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Sketch

signal
first decision a

High alea
second decision b

Low alea
second decision b

Figure: Decision with learning; agent takes decision a; a signal is
revealed; agent takes decision b accordingly.
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Global warming illustration

[Ulph and Ulph, 1997]

a 2010 pollution emissions

b 2030 pollution emissions

random damages C (a + b)x

U(a, b, x) = u(a) + v(b)
︸ ︷︷ ︸

benefits

− C (a + b)x
︸ ︷︷ ︸

damage costs

.

Act vigorously now?
Or wait for more information in 2030?
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Formal model

1 The initial decision a is a scalar belonging to an interval:
a ∈ I ⊂ R.

2 The following and final decision b belongs to a set which may
depend on a: b ∈ B(a) ⊂ B. This may materialize
irreversibility due to the initial decision.

3 Uncertainty is represented by states of nature ω ∈ Ω with
prior P, and by a random variable X : Ω → X.

4 Partial information on X is provided by means of a signal
(random variable) Y : Ω → Y. Information allows for learning.

5 A utility function U(a, b, x) is given.
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First decision
a ∈ I ⊂ R

Utility
U(a, b, x)

Second decision
b ∈ B(a) ⊂ B

Signal
y ∈ {y1, . . . , yn}

Uncertainty
x ∈ {x1, . . . , xm}

Sample space
ω ∈ Ω

Random variable X

Signal Y

Information
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Precautionary effect

The Y -informed expected utility maximizer solves

max
a

E
[

max
b∈B(a)

E[U
(
a, b,X

)
| Y ]

]
,

with deterministic initial optimal solution āY .

The Y ′-informed expected utility maximizer solves

max
a

E
[

max
b∈B(a)

E[U
(
a, b,X

)
| Y ′]

]
.

The precautionary effect is said to hold whenever the optimal
initial decision is lower with more information:

Y more informative than Y ′ ⇒ āY ≤ āY ′

.
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Expected utility maximizer program

The evaluation of expected utility right after the first decision a has
been taken is conditional on the signal Y and defined as follows:

V
Y (a) := E

[
max

b∈B(a)
E[U

(
a, b,X

)
| Y ]

]
.

With this notation, the program of the Y -informed agent is

max
a

V
Y (a) .
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Second-period value of the information monotonicity

Proposition ([Jones and Ostroy, 1984], [De Lara and Gilotte,
2009])

Assume that the programs maxa V
Y (a) and maxa V

Y ′

(a) have
unique optimal solutions āY and āY ′

. Whenever the second-period
value of the information is a decreasing function of the initial
decision, namely

a 7→ V
Y (a) − V

Y ′

(a) is decreasing,

then āY ≤ āY ′

.
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Second-period value of the information
Jones and Ostroy monotonicity result
Epstein functional
When is the difference of optimal payoffs convex in the prior?

Epstein functional

The random variable X is supposed to take its value in
{x1, . . . , xm}.

Any prior ρ on {x1, . . . , xm} is identified with an element of
the simplex Sm−1.

Following [Epstein, 1980], let us define what we shall coin the
Epstein functional by the maximal expected utility:

J(a, ρ) := sup
b∈B(a)

Eρ

[
U

(
a, b, ·

)]
= sup

b∈B(a)

∫

X

U
(
a, b, x

)
dρ(x) ,

for all prior ρ on {x1, . . . , xm}.
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Jones and Ostroy monotonicity result
Epstein functional
When is the difference of optimal payoffs convex in the prior?

Proposition ([Jones and Ostroy, 1984])

Assume that

1 for any a1 ≥ a0, ρ ∈ Sm−1 7→ J(a1, ρ) − J(a0, ρ) is convex
(resp. concave),

2 Y is more informative than Y ′ (σ(Y ) ⊃ σ(Y ′)).

Then the value of substituting Y for Y ′,
∆V

YY ′

(a) := V
Y (a) − V

Y ′

(a) is increasing with a
(resp. decreasing).

Hence, Proposition 1 applies.
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Second-period value of the information
Jones and Ostroy monotonicity result
Epstein functional
When is the difference of optimal payoffs convex in the prior?

A geometric property

Let set of maximal possible random rewards when the initial
decision is a be defined by Λ−(a) :=

{f : X → R | ∃b ∈ B(a) such that f (x) ≤ U(a, b, x) , ∀x ∈ X} .

Proposition

Let a1 > a0. If there exists a subset K of functions defined on X

such thata

Λ−(a1) = Λ−(a0) + K ,

then ρ ∈ Sm−1 7→ J(a1, ρ) − J(a0, ρ) is convex.

aFor any subsets Λ1 and Λ2, Λ1 + Λ2 = {x1 + x2 , x1 ∈ Λ1 and x2 ∈ Λ2} is
their so called direct sum, or Minkowsky sum.

Hence, the first hypothesis of Proposition 2 is satisfied.
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Outline of the presentation

1 Problem statement: the precautionary effect

2 Second-period value of the information monotonicity
Second-period value of the information
Jones and Ostroy monotonicity result
Epstein functional
When is the difference of optimal payoffs convex in the prior?

3 Utility functions ensuring the precautionary effect
First-order condition characterization
Additive separable preferences
Risk neutral preferences
Risk averse preferences

4 Conclusion
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First-order condition characterization

Let a1 > a0. To any mapping φ : B(a0) → B(a1) associate the
following set of second decision minimizers

Bφ(a1, a0, x) := arg min
b∈B(a0)

(

U(a1, φ(b), x) − U(a0, b, x)
)

(1)

and
Bφ(a1, a0) :=

⋂

x∈X

Bφ(a0, x) .

When this latter set is not empty, there exists at least
one second decision minimizer b ∈ B(a0) of
U(a1, φ(b), x) − U(a0, b, x)
independent of the realization x of the random variable X .
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Proposition

Assume that

1 the set of functions between second decision sets

Φ = {φ : B(a0) → B(a1) | Bφ(a0) 6= ∅}

is not empty,

2 to any second decision b1 ∈ B(a1) can be associated at least
one mapping φ ∈ Φ and one second decision b0 ∈ Bφ(a0) such
that b1 = φ(b0).

Then there exists a subset K of functions defined on X such that
Λ−(a1) = Λ−(a0) + K.

Hence, the assumption of Proposition 3 is satisfied.
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Corollary

Assume that the second decision variable b belongs to B = R
n and

that the minimizers in (1) are characterized by first-order
optimality condition.
Suppose that, to any vector b1 ∈ B(a1) can be associated at least
one vector b0 ∈ B(a0) and one square matrix M ∈ R

n×n such that

M
∂U

∂b
(a1, b1, x) −

∂U

∂b
(a0, b0, x) = 0 , ∀x ∈ X . (2)

If, in addition, we have b1 + M(b − b0) ∈ B(a1) for all b in a
neighbourhood of b0 in B(a0),

a

then the assumptions of Proposition 4 are satisfied.

aThis condition is meaningless if b1 belongs to the interior of B(a0). Hence
this condition has to be verified only when an irreversibility constraint bites.

Michel De Lara Joint Mathematics Meetings, San Francisco, 2010



,

Problem statement: the precautionary effect
Second-period value of the information monotonicity

Utility functions ensuring the precautionary effect
Conclusion
References

First-order condition characterization
Additive separable preferences
Risk neutral preferences
Risk averse preferences

Corollary

Assume that the second decision variable b belongs to B = R
n and

that the minimizers in (1) are characterized by first-order
optimality condition.
Suppose that, to any vector b1 ∈ B(a1) can be associated at least
one vector b0 ∈ B(a0) and one square matrix M ∈ R

n×n such that

M
∂U

∂b
(a1, b1, x) −

∂U

∂b
(a0, b0, x) = 0 , ∀x ∈ X . (2)

If, in addition, we have b1 + M(b − b0) ∈ B(a1) for all b in a
neighbourhood of b0 in B(a0),

a

then the assumptions of Proposition 4 are satisfied.

aThis condition is meaningless if b1 belongs to the interior of B(a0). Hence
this condition has to be verified only when an irreversibility constraint bites.

Michel De Lara Joint Mathematics Meetings, San Francisco, 2010



,

Problem statement: the precautionary effect
Second-period value of the information monotonicity

Utility functions ensuring the precautionary effect
Conclusion
References

First-order condition characterization
Additive separable preferences
Risk neutral preferences
Risk averse preferences

Corollary

Assume that the second decision variable b belongs to B = R
n and

that the minimizers in (1) are characterized by first-order
optimality condition.
Suppose that, to any vector b1 ∈ B(a1) can be associated at least
one vector b0 ∈ B(a0) and one square matrix M ∈ R

n×n such that

M
∂U

∂b
(a1, b1, x) −

∂U

∂b
(a0, b0, x) = 0 , ∀x ∈ X . (2)

If, in addition, we have b1 + M(b − b0) ∈ B(a1) for all b in a
neighbourhood of b0 in B(a0),

a

then the assumptions of Proposition 4 are satisfied.

aThis condition is meaningless if b1 belongs to the interior of B(a0). Hence
this condition has to be verified only when an irreversibility constraint bites.

Michel De Lara Joint Mathematics Meetings, San Francisco, 2010



,

Problem statement: the precautionary effect
Second-period value of the information monotonicity

Utility functions ensuring the precautionary effect
Conclusion
References

First-order condition characterization
Additive separable preferences
Risk neutral preferences
Risk averse preferences

Corollary

Assume that the second decision variable b belongs to B = R
n and

that the minimizers in (1) are characterized by first-order
optimality condition.
Suppose that, to any vector b1 ∈ B(a1) can be associated at least
one vector b0 ∈ B(a0) and one square matrix M ∈ R

n×n such that

M
∂U

∂b
(a1, b1, x) −

∂U

∂b
(a0, b0, x) = 0 , ∀x ∈ X . (2)

If, in addition, we have b1 + M(b − b0) ∈ B(a1) for all b in a
neighbourhood of b0 in B(a0),

a

then the assumptions of Proposition 4 are satisfied.

aThis condition is meaningless if b1 belongs to the interior of B(a0). Hence
this condition has to be verified only when an irreversibility constraint bites.

Michel De Lara Joint Mathematics Meetings, San Francisco, 2010



,

Problem statement: the precautionary effect
Second-period value of the information monotonicity

Utility functions ensuring the precautionary effect
Conclusion
References

First-order condition characterization
Additive separable preferences
Risk neutral preferences
Risk averse preferences

[Salanié and Treich, 2007]

Proposition ([Salanié and Treich, 2007])

If the utility U admits an invariant, then for any a and b, there
exists a vector d(a, b) and a matrix M(a, b) such that

∂2U

∂a∂b
(a, b, x)+

∂2U

∂b2
(a, b, x)d(a, b) = M(a, b)

∂U

∂b
(a, b, x) , ∀x ∈ X .

To be compared to: for any a1, a0, b1, there exist a vector
ψ(a1, a0, b1) and a matrix M(a1, a0, b1) such that

M(a1, a0, b1)
∂U

∂b
(a1, b1, x)−

∂U

∂b
(a0, ψ(a1, a0, b1), x) = 0 , ∀x ∈ X ,
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Additive separable preferences

U(a, b, x) = u(a, x) + v(b, x)

[Arrow and Fisher, 1974]
[Henry, 1974]
[Epstein, 1980], highways and farms, the timing of orders for
capital
[Freixas and Laffont, 1984]
[Fisher and Hanemann, 1987]
[Hanemann, 1989]
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U(a, b, x) = u(a, x) + v(b, x)

A solution (M, b0) to

M
∂v

∂b
(b1, x) =

∂v

∂b
(b0, x) , ∀x ∈ X ,

is given by
M = 1 and b0 = b1 .
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More an irreversibility than a learning problem

However, the irreversibility conditions that

b1 ∈ B(a1) ⇒ b0 ∈ B(a0)

b1 + 〈M, b − b0〉 ∈ B(a1) for all b in a neighborhood of
b0 ∈ B(a0)

may prevent the precautionary effect to hold true.
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Risk neutrality

[Epstein, 1980], a firm’s demand for capital
a = K ≥ 0, b = L ≥ 0

U(a, b, x) = −ca + F (a, b)x − wb .

[Ulph and Ulph, 1997], global warming
a, b pollution emissions

U(a, b, x) = u(a) + v(b) − M(a + b)x .
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Risk neutrality

U(a, b, x) = u(a, b) + v(a, b)x .

A solution (M, b0) ∈ R
n × R

n to

M
∂v

∂b
(b1, x) =

∂v

∂b
(b0, x) , ∀x ∈ X ,

is given by 





M ∂u
∂b

(a1, b1) = ∂u
∂b

(a0, b0)

M ∂v
∂b

(a1, b1) = ∂v
∂b

(a0, b0) .

This is a system of 2n equations with 2n unknown (M, b0).
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Risk neutrality

U(a, b, x) = u(a, b) + v(a, b)x = u(a, b) +

p
∑

i=1

vi(a, b)xi .

A solution (M, b0) ∈ R
n × R

n is given by







M
∂u

∂b
(a1, b1) =

∂u

∂b
(a0, b0)

M
∂vi

∂b
(a1, b1) =

∂vi

∂b
(a0, b0) , i = 1, . . . , p .

This is a system of n + np equations with n + n2 unknown (M, b0).
When the dimension p of the noise is less than the dimension n of
the second decision variable, the precautionary effect is possible.
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[Epstein, 1980], a firm’s demand for capital

U(a, b, x) = −ca + F (a, b)x − wb .

A solution (M, b0) to

M
∂F

∂b
(a1, b1)x − Mw =

∂F

∂b
(a0, b0)x − w , ∀x ∈ X ,

is given by M = 1 and

∂F

∂b
(a1, b1) =

∂F

∂b
(a0, b0) .

A solution b0 exists as soon as b 7→ ∂F
∂b

(a0, b) can be inverted. The

condition that b0 ∈ B(a0) depends on how ∂F
∂b

(a, b) varies with a
and b.
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[Epstein, 1980], a firm’s demand for capital

U(a, b, x) = −ca + F (a, b)x − wb .

A solution (M, b0) to

M
∂F

∂b
(a1, b1)x − Mw =

∂F

∂b
(a0, b0)x − w , ∀x ∈ X ,

is given by M = 1 and

∂F

∂b
(a1, b1) =

∂F

∂b
(a0, b0) .
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[Ulph and Ulph, 1997], global warming

a, b pollution emissions

U(a, b, x) = u(a) + v(b) − C (a + b)x .

A solution (M, b0) to

Mv ′(b1) − MC ′(a1 + b1)x = v ′(b0) − C ′(a0 + b0)x , ∀x ∈ X ,

is given by M = v ′(b0)/v
′(b1) and

C ′(a0 + b0)

v ′(b0)
=

C ′(a1 + b1)

v ′(b1)
.

A solution b0 exists as soon as b 7→ C ′(a0+b)
v ′(b) can be inverted.
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[Epstein, 1980], a consumption-savings problem

a, b savings with B(a) = [0, ra] and

U(a, b, x) = u1(w − a) + βu2(ra − b) + β2u3(bx) .

A solution (M, b0) to

Mβxu′

3(b1x)−βxu′

3(b0x) = Mu′

2(ra1−b1)−u′

2(ra0−b0) , ∀x ∈ X ,

implies that there must exist constants α, γ and δ such that u′

3

satisfies an equation of the form

xu′

3(αx) = γxu′

3(x) + δ , ∀x ∈ X .

A candidate is u′

3(x) = x−γ .
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[Gollier, Jullien, and Treich, 2000] global warming

U(a, b, x) = u(a) + v
(
b − x(a + b)

)
.

A solution (M, b0) to (2) is given by

Mv ′
(
b1 − x(a1 + b1)

)
= v ′

(
b0 − x(a0 + b0)

)
, ∀x ∈ X ,

implies that there must exist constants α, β and M such that v ′

satisfies an equation of the form

v ′(αx + β) = Mv ′(x) , ∀x ∈ X .

In this case, b0 = b1
a0
a1

.

Notice that the utility v(x) = γ
1−γ

[

η + x
γ

]1−γ

satisfies

v ′(αx + γη(α − 1)) = α−γv ′(x) .
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[Eeckhoudt, Gollier, and Treich, 2005], eating a cake with

unknown size

U(a, b, x) = u(a) + v(b) + w(x − a − b) .

A solution (M, b0) to

Mv ′(b1)−v ′(b0) = Mw ′(x−(a1+b1))−w ′(x−(a0+b0)) , ∀x ∈ X ,

implies that there must exist constants β, κ and M such that w ′

satisfies an equation of the form

w ′(x + β) = Mv ′(x) + κ , ∀x ∈ X .

We find that β + a1 + b1 = a0 + b0 with the compatibility
condition Mv ′(b1) − v ′(b0) + κ = 0.
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Conclusion

Monotonicity of the second-period value of the information as
a function of initial decision as a first key to the
’precautionary effect’. Monotonicity related to convexity of
variations of the Epstein functional.

Geometric characterization of when a difference of optimal
payoffs is convex in the prior.

Direct characterization on the primitives of the economic
model (which is not the case for Epstein condition).

First-order condition characterization allows to treat cases in
the literature and to extend their validity conditions.

Irreversibility constraints may prevent the ’precautionary
effect’ to hold true.
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