Risk and optimization for hydropower management

Jean-Christophe Alais

Université Paris-Est OSIRIS dept, Électricité de France R&D CERMICS lab, École des Ponts ParisTech

> PhD Defense December 16th, 2013

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-62-0) December 16th, 2013 1/63

Risque et optimisation pour le management d'énergies : application à la gestion de l'hydraulique (CIFRE EDF)

Dates: from October, 2010 to December, 2013

Advisors: Michel De Lara (École des Ponts ParisTech) and Pierre Carpentier (ENSTA ParisTech)

Industrial advisors: Laetitia Andrieu (EDF R&D) and Nadia Oudjane (EDF R&D)

Domains: stochastic dynamic optimization applied to hydropower planning

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 2/63

Hydropower

- \triangleright main renewable energy produced in France
- \triangleright brings both an energy reserve and a flexibility of great interest in a context of penetration of intermittent sources in the production of electricity

hydropower planning difficulties:

- \blacktriangleright uncertainties in water inflows and prices
- \blacktriangleright multiple uses of water
- \blacktriangleright number of dams

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 3/63

 d dam management under \parallel multiple dams cascade a tourist constraint: management: chance constrained all large-scale optimization problem | optimization problem

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 4/63

[Tourist-constrained dam hydropower management](#page-4-0) [The tourist constrained optimization problem](#page-5-0) [Reformulation of the optimality criterion](#page-21-0) [Stochastic viability approach](#page-28-0)

[Dams cascade hydropower management](#page-37-0)

[Managing a dams cascade: a large scale problem](#page-38-0) [Decomposition coordination methods: dual approximate](#page-42-0) [dynamic programming](#page-42-0) [The three dams cascade problem](#page-58-0)

- \blacktriangleright manuscript: chapters 1, 2, 3 and 4
- \blacktriangleright C code: 2500 lines
- I papers: a report, a proceeding and a submitted paper
- \triangleright conferences: IFIP, Berlin (2011) ISMP, Berlin (2012) CLAIO, Rio (2012) – and PGMO'days, Palaiseau (2013)

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 5/63

ECONOMIC PURPOSE | TOURIST PURPOSE

maximize cost savings favour tourism in summer

We will develop two approaches

- \triangleright optimization under probabilistic constraint
- \triangleright stochastic viability

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 6/63

measurable w.r.t.

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 7/63

[Tourist-constrained dam hydropower management](#page-4-0) [The tourist constrained optimization problem](#page-5-0) [Reformulation of the optimality criterion](#page-21-0) [Stochastic viability approach](#page-28-0)

[Dams cascade hydropower management](#page-37-0)

[Managing a dams cascade: a large scale problem](#page-38-0) [Decomposition coordination methods: dual approximate](#page-42-0) [dynamic programming](#page-42-0) [The three dams cascade problem](#page-58-0)

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 8/63

maximize cost savings favour tourism in summer

criteria maximization

$$
\max_{\mathbf{X}, \mathbf{U}} \mathbb{E}\left[\sum_{t=0}^{T-1} L_t\left(\mathbf{U}_t, \mathbf{C}_t\right) + K_T\left(\mathbf{X}_T\right)\right]
$$

subject to a chance constraint

$$
\mathbb{P}\left[\mathbf{X}_{\tau}\geq x_{\text{ref}},\ \forall\tau\in\mathcal{T}\right]\geq p_{\text{ref}}
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 9/63

Chance-constrained maximization problem:

$$
\max_{\mathbf{X}, \mathbf{U}} \mathbb{E} \left[\sum_{t=0}^{T-1} L_t(\mathbf{U}_t, \mathbf{C}_t) + K_T(\mathbf{X}_T) \right]
$$
\ns.t. $\mathbf{X}_{t+1} = f_t^{\mathbf{X}}(\mathbf{X}_t, \mathbf{U}_t, \mathbf{A}_t), \forall t$ dynamics
\n $\mathbf{X}_0 = x_0$
\n $0 \le \mathbf{U}_t \le \min\{\mathbf{X}_t + \mathbf{A}_t, \overline{u}\}, \forall t$ bounds
\n $\mathbf{U}_t \preceq \sigma(\mathbf{X}_0, \mathbf{A}_{0:t}, \mathbf{C}_{0:t}), \forall t$ non anticipativity
\n $\mathbb{P}[\mathbf{X}_{\tau} \ge x_{\text{ref}}, \forall \tau \in \mathcal{T}] \ge p_{\text{ref}}$ tourist constraint

Admissible set:

$$
\mathfrak{U} = \left\{ \begin{aligned} \mathbf{X}: \Omega \to \mathbb{R}_{+}^{T+1} & \left| \begin{array}{l} \mathbf{X}_{t+1} = f_{t}^{\mathbf{X}}(\mathbf{X}_{t}, \mathbf{U}_{t}, \mathbf{A}_{t}), \forall t \\ 0 \leq \mathbf{U}_{t} \leq \min\{\mathbf{X}_{t} + \mathbf{A}_{t}, \overline{u}\}, \forall t \\ \mathbf{U}: \Omega \to \mathbb{R}_{+}^{T} & \left| \begin{array}{l} 0 \leq \mathbf{U}_{t} \leq \min\{\mathbf{X}_{t} + \mathbf{A}_{t}, \overline{u}\}, \forall t \\ \mathbf{U}_{t} \preceq \sigma\left(\mathbf{X}_{0}, \mathbf{A}_{0:t}, \mathbf{C}_{0:t}\right), \forall t \end{array} \right\} \end{aligned} \right\}
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 10/63

Chance-constrained optimization problems

introduced for the first time in

- 1959: Charnes and Cooper (individual chance constraint)
- 1965: Miller and Wagner (joint chance constraint)
- meaningful to operations managers, fit well to some industrial problems
- hard to handle due to theoretical and numerical difficulties
	- \triangleright connectedness, convexity and closedness of the induced admissible set issues
	- \blacktriangleright differential calculus, stability issues

some references:

Prékopa, 2003 Henrion, 2004 Dentcheva, 2009 Nemirovski, 2012

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 11/63

Chance-constrained optimization problems

Theoretical results under assumptions over

- \blacktriangleright the constraint structure: individual/joint, linear or separable w.r.t. the noise
- \blacktriangleright the noise distributions: continuous/discrete, independence, quasi/generalized concavity
- \blacktriangleright the information pattern: open/closed loop

<u>______________</u> No result applies to our case (up to our knowledge)

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 12/63

We dualize the chance constraint and write the maximization as a min-max problem (equivalent if a saddle point exists)

inner maximization

$$
\min_{\lambda \in \mathbb{R}_+} \max_{\mathbf{X}, \mathbf{U} \in \mathfrak{U}} \mathcal{L}(\mathbf{U}, \lambda)
$$
\nwhere $\mathcal{L}(\mathbf{U}, \lambda) = \mathbb{E} \left[\sum_{t=0}^{T-1} L_t(\mathbf{U}_t, \mathbf{C}_t) + K_T(\mathbf{X}_T) \right] + \lambda \left(\mathbb{P}[\Omega_T] - p_{\text{ref}} \right)$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 13/63

Inner maximization (fixed $\lambda^{(k)}$): dynamic programming

independent noise random variables additive criterion with respect to time \times

$$
\max_{\mathbf{X}, \mathbf{U} \in \mathfrak{U}} \mathbb{E} \left[\sum_{t=0}^{T-1} L_t(\mathbf{U}_t, \mathbf{C}_t) + K_T(\mathbf{X}_T) \right] + \lambda^{(k)} (\mathbb{P}[\Omega_T] - p_{\text{ref}})
$$

$$
\max_{\mathbf{X}, \mathbf{U} \in \mathfrak{U}} \mathbb{E} \left[\sum_{t=0}^{T-1} L_t(\mathbf{U}_t, \mathbf{C}_t) + K_T(\mathbf{X}_T) + \lambda^{(k)} \left(\prod_{\tau \in \mathcal{T}} \mathbf{1}_{\{\mathbf{X}_\tau \ge x_{\text{ref}}\}} - p_{\text{ref}} \right) \right]
$$

introduction of a binary state variable: we set $\pi_0 = 1$

$$
\boldsymbol{\pi}_{t+1} = f_t^{\boldsymbol{\pi}}(\mathbf{X}_t, \boldsymbol{\pi}_t, \mathbf{U}_t, \mathbf{A}_t) = \begin{vmatrix} \mathbf{1}_{\{f_t^{\mathbf{X}}(\mathbf{X}_t, \mathbf{U}_t, \mathbf{A}_t) \geq x_{\text{ref}}\}} \times \boldsymbol{\pi}_t & \text{if } t+1 \in \mathcal{T} \\ \boldsymbol{\pi}_t & \text{else} \end{vmatrix}
$$

$$
\rightarrow \max_{\mathbf{X}, \pi, \mathbf{U} \in \mathfrak{U}} \mathbb{E}\left[\sum_{t=0}^{T-1} L_t(\mathbf{U}_t, \mathbf{C}_t) + K_T(\mathbf{X}_T) + \lambda^{(k)}(\pi_T - p_{\text{ref}})\right]
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 14/63

Dynamic programming (fixed $\lambda^{(k)}$) with extended state (\mathbf{X}, π) : we solve the following equations backward in time

$$
\begin{cases}\nV_T(x, \pi) = K_T(x) + \lambda^{(k)} (\pi - p_{\text{ref}}), \\
V_t(x, \pi) = \mathbb{E} \left[\max_{u \in \mathfrak{U}_t(x, \mathbf{A}_t)} L_t(u, \mathbf{C}_t) + V_{t+1} \left(\begin{array}{c} f_t^{\mathbf{X}}(x, u, \mathbf{A}_t), \\
f_t^{\pi}(x, \pi, u, \mathbf{A}_t) \end{array} \right) \right]\n\end{cases}
$$

where

$$
\mathfrak{U}_t(x, w) = \left\{ u \in \mathbb{R}_+^T \mid u \le \min\{x + w, \overline{u}\}\right\}
$$

we obtain feedback laws

$$
\chi_0^{(k+1)}, \ldots, \chi_{T-1}^{(k+1)}
$$

from which we deduce the optimal control trajectories

$$
\mathbf{U}_{0}^{(k+1)},\,\ldots,\,\mathbf{U}_{T-1}^{(k+1)}
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 15/63

Outer minimization (known $\chi^{(k+1)}_{0:T-1}$ $\binom{(N+1)}{0:T-1}$: gradient step \blacktriangleright probability evaluation

$$
\begin{cases}\nV_T^{\pi}(x, \pi) = \pi, \\
V_t^{\pi}(x, \pi) = \mathbb{E}\left[V_{t+1}^{\pi}\left(\begin{array}{c}f_t^{\mathbf{X}}(x, \chi_t^{(k+1)}(x, \mathbf{A}_t), \mathbf{A}_t), \\f_t^{\pi}(x, \pi, \chi_t^{(k+1)}(x, \mathbf{A}_t), \mathbf{A}_t)\end{array}\right)\right]\n\end{cases}
$$

we get

$$
p^{(k+1)} = \mathbb{P}\left[\Omega_{\mathcal{T}}\right] = \mathbb{E}\left[\pi_T\right] = V_0^{\pi}(x_0, 1)
$$

 \blacktriangleright multiplier update

$$
\lambda^{(k+1)} = \max \left\{ \lambda^{(k)} - \rho \left(p^{(k+1)} - p_{\text{ref}} \right), 0 \right\}
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 16/63

Theorem (Everett 1963)

If the algorithm converges to a solution U^* such that the chance constraint is binding,

$$
\mathbb{P}\left[\Omega_{\mathcal{T}}\right]=\mathbb{E}\left[\boldsymbol{\pi}_{T}^{\star}\right]=p_{\mathrm{ref}},
$$

then \mathbf{U}^* is an optimal solution

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 17/63

Numerical experiment

Dam problem instance

ime horizon: $\{1, \ldots, 12\}$ and $\mathcal{T} = \{7, 8\}$

$$
\overline{x} = 80 \text{ hm}^3
$$
, $\overline{u} = 40 \text{ hm}^3$ and $x_0 = 40 \text{ hm}^3$

$$
x_{\text{ref}} = 50 \text{ hm}^3 \text{ and } p_{\text{ref}} = 0.9
$$

- I expectations are computed as the mean over $|\mathbf{A}_t| \times |\mathbf{C}_t| = 10 \times 20$ values that define all of the possible noise values, for each t \rightarrow exact computations
- ightharpoontal the state grid is $|\mathbf{X}| \times |\pi| = 40 \times 2$, the control is discretized in 20 values and the intakes noise values are multiples of 2 hm^3
	- \rightarrow no need to interpolate

Numerical results

Probability level along the iterations

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 19/63

Water level trajectories with 5 "non tourist" trajectories

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 20/63

Water level trajectories with 5 "non tourist" trajectories

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 21/63

[Tourist-constrained dam hydropower management](#page-4-0) [The tourist constrained optimization problem](#page-5-0) [Reformulation of the optimality criterion](#page-21-0) [Stochastic viability approach](#page-28-0)

[Dams cascade hydropower management](#page-37-0)

[Managing a dams cascade: a large scale problem](#page-38-0) [Decomposition coordination methods: dual approximate](#page-42-0) [dynamic programming](#page-42-0) [The three dams cascade problem](#page-58-0)

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 22/63

We propose the following reformulation of the criterion

 \triangleright we focus the optimization process on the tourist event realization by only giving weight to the tourist trajectories :

$$
\max_{\mathbf{X}, \mathbf{U}} \mathbb{E}\left[\left(\sum_{t=0}^{T-1} L_t(\mathbf{U}_t, \mathbf{C}_t) + K_T(\mathbf{X}_T)\right) \mathbf{1}_{\Omega_{\mathcal{T}}}\right]
$$

s.t. $\mathbb{P}(\Omega_{\mathcal{T}}) \geq p_{\text{ref}}$

 \triangleright we let the operations manager deal with the other trajectories

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 23/63

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 24/63

Inner maximization: dynamic programming

$$
\max_{\mathbf{X}, \pi, \sigma, \mathbf{U}} \mathbb{E}\left[\underbrace{\left(\sum_{t=0}^{T-1} L_t\left(\mathbf{U}_t, \mathbf{C}_t\right) + K_T\left(\mathbf{X}_T\right)\right)}_{\sigma_T} \pi_T + \lambda^{(k)} \left(\pi_T - p_{\text{ref}}\right)\right]
$$

introduction of a new state σ (*cumulated gain process*): the dynamic programming equations become

$$
\begin{cases}\nV_T(x, \sigma, \pi) = \pi \times \sigma + \lambda^{(k)} (\pi - p_{\text{ref}}) \\
V_t(x, \sigma, \pi) = \mathbb{E} \left[\max_{u \in \mathfrak{U}_t(x, \mathbf{A}_t)} V_{t+1}(\mathbf{X}_{t+1}, \sigma_{t+1}, \pi_{t+1}) \right]\n\end{cases}
$$

Outer minimization: same gradient step method

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 25/63

Numerical experiment

Dam problem instance

Same instance, except that $p_{ref} = 0.99$ since fixing $p_{ref} = 0.9$ makes the chance constraint inactive

Comparison to the previous model

Optimal strategy only designed for tourist trajectories:

- \triangleright we apply a fixed turbined strategy to the other trajectories
- \triangleright with this strategy, we compute the true economical criterion

$$
\mathbb{E}[\mathbf{G}] = \mathbb{E}\left[\sum_{t=0}^{T-1} L_t \left(\mathbf{U}_t, \mathbf{C}_t\right) + K_T \left(\mathbf{X}_T\right)\right]
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 26/63

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 27/63

Empirical distribution of the cost savings

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 28/63

[Tourist-constrained dam hydropower management](#page-4-0) [The tourist constrained optimization problem](#page-5-0) [Reformulation of the optimality criterion](#page-21-0) [Stochastic viability approach](#page-28-0)

[Dams cascade hydropower management](#page-37-0)

[Managing a dams cascade: a large scale problem](#page-38-0) [Decomposition coordination methods: dual approximate](#page-42-0) [dynamic programming](#page-42-0)

[The three dams cascade problem](#page-58-0)

economic purpose tourist purpose

maximize cost savings favour tourism in summer

$$
\begin{aligned}\n\max_{\mathbf{X}, \mathbf{U}} \quad & \mathbb{P}\left[\mathbf{G} \geq g_{\text{ref}} \text{ and } \mathbf{X}_{\tau} \geq x_{\text{ref}}, \ \forall \tau \in \mathcal{T}\right] \\
\text{s.t.} \quad & \mathbf{X}_{t+1} = f_t^{\mathbf{X}}\left(\mathbf{X}_t, \mathbf{U}_t, \mathbf{A}_t\right), \forall t \in \{0, \dots, T-1\} \\
& \mathbf{X}_0 = x_0 \,,\n\end{aligned}
$$

This way, we symmetrize the economic and the tourist stakes whereas the first one was in the criterion $\mathbb{E}[\mathbf{G}]$ to maximize and the latter one was a chance constraint

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 30/63

Using the cumulated cost savings process σ , the problem reads:

$$
\begin{aligned}\n\max_{\mathbf{X}, \sigma, \mathbf{U}} & \mathbb{E} \left[\prod_{\tau \in \mathcal{T}} \mathbf{1}_{\{\mathbf{X}_{\tau} \geq x_{\text{ref}}\}} \times \mathbf{1}_{\{\sigma_T \geq g_{\text{ref}}\}} \right] \\
\text{s.t.} & \mathbf{X}_{t+1} = f_t^{\mathbf{X}} \left(\mathbf{X}_t, \mathbf{U}_t, \mathbf{A}_t \right), \ \forall t \in \{0, \dots, T-1\} \\
\mathbf{X}_0 = x_0 \\
\sigma_{t+1} &= f_t^{\sigma} \left(\mathbf{X}_t, \sigma_t, \mathbf{U}_t, \mathbf{C}_t \right), \forall t \in \{0, \dots, T-1\} \\
\sigma_0 = 0\n\end{aligned}
$$

Note that the criterion is multiplicative w.r.t. time

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 31/63

Theorem: multiplicative dynamic programming

Solving the dynamic programming equations

$$
V_T(x, \sigma) = \mathbf{1}_{\{\sigma \ge g_{\text{ref}}\}},
$$

\n
$$
\forall t \in \mathcal{T}, \quad V_t(x, \sigma) =
$$

\n
$$
\mathbb{E}\left[\max_{u \in \mathfrak{U}_t(x, \mathbf{A}_t)} \mathbf{1}_{\{x \ge x_{\text{ref}}\}} \times V_{t+1}\left(f_t^{\mathbf{X}}(x, u, \mathbf{A}_t), f_t^{\sigma}(x, \sigma, u, \mathbf{C}_t)\right)\right]
$$

\n
$$
\forall t \notin \mathcal{T} \cup \{T\}, \quad V_t(x, \sigma) =
$$

\n
$$
\mathbb{E}\left[\max_{u \in \mathfrak{U}_t(x, \mathbf{A}_t)} V_{t+1}\left(f_t^{\mathbf{X}}(x, u, \mathbf{A}_t), f_t^{\sigma}(x, \sigma, u, \mathbf{C}_t)\right)\right]
$$

gives the solution of the stochastic viability problem

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 32/63

We now imbed the multiplicative dynamic programming algorithm in a loop where the thresholds (x_{ref}, g_{ref}) vary to compute the isovalues of the maximal viability probability as function of the guaranteed gain and stock q_{ref} and x_{ref}

for every gain value q_{ref} do for every storage level x_{ref} do solve: the dynamic programming equations save: $\phi^*(x_{\text{ref}}, g_{\text{ref}}) = V_0(x_0, \sigma_0)$ end for end for

Isovalues of the viability probability

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 34/63

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 35/63

Storage level trajectories

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 36/63

Conclusion

- tourist-constrained dam hydropower management relevant for operations managers
- \triangleright extension to *n* level-constraints (Chapter 3)
- \triangleright complementary approach (stochastic viability)

Perspectives

- \triangleright extension to dependent probability distributions or to continuous probability distributions
- \triangleright extension to dams cascade hydropower management

[Tourist-constrained dam hydropower management](#page-4-0) [The tourist constrained optimization problem](#page-5-0) [Reformulation of the optimality criterion](#page-21-0) [Stochastic viability approach](#page-28-0)

[Dams cascade hydropower management](#page-37-0)

[Managing a dams cascade: a large scale problem](#page-38-0) [Decomposition coordination methods: dual approximate](#page-42-0) [dynamic programming](#page-42-0) [The three dams cascade problem](#page-58-0)

- manuscript: chapters 5, 6 and 7
- \blacktriangleright C code: 4500 lines
- \blacktriangleright papers: one proceeding, a paper under writing
- conferences: ICSP, Bergame (2013) and PGMO'days, Palaiseau (2013)

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 38/63

[Tourist-constrained dam hydropower management](#page-4-0) [The tourist constrained optimization problem](#page-5-0) [Reformulation of the optimality criterion](#page-21-0) [Stochastic viability approach](#page-28-0)

[Dams cascade hydropower management](#page-37-0)

[Managing a dams cascade: a large scale problem](#page-38-0) [Decomposition coordination methods: dual approximate](#page-42-0) [dynamic programming](#page-42-0) [The three dams cascade problem](#page-58-0)

Optimal management of a N dams cascade hydroelectric production by means of a Discrete Time Stochastic Optimal Control Problem

Optimal management of a N dams cascade hydroelectric production by means of a Discrete Time Stochastic Optimal Control Problem

state \mathbf{X}_t^i : storage level noise \mathbf{A}_t^i : exogeneous inflows control \mathbf{U}_t^i : turbinated water

 \mathbf{D}_t^i : spilled water surplus

 \rightarrow N state and N control variables Dynamic Programming: untractable as soon as $N > 4$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 40/63

Methods to deal with large-scale optimization problems

 \triangleright Stochastic Programming model the problem using the scenario tree

\triangleright Dynamic Programming

- \blacktriangleright Aggregation Methods
- \triangleright Approximate Dynamic Programming
- \triangleright Stochastic Dual Dynamic Programming Bellman function approximation by cuts
- \triangleright Decomposition/Coordination Methods

Decomposition coordination methods: main ideas

- 1. decompose a large scale problem into smaller subproblems susceptible to be solved by efficient algorithms
- 2. coordinate the subproblems to forge the initial problem solution

How to decompose the problem:

- 1. identify the coupling dimensions of the problem: time, space, uncertainty
- 2. dualize the coupling constraints linked to the dimension over which the problem is to be decomposed
- 3. split the problem into the resulting subproblems

[Tourist-constrained dam hydropower management](#page-4-0) [The tourist constrained optimization problem](#page-5-0) [Reformulation of the optimality criterion](#page-21-0) [Stochastic viability approach](#page-28-0)

[Dams cascade hydropower management](#page-37-0)

[Managing a dams cascade: a large scale problem](#page-38-0) [Decomposition coordination methods: dual approximate](#page-42-0) [dynamic programming](#page-42-0) [The three dams cascade problem](#page-58-0)

The optimization problem we are interested in:

$$
\begin{aligned}\n\max_{\mathbf{X}, \, \mathbf{Q} \in \mathfrak{U}} \, &\mathbb{E} \left[\sum_{i=1}^{N} \sum_{t=0}^{T} G_t^i(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i) \right] \\
\text{s.t.} \quad &\mathbf{X}_{t+1}^i = f_t^i(\mathbf{X}_t^i, \mathbf{Q}_t^i, \mathbf{W}_t^i) \,, \, \forall (t \,, \, i) \\
&\mathbf{Q}_t^i \preceq \mathcal{F}_t \,, \, \forall (t \,, \, i) \\
&\sum_{i=1}^{N} \Theta_t^i(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i) = 0 \,, \, \forall t\n\end{aligned}
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 44/63

$$
\max_{\mathbf{X}, \mathbf{U}\in\mathfrak{U}} \mathbb{E}\left[\sum_{i=1}^{3}\sum_{t=0}^{T-1} L_t\left(\mathbf{U}_t^i, \mathbf{Z}_t^i\right) + K_T^i\left(\mathbf{X}_T^i\right)\right]
$$
\n
$$
f_t^i:
$$
\n
$$
\mathbf{X}_{t+1}^i = \min\left\{\mathbf{X}_t^i + \mathbf{A}_t^i - \mathbf{U}_t^i + \mathbf{Z}_t^i, \overline{x}^i\right\}
$$
\n
$$
\mathcal{F}_t = \sigma\left(\mathbf{A}_{0:t}^{1:N}\right)
$$
\n
$$
g_t^i:
$$
\n
$$
\mathbf{Z}_t^{i+1} = \max\left\{\mathbf{X}_t^i + \mathbf{A}_t^i + \mathbf{Z}_t^i - \overline{x}^i, \mathbf{U}_t^i\right\}
$$
\n
$$
\sum_{i=1}^3 \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_t^i) = 0:
$$
\n
$$
\begin{cases}\n\mathbf{Z}_t^2 - g_t^1\left(\mathbf{X}_t^1, \mathbf{U}_t^1, \mathbf{A}_t^1, \mathbf{Z}_t^1\right) = 0 \\
\mathbf{Z}_t^3 - g_t^2\left(\mathbf{X}_t^2, \mathbf{U}_t^2, \mathbf{A}_t^2, \mathbf{Z}_t^2\right) = 0\n\end{cases}
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 45/63

The optimization problem we are interested in:

$$
\begin{aligned}\n\max_{\mathbf{X}, \, \mathbf{Q} \in \mathfrak{U}} \, &\mathbb{E} \left[\sum_{i=1}^{N} \sum_{t=0}^{T} G_t^i(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i) \right] \\
\text{s.t.} \quad &\mathbf{X}_{t+1}^i = f_t^i(\mathbf{X}_t^i, \mathbf{Q}_t^i, \mathbf{W}_t^i) \,, \, \forall (t \,, \, i) \\
&\mathbf{Q}_t^i \preceq \mathcal{F}_t \,, \, \forall (t \,, \, i) \\
&\sum_{i=1}^{N} \Theta_t^i(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i) = 0 \,, \, \forall t\n\end{aligned}
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 46/63

 $(\lambda_t)_{t\in\{0,\dots,T\}}$: \mathcal{F}_t -adapted processes of the coupling constraints multipliers. By dualization:

$$
\max_{\substack{\mathbf{x}, \, \mathbf{Q} \in \mathfrak{U} \\ \mathbf{Q}_t \preceq \mathcal{F}_t}} \min_{\substack{\lambda \\ \lambda}} \quad \mathbb{E} \left[\sum_{i=1}^N \sum_{t=0}^T G_t^i(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i) + \langle \mathbf{\lambda}_t, \, \Theta_t^i(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i) \rangle \right]
$$
\ns.t.
$$
\mathbf{X}_{t+1}^i = f_t^i(\mathbf{X}_t^i, \mathbf{Q}_t^i, \mathbf{W}_t^i), \, \forall (t, \, i)
$$

Assuming the existence of a saddle point, we can exchange the min and max operators:

$$
\min_{\lambda} \sum_{i=1}^{N} \max_{\substack{\mathbf{x}^i, \ \mathbf{Q}^i \in \mathfrak{U}^i \\ \mathbf{Q}^i_t \preceq \mathcal{F}_t}} \mathbb{E} \left[\sum_{t=0}^{T} G^i_t(\mathbf{X}^i_t, \ \mathbf{Q}^i_t, \ \mathbf{W}^i_t) + \langle \mathbf{\lambda}_t, \ \Theta^i_t(\mathbf{X}^i_t, \ \mathbf{Q}^i_t, \ \mathbf{W}^i_t) \rangle \right]
$$
\n
$$
\text{s.t.} \quad \mathbf{X}^i_{t+1} = f^i_t(\mathbf{X}^i_t, \mathbf{Q}^i_t, \mathbf{W}^i_t), \ \forall t
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 47/63

Uzawa algorithm: at step k and for a given $(\lambda)^{(k)}$,

1. we solve N problems (\mathcal{P}_i) that are

$$
\begin{array}{ll} \displaystyle \max_{\substack{\mathbf{x}^i, \ \mathbf{Q}^i \\ \mathbf{Q}^i_t \preceq \mathcal{F}_t}} & \mathbb{E}\left[\sum_{t=0}^T G^i_t\big(\mathbf{X}^i_t, \ \mathbf{Q}^i_t, \ \mathbf{W}^i_t\big) + \langle \mathbf{\lambda}_t, \ \Theta^i_t(\mathbf{X}^i_t, \ \mathbf{Q}^i_t, \ \mathbf{W}^i_t)\rangle\right] \\ \text { s.t. } & \mathbf{X}^i_{t+1} = f^i_t(\mathbf{X}^i_t, \mathbf{Q}^i_t, \mathbf{W}^i_t) \text{ , } \forall t \end{array}
$$

2. we update the multipliers by a gradient method

$$
(\boldsymbol{\lambda}_t)^{(k+1)} = (\boldsymbol{\lambda}_t)^{(k)} + \rho \sum_{j=1}^N \Theta_t^i \left(\left(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i \right)^{(k+1)} \right) \,,\,\forall t
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 48/63

The subproblems (\mathcal{P}_i) :

- \triangleright are small size standard SOC problems
- \triangleright involve state variables that follow Markovian dynamics their solutions should be computable by Dynamic Programming But:
	- the noise processes in (\mathcal{P}_i) are **W** and $(\lambda)^{(k+1)}$
	- $\blacktriangleright (\lambda)^{(k+1)}$ has no reason to be white or Markovian

we cannot solve (\mathcal{P}_i) by dynamic programming with the state \mathbf{X}^i

The idea of DADP: replacing the multipliers by their conditional expectations w.r.t. chosen information variables Y_t , namely

$$
\mathbb{E}\left[(\boldsymbol{\lambda}_t)^{(k)}\Big|\mathbf{Y}_t\right]
$$

 \rightarrow We transfer the measurability problem of $(\lambda)^{(k)}$ to the measurability issue of a chosen additional variable (Y_t)

Equivalent to replace the space coupling constraints by (Girardeau, 2010)

$$
\mathbb{E}\left[\sum_{i=1}^N \Theta_t^i(\mathbf{X}_t^i, \mathbf{Q}_t^i, \mathbf{W}_t^i) \middle| \mathbf{Y}_t\right] = 0, \quad \forall i
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 50/63

The choice of the information variable:

- \blacktriangleright is in the hands of the user
- can have a great impact on the efficiency of the DADP algorithm

In practice, Y_t is a short-memory process. Possible choices are:

- (1) $Y_t \equiv$ cste: we deal with the constraint in expectation
- (2) $Y_t = \varphi_t(\mathbf{W}_t)$: we incorporate a noise
- (3) $\mathbf{Y}_{t+1} = \tilde{f}_t(\mathbf{Y}_t, \mathbf{W}_t)$: we incorporate a new state variable in the problem

Information variables

- (1) $Y_t \equiv \text{cste: we deal with the}$ constraint in expectation
- (2) $\mathbf{Y}_t = (\mathbf{A}_t^1, \mathbf{A}_t^2)$: we incorporate the upstream exogeneous inflows
- (3) $\mathbf{Y}_{t+1} = \tilde{f}_t^1(\mathbf{Y}_t, \mathbf{A}_t^1)$: we mimic the first dam storage level

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 52/63

(1) $Y_t \equiv$ cste: we deal with the constraint in expectation The DP equation for (\mathcal{P}_i) reads:

$$
V_T^i(x) = \mathbb{E}\left[\max_q G_T^i(x, q, \mathbf{W}_T) + \left\langle \mathbb{E}[(\mathbf{\lambda}_T)^{(k)}], \Theta_T^i(x, q, \mathbf{W}_T^i) \right\rangle \right]
$$

$$
V_t^i(x) = \mathbb{E}\left[\max_q \left\{ \begin{aligned} & G_t^i(x, q, \mathbf{W}_t) + V_{t+1}^i \left(f_t^i(x, q, \mathbf{W}_t) \right) \\ & + \left\langle \mathbb{E}[(\mathbf{\lambda}_t)^{(k)}], \Theta_t^i(x, q, \mathbf{W}_t^i) \right\rangle \end{aligned} \right\} \right]
$$

no additional state variable

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 53/63

(2) $Y_t = \varphi_t(\mathbf{W}_t)$: we incorporate a noise The DP equation for (\mathcal{P}_i) reads:

$$
V_T^i(x) = \mathbb{E}\left[\max_q \begin{cases} G_T^i(x, q, \mathbf{W}_T^i) \\ + \left\langle \mathbb{E}[(\mathbf{\lambda}_T)^{(k)} | \varphi_T(\mathbf{W}_T)], \Theta_T^i(x, q, \mathbf{W}_T^i) \right\rangle \end{cases}\right]
$$

$$
V_t^i(x) = \mathbb{E}\left[\max_q \begin{cases} G_t^i(x, q, \mathbf{W}_t^i) + V_{t+1}^i(f_t^i(x, q, \mathbf{W}_t^i)) \\ + \left\langle \mathbb{E}[(\mathbf{\lambda}_t)^{(k)} | \varphi_t(\mathbf{W}_t)], \Theta_t^i(x, q, \mathbf{W}_t^i) \right\rangle \end{cases}\right]
$$

no additional state variable

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 54/63

(3) $\mathbf{Y}_{t+1} = \tilde{f}_t(\mathbf{Y}_t, \mathbf{W}_t)$: we add a non controlled variable to the state

The DP equation for (\mathcal{P}_i) reads:

$$
V_T^i(x, y) = \mathbb{E}\left[\max_q \left\{ \begin{aligned} & G_T^i(x, q, \mathbf{W}_T^i) \\ & + \left\langle \mathbb{E}[(\mathbf{\lambda}_T)^{(k)} | \mathbf{Y}_T = y], \Theta_T^i(x, q, \mathbf{W}_T^i) \right\rangle \right\} \right] \\ & V_t^i(x, y) = \mathbb{E}\left[\max_q \left\{ \begin{aligned} & G_t^i(x, q, \mathbf{W}_t^i) \\ & + V_{t+1}^i\left(f_t^i(x, q, \mathbf{W}_t^i), \tilde{f}_t(y, \mathbf{W}_t)\right) \\ & + \left\langle \mathbb{E}[(\mathbf{\lambda}_t)^{(k)} | \mathbf{Y}_t = y], \Theta_t^i(x, q, \mathbf{W}_t^i) \right\rangle \right\rangle \end{aligned} \right]
$$

additional state variable

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 55/63

Update of the conditional expectation of the multipliers w.r.t. $\mathbf{Y}_t.$

- save the strategies computed at *i* for the fixed $(\lambda_t)^{(k)}$
- \triangleright use these strategies to simulate the trajectories $(X_t^i, U_t^i, W_t, Y_t^i)_l^{(k+1)}$ $\binom{N+1}{l}$ over given scenarios
- \triangleright estimate the conditional expectation

$$
\mathbb{E}\left[\sum_{i=1}^N \Theta_t^i(X_t^i, U_t^i, W_t^i)\middle|\mathbf{Y}_t\right]
$$

 \triangleright update the multipliers conditional expectations by a gradient method

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 56/63

At this point, the algorithm solves

$$
\max_{\mathbf{X}, \, \mathbf{Q}} \mathbb{E}\left[\sum_{i=1}^N \sum_{t=0}^T G_t^i(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i)\right] \text{ s.t. } \mathbb{E}\left[\sum_{i=1}^N \Theta_t^i(\mathbf{X}_t^i, \, \mathbf{Q}_t^i, \, \mathbf{W}_t^i)\middle|\mathbf{Y}_t\right] = 0
$$

which is different from the initial problem

$$
\max_{\mathbf{X},\,\mathbf{Q}}\mathbb{E}\left[\sum_{i=1}^N\sum_{t=0}^T G^i_t\!\left(\mathbf{X}^i_t,\,\mathbf{Q}^i_t,\,\mathbf{W}^i_t\right)\right]\;\;\text{s.t.}\;\;\sum_{i=1}^N\Theta^i_t\!\left(\mathbf{X}^i_t,\,\mathbf{Q}^i_t,\,\mathbf{W}^i_t\right)=0
$$

 \triangleright We use heuristics to compute a feasible strategy

Bellman function approximation:
$$
V \approx \sum_{i=1}^{N} V^i
$$

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 57/63

We solve the three dams cascade problem by DADP

 \triangleright can be solved exactly by dynamic programming \rightarrow "accurate" choice of the information variables \rightarrow DADP efficiency evaluation ightharpoontriangleright to $N > 3$ dams cascade problems

 \rightarrow first step to solve large-scale dams cascades

[Tourist-constrained dam hydropower management](#page-4-0) [The tourist constrained optimization problem](#page-5-0) [Reformulation of the optimality criterion](#page-21-0) [Stochastic viability approach](#page-28-0)

[Dams cascade hydropower management](#page-37-0)

[Managing a dams cascade: a large scale problem](#page-38-0) [Decomposition coordination methods: dual approximate](#page-42-0) [dynamic programming](#page-42-0) [The three dams cascade problem](#page-58-0)

Numerical experiments

Dams cascade instance

horizon: $T = 12$

state:

$$
\mathbf{X}_t^i \in \{0, 2, ..., 80\}, \forall (i, t)
$$

control:

$$
Uti ∈ {0, 8, ..., 40}, ∀(i, t)
$$
\n
$$
Zt2 ∈ {0, 2, ..., 40} and Zt3 ∈ {0, 2, ..., 80}, ∀t
$$

noise:

$$
\mathbf{W}_t^i \in \{0, 2, \ldots, 32\}, \forall (i, t)
$$

100,000 scenarios to compute conditional expectations

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 60/63

Deviation from coupling constraints respect along the iterations

Jean-Christophe Alais [Risk and optimization for hydropower management](#page-0-0) December 16th, 2013 61/63

Empirical cost savings distributions

Conclusion

- \blacktriangleright encouraging results
	- \blacktriangleright numerical convergence of the algorithm
	- \triangleright satisfactory numerical results
- \triangleright more information does not imply better results (heuristics)
- \triangleright first use of a dynamic information variable in DADP

Perspectives

- \triangleright try other methods to compute conditionnal expectations
- \blacktriangleright realistic dams cascade problems
- \blacktriangleright theoretical studies (convergence proof, epiconvergence, control of errors)
- \triangleright comparison with other methods
- \triangleright extention to other topologies $(Y, \text{ smart grids})$