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Illustration of the scheme in Linear Programming (LP)

▶ Constraint matrix A ∈ Rm×n

▶ Cost vector k ∈ Rn

▶ Anchor b̄ ∈ Rm

Initial minimization problem

inf ⟨k | x⟩
x ∈ Rn

Ax = b̄
x ≥ 0
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Step 1. Perturbation of the initial minimization problem

▶ Embedding the problem in a family of minimization problems

∀b ∈ Rm , φ(b) = inf ⟨k | x⟩
x ∈ Rn

Ax = b
x ≥ 0

▶ Introducing a perturbation space: Rm

▶ Perturbation function φ : Rm → R = R ∪ {−∞}︸ ︷︷ ︸
unbounded

∪ {+∞}︸ ︷︷ ︸
unfeasible

▶ Value of the initial problem: φ(b̄)
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Examples of epigraphs of the perturbation functions for LP

Example

Let φ : R→ R be defined as

∀b ∈ R , φ(b) = inf x1 + 2x2
x ∈ R2

x1 − x2 = b
x ≥ 0

Then φ(b) = max{−2b, b} , ∀b ∈ R

−1

1

b

φ(b)
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Examples of epigraphs of the perturbation functions for LP

Example

Let φ : R→ R be defined as

φ(b) = inf x1 + x2 + x3
x ∈ R3

x1 + x2 + 3x3 = 1
x1 + 2x2 + 4x3 = b

x ≥ 0

Then φ(b) = max{3− 2b, 1, b − 1} , ∀b ∈ R

1 2

1

2

b

φ(b)
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Step 2. Dual space, coupling and conjugate function

▶ Perturbation function

∀b ∈ Rm , φ(b) = inf ⟨k | x⟩
x ∈ Rn

Ax = b
x ≥ 0

▶ Introducing the bilinear coupling

⟨· | ·⟩ :

perturbation
space︷︸︸︷
Rm ×

dual space︷︸︸︷
Rm → R

▶ Conjugate function φ⋆ : Rm → R

∀p ∈ Rm , φ⋆(p) = sup
b∈Rm

{
⟨b | p⟩ − φ(b)

}
9



Conjugate function and Lagrangian

φ⋆(p) = sup
b∈Rm

{
⟨b | p⟩ − φ(b)

}
= sup

b∈Rm

{
⟨b | p⟩ − inf

Ax=b
x≥0

⟨k | x⟩
}

= sup
b∈Rm

{
⟨b | p⟩+ sup

Ax=b
x≥0

⟨−k | x⟩
}

= sup
x≥0

{
sup
Ax=b
b∈Rm

⟨b | p⟩+ ⟨−k | x⟩
}

= sup
x≥0

{
⟨Ax | p⟩ − ⟨k | x⟩

}
=

〈
b̄ | p

〉
− inf

x≥0

{〈
b̄ − Ax | p

〉
+ ⟨k | x⟩

}︸ ︷︷ ︸
Lagrangian: L(x ,p)

▶ infx≥0 L(x , p) =
〈
b̄ | p

〉
− φ⋆(p)
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Step 3. Biconjugate and weak duality
▶ Biconjugate function φ⋆⋆′ : Rm → R

∀b ∈ Rm , φ⋆⋆′(b) = sup
p∈Rm

{
⟨b | p⟩ − φ⋆(p)

}
▶ We obtain weak duality for all b ∈ Rm

sup ⟨b | p⟩
p ∈ Rm

pTA ≤ k︸ ︷︷ ︸
dual problem

= φ⋆⋆′(b) ≤ φ(b) =

inf ⟨k | x⟩
x ∈ Rn

Ax = b
x ≥ 0

▶ At the anchor b̄

φ⋆⋆′(b̄) = sup
p∈Rm

{〈
b̄ | p

〉
− φ⋆(p)︸ ︷︷ ︸

infx≥0 L(x ,p)

}
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Step 4. Conditions for strong duality
Proposition

Let A ∈ Rm×n and k ∈ Rn

If there exists b̄ ∈ Rm such that φ(b̄) ∈ R

(the corresponding LP is bounded and feasible)

then for all b ∈ Rm

(
sup ⟨b | p⟩

p ∈ Rm

pTA ≤ k
=

)
φ⋆⋆′(b) = φ(b)︸ ︷︷ ︸

strong duality

(
=

inf ⟨k | x⟩
x ∈ Rn

Ax = b
x ≥ 0

)

Remark

1. φ(b) can take the value +∞
2. If there is no b̄ ∈ Rm such that φ(b̄) ∈ R then

▶ φ⋆⋆′
(b) = −∞ , ∀b ∈ Rm

▶ φ(b) =

{
−∞ , ∀b ∈ dom φ
+∞ , otherwise
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Proof of strong duality for LP. Sketch of the proof

▶ We assume there is a bounded and feasible program

∃b ∈ Rm , φ(b) ∈ R

▶ We use the properness lemma to show
that every program is bounded

φ is proper

▶ We show that epi φ is a closed convex set
(by showing that epi φ is a polyhedron)

φ is a closed convex function

▶ We apply Rockafellar’s result [Rockafellar, 1974, Theorem 5]

to get strong duality
φ⋆⋆ = φ
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Proof of strong duality for LP. Proper functions

Definition

Let f : Rm → R = R ∪ {−∞,+∞}
▶ dom f = {b ∈ Rm : f (b) < +∞}
▶ The function f is said to be proper

if dom f ̸= ∅ and −∞ < f (b) , ∀b ∈ Rm

Lemma
If there is b̄ ∈ Rm such that −∞ < φ(b̄)

the corresponding LP is bounded

then the value function φ is proper

all LPs are bounded
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Proof of strong duality for LP. Closed convex functions

Definition

Let f : Rm → R = R ∪ {−∞,+∞}
▶ Epigraph of the function f is defined by

epi f =
{
(b, t) ∈ Rm × R : f (b) ≤ t

}
▶ The function f is said to be closed convex Rockafellar [1974]

if [f is proper AND epi f is a closed convex set]
OR f = +∞ OR f = −∞

Theorem
[Rockafellar, 1974, Theorem 5]

Let f : Rm → R be a function.
f is closed convex if and only if f ⋆⋆ = f
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Proof of strong duality for LP. Argmin lemma

Lemma
Let b ∈ Rm such that φ(b) ∈ R then for t ∈ R

φ(b) ≤ t ⇐⇒ ∃x ∈ Rn s.t. Ax = b , x ≥ 0︸ ︷︷ ︸
x is a feasible point

and ⟨k | x⟩ ≤ t

Remark
This Lemma is also true for b ∈ Rm such that φ(b) = −∞
TODO proof using Minkowski-Weyl’s theorem [?, Theorem 3.52]
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Proof of strong duality for LP. epi φ is a polyhedron

Proposition

Let A ∈ Rm×n and k ∈ Rn define
the value function φ : Rm → R by

∀b ∈ Rm , φ(b) = inf ⟨k | x⟩
x ∈ Rn

Ax = b
x ≥ 0

Then epi φ is a polyhedron
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Proof that epi φ is a polyhedron
A ∈ Rm×n, k ∈ Rn

Let b ∈ Rm, we assume that φ(b) < +∞

φ(b) ≤ t

⇐⇒ inf
x∈Rn

Ax=b
x≥0

⟨k | x⟩ ≤ t

Using argmin lemma

⇐⇒ min
x∈Rn

Ax=b
x≥0

⟨k | x⟩ ≤ t

⇐⇒ ∃x ∈ Rn s.t. Ax = b , x ≥ 0 , ⟨k | x⟩ − t ≤ 0

⇐⇒ epiφ = π(b,t)

{
(b, t, x) ∈ Rm × R× Rn :


Ax = b
x ≥ 0
⟨k | x⟩ − t ≤ 0

}
Thus epiφ is the projection of a polyhedron.
So, epiφ is a polyhedron.
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Proof of strong duality for LP. Sketch of the proof

▶ We assume there is a bounded and feasible program

∃b ∈ Rm , φ(b) ∈ R

▶ We use the properness lemma to show
that every program is bounded

φ is proper

▶ We show that epi φ is a closed convex set
(by showing that epi φ is a polyhedron)

φ is a closed convex function

▶ We apply Rockafellar’s result [Rockafellar, 1974, Theorem 5]

to get strong duality
φ⋆⋆ = φ
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Remark on weak and strong duality

▶ Weak duality is a global notion on a family of minimization
problem and a family of maximization problems

▶ Strong duality is a local notion between a minimization
problem and a maximization problem produced by the
perturbation duality scheme
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Example when strong duality is not achieve for LP

−∞ =


sup p1 + 2p2

p ∈ R2

p1 + p2 = −1
p1 + p2 = 0



= φ⋆⋆(1, 2) < φ(1, 2) =


inf −x1

x ∈ R2

x1 + x2 = 1
x1 + x2 = 2

x ≥ 0

 = +∞
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Summary of the perturbation-duality scheme for LP
Rockafellar [1974]

1. We perturb a minimization problem

∀b ∈ Rm , φ(b) = inf ⟨k | x⟩
x ∈ Rn

Ax = b
x ≥ 0

2. We pair the primal space Rm and a dual space Rm

⟨· | ·⟩ : Rm × Rm → R

3. We biconjugate the perturbation function φ(
sup ⟨b | p⟩

p ∈ Rm

pTA ≤ k
=

)
φ⋆⋆′(b) ≤ φ(b) , ∀b ∈ Rm︸ ︷︷ ︸

weak duality is guaranteed

4. Strong duality at the anchor b̄
when φ is proper or b̄ ∈ dom φ
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Back to the coupling

▶ Bilinear coupling ⟨· | ·⟩ :

perturbation
space︷︸︸︷
Rm ×

dual space︷︸︸︷
Rm → R

▶ Rm can be identified to the functional
space Lm = {F : Rm → R|F is linear}, thus the coupling

p ∈ Rm ↔ F ∈ Lm

⟨b | p⟩ ↔ F (b)

▶ Conjugate function φ⋆ : Lm → R

∀F ∈ Lm , φ⋆(F ) = sup
b∈Rm

{
F (b)− φ(b)

}
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Where we stand and where we go

▶ We have illustrated the perturbation duality scheme (PDS) on
Linear Programs

▶ We will present the PDS in the convex case

▶ Then we will present the PDS in the generalized convex case
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The Fenchel conjugacy

Definition

Two vector spaces X and Y, paired by a bilinear form ⟨· | ·⟩ (in the
sense of convex analysis),
give rise to the classic Fenchel conjugacy

f ⋆(y) = sup
x∈X

(
⟨x | y⟩ − f (x)

)
, ∀y ∈ Y

for any function f : X → R

Fenchel conjugate Fourier transform
sup→ +
+→ ×

supx∈X

(
⟨x | y⟩ − f (x)

) ∫
X e⟨x | y⟩f (x)dx
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Representing Fenchel conjugacy
For y ∈ Rn

f ⋆(y) = sup
x∈Rn

(
⟨x | y⟩ − f (x)

)
⇐⇒

〈
x | y︸︷︷︸

Slope

〉
−f ⋆(y)︸ ︷︷ ︸
Intercept

≤ f (x) , ∀x ∈ Rn

x−f ⋆(y)

y

▶ H = {x ∈ R2 : x1 + x2}
▶ L = {x ∈ R2 : −1 ≤ x1 ≤ 1}

▶ cone
(
H ∩ L

)
= {x ∈ R2 : Ax ≤ 0}, where A =

 1 −3
−1 −5
−1 0
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The biconjugate function is a minorant of the function

Definition

Let f : X → R be a function
Its biconjugate f ⋆⋆

′
: X → R is defined by

f ⋆⋆
′
(x) = sup

y∈Y
⟨x | y⟩ − f ⋆(y)

Proposition

Let f : X → R be a function
Then f ⋆⋆

′
: Rm → R satisfies

f ⋆⋆
′ ≤ f
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Fenchel-Moreau Theorem
[Bauschke and Combettes, 2017, Theorem 13.37]

Theorem

Let (H, ⟨· | ·⟩) be a real Hilbert space
Let f : H →]−∞,+∞] proper
Then f is lower semicontinous and convex if and only if

f = f ⋆⋆
′
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Dual problems: perturbation scheme [Rockafellar, 1974]

sets optimization primal pairing dual

set W space U U ⟨·, ·⟩↔ V space V
variables decision perturbation ⟨u, v⟩ sensitivity

w ∈W u ∈ U ∈ R v ∈ V
bivariate Rockafellian Lagrangian

functions R : W× U→ R L : W× V→ R
definition L(w , v) =

infu∈U
{
R(w , u)− ⟨u, v⟩

}
property −L(w , ·) =

(
R(w , ·)

)⋆
property −L(w , ·) is ⋆′-convex

(hence L(w , ·) is concave usc)

univariate perturbation function dual function

functions φ : U→ R ψ : V→ R
definition φ(u) = infw∈WR(w , u) ψ(v) = infw∈W L(w , v)
property −ψ = φ⋆

▶ Anchor 0 ∈ X and dual maximization problem (weak duality)
φ⋆⋆′(0) = supy∈Y

{
−ψ(y)

}
≤ infw∈WR(w , 0) = φ(0)

▶ Strong duality iff φ is ⋆-convex at 0 iff φ⋆⋆′(0) = φ(0)
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Dual problems given by Fenchel conjugacy

▶ Set W, function h : W→ R and original minimization problem

inf
w∈W

h(w)

▶ Embedding/perturbation scheme given by a nonempty set U,
an anchor u ∈ U and a Rockafellian R : W×U→ R such that

h(w) = R(w , u) , ∀w ∈W

▶ Paired spaces U and V, and Lagrangian L : W×V→ R given
by

L(w , v) = inf
u∈U

{
R(w , u)− ⟨u − u | v⟩

}
▶ Original minimization problem

inf
w∈W

sup
v∈V
L(w , v) = inf

w∈W
h(w)
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Duality gap

▶ Dual maximization problem

sup
v∈V

inf
w∈W

L(w , v)

▶ Weak duality always holds true

sup
v∈V

inf
w∈W

L(w , v) ≤ inf
w∈W

h(w)

When it exists, the duality gap is the nonnegative difference

▶ Strong duality holds true, or there is no duality gap, when

sup
v∈V

inf
w∈W

L(w , v) = inf
w∈W

h(w)
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Classic Lagrangian duality

▶ Let θ = (θ1, . . . , θp) : W→ Rp be a mapping, and u ∈ Rp

▶ We consider the optimization problem

min
θ(w)≤u

h(w) = min
θ1(w)≤u1

...
θp(w)≤up

h(w)

▶ In that case, take the perturbation scheme with U = Rp and

R(w , u) = h(w)∔ ι{θ(w)≤u} = h(w)∔
p∑

j=1

ι{θj (w)≤uj}

▶ which gives the Lagrangian L : W×V→ R, with V = Rp and

L(w , v) = h(w)+ ⟨θ(w)− u | v⟩ = h(w)+

p∑
j=1

vj
(
θj(w)− u

)
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Illustration of the scheme in PILP

▶ Constraint matrix A ∈ Rm×n

▶ Anchor b̄ ∈ Rm

Initial minimization problem

inf ⟨k | x⟩
x ∈ Zn

Ax = b̄
x ≥ 0
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Step 1. Perturbation of the initial minimization problem

∀b ∈ Rm , φ(b) = inf
x

⟨k | x⟩
Ax = b
x ≥ 0
x ∈ Zn

▶ Perturbation space: Rm

▶ Perturbation function φ : Rm → R = R ∪ {−∞}︸ ︷︷ ︸
unbounded

∪ {+∞}︸ ︷︷ ︸
unfeasible

▶ Value of the initial problem: φ(b̄)
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Example of epigraph of the perturbation function for a
PILP
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Step 2. Dual space, coupling and conjugate function

▶ Set of subadditive functions

Sm = {F : Rm → R|F (b1 + b2) ≤ F (b1)∔ F (b2) , ∀b1, b2}

▶ Subadditive evaluation coupling

cS : Rm × Sm → R
cS(b,F ) = F (b)

▶ Conjugate function φcS : Sm → R

∀F ∈ Sm , φcS (F ) = sup
b∈Rm

{
cS(b,F ) ·+

(
−φ(b)

)}
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Step 3. Biconjugate and weak duality

▶ Biconjugate function φcScS
′
: Rm → R

∀b ∈ Rm , φcScS
′
(b) = sup

F∈Sm

{
cS(b,F )− φcS (F )

}
▶ We obtain weak duality

sup
F∈Sm

{
F (b) ·+ inf

x∈Zn
+

{⟨k | x⟩ − F (Ax)}
}

︸ ︷︷ ︸
dual problem

= φcScS
′
(b) ≤ φ(b) =

inf
x

⟨k | x⟩
Ax = b
x ≥ 0
x ∈ Zn
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Step 4. Strong duality for the subadditive dual problem

▶ If Ax1 = b1 and Ax2 = b2, then A
(
x1 + x2

)
= b1 + b2

▶ So
φ(b1 + b2) ≤ φ(b1)∔ φ(b2) , ∀b1, b2 ∈ Rm

▶ It results that the function φ is subadditive

φ(b) ·+ inf
x∈Zn

+

{⟨k | x⟩ − φ(Ax)}︸ ︷︷ ︸
≥0

≤ φcScS
′
(b)

▶ Thus we have strong duality ∀b ∈ Rm

sup
F∈Sm

{
F (b) ·+ inf

x∈Zn
+

{⟨k | x⟩ − F (Ax)}
}

︸ ︷︷ ︸
dual problem

= φcScS
′
(b) = φ(b) =

inf
x

⟨k | x⟩
Ax = b
x ≥ 0
x ∈ Zn
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Epigraph of a perturbation function for a PILP

φ(b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Epigraph of a perturbation function for a PILP

φ(b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Epigraph of a perturbation function for a PILP

φ(b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Epigraph of a perturbation function for a PILP

φ(b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Summary of the perturbation-duality scheme for PILP
1. We perturb a minimization problem

∀b ∈ Rm , φ(b) = inf
x

⟨k | x⟩
Ax = b
x ∈ Zn

+

2. We pair the primal space Rm and a dual space Sm

cS(·, ·) : Rm × Sm → R
cS(b,F ) = F (b)

Reminder: set of subadditive functions

Sm = {F : Rm → R|F (b1 + b2) ≤ F (b1) ∔ F (b2) , ∀b1, b2}

3. We biconjugate the perturbation function φ

φcScS
′
(b) ≤ φ(b) , ∀b ∈ Rm︸ ︷︷ ︸

weak duality is guaranteed

4. Strong duality as φ is subadditive

51



Outline of the presentation

Duality for linear programs

Perturbation-duality scheme in convex analysis

Duality for pure integer linear programs

Generalized perturbation duality scheme

Developments and examples

52



Outline of the presentation
Duality for linear programs

Duality for linear programs with the PDS
Summary and outline

Perturbation-duality scheme in convex analysis
Background on duality in convex analysis
Dual optimization problems
Classic Lagrangian duality (the case of inequality constraints)

Duality for pure integer linear programs
Duality for pure integer linear (PILP) programs with the PDS
Summary

Generalized perturbation duality scheme
Generalized convexity
Generalized perturbation duality scheme

Developments and examples
Lagrangian relaxation in LP
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A closed convex set
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Usual definition of convexity by the interior
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Equivalent definition for closed-convexity by the exterior
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Equivalent definition for closed-convexity by the exterior
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Equivalent definition for closed-convexity by the exterior
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Approximation by finite number of cuts
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Epigraph of a closed-convex function

y = x2
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Epigraph of a closed-convex function

y = x2
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The epigraph is above its tangents

y = x2

62



Approximation by a finite number of cuts

y = x2
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Example of a nonconvex set
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Some tangents won’t stay outside!
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Generalized convexity: we change the shape of the
tangents!
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Generalized convexity: we change the shape of the
tangents!

T (x) = ⟨x | α⟩+ β , ∀x ∈ Rn

Scalar product ⟨· | ·⟩ : Rn × Rn

Slope: α ∈ Rn

Intercept: β ∈ R

S(u) = c(u, v) + β

Coupling c : U × V → R = R ∪ {−∞,+∞}
“Slope”: v ∈ V
Intercept: β ∈ R

67



Epigraph of a perturbation function for a PILP

G (b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Epigraph of a perturbation function for a PILP

G (b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
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Epigraph of a perturbation function for a PILP

G (b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
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Epigraph of a perturbation function for a PILP

G (b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Moreau lower and upper additions

▶ The Moreau lower addition extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

▶ The Moreau upper addition extends the usual addition with

(+∞)∔ (−∞) = (−∞)∔ (+∞) = +∞
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Background on couplings and Fenchel-Moreau conjugacies

▶ Let be given two sets X (“primal”) and Y (“dual”)

▶ Consider a coupling function c : X × Y → R = [−∞,+∞]

▶ We also use the notation X c↔ Y for a coupling

Definition

The c-Fenchel-Moreau conjugate of a function f : X → R,
with respect to the coupling c ,
is the function f c : Y → R defined by

f c(y) = sup
x∈X

(
c(x , y) ·+

(
−f (x)

))
, ∀y ∈ Y

Fenchel-Moreau conjugate (max,+) Kernel transform (+,×)
supx∈X

(
c(x , y) ·+

(
−f (x)

)) ∫
X c(x , y)f (x)dx
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Background on couplings and Fenchel-Moreau conjugacies

With the coupling c, we associate the reverse coupling c ′

c ′ : Y × X → R , c ′(y , x) = c(x , y) , ∀(y , x) ∈ Y × X

▶ The c ′-Fenchel-Moreau conjugate of a function g : Y → R,
with respect to the coupling c ′, is the function g c ′ : X → R

g c ′(x) = sup
y∈Y

(
c(x , y) ·+

(
−g(y)

))
, ∀x ∈ X

▶ The c-Fenchel-Moreau biconjugate f cc
′
: X → R

of a function f : X → R is given by

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X
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Dual problems: perturbation scheme [Rockafellar, 1974]
▶ Set W, function h : W→ R

and original minimization problem

inf
w∈W

h(w)

▶ Embedding/perturbation scheme given by
a nonempty set X (perturbations), an element x ∈ X (anchor)
and a function (Rockafellian) R : W×X → R such that

h(w) = R(w , x)

▶ Perturbation function

ϕ(x) = inf
w∈W

R(w , x)

▶ Original minimization problem

ϕ(x) = inf
w∈W

R(w , x) = inf
w∈W

h(w)
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Dual problems: conjugacy, weak and strong duality

▶ Coupling X c↔ Y, and Lagrangian L : W× Y → R given by

L(w , y) = inf
x∈X

{
R(w , x)∔

(
−c(x , y)

)}
▶ Dual function

ψ(y) = −ϕc(y) = inf
w∈W

L(w , y)

▶ Dual maximization problem (weak duality)

ϕcc
′
(x) = sup

y∈Y

{
c(x , y) ·+ ψ(y)

}
≤ inf

w∈W
h(w) = ϕ(x)

▶ Strong duality holds true when ϕ is c-convex at x , that is,

ϕcc
′
(x) = sup

y∈Y

{
c(x , y) ·+ ψ(y)

}
= inf

w∈W
h(w) = ϕ(x)
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Dual problems with general couplings
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Dual problems: perturbation scheme [Rockafellar, 1974]

sets optimization primal coupling dual

set W set X X c↔ Y set Y
variables decision perturbation c(x , y) sensitivity

w ∈W x ∈ X ∈ R y ∈ Y
bivariate Rockafellian Lagrangian

functions R : W×X → R L : W× Y → R
definition L(w , y) =

infx∈X

{
R(w , x)∔

(
−c(x , y)

)}
property −L(w , ·) =

(
R(w , ·)

)c
property −L(w , ·) is c ′-convex
univariate perturbation function dual function

functions ϕ : X → R ψ : Y → R
definition ϕ(x) = infw∈WR(w , x) ψ(y) = infw∈W L(w , y)
property −ψ = ϕc

Anchor x ∈ X and dual maximization problem (weak duality)
ϕcc

′
(x) = supy∈Y

{
c(x , y) ·+ ψ(y)

}
≤ infw∈W h(w) = ϕ(x)

Strong duality iff ϕ is c-convex at x iff ϕcc
′
(x) = ϕ(x)
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Duality between Lagrangians and Rockafellians
(work in progress)

(−L,R) is minimal in the inequality(
−L(w , y)

)
∔R(w , x) ≥ c(x , y)

⇐⇒

−L(w , ·) =
(
R(w , ·)

)c
and R(w , ·) =

(
−L(w , ·)

)c ′
⇐⇒

−L(w , ·) =
(
R(w , ·)

)c
and

(
R(w , ·)

)cc ′
= R(w , ·)

⇐⇒

R(w , ·) =
(
−L(w , ·)

)c ′
and

(
−L(w , ·)

)c ′c
= −L(w , ·)
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The c-subdifferential is defined as
the Rockafellar-Moreau subdifferential

Definition

For any function f : X → R and x ∈ X , the c-subdifferential is

∂c f (x) = {y ∈ Y | c(x ′, y) ·+
(
−f (x ′)

)
≤ c(x , y) ·+

(
−f (x)

)
, ∀x ′ ∈ X}

The following properties are satisfied

y ∈ ∂c f (x) ⇐⇒ f c(y) = c(x , y) ·+
(
−f (x)

)
”à la” Fenchel-Young

∂c f (x) ̸= ∅ ⇒ f cc
′
(x) = f (x)
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Introducing generalized convexity

Balder [1977]

Fenchel conjugate c-conjugate
f ⋆(v) = sup

u∈Rm
⟨u | v⟩ − f (u) g c(v) = sup

u∈U
c(u, v) ·+

(
−g(u)

)
Fenchel biconjugate c-biconjugate

f ⋆⋆
′
(u) = sup

v∈Rm
⟨u | v⟩ − f ⋆(v) g cc ′(u) = sup

v∈V
c(u, v) ·+

(
−g c(v)

)
⋆− convex functions c-convex functions

⇐⇒ f = f ⋆⋆
′ ⇐⇒ g = g cc ′
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Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

φ : Rm → R

2. We pair the primal space Rm and a dual space V

c : Rm × V → R

3. We biconjugate the perturbation function φ

φcc ′(b) ≤ φ(b) , ∀b ∈ Rm︸ ︷︷ ︸
Weak duality is guaranteed!

4. Strong duality when φ is c-convex
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Functions in the perturbation duality scheme

bivariate functions univariate functions definition property
Rockafellian

R : W × X → R
Lagrangian L(w, y) =

L : W × Y → R infx∈X
{
R(w, x) ∔

(
−c(x, y)

)}
−L(w, ·) =

(
R(w, ·)

)c
perturbation

φ : X → R φ(x) = infw∈W R(w, x)
dual

Ψ : Y → R Ψ(y) = infw∈W L(w, y) −Ψ = φc

dual objective

Φx̄ : Y → R Φx̄ (y) = c(x̄, y) ·+ (−φc (y))
Φx̄ (y) = c(x̄, y) ·+ Ψ(y)

φcc′ (x̄) = supy∈Y Φx̄ (y)
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Summary of the perturbation-duality scheme
1. We partially perturb

∀b ∈ Rm1 , φ(b1) = inf
x

⟨k | x⟩
A1x = b1
A2x = b2
x ≥ 0
x ∈ Rn

2. We pair the primal space Rm1 and a dual space Rm1

⟨· | ·⟩ : Rm1 × Rm1 → R

3. We biconjugate the perturbation function φ

φ⋆⋆′(b1) = supλ∈Rm1 inf
x

⟨k | x⟩+ ⟨λ | b1 − A1x⟩ ≤ φ(b1) , ∀b1 ∈ Rm1

A2x = b2
x ≥ 0
x ∈ Rn

4. Strong duality when φ is lsc convex
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Definition of Chvátal functions

Definition

The class of Chvátal functions Cm
is the smallest class of functions D ⊂ {f |f : Qm → Q} such that

b ∈ Qm 7→ λb ∈ D , ∀b ∈ Qm (linear functions)

αF1 + βF2 ∈ D , ∀F1,F2 ∈ D , α, β ∈ Q+

(conic combination)

⌈F ⌉ ∈ D , ∀F ∈ D (round-up)

Examples in 1D

▶ b 7→ 3
4b

▶ b 7→ ⌈b⌉
▶ b 7→ 3

4b + 7
10⌈b⌉

▶ b 7→ 15b + 39
22

⌈
3
4b + 7

10⌈b⌉
⌉
+ ⌈16b⌉
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Chvátal perturbation-duality scheme
▶ We define a perturbation function

∀b ∈ Qm , φ(b) = inf
x

⟨k | x⟩
Ax = b
x ∈ Zn

+

▶ We define a coupling between primal and dual space

cC : Qm × Cm → R
cC(b,F ) = F (b) , ∀b ∈ Qm , ∀F ∈ Cm

▶ We biconjugate the perturbation functions

φcCcC
′
(b) ≤ φ(b) , ∀b ∈ Qm︸ ︷︷ ︸

weak duality

▶ We get strong duality φcCcC
′
(b̄) = φ(b̄)
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Obtained dual problems

Formulation 1:

φcCcC
′
(b̄) = supF∈Cm

{
F (b̄) + inf

b∈Qm

{
φ(b)− F (b)

}}
Formulation 2:

φcCcC
′
(b̄) = supF∈Cm

{
F (b̄) + infx∈Zn

+

{
⟨k | x⟩ − F (Ax)

}}
Reminder Jeroslow’s dual problem

sup
F

F (b̄)

F (Aj) ≤ kj
F (0) ≤ 0
F ∈ Cm
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Generalized subdifferential and complementary slackness
Proposition

▶ φ: bounded perturbation function of a MILP

▶ A =
(
Aj

)
j=1,...,n

∈ Qm×n constraint matrix

▶ b̄ ∈ Qn anchor

If x̂ ∈ {x ∈ Zn
+|Ax = b̄} and F̂ ∈ Cm are ”primal”-dual optimal

solutions then we have the equivalence

F̂ ∈ ∂cCφ(b̄)

⇐⇒ −k ∈ ∂
(
−F̂ ◦ A∔ δZn

+

)
(x̂)

Furthermore, if F̂ (Aj) ≤ kj , ∀j = 1, . . . , n, then the following asser-
tion is also equivalent

F̂ (0) ≤ 0 , F̂ (b̄) = φ(b̄) and
(
kj − F̂ (Aj)

)
x̂j = 0 , ∀j = 1, . . . , n .
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Subdifferential of the perturbation function
(sensitivity analysis)

The perturbation function is

φ(u) = inf
w∈W

R(w , u) , ∀u ∈ U

Theorem [Rockafellar, 1974, Theorem 16, p. 40]

For v ∈ V, the following conditions are equivalent

1. v ∈ argmaxv∈V infw∈W L(w , v) and
maxv∈V infw∈W L(w , v) = infw∈W h(w)

2. v ∈ ∂φ(u)
3. infw∈W h(w) = infw∈W L(w , v)
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Subdifferential of the perturbation function
(sensitivity analysis)
The convex case

Theorem [Rockafellar, 1974, Theorem 18, p. 41]

Suppose that

▶ the function R : W× U→ R is convex

▶ there exists w ∈W such that the function u 7→ R(w , u)
is bounded above in a neighborhood of u

Then there exists v ∈ V such that

1. v ∈ argmaxv∈V infw∈W L(w , v) and
maxv∈V infw∈W L(w , v) = infw∈W h(w)

2. v ∈ ∂φ(u)
3. infw∈W h(w) = infw∈W L(w , v)
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Slater qualification constraint
The convex case

Theorem [Rockafellar, 1974, p. 45]

Suppose that

▶ the functions h and θ1, . . . , θp are is convex

▶ there exists w ∈W such that

θ1(w) < u1, . . . , θp(w) < up

Then there exists v ∈ V such that

1. v ∈ argmaxv∈V infw∈W L(w , v) and
maxv∈V infw∈W L(w , v) = infw∈W h(w)

2. v ∈ ∂φ(u)
3. infw∈W h(w) = infw∈W L(w , v)
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Optimal transport

The optimal transport problem is

inf
π∈Π(P0,P1)

∫
A×B

k(a, b)dπ(a, b)

where

▶ the sets A and B are two Polish spaces

▶ we denote by P(A× B), P(A) and P(B)
the corresponding probability spaces (rectangle and marginals)

▶ the set Π(P0,P1) is made of
probabilities π ∈ P(A× B) on the rectangle,
whose marginals are P0 ∈ P(A) and P1 ∈ P(B)

▶ the measurable cost function k : A× B→]−∞,+∞],
where k(a, b) represents
the cost to move from a ∈ A towards b ∈ B
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We introduce a suitable coupling
between probabilities and functions

▶ We denote by C 0
b (A) and C 0

b (B)
the spaces of continuous bounded functions

▶ We introduce the bilinear coupling

P(A)× P(B) β←→ C 0
b (A)× C 0

b (B)

β
(
(P0,P1); (f , g)

)
=

∫
B
g(b)dP1(b)−

∫
A
f (a)dP0(a)
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The k-conjugacy appears naturally
as a sub-product of computations with the β-conjugacy

The optimal cost is, as function of marginals,

K (P0,P1) = inf
π∈Π(P0,P1)

∫
A×B

k(a, b)dπ(a, b)

and its β-conjugate is

Kβ(f , g) = sup
a∈A,b∈B

[
g(b)− f (a)− k(a, b)

]
= sup

b∈B

(
g(b) + f −k(b)︸ ︷︷ ︸

k-conjugate

)
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Conjugacy properties in optimal transport

K (P0,P1) = inf
π∈Π(P0,P1)

∫
A×B

k(a, b)dπ(a, b)

D(f , g) = sup
a∈A,b∈B

[
g(b)− f (a)− k(a, b)

]
= sup

b∈B

(
g(b) + f −k(b)

)
We have the following conjugacy equalities and inequalities

Kβ(f , g) = D(f , g) = Dβ′β(f , g)

K (P0,P1) ≥ Kββ′
(P0,P1) = Dβ′

(P0,P1)

= sup
f ,g

(∫
B
g(b)dP1(b)−

∫
A
f (a)dP0(a)− D(f , g)

)
≥ sup

g−f≤k

(∫
B
g(b)dP1(b)−

∫
A
f (a)dP0(a)

)
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Perturbation for optimal transport

inf
π∈Π(P0,P1)

∫
A×B

k(a, b)dπ(a, b)

= inf
π∈P(A×B)

(∫
A×B

k(a, b)dπ(a, b)∔ δΠ(P0,P1)(π)
)

≥ sup
f ∈C0

b (A),g∈C
0
b (B)

(
−
(
π 7→

∫
A×B

k(a, b)dπ(a, b)
)α

(f , g) ∔
(
−δ−α

Π(P0,P1)
(f , g)

))
= sup

f ∈C0
b (A),g∈C

0
b (B)

(
− sup

a∈A,b∈B

[
f (a)− g(b)− k(a, b)

]
∔
(∫

A
f (a)dP0(a)−

∫
B
g(b)dP1(b)

))
= sup

f ∈C0
b (A),g∈C

0
b (B)

(
− sup

a∈A

[
f (a) + g−k(a)

]
+

∫
A
f (a)dP0(a)−

∫
B
g(b)dP1(b)

)
=
(
(f , g) 7→ sup

a∈A

[
f (a) + g−k(a)

])α′

(P0 ⊗ P1)
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