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World panorama of dengue

Figure: Global map of the incidence of dengue. Source: World Health Organization



Dengue in Cali, Colombia

Local authorities
⇓

Figure: Reported cases of dengue in Cali 2001 to
2014. Source: Data from Secretaría Muncipal de
Salud de Cali



�Canal Endémico� stands as the reference to control dengue

Figure: Cases of dengue between 2009 and 2014.
Source: Secretaría Municipal de Salud de Cali.

Program "Dengue Control" of SMS

Control mosquito breeding sites



What is coming ahead

I Viable control of dengue

I Robust viability analysis of dengue
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Dengue is transmitted by the mosquito vector

Figure: Dengue transmission cycle.
(http://www.eliminatedengue.com/our-
research/dengue-fever)

Ross-Macdonald epidemic model



Ross-Macdonald epidemic model

Denote by m and h the proportions of infected mosquitoes and humans,
respectively

mosquitos ⇒ dm

dt
= α pmh(1−m)−δm

humans ⇒ dh

dt
= α phξ m(1−h)− γh

Parameter Description

ξ number of mosquito females per person

α per capita rate of mosquito bites on humans

pm probability of infection of a susceptible mosquito by biting an infected human

ph probability of infection of a susceptible human by the bite of an infected mosquito

δ per capita rate death of mosquitos

γ rate at which humans recover from infection

Table: Parameters of the Ross-Macdonald model.



Most mathematical analysis focus on asymptotical properties
without control (or stationary ones)

Asymptotic analysis relies upon the basic reproductive number R0 =
α2phpmξ

γδ

(a) A unique equilibrium point (R0 < 1) (b) Two equilibrium points (R0 > 1)
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Formulation of the viability problem for Ross-Macdonald Model

I The dynamics of the system is given by

infected mosquito proportion
dm

dt
= Amh(t)(1−m(t))−u(t)m(t)

infected human proportion
dh

dt
= Ahm(t)(1−h(t))− γh(t)

I Determine, if it exists, a piecewise continuous function
(fumigation policy rates) u(·) ,

u(·) : t 7→ u(t) , u ≤ u(t)≤ u , ∀t ≥ 0 ,

such that the following so-called viability constraint is satis�ed:

h(t)≤ H , ∀t ≥ 0



The viability kernel

V(H,u) =


(m0,h0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists u(·) with u ≤ u(t)≤ u

such that the trajectory state (m(t),h(t)) of

dm

dt
= Amh(t)(1−m(t))−u(t)m(t)

dh

dt
= Ahm(t)(1−h(t))− γh(t)

starting from (m0,h0) satis�es h(t)≤H , ∀t ≥ 0


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Theorem (Characterization of the viability kernel)
(C) Comfortable case: if

Ah

Ah+ γ
≤H

the viability kernel is

V(H,u) = V0(H) = {(m,h)|0≤m ≤ 1,0≤ h ≤H}= [0,1]× [0,H]

m

h

H



Theorem (Characterization of the viability kernel)

(D) Desperate case: if

Am(Ah + γ)H + γu < AmAh ,

the viability kernel is

V(H,u) = {(0,0)}



Theorem (Characterization of the viability kernel)
(V) Viable case: If

H <
Ah

Ah+ γ
and Am(Ah+ γ)H+ γu > AmAh ,

the viability kernel is

V(H,u) =
(
[0,M]× [0,H]

)⋃{
(m,h)

∣∣∣M ≤m ≤M∞ , h ≤H(m)
}

where M = γH/Ah(1−H) and H : [M,M∞]→ [0,H] is solution of

−gm(m,H(m),u)H′(m)+gh(m,H(m)) = 0 , H(M) =H

m

h h

m



Three cases for the viability kernel



Sensitivity of V(H,u)

with respect to the infection cap H on the proportion of infected humans



Sensitivity of V(H,u)
with respect to the mosquito mortality maximal rate u
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Case u = 0.04 day−1 and H = 5%



Case u = 0.05 day−1 and H = 1%



Possible design for a viable policy

I Monitoring without fumigation
When the proportion of infected humans is below the infection
cap H = 1% and when the proportion of infected mosquitoes is below the
proportion M = 14%,
do not fumigate

I Monitoring with (maximal) fumigation
When the proportion of infected mosquitoes
is between the proportions M = 14% and M∞ = 27%,
fumigate with maximal capacity

I Alert
When the proportion of infected mosquitoes is above M∞ = 27%,
additional measures should be taken
to prevent a high peak of infected humans



Conclusion on viability analysis

I Comfortable case
I whatever state (m0,h0) ∈ [0,1]× [0,H] belongs to the viability kernel
I no control is needed to satisfy the viability constraint
I all trajectories satisfy the viability constraint

I Desperate case
I the viability kernel reduces to the point (0,0)
I the unique trajectory that satis�es viability constraint is

m(t)≡ 0 and h(t)≡ 0 for all t ≥ 0

I Viable case
I the viability kernel is

V(H,u) =
(
[0,M]× [0,H]

)⋃{
(m,h)

∣∣∣M ≤m ≤M∞ , h ≤H(m)
}

I viable controls increase fumigation at the viability kernel upper frontier



What is coming ahead

I Till now
I continuous time model
I deterministic model
I deterministic viability kernel and viable controls

I And now
I discrete time model
I dynamic model with uncertainties
I robust viability kernel (and viable policies)
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Sources of uncertainty abound

Uncertainties are captured by

{
mosquitoes transmission rate AM(t)

human transmission rate AH(t)

in the forthcoming model



New variables

I Time
I Discrete-time t = 0,1, . . . ,T with interval [t,t+1[ representing one day

I State variables
I M(t) denotes the proportion of infected mosquitoes

during the interval [t,t+1[
I H(t) denotes the proportion of infected humans

during the interval [t,t+1[

I Control variable
I U(t) denotes the mosquito mortality due to fumigation

during the interval [t,t+1[



Discrete-time dynamic control model with uncertainties

I Let us denote by Φ(M,H,u,AM ,AH) the solution, at time s = 1, of the
deterministic di�erential system with initial condition(
m(0),h(0)

)
= (M,H)

I We obtain the following sampled and controlled Ross�Macdonald model(
M(t +1),H(t +1)

)
= Φ

(
M(t),H(t),u(t),AM(t),AH(t)

)
I The control constraints capture limited fumigation resources during a day

U ≤ U(t)≤ U , ∀t = 0, . . . ,T −1



Viability problem statement

I We impose that the viability constraint

H(t)≤ H , ∀t = 0, . . . ,T

I holds true whatever the scenario (sequence of uncertainties)

(AM(·),AH(·)) =
(

(AM(0),AH(0)), . . . ,(AM(T −1),AH(T −1))
)

belonging to a subset Ω⊂ (R2)T



In the robust framework, we need a new de�nition of solution

I A policy U is de�ned as a sequence of mappings

U = {Ut}= 0, . . . ,T −1, with Ut : [0,1]2→ R

where each Ut maps state (M,H) towards control U

I A strategy induces a sequence of controls by

U(t) = Ut
(
M(t),H(t)

)
I A policy U is said to be admissible if it satis�es the control constraints

Ut : [0,1]2→ [U,U]
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Robust viability problem statement

The robust viability kernel is the set of initial conditions
(
M(0),H(0)

)
from which at least one policy U produces infected mosquitoes
and infected humans trajectories by the dynamics(

M(t +1),H(t +1)
)

= Φ
(
M(t),H(t),u(t),AM(t),AH(t)

)
with input controls

U(t) = Ut
(
M(t),H(t)

)
so that

H(t)≤ H , ∀t = 0, . . . ,T

for all the scenarios((
AM(0),AH(0)

)
, . . . ,

(
AM(T −1),AH(T −1)

))
∈Ω⊂ (R2)T



We make a tough assumption on the set of scenarios

I An uncertainty scenario is a time sequence of uncertainty couples(
AM(·),AH(·)

)
=
((

AM(0),AH(0)
)
, . . . ,

(
AM(T −1),AH(T −1)

))
I We make the strong independence assumption that(

AM(t)(·),AH(·)
)
∈Ω = S0×S1×·· ·×ST−1

I Therefore, from one time t to the next t +1,
uncertainties can be drastically di�erent since
(AM(t),AH(t)) is not related to (AM(t +1),AH(t +1))

I Such an assumption makes it possible to write
a dynamic programming equation with (M,H) as state variable

I For the sake of simplicity, we take

S0 = S1 = · · ·= ST−1 = S



Numerical resolution of the dynamic programming equation

initialization VT (M,H) = 1[0,1]×[0,H](M,H);

for t = T ,T −1, . . . ,0 do

forall (M,H) ∈ [0,1]× [0,H] do

forall U ∈ [U,U] do

forall (AM ,AH) ∈ S do

Vt+1
(
Φ(M,H,U,AM ,AH)

)
min

(AM ,AH )∈S
Vt+1

(
Φ(M,H,U,AM ,AH)

)
max

U∈[U,U]
min

(AM ,AH )∈S
Vt+1

(
Φ(M,H,U,AM ,AH)

)
Vt
(
t,M,H

)
= 1[0,1]×[0,H](M,H)×Vt+1

(
Φ(M,H,U,AM ,AH)

)
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Uncertainty sets

We consider three nested sets of uncertainties

SL ⊂ SM ⊂ SH ⊂ R2
+

L) deterministic case

SL =
{
ÂM

}
×
{
ÂH

}
M) medium case

SM =
[
AM ,AM

]
×
[
AH ,AH

]
H) high case

SH =
[
AM ,AM

]
×
[
AH ,AH

]



Robust viability kernels shrink when uncertainties expand



Conclusion on robust viability analysis

The numerical results show that the viability kernel without uncertainties
is highly sensitive to the variability of parameters such as

I biting rate

I probability of infection to mosquitoes and humans

I proportion of female mosquitoes per person

Maybe we should focus the e�ort on reducing these three sources of uncertainty
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General conclusions

I Analysis of strategies of dengue control
I not only preoccupied by asymptotics (R0 like in most of the literature)
I but focusing on transients (viability)

I Obtention of theoretical results

I Insight into possible viable policies by means of numerical applications

I Analysis of the impact of uncertainties thanks to the robust viability kernel
I Proposal of practical strategies

I measure the proportion of infected mosquitoes
(at least above a cut-o� value) to cap the infected human at the peak

I pay attention to three speci�c sources of uncertainty



THANKS FOR YOUR ATTENTION
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