point

Proposition

We suppose that
» the criterion J is differentiable and convex
» the function © is affine

Let u* € RN be a minimum of J on the set {u € R" | ©(uv) =0}
Then, there exists a vector \* of RM (Lagrange multiplier) such that

e u+ L(u, \*) achieves a minimum at u* over RV
e A L(u*, \) achieves a maximum at A\* over RV
that is, (u*, \*) is a saddle point of the Lagrangian L

These two conditions are equivalent to

(0N = 0= V() + [0'(w)] "X
VA L(u™, A") =0 =O(u")
v
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Existence of a minimum and of a saddle point

inf J(u) subjectto ©(u) =0€cRM
u€RN

Proposition
We suppose that
» the criterion J is differentiable and a-strongly convex
» the function © is affine
Then
» there exists a unique minimum u* € RN of J on the set
{ueR"|O(u) =0}
» and there exists a vector \* of RM (Lagrange multiplier)
such that (u*, A*) is a saddle point of the Lagrangian L
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Uzawa algorithm (dual gradient ascent algorithm)

We suppose that
» the criterion J is differentiable and a-strongly convex
» the function © is affine, with norm &

Then, when 0 < p < 2a/k?, the following algorithm converges towards
the unique minimum u* of

inf J(u) subjectto O(u)=0
u€RN

Data: Initial multiplier A0, step p, tolerance € > 0
Result: minimum and multiplier;

repeat
u) = arg min,cpn L(u, AK) (primal minimization w.r.t. u)
KD = XK pe(ulk)) (dual gradient step w.r.t. )

until H@(u(k))H <€

Algorithm 2: Uzawa algorithm
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Uzawa algorithm and basic decomposition mechanism

Consider the optimization problem

(u,v)g;{f’vaP J(u) + G(v) subjectto O(u) +V¥(v)=0

whose Lagrangian is L(u, v, A) = J(u) + G(v) + (©(u) + \U(v))T)\
The primal minimization w.r.t. (u,v) in Uzawa algorithm is
L(u®, v AR = min i J(u)+ G(v) + (©(u) + \U(V))T)\(k)

(u,v)ERN x

= min J(u) + ©O(u) AP+ min G(v) + W(v) AW
u€RN vERP

subproblem in u subproblem in v

by the interchange formula

The primal minimization problem splits into 2 independent subproblems!
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Augmented Lagrangian in case of equality constraints

Definition
Let r > 0. The augmented Lagrangian L, : RV x RM — R is defined by
[k

LX) = max <L(u q) - —H)\ q| ) - J(u)—l—@(u)T)\—F%H@(u)

The associated dual function 1, : RM — R U {—oc}

Yr(A) = uienﬂz"’ Lr(u, )

is the Moreau-Yosida regularization of the dual function % in (1)
A)=inf L(u, A
V) = inf L)

and the Lagrangian L and the augmented Lagrangian L, have
the same set of saddle points, with better mathematical properties
for the augmented Lagrangian (stability, differentiability. . .)
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