Precautionary Effect and Variations of the Value of Information

Michel DE LARA CERMICS, Université Paris-Est, France

SIAM Minisymposium on Economics and Sustainability Joint Mathematics Meetings, San Francisco Wednesday January 13, 2010

▲ 骨 ▶ シ ♀ ♀

Outline of the presentation

Problem statement: the precautionary effect

- 2 Second-period value of the information monotonicity
 - Second-period value of the information
 - Jones and Ostroy monotonicity result
 - Epstein functional
 - When is the difference of optimal payoffs convex in the prior?
- 3 Utility functions ensuring the precautionary effect
 - First-order condition characterization
 - Additive separable preferences
 - Risk neutral preferences
 - Risk averse preferences

4 Conclusion

Outline of the presentation

- Problem statement: the precautionary effect
- Second-period value of the information monotonicity
 - Second-period value of the information
 - Jones and Ostroy monotonicity result
 - Epstein functional
 - When is the difference of optimal payoffs convex in the prior?
- 3 Utility functions ensuring the precautionary effect
 - First-order condition characterization
 - Additive separable preferences
 - Risk neutral preferences
 - Risk averse preferences

4 Conclusion

Outline of the presentation

- Problem statement: the precautionary effect
- Second-period value of the information monotonicity
 - Second-period value of the information
 - Jones and Ostroy monotonicity result
 - Epstein functional
 - When is the difference of optimal payoffs convex in the prior?
- 3 Utility functions ensuring the precautionary effect
 - First-order condition characterization
 - Additive separable preferences
 - Risk neutral preferences
 - Risk averse preferences

Conclusion

Outline of the presentation

- Problem statement: the precautionary effect
- Second-period value of the information monotonicity
 - Second-period value of the information
 - Jones and Ostroy monotonicity result
 - Epstein functional
 - When is the difference of optimal payoffs convex in the prior?
- 3 Utility functions ensuring the precautionary effect
 - First-order condition characterization
 - Additive separable preferences
 - Risk neutral preferences
 - Risk averse preferences

Outline of the presentation

Problem statement: the precautionary effect

- 2 Second-period value of the information monotonicity
 - Second-period value of the information
 - Jones and Ostroy monotonicity result
 - Epstein functional
 - When is the difference of optimal payoffs convex in the prior?
- 3 Utility functions ensuring the precautionary effect
 - First-order condition characterization
 - Additive separable preferences
 - Risk neutral preferences
 - Risk averse preferences

4 Conclusion

Problem statement: the precautionary effect

Second-period value of the information monotonicity Utility functions ensuring the precautionary effect Conclusion References

Sketch

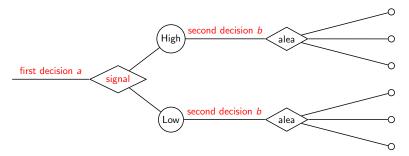


Figure: Decision with learning; agent takes decision *a*; a signal is revealed; agent takes decision *b* accordingly.

Global warming illustration

[Ulph and Ulph, 1997]

- a 2010 pollution emissions
- **b** 2030 pollution emissions
- random damages C(a+b)x

$$U(a, b, x) = \underbrace{u(a) + v(b)}_{benefits} - \underbrace{C(a + b)x}_{damage \ costs} \ .$$

Act vigorously now? Or wait for more information in 2030?

Global warming illustration

[Ulph and Ulph, 1997]

- a 2010 pollution emissions
- b 2030 pollution emissions
- random damages C(a+b)x

$$U(a, b, x) = \underbrace{u(a) + v(b)}_{benefits} - \underbrace{C(a + b)x}_{damage \ costs}$$

Act vigorously now? Or wait for more information in 2030?

Global warming illustration

[Ulph and Ulph, 1997]

- a 2010 pollution emissions
- b 2030 pollution emissions
- random damages C(a+b)x

$$U(a, b, x) = \underbrace{u(a) + v(b)}_{benefits} - \underbrace{C(a + b)x}_{damage \ costs}$$

Act vigorously now? Or wait for more information in 2030?

Global warming illustration

[Ulph and Ulph, 1997]

- a 2010 pollution emissions
- b 2030 pollution emissions
- random damages C(a+b)x

$$U(a, b, x) = \underbrace{u(a) + v(b)}_{benefits} - \underbrace{C(a + b)x}_{damage \ costs}$$

Act vigorously now? Or wait for more information in 2030?

Formal model

- The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.
- ② The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning.
- A utility function U(a, b, x) is given.

Formal model

The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.

- ② The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning
- S A utility function U(a, b, x) is given.

Formal model

The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.

- ② The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning
- S A utility function U(a, b, x) is given.

Formal model

- The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.
- The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning
- S A utility function U(a, b, x) is given

▲ □ ▶ り へ ()

Formal model

- The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.
- The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning
- S A utility function U(a, b, x) is given

▲ □ ▶ り へ ()

Formal model

- The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.
- The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning.
- S A utility function U(a, b, x) is given

▲ □ ▶ りへつ

Formal model

- The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.
- The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning.
- S A utility function U(a, b, x) is given

▲ □ ▶ りへつ

Formal model

- The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.
- The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning.
- S A utility function U(a, b, x) is given.

▲ □ ▶ り へ ()

Formal model

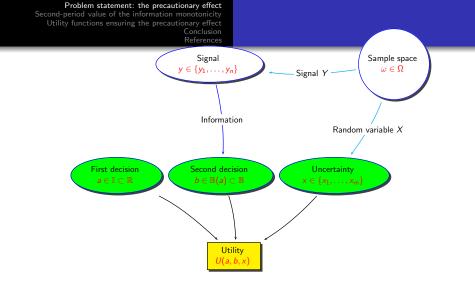
- The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.
- The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning.
- S A utility function U(a, b, x) is given.

▲ □ ▶ り へ ()

Formal model

- The initial decision a is a scalar belonging to an interval: a ∈ I ⊂ R.
- The following and final decision b belongs to a set which may depend on a: b ∈ B(a) ⊂ B. This may materialize irreversibility due to the initial decision.
- Ouncertainty is represented by states of nature ω ∈ Ω with prior P, and by a random variable X : Ω → X.
- Partial information on X is provided by means of a signal (random variable) Y : Ω → Y. Information allows for learning.
- Solution U(a, b, x) is given.

▲ □ ▶ りへつ



<<p>・日・ のへで

Precautionary effect

The Y-informed expected utility maximizer solves
 max E[max E[U(a, b, X) | Y]],

with deterministic initial optimal solution \bar{a}^{γ} .

• The Y'-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \left[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) \mid Y'] \right].$

The precautionary effect is said to hold whenever the optimal initial decision is lower with more information:

Y more informative than $Y' \Rightarrow \bar{a}^Y \leq \bar{a}^{Y'}$

<<p>・
・
の
へ

Precautionary effect

• The Y-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \big[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) \mid Y] \big] ,$

with deterministic initial optimal solution \bar{a}^{γ} .

• The Y'-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \Big[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) \mid Y'] \Big] .$

The precautionary effect is said to hold whenever the optimal initial decision is lower with more information:

Y more informative than $Y' \Rightarrow \bar{a}^Y \leq \bar{a}^{Y'}$

< 回 > シックへ

Precautionary effect

• The Y-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \left[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) | Y] \right],$

with deterministic initial optimal solution \bar{a}^{γ} .

• The Y'-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \Big[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) \mid Y'] \Big] .$

The precautionary effect is said to hold whenever the optimal initial decision is lower with more information:

Y more informative than $Y' \Rightarrow \bar{a}^Y \leq \bar{a}^{Y'}$

< 回 > シックへ

Precautionary effect

• The Y-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \left[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) | Y] \right],$

with deterministic initial optimal solution \bar{a}^{γ} .

• The Y'-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \Big[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) \mid Y'] \Big] .$

The precautionary effect is said to hold whenever the optimal initial decision is lower with more information:

Y more informative than $Y' \Rightarrow \bar{a}^Y \leq \bar{a}^{Y'}$

< 回 > シックへ

Precautionary effect

• The Y-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \left[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) \mid Y] \right],$

with deterministic initial optimal solution \bar{a}^{Y} .

• The Y'-informed expected utility maximizer solves

 $\max_{a} \mathbb{E} \left[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) \mid Y'] \right].$

The precautionary effect is said to hold whenever the optimal initial decision is lower with more information:

Y more informative than $Y' \Rightarrow \bar{a}^Y \leq \bar{a}^{Y'}$

Precautionary effect

• The Y-informed expected utility maximizer solves

$$\max_{a} \mathbb{E} \left[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) \mid Y] \right],$$

with deterministic initial optimal solution \bar{a}^{Y} .

• The Y'-informed expected utility maximizer solves

$$\max_{a} \mathbb{E} \left[\max_{b \in \mathbb{B}(a)} \mathbb{E} [U(a, b, X) | Y'] \right].$$

The precautionary effect is said to hold whenever the optimal initial decision is lower with more information:

 $Y \quad ext{more informative than} \quad Y' \Rightarrow ar{a}^Y \leq ar{a}^{Y'} \;.$

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

Outline of the presentation

Problem statement: the precautionary effect

- Second-period value of the information monotonicity
 - Second-period value of the information
 - Jones and Ostroy monotonicity result
 - Epstein functional
 - When is the difference of optimal payoffs convex in the prior?
- 3 Utility functions ensuring the precautionary effect
 - First-order condition characterization
 - Additive separable preferences
 - Risk neutral preferences
 - Risk averse preferences

4 Conclusion

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

Expected utility maximizer program

The evaluation of expected utility right after the first decision a has been taken is conditional on the signal Y and defined as follows:

$$\mathbb{V}^{Y}(a) := \mathbb{E}\big[\max_{b \in \mathbb{B}(a)} \mathbb{E}[U(a, b, X) \mid Y]\big].$$

With this notation, the program of the Y-informed agent is

 $\max_{a} \mathbb{V}^{Y}(a) .$

<∄ ▶় ୬ ৭ ભ

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

<<p>A 目 > シックへ

Expected utility maximizer program

The evaluation of expected utility right after the first decision *a* has been taken is conditional on the signal *Y* and defined as follows:

$$\mathbb{V}^{Y}(a) := \mathbb{E}\big[\max_{b \in \mathbb{B}(a)} \mathbb{E}[U(a, b, X) \mid Y]\big]$$

With this notation, the program of the Y-informed agent is

 $\max_{a} \mathbb{V}^{Y}(a) .$

Michel DE LARA Joint Mathematics Meetings, San Francisco, 2010

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

<<p>A 目 > シックへ

Second-period value of the information monotonicity

Proposition ([Jones and Ostroy, 1984], [De Lara and Gilotte, 2009])

Assume that the programs $\max_{a} \mathbb{V}^{Y}(a)$ and $\max_{a} \mathbb{V}^{Y'}(a)$ have unique optimal solutions \overline{a}^{Y} and $\overline{a}^{Y'}$. Whenever the second-period value of the information is a decreasing function of the initial decision, namely

 $a\mapsto \mathbb{V}^{Y}(a)-\mathbb{V}^{Y'}(a)$ is decreasing,

then
$$\bar{a}^Y \leq \bar{a}^{Y'}$$
 .

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

<<p>A 目 > シックへ

Second-period value of the information monotonicity

Proposition ([Jones and Ostroy, 1984], [De Lara and Gilotte, 2009])

Assume that the programs $\max_{a} \mathbb{V}^{Y}(a)$ and $\max_{a} \mathbb{V}^{Y'}(a)$ have unique optimal solutions \bar{a}^{Y} and $\bar{a}^{Y'}$. Whenever the second-period value of the information is a decreasing function of the initial decision, namely

 $\mathsf{a}\mapsto \mathbb{V}^{Y}(\mathsf{a})-\mathbb{V}^{Y'}(\mathsf{a})$ is decreasing,

then
$$\overline{a}^Y \leq \overline{a}^{Y'}$$
 .

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

<<p>A 目 > シックへ

Second-period value of the information monotonicity

Proposition ([Jones and Ostroy, 1984], [De Lara and Gilotte, 2009])

Assume that the programs $\max_{a} \mathbb{V}^{Y}(a)$ and $\max_{a} \mathbb{V}^{Y'}(a)$ have unique optimal solutions \bar{a}^{Y} and $\bar{a}^{Y'}$. Whenever the second-period value of the information is a decreasing function of the initial decision, namely

 $a\mapsto \mathbb{V}^{Y}(a)-\mathbb{V}^{Y'}(a)$ is decreasing,

then $\bar{a}^{Y} \leq \bar{a}^{Y'}$.

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

Epstein functional

- The random variable X is supposed to take its value in $\{x_1, \ldots, x_m\}$.
- Any prior ρ on {x₁,..., x_m} is identified with an element of the simplex S^{m-1}.

Following [Epstein, 1980], let us define what we shall coin the Epstein functional by the maximal expected utility:

$$J(a,\rho) := \sup_{b \in \mathbb{B}(a)} \mathbb{E}_{\rho} \big[U(a,b,\cdot) \big] = \sup_{b \in \mathbb{B}(a)} \int_{\mathbb{X}} U(a,b,x) d\rho(x) ,$$

for all prior ρ on $\{x_1, \ldots, x_m\}$.

<**₽** ▶, ୭९୯

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

Epstein functional

- The random variable X is supposed to take its value in $\{x_1, \ldots, x_m\}$.
- Any prior ρ on {x₁,..., x_m} is identified with an element of the simplex S^{m-1}.

Following [Epstein, 1980], let us define what we shall coin the Epstein functional by the maximal expected utility:

$$J(a,\rho) := \sup_{b \in \mathbb{B}(a)} \mathbb{E}_{\rho} \big[U(a,b,\cdot) \big] = \sup_{b \in \mathbb{B}(a)} \int_{\mathbb{X}} U(a,b,x) d\rho(x) ,$$

for all prior ρ on $\{x_1, \ldots, x_m\}$.

< **₽** ▶ _ ୭ < ભ

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

Epstein functional

- The random variable X is supposed to take its value in $\{x_1, \ldots, x_m\}$.
- Any prior ρ on {x₁,..., x_m} is identified with an element of the simplex S^{m-1}.

Following [Epstein, 1980], let us define what we shall coin the Epstein functional by the maximal expected utility:

$$J(a,\rho) := \sup_{b \in \mathbb{B}(a)} \mathbb{E}_{\rho} \big[U(a,b,\cdot) \big] = \sup_{b \in \mathbb{B}(a)} \int_{\mathbb{X}} U(a,b,x) d\rho(x) ,$$

for all prior ρ on $\{x_1, \ldots, x_m\}$.

ା 🗗 ▶଼ ୬ ୯.୧

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

<<p>
4 日 > うへで

Epstein functional

- The random variable X is supposed to take its value in $\{x_1, \ldots, x_m\}$.
- Any prior ρ on {x₁,..., x_m} is identified with an element of the simplex S^{m-1}.

Following [Epstein, 1980], let us define what we shall coin the Epstein functional by the maximal expected utility:

$$J(a,\rho) := \sup_{b \in \mathbb{B}(a)} \mathbb{E}_{\rho} \big[U(a,b,\cdot) \big] = \sup_{b \in \mathbb{B}(a)} \int_{\mathbb{X}} U(a,b,x) d\rho(x) ,$$

for all prior ρ on $\{x_1, \ldots, x_m\}$.

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

<<p>
4 日 > うへで

Epstein functional

- The random variable X is supposed to take its value in $\{x_1, \ldots, x_m\}$.
- Any prior ρ on {x₁,..., x_m} is identified with an element of the simplex S^{m-1}.

Following [Epstein, 1980], let us define what we shall coin the Epstein functional by the maximal expected utility:

$$J(a,\rho) := \sup_{b \in \mathbb{B}(a)} \mathbb{E}_{\rho} \big[U(a,b,\cdot) \big] = \sup_{b \in \mathbb{B}(a)} \int_{\mathbb{X}} U(a,b,x) d\rho(x) ,$$

for all prior ρ on $\{x_1, \ldots, x_m\}$.

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

Proposition ([Jones and Ostroy, 1984])

Assume that

• for any $a_1 \ge a_0$, $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex (resp. concave),

② *Y* is more informative than *Y*' ($\sigma(Y) ⊃ \sigma(Y')$).

Then the value of substituting Y for Y', $\Delta V^{YY'}(a) := V^{Y}(a) - V^{Y'}(a)$ is increasing with a (resp. decreasing).

Hence, Proposition 1 applies.

<**₽** ▶ _ • • • •

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

Proposition ([Jones and Ostroy, 1984])

Assume that

• for any $a_1 \ge a_0$, $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex (resp. concave),

2 *Y* is more informative than *Y'* ($\sigma(Y) \supset \sigma(Y')$) Then the value of substituting *Y* for *Y'*, $\Delta \mathbb{V}^{YY'}(a) := \mathbb{V}^{Y}(a) - \mathbb{V}^{Y'}(a)$ is increasing with a

Hence, Proposition 1 applies.

<**₽** ▶ 9 < <>

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

Proposition ([Jones and Ostroy, 1984])

Assume that

• for any $a_1 \ge a_0$, $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex (resp. concave),

2 Y is more informative than $Y'(\sigma(Y) \supset \sigma(Y'))$.

Then the value of substituting Y for Y', $\Delta \mathbb{V}^{YY'}(a) := \mathbb{V}^{Y}(a) - \mathbb{V}^{Y'}(a)$ is increasing with a (resp. decreasing).

Hence, Proposition 1 applies.

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

Proposition ([Jones and Ostroy, 1984])

Assume that

• for any $a_1 \ge a_0$, $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex (resp. concave),

• Y is more informative than Y' $(\sigma(Y) \supset \sigma(Y'))$.

Then the value of substituting Y for Y', $\Delta \mathbb{V}^{YY'}(a) := \mathbb{V}^{Y}(a) - \mathbb{V}^{Y'}(a)$ is increasing with a (resp. decreasing).

Hence, Proposition 1 applies.

Second-period value of the information Jones and Ostroy monotonicity result **Epstein functional** When is the difference of optimal payoffs convex in the prior?

Proposition ([Jones and Ostroy, 1984])

Assume that

• for any $a_1 \ge a_0$, $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex (resp. concave),

• Y is more informative than Y' $(\sigma(Y) \supset \sigma(Y'))$.

Then the value of substituting Y for Y', $\Delta \mathbb{V}^{YY'}(a) := \mathbb{V}^{Y}(a) - \mathbb{V}^{Y'}(a)$ is increasing with a (resp. decreasing).

Hence, Proposition 1 applies.

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

4日 りへの

A geometric property

Let set of maximal possible random rewards when the initial decision is *a* be defined by $\Lambda^{-}(a) :=$

 $\{f:\mathbb{X}\to\mathbb{R}\mid \exists b\in\mathbb{B}(a) \text{ such that } f(x)\leq U(a,b,x)\;,\quad \forall x\in\mathbb{X}\}\;.$

Proposition

Let $a_1 > a_0$. If there exists a subset K of functions defined on \mathbb{X} such that^a

 $\Lambda^-(a_1) = \Lambda^-(a_0) + K ,$

then $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex.

^aFor any subsets Λ_1 and Λ_2 , $\Lambda_1 + \Lambda_2 = \{x_1 + x_2, x_1 \in \Lambda_1 \text{ and } x_2 \in \Lambda_2\}$ is their so called direct sum, or *Minkowsky* sum.

Hence, the first hypothesis of Proposition 2 is satisfied

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

4日 りへの

A geometric property

Let set of maximal possible random rewards when the initial decision is *a* be defined by $\Lambda^{-}(a) :=$

 $\{f:\mathbb{X}\to\mathbb{R}\mid \exists b\in\mathbb{B}(a) \text{ such that } f(x)\leq U(a,b,x)\;,\quad \forall x\in\mathbb{X}\}\;.$

Proposition

Let $a_1>a_0.$ If there exists a subset K of functions defined on $\mathbb X$ such that a

 $\Lambda^{-}(a_1) = \Lambda^{-}(a_0) + K ,$

then $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex.

^aFor any subsets Λ_1 and Λ_2 , $\Lambda_1 + \Lambda_2 = \{x_1 + x_2 , x_1 \in \Lambda_1 \text{ and } x_2 \in \Lambda_2\}$ is their so called direct sum, or *Minkowsky* sum.

Hence, the first hypothesis of Proposition 2 is satisfied

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

<<p>
4 日 > うへで

A geometric property

Let set of maximal possible random rewards when the initial decision is *a* be defined by $\Lambda^{-}(a) :=$

 $\{f:\mathbb{X}\to\mathbb{R}\mid \exists b\in\mathbb{B}(a) \text{ such that } f(x)\leq U(a,b,x)\;,\quad \forall x\in\mathbb{X}\}\;.$

Proposition

Let $a_1>a_0.$ If there exists a subset K of functions defined on $\mathbb X$ such that a

 $\Lambda^-(a_1) = \Lambda^-(a_0) + K ,$

then $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex.

^aFor any subsets Λ_1 and Λ_2 , $\Lambda_1 + \Lambda_2 = \{x_1 + x_2 , x_1 \in \Lambda_1 \text{ and } x_2 \in \Lambda_2\}$ is their so called direct sum, or *Minkowsky* sum.

Hence, the first hypothesis of Proposition 2 is satisfied

Second-period value of the information Jones and Ostroy monotonicity result Epstein functional When is the difference of optimal payoffs convex in the prior?

<<p>
4 日 > うへで

A geometric property

Let set of maximal possible random rewards when the initial decision is *a* be defined by $\Lambda^{-}(a) :=$

 $\{f:\mathbb{X}\to\mathbb{R}\mid \exists b\in\mathbb{B}(a) \text{ such that } f(x)\leq U(a,b,x)\;,\quad \forall x\in\mathbb{X}\}\;.$

Proposition

Let $a_1 > a_0$. If there exists a subset K of functions defined on \mathbb{X} such that^a

 $\Lambda^-(a_1) = \Lambda^-(a_0) + K ,$

then $\rho \in S^{m-1} \mapsto J(a_1, \rho) - J(a_0, \rho)$ is convex.

^aFor any subsets Λ_1 and Λ_2 , $\Lambda_1 + \Lambda_2 = \{x_1 + x_2 , x_1 \in \Lambda_1 \text{ and } x_2 \in \Lambda_2\}$ is their so called direct sum, or *Minkowsky* sum.

Hence, the first hypothesis of Proposition 2 is satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Outline of the presentation

- Problem statement: the precautionary effect
- Second-period value of the information monotonicity
 - Second-period value of the information
 - Jones and Ostroy monotonicity result
 - Epstein functional
 - When is the difference of optimal payoffs convex in the prior?
- 3 Utility functions ensuring the precautionary effect
 - First-order condition characterization
 - Additive separable preferences
 - Risk neutral preferences
 - Risk averse preferences

Conclusion

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

First-order condition characterization

Let $a_1 > a_0$. To any mapping $\phi : \mathbb{B}(a_0) \to \mathbb{B}(a_1)$ associate the following set of second decision minimizers

$$\mathbb{B}_{\phi}(a_1, a_0, x) := \operatorname*{arg\,min}_{b \in \mathbb{B}(a_0)} \left(U(a_1, \phi(b), x) - U(a_0, b, x) \right) \quad (1)$$

and

$$\mathbb{B}_{\phi}(a_1, a_0) := \bigcap_{x \in \mathbb{X}} \mathbb{B}_{\phi}(a_0, x) \;.$$

When this latter set is not empty, there exists at least one second decision minimizer $b \in \mathbb{B}(a_0)$ of $U(a_1, \phi(b), x) - U(a_0, b, x)$ independent of the realization x of the random variable X

Michel DE LARA Joint Mathematics Meetings, San Francisco, 2010

<<p>A 目 > シックへ

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

First-order condition characterization

Let $a_1 > a_0$. To any mapping $\phi : \mathbb{B}(a_0) \to \mathbb{B}(a_1)$ associate the following set of second decision minimizers

$$\mathbb{B}_{\phi}(a_1, a_0, x) := \operatorname*{arg\,min}_{b \in \mathbb{B}(a_0)} \left(U(a_1, \phi(b), x) - U(a_0, b, x) \right) \quad (1)$$

and

$$\mathbb{B}_{\phi}(a_1,a_0):=igcap_{x\in\mathbb{X}}\mathbb{B}_{\phi}(a_0,x)\ .$$

When this latter set is not empty, there exists at least one second decision minimizer $b \in \mathbb{B}(a_0)$ of $U(a_1, \phi(b), x) - U(a_0, b, x)$ independent of the realization x of the random variable X.

<<p>
4 日 > うへへ

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Proposition

Assume that

the set of functions between second decision sets

 $\Phi = \{\phi : \mathbb{B}(a_0) \to \mathbb{B}(a_1) \mid \mathbb{B}_{\phi}(a_0) \neq \emptyset\}$

is not empty,

 to any second decision b₁ ∈ B(a₁) can be associated at least one mapping φ ∈ Φ and one second decision b₀ ∈ B_φ(a₀) such that b₁ = φ(b₀).

Then there exists a subset K of functions defined on X such that $\Lambda^{-}(a_1) = \Lambda^{-}(a_0) + K$.

Hence, the assumption of Proposition 3 is satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Proposition

Assume that

the set of functions between second decision sets

 $\Phi = \{\phi : \mathbb{B}(a_0) \to \mathbb{B}(a_1) \mid \mathbb{B}_{\phi}(a_0) \neq \emptyset\}$

is not empty,

 to any second decision b₁ ∈ B(a₁) can be associated at least one mapping φ ∈ Φ and one second decision b₀ ∈ B_φ(a₀) such that b₁ = φ(b₀).

Then there exists a subset K of functions defined on X such that $\Lambda^{-}(a_1) = \Lambda^{-}(a_0) + K$.

Hence, the assumption of Proposition 3 is satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Proposition

Assume that

the set of functions between second decision sets

 $\Phi = \{\phi : \mathbb{B}(a_0) \to \mathbb{B}(a_1) \mid \mathbb{B}_{\phi}(a_0) \neq \emptyset\}$

is not empty,

 to any second decision b₁ ∈ B(a₁) can be associated at least one mapping φ ∈ Φ and one second decision b₀ ∈ B_φ(a₀) such that b₁ = φ(b₀).

Then there exists a subset K of functions defined on X such that $\Lambda^{-}(a_1) = \Lambda^{-}(a_0) + K$.

Hence, the assumption of Proposition 3 is satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Proposition

Assume that

the set of functions between second decision sets

 $\Phi = \{\phi : \mathbb{B}(a_0) \to \mathbb{B}(a_1) \mid \mathbb{B}_{\phi}(a_0) \neq \emptyset\}$

is not empty,

 to any second decision b₁ ∈ B(a₁) can be associated at least one mapping φ ∈ Φ and one second decision b₀ ∈ B_φ(a₀) such that b₁ = φ(b₀).

Then there exists a subset K of functions defined on X such that $\Lambda^{-}(a_1) = \Lambda^{-}(a_0) + K$.

Hence, the assumption of Proposition 3 is satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Corollary

Assume that the second decision variable b belongs to $\mathbb{B} = \mathbb{R}^n$ and that the minimizers in (1) are characterized by first-order optimality condition.

Suppose that, to any vector $b_1 \in \mathbb{B}(a_1)$ can be associated at least one vector $b_0 \in \mathbb{B}(a_0)$ and one square matrix $M \in \mathbb{R}^{n \times n}$ such that

$$M\frac{\partial U}{\partial b}(a_1, b_1, x) - \frac{\partial U}{\partial b}(a_0, b_0, x) = 0, \quad \forall x \in \mathbb{X}.$$
(2)

If, in addition, we have $b_1 + M(b - b_0) \in \mathbb{B}(a_1)$ for all b in a neighbourhood of b_0 in $\mathbb{B}(a_0)$,^a then the assumptions of Proposition 4 are satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Corollary

Assume that the second decision variable b belongs to $\mathbb{B} = \mathbb{R}^n$ and that the minimizers in (1) are characterized by first-order optimality condition.

Suppose that, to any vector $b_1 \in \mathbb{B}(a_1)$ can be associated at least one vector $b_0 \in \mathbb{B}(a_0)$ and one square matrix $M \in \mathbb{R}^{n \times n}$ such that

$$M\frac{\partial U}{\partial b}(a_1, b_1, x) - \frac{\partial U}{\partial b}(a_0, b_0, x) = 0, \quad \forall x \in \mathbb{X}.$$
 (2)

If, in addition, we have $b_1 + M(b - b_0) \in \mathbb{B}(a_1)$ for all b in a neighbourhood of b_0 in $\mathbb{B}(a_0)$,^a then the assumptions of Proposition 4 are satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Corollary

Assume that the second decision variable b belongs to $\mathbb{B} = \mathbb{R}^n$ and that the minimizers in (1) are characterized by first-order optimality condition.

Suppose that, to any vector $b_1 \in \mathbb{B}(a_1)$ can be associated at least one vector $b_0 \in \mathbb{B}(a_0)$ and one square matrix $M \in \mathbb{R}^{n \times n}$ such that

$$M\frac{\partial U}{\partial b}(a_1, b_1, x) - \frac{\partial U}{\partial b}(a_0, b_0, x) = 0, \quad \forall x \in \mathbb{X}.$$
 (2)

If, in addition, we have $b_1 + M(b - b_0) \in \mathbb{B}(a_1)$ for all b in a neighbourhood of b_0 in $\mathbb{B}(a_0)$,^a

then the assumptions of Proposition 4 are satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Corollary

Assume that the second decision variable b belongs to $\mathbb{B} = \mathbb{R}^n$ and that the minimizers in (1) are characterized by first-order optimality condition.

Suppose that, to any vector $b_1 \in \mathbb{B}(a_1)$ can be associated at least one vector $b_0 \in \mathbb{B}(a_0)$ and one square matrix $M \in \mathbb{R}^{n \times n}$ such that

$$M\frac{\partial U}{\partial b}(a_1, b_1, x) - \frac{\partial U}{\partial b}(a_0, b_0, x) = 0, \quad \forall x \in \mathbb{X}.$$
 (2)

If, in addition, we have $b_1 + M(b - b_0) \in \mathbb{B}(a_1)$ for all b in a neighbourhood of b_0 in $\mathbb{B}(a_0)$,^a then the assumptions of Proposition 4 are satisfied.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

[Salanié and Treich, 2007]

Proposition ([Salanié and Treich, 2007])

If the utility U admits an invariant, then for any a and b, there exists a vector d(a, b) and a matrix M(a, b) such that

$$\frac{\partial^2 U}{\partial a \partial b}(a, b, x) + \frac{\partial^2 U}{\partial b^2}(a, b, x) d(a, b) = M(a, b) \frac{\partial U}{\partial b}(a, b, x) , \quad \forall x \in \mathbb{X} .$$

To be compared to: for any a_1 , a_0 , b_1 , there exist a vector $\psi(a_1,a_0,b_1)$ and a matrix $M(a_1,a_0,b_1)$ such that

 $M(a_1, a_0, b_1)\frac{\partial U}{\partial b}(a_1, b_1, x) - \frac{\partial U}{\partial b}(a_0, \psi(a_1, a_0, b_1), x) = 0, \quad \forall x \in \mathbb{X},$

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

[Salanié and Treich, 2007]

Proposition ([Salanié and Treich, 2007])

If the utility U admits an invariant, then for any a and b, there exists a vector d(a, b) and a matrix M(a, b) such that

$$\frac{\partial^2 U}{\partial a \partial b}(a, b, x) + \frac{\partial^2 U}{\partial b^2}(a, b, x) d(a, b) = M(a, b) \frac{\partial U}{\partial b}(a, b, x) , \quad \forall x \in \mathbb{X} .$$

To be compared to: for any a_1 , a_0 , b_1 , there exist a vector $\psi(a_1, a_0, b_1)$ and a matrix $M(a_1, a_0, b_1)$ such that

$$M(a_1, a_0, b_1) \frac{\partial U}{\partial b}(a_1, b_1, x) - \frac{\partial U}{\partial b}(a_0, \psi(a_1, a_0, b_1), x) = 0, \quad \forall x \in \mathbb{X},$$

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

Additive separable preferences

$$U(a,b,x) = u(a,x) + v(b,x)$$

[Arrow and Fisher, 1974] [Henry, 1974] [Epstein, 1980], highways and farms, the timing of orders for capital [Freixas and Laffont, 1984] [Fisher and Hanemann, 1987] [Hanemann, 1989]

<<p>A 日 > のへの

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

$$U(a,b,x) = u(a,x) + v(b,x)$$

A solution (M, b_0) to

$$M rac{\partial v}{\partial b}(b_1, x) = rac{\partial v}{\partial b}(b_0, x) , \quad \forall x \in \mathbb{X} ,$$

is given by

M = 1 and $b_0 = b_1$.

< **₽** ▶ _ ୭ < ભ

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

$$U(a,b,x) = u(a,x) + v(b,x)$$

A solution (M, b_0) to

$$M rac{\partial v}{\partial b}(b_1, x) = rac{\partial v}{\partial b}(b_0, x) , \quad \forall x \in \mathbb{X} ,$$

is given by

$$M=1$$
 and $b_0=b_1$.

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

More an irreversibility than a learning problem

However, the irreversibility conditions that

•
$$b_1 \in \mathbb{B}(a_1) \Rightarrow b_0 \in \mathbb{B}(a_0)$$

 b₁ + ⟨M, b - b₀⟩ ∈ B(a₁) for all b in a neighborhood of b₀ ∈ B(a₀)

may prevent the precautionary effect to hold true.

First-order condition characterization Additive separable preferences **Risk neutral preferences** Risk averse preferences

Risk neutrality

[Epstein, 1980], a firm's demand for capital $a = K \ge 0$, $b = L \ge 0$

$$U(a,b,x) = -ca + F(a,b)x - wb.$$

[Ulph and Ulph, 1997], global warming a, b pollution emissions

U(a,b,x) = u(a) + v(b) - M(a+b)x .

First-order condition characterization Additive separable preferences **Risk neutral preferences** Risk averse preferences

Risk neutrality

$$U(a,b,x) = u(a,b) + v(a,b)x .$$

A solution $(M, b_0) \in \mathbb{R}^n \times \mathbb{R}^n$ to

$$M \frac{\partial v}{\partial b}(b_1, x) = \frac{\partial v}{\partial b}(b_0, x) , \quad \forall x \in \mathbb{X} ,$$

is given by

$$\begin{cases} M\frac{\partial u}{\partial b}(a_1, b_1) &= \frac{\partial u}{\partial b}(a_0, b_0) \\ \\ M\frac{\partial v}{\partial b}(a_1, b_1) &= \frac{\partial v}{\partial b}(a_0, b_0) . \end{cases}$$

This is a system of 2n equations with 2n unknown (M, b_0) .

<<p>
4 日 > うへで

First-order condition characterization Additive separable preferences **Risk neutral preferences** Risk averse preferences

Risk neutrality

$$U(a, b, x) = u(a, b) + v(a, b)x = u(a, b) + \sum_{i=1}^{p} v_i(a, b)x_i$$
.

A solution $(M, b_0) \in \mathbb{R}^n \times \mathbb{R}^n$ is given by

$$\begin{cases} M\frac{\partial u}{\partial b}(a_1, b_1) &= \frac{\partial u}{\partial b}(a_0, b_0) \\ M\frac{\partial v_i}{\partial b}(a_1, b_1) &= \frac{\partial v_i}{\partial b}(a_0, b_0), \quad i = 1, \dots, p. \end{cases}$$

This is a system of n + np equations with $n + n^2$ unknown (M, b_0) . When the dimension p of the noise is less than the dimension n of the second decision variable, the precautionary effect is possible, $p \to \infty$

First-order condition characterization Additive separable preferences **Risk neutral preferences** Risk averse preferences

Risk neutrality

$$U(a, b, x) = u(a, b) + v(a, b)x = u(a, b) + \sum_{i=1}^{p} v_i(a, b)x_i$$
.

A solution $(M, b_0) \in \mathbb{R}^n \times \mathbb{R}^n$ is given by

$$\begin{cases} M\frac{\partial u}{\partial b}(a_1, b_1) &= \frac{\partial u}{\partial b}(a_0, b_0) \\ M\frac{\partial v_i}{\partial b}(a_1, b_1) &= \frac{\partial v_i}{\partial b}(a_0, b_0), \quad i = 1, \dots, p. \end{cases}$$

This is a system of n + np equations with $n + n^2$ unknown (M, b_0) . When the dimension p of the noise is less than the dimension n of the second decision variable, the precautionary effect is possible, a + b = 0

First-order condition characterization Additive separable preferences **Risk neutral preferences** Risk averse preferences

[Epstein, 1980], a firm's demand for capital

U(a,b,x) = -ca + F(a,b)x - wb.

A solution (M, b_0) to

$$M\frac{\partial F}{\partial b}(a_1, b_1)x - Mw = \frac{\partial F}{\partial b}(a_0, b_0)x - w , \quad \forall x \in \mathbb{X} ,$$

is given by M = 1 and

$$rac{\partial F}{\partial b}(a_1,b_1) = rac{\partial F}{\partial b}(a_0,b_0) \; .$$

A solution b_0 exists as soon as $b \mapsto \frac{\partial F}{\partial b}(a_0, b)$ can be inverted. The condition that $b_0 \in \mathbb{B}(a_0)$ depends on how $\frac{\partial F}{\partial b}(a, b)$ varies with a and b.

First-order condition characterization Additive separable preferences **Risk neutral preferences** Risk averse preferences

[Epstein, 1980], a firm's demand for capital

U(a,b,x) = -ca + F(a,b)x - wb.

A solution (M, b_0) to

$$M \frac{\partial F}{\partial b}(a_1, b_1) x - M w = \frac{\partial F}{\partial b}(a_0, b_0) x - w , \quad \forall x \in \mathbb{X} ,$$

is given by M = 1 and

$$\frac{\partial F}{\partial b}(a_1,b_1) = \frac{\partial F}{\partial b}(a_0,b_0) \; .$$

A solution b_0 exists as soon as $b \mapsto \frac{\partial F}{\partial b}(a_0, b)$ can be inverted. The condition that $b_0 \in \mathbb{B}(a_0)$ depends on how $\frac{\partial F}{\partial b}(a, b)$ varies with a and b.

First-order condition characterization Additive separable preferences **Risk neutral preferences** Risk averse preferences

[Ulph and Ulph, 1997], global warming

a, b pollution emissions

$$U(a,b,x) = u(a) + v(b) - C(a+b)x.$$

A solution (M, b_0) to

 $Mv'(b_1) - MC'(a_1 + b_1)x = v'(b_0) - C'(a_0 + b_0)x , \quad \forall x \in \mathbb{X} ,$

is given by $M = v'(b_0)/v'(b_1)$ and

$$\frac{C'(a_0+b_0)}{v'(b_0)}=\frac{C'(a_1+b_1)}{v'(b_1)}.$$

A solution b_0 exists as soon as $b \mapsto rac{C'(a_0+b)}{v'(b)}$ can be inverted

< 回 > シックへ

First-order condition characterization Additive separable preferences **Risk neutral preferences** Risk averse preferences

[Ulph and Ulph, 1997], global warming

a, b pollution emissions

$$U(a,b,x) = u(a) + v(b) - C(a+b)x.$$

A solution (M, b_0) to

$$Mv'(b_1) - MC'(a_1 + b_1)x = v'(b_0) - C'(a_0 + b_0)x , \quad \forall x \in \mathbb{X} ,$$

is given by $M=v^{\prime}(b_{0})/v^{\prime}(b_{1})$ and

$$\frac{C'(a_0+b_0)}{v'(b_0)}=\frac{C'(a_1+b_1)}{v'(b_1)}\;.$$

A solution b_0 exists as soon as $b \mapsto \frac{C'(a_0+b)}{v'(b)}$ can be inverted.

< 回 > シックへ

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

[Epstein, 1980], a consumption-savings problem

a, b savings with $\mathbb{B}(a) = [0, ra]$ and

 $U(a, b, x) = u_1(w - a) + \beta u_2(ra - b) + \beta^2 u_3(bx)$.

A solution (M, b_0) to

$$M\beta x u_3'(b_1 x) - \beta x u_3'(b_0 x) = M u_2'(ra_1 - b_1) - u_2'(ra_0 - b_0) , \quad \forall x \in \mathbb{X} ,$$

implies that there must exist constants $\alpha,\,\gamma$ and δ such that u_3' satisfies an equation of the form

$$xu'_3(lpha x) = \gamma xu'_3(x) + \delta , \quad \forall x \in \mathbb{X} .$$

A candidate is $u'_3(x) = x^{-\gamma}$.

<<p>
4 日 > うへで

First-order condition characterization Additive separable preferences Risk neutral preferences Risk averse preferences

[Epstein, 1980], a consumption-savings problem

a, b savings with $\mathbb{B}(a) = [0, ra]$ and

 $U(a, b, x) = u_1(w - a) + \beta u_2(ra - b) + \beta^2 u_3(bx)$.

A solution (M, b_0) to

$$M\beta x u'_{3}(b_{1}x) - \beta x u'_{3}(b_{0}x) = M u'_{2}(ra_{1}-b_{1}) - u'_{2}(ra_{0}-b_{0}), \quad \forall x \in \mathbb{X},$$

implies that there must exist constants $\alpha,\,\gamma$ and δ such that u_3' satisfies an equation of the form

$$xu'_3(\alpha x) = \gamma xu'_3(x) + \delta$$
, $\forall x \in \mathbb{X}$.

A candidate is $u'_3(x) = x^{-\gamma}$.

▲ □ ▶ り へ ()

First-order condition characterization Additive separable preferences Risk neutral preferences **Risk averse preferences**

[Gollier, Jullien, and Treich, 2000] global warming

U(a,b,x) = u(a) + v(b - x(a+b)) .

A solution (M, b_0) to (2) is given by

 $Mv'(b_1 - x(a_1 + b_1)) = v'(b_0 - x(a_0 + b_0)), \quad \forall x \in \mathbb{X},$

implies that there must exist constants $\alpha,\,\beta$ and M such that v' satisfies an equation of the form

$$v'(\alpha x + \beta) = Mv'(x) , \quad \forall x \in \mathbb{X} .$$

In this case, $b_0 = b_1 \frac{a_0}{a_1}$. Notice that the utility $v(x) = \frac{\gamma}{1-\gamma} \left[\eta + \frac{x}{\gamma} \right]^{1-\gamma}$ satisfie $v'(\alpha x + \gamma \eta(\alpha - 1)) = \alpha^{-\gamma} v'(x)$.

< 回 > シックへ

First-order condition characterization Additive separable preferences Risk neutral preferences **Risk averse preferences**

[Gollier, Jullien, and Treich, 2000] global warming

U(a,b,x) = u(a) + v(b - x(a+b)) .

A solution (M, b_0) to (2) is given by

$$Mv'(b_1-x(a_1+b_1))=v'(b_0-x(a_0+b_0))\;,\quad \forall x\in\mathbb{X}\;,$$

implies that there must exist constants $\alpha,\ \beta$ and M such that v' satisfies an equation of the form

$$\mathbf{v}'(lpha \mathbf{x} + eta) = M \mathbf{v}'(\mathbf{x}) , \quad \forall \mathbf{x} \in \mathbb{X} .$$

In this case, $b_0 = b_1 \frac{a_0}{a_1}$.

Notice that the utility $v(x) = \frac{\gamma}{1-\gamma} \left[\eta + \frac{x}{\gamma} \right]^{1-\gamma}$ satisfies

$$v'(\alpha x + \gamma \eta(\alpha - 1)) = \alpha^{-\gamma} v'(x)$$

▲ □ ▶ り へ ()

First-order condition characterization Additive separable preferences Risk neutral preferences **Risk averse preferences**

[Gollier, Jullien, and Treich, 2000] global warming

U(a,b,x) = u(a) + v(b - x(a+b)) .

A solution (M, b_0) to (2) is given by

$$Mv'(b_1-x(a_1+b_1))=v'(b_0-x(a_0+b_0))\;,\quad \forall x\in\mathbb{X}\;,$$

implies that there must exist constants $\alpha,\ \beta$ and M such that v' satisfies an equation of the form

$$\mathbf{v}'(lpha \mathbf{x} + eta) = M \mathbf{v}'(\mathbf{x}) \;, \quad orall \mathbf{x} \in \mathbb{X} \;.$$

In this case, $b_0 = b_1 \frac{a_0}{a_1}$.

Notice that the utility $v(x) = \frac{\gamma}{1-\gamma} \left[\eta + \frac{x}{\gamma} \right]^{1-\gamma}$ satisfies

$$\mathbf{v}'(lpha\mathbf{x}+\gamma\eta(lpha-1))=lpha^{-\gamma}\mathbf{v}'(\mathbf{x})$$

▲ □ ▶ り へ ()

First-order condition characterization Additive separable preferences Risk neutral preferences **Risk averse preferences**

[Eeckhoudt, Gollier, and Treich, 2005], eating a cake with unknown size

$$U(a, b, x) = u(a) + v(b) + w(x - a - b)$$
.

A solution (M, b_0) to

 $Mv'(b_1) - v'(b_0) = Mw'(x - (a_1 + b_1)) - w'(x - (a_0 + b_0)) , \quad \forall x \in \mathbb{X} ,$

implies that there must exist constants β , κ and M such that w' satisfies an equation of the form

$$w'(x+\beta) = Mv'(x) + \kappa$$
, $\forall x \in \mathbb{X}$.

We find that $\beta + a_1 + b_1 = a_0 + b_0$ with the compatibility condition $Mv'(b_1) - v'(b_0) + \kappa = 0$.

<<p>
4 日 > うへで

First-order condition characterization Additive separable preferences Risk neutral preferences **Risk averse preferences**

[Eeckhoudt, Gollier, and Treich, 2005], eating a cake with unknown size

$$U(a, b, x) = u(a) + v(b) + w(x - a - b)$$
.

A solution (M, b_0) to

$$Mv'(b_1)-v'(b_0)=Mw'(x-(a_1+b_1))-w'(x-(a_0+b_0))\;,\quad \forall x\in\mathbb{X}\;,$$

implies that there must exist constants β , κ and M such that w' satisfies an equation of the form

$$w'(x+\beta) = Mv'(x) + \kappa$$
, $\forall x \in \mathbb{X}$.

We find that $\beta + a_1 + b_1 = a_0 + b_0$ with the compatibility condition $Mv'(b_1) - v'(b_0) + \kappa = 0$.

Conclusion

- Monotonicity of the second-period value of the information as a function of initial decision as a first key to the 'precautionary effect'. Monotonicity related to convexity of variations of the Epstein functional.
- Geometric characterization of when a difference of optimal payoffs is convex in the prior.
- Direct characterization on the primitives of the economic model (which is not the case for Epstein condition).
- First-order condition characterization allows to treat cases in the literature and to extend their validity conditions.
- Irreversibility constraints may prevent the 'precautionary effect' to hold true.

Conclusion

- Monotonicity of the second-period value of the information as a function of initial decision as a first key to the 'precautionary effect'. Monotonicity related to convexity of variations of the Epstein functional.
- Geometric characterization of when a difference of optimal payoffs is convex in the prior.
- Direct characterization on the primitives of the economic model (which is not the case for Epstein condition).
- First-order condition characterization allows to treat cases in the literature and to extend their validity conditions.
- Irreversibility constraints may prevent the 'precautionary effect' to hold true.

Conclusion

- Monotonicity of the second-period value of the information as a function of initial decision as a first key to the 'precautionary effect'. Monotonicity related to convexity of variations of the Epstein functional.
- Geometric characterization of when a difference of optimal payoffs is convex in the prior.
- Direct characterization on the primitives of the economic model (which is not the case for Epstein condition).
- First-order condition characterization allows to treat cases in the literature and to extend their validity conditions.
- Irreversibility constraints may prevent the 'precautionary effect' to hold true.

Conclusion

- Monotonicity of the second-period value of the information as a function of initial decision as a first key to the 'precautionary effect'. Monotonicity related to convexity of variations of the Epstein functional.
- Geometric characterization of when a difference of optimal payoffs is convex in the prior.
- Direct characterization on the primitives of the economic model (which is not the case for Epstein condition).
- First-order condition characterization allows to treat cases in the literature and to extend their validity conditions.
- Irreversibility constraints may prevent the 'precautionary effect' to hold true.

Conclusion

- Monotonicity of the second-period value of the information as a function of initial decision as a first key to the 'precautionary effect'. Monotonicity related to convexity of variations of the Epstein functional.
- Geometric characterization of when a difference of optimal payoffs is convex in the prior.
- Direct characterization on the primitives of the economic model (which is not the case for Epstein condition).
- First-order condition characterization allows to treat cases in the literature and to extend their validity conditions.
- Irreversibility constraints may prevent the 'precautionary effect' to hold true.

Conclusion

- Monotonicity of the second-period value of the information as a function of initial decision as a first key to the 'precautionary effect'. Monotonicity related to convexity of variations of the Epstein functional.
- Geometric characterization of when a difference of optimal payoffs is convex in the prior.
- Direct characterization on the primitives of the economic model (which is not the case for Epstein condition).
- First-order condition characterization allows to treat cases in the literature and to extend their validity conditions.
- Irreversibility constraints may prevent the 'precautionary effect' to hold true.

Conclusion

- Monotonicity of the second-period value of the information as a function of initial decision as a first key to the 'precautionary effect'. Monotonicity related to convexity of variations of the Epstein functional.
- Geometric characterization of when a difference of optimal payoffs is convex in the prior.
- Direct characterization on the primitives of the economic model (which is not the case for Epstein condition).
- First-order condition characterization allows to treat cases in the literature and to extend their validity conditions.
- Irreversibility constraints may prevent the 'precautionary effect' to hold true.

<<p>
4 日 > うへへ

- K. J. Arrow and A. C. Fisher. Environmental preservation, uncertainty, and irreversibity. *Quarterly Journal of Economics*, 88:312–319, 1974.
- M. De Lara and L. Gilotte. Precautionary effect and variations of the value of information. In Jerzy Filar and Alain Haurie, editors, *Handbook on Uncertainty and Environmental Decision Making*, International Series in Operations Research and Management Science. Springer Verlag, 2009. forthcoming.
- Louis Eeckhoudt, Christian Gollier, and Nicolas Treich. Optimal consumption and the timing of the resolution of uncertainty. *European Economic Review*, 49(3):761–773, April 2005.
- L. G. Epstein. Decision making and temporal resolution of uncertainty. *International Economic Review*, 21:269–283, 1980.
 Anthony C. Fisher and W. M. Hanemann. Quasi option value: Some misconceptions dispelled. *Journal of Environmental Economics and Management*, 14:183–190, 1987.

Xavier Freixas and Jean-Jacques Laffont. The irreversibility effect. In Marcel Boyer and R. Kihlström, editors, *Bayesian Models in Economic Theory*, chapter 7. North-Holland, Amsterdam, 1984.

- C. Gollier, B. Jullien, and N. Treich. Scientific progress and irreversibility: an economic interpretation of the "precautionary principle". *Journal of Public Economics*, 75:229–253, 2000.
- W. M. Hanemann. Information and the concept of option value. Journal of Environmental Economics and Management, 14: 183–190, 1989.
- C. Henry. Investment decisions under uncertainty: The "irreversibility effect". *American Economic Review*, 64(6): 1006–1012, 1974.
- Robert A Jones and Joseph M Ostroy. Flexibility and uncertainty. *Review of Economic Studies*, 51(1):13–32, January 1984.

F. Salanié and N. Treich. Option value and flexibility: A general and some

theorem with applications. 2007. available at http://www2.toulouse.inra.fr/lerna/treich/OV.pdf.

A. Ulph and D. Ulph. Global warming, irreversibility and learning. The Economic Journal, 107(442):636–650, 1997.

