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We highlight management issues at
the interface between nature and society
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To make a long story short . . .
We claim that mathematical control theory is an insightful framework
to deal with natural resources management issues

Problems. Many natural resources management problems
can be grasped within mathematical control theory

climate change mitigation, management of energies, etc.
fisheries management, epidemics control, etc.

Methods. Theory provides concepts, tools and methods

viability kernel, viable controls
dynamic programming, monotonicity

Answers. Practical answers are obtained

ecosystem viable yields, precautionary rules
tradeoffs display between economic and ecological
sustainability thresholds and risk
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Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)
Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Natural resources management issues and viability Examples of decision models

We distinguish two polar classes of models:
knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1 maps

Office of Oceanic and Atmospheric
Research (OAR) climate model
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Natural resources management issues and viability Examples of decision models

We distinguish two polar classes of models:
knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1 maps

Office of Oceanic and Atmospheric
Research (OAR) climate model

Action/decision models:
economic models are fables
designed to provide insight

William Nordhaus
economic-climate model
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Natural resources management issues and viability Examples of decision models

This talk is not about crafting dynamical models

Elaborating a dynamical model is a delicate venture

Peter Yodzis
Carlos Castillo Chavez

Our starting point will be a mathematical dynamical model
that captures how sequences of decisions affect a “piece of reality”

Then, we will use such a model to frame a decision problem
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Natural resources management issues and viability Examples of decision models

Let us scout a very stylized model
of the climate-economy system

We lay out a dynamical model with

two state variables

environmental: atmospheric co2

concentration level M(t)
economic: gross world product

gwp Q(t)

one decision variable,
the emission abatement rate a(t)
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Natural resources management issues and viability Examples of decision models

A carbon cycle model “à la Nordhaus”
is an example of decision model

Time index t in years

Economic production Q(t) (gwp)

Q(t + 1) =

economic growth
︷ ︸︸ ︷

(1 + g) Q(t)

co2 concentration M(t)

M(t + 1) = M(t)−δ(M(t)−M−∞)
︸ ︷︷ ︸

natural sinks

+α

emissions
︷ ︸︸ ︷

Emiss
(
Q(t)

) (
1− a(t)

)

︸ ︷︷ ︸

abatement

Decision a(t) ∈ [0, 1] is the abatement rate of co2 emissions
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Natural resources management issues and viability Examples of decision models

Data

M(t) co2 atmospheric concentration, measured in ppm, parts per million
(379 ppm in 2005)

M−∞ pre-industrial atmospheric concentration
(about 280 ppm)

Emiss(Q(t)) “business as usual” co2 emissions
(about 7.2 GtC per year between 2000 and 2005)

0 ≤ a(t) ≤ 1 abatement rate reduction of co2 emissions

α conversion factor from emissions to concentration
(α ≈ 0.471 ppm.GtC−1 sums up highly complex physical mechanisms)

δ natural rate of removal of atmospheric co2 to unspecified sinks
(δ ≈ 0.01 year−1)
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Natural resources management issues and viability Examples of decision models

A concentration target is pursued to avoid danger

United Nations Framework Convention
on Climate Change

“to achieve, (. . . ), stabilization of
greenhouse gas concentrations in the
atmosphere at a level that would prevent
dangerous anthropogenic interference
with the climate system”

Limitation of concentrations of co2

below a tolerable threshold M♯

(say 350 ppm, 450 ppm)

at a specified date T > 0
(say year 2050 or 2100)

M(T )
︸ ︷︷ ︸

concentration at horizon

≤ M♯
︸︷︷︸

threshold
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Natural resources management issues and viability Examples of decision models

Constraints capture different requirements
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The concentration has to
remain below a tolerable
level at the horizon T :

M(T ) ≤ M♯

More demanding:
from the initial time t0
up to the horizon T

M(t) ≤ M♯

t = t0, . . . ,T
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Natural resources management issues and viability Examples of decision models

Constraints may be environmental, physical, economic

The concentration has to remain below a tolerable level
from initial time t0 up to the horizon T

M(t) ≤ M♯ , t = t0, . . . ,T

Abatements are expressed as fractions

0 ≤ a(t) ≤ 1 , t = t0, . . . ,T − 1

As with “cap and trade”, setting a ceiling on co2 price amounts to cap
abatement costs

Cost
(
a(t),Q(t)

)

︸ ︷︷ ︸

costs

≤ c♯ (100 euros / tonne co2) , t = t0, . . . ,T − 1
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Natural resources management issues and viability Examples of decision models

Mixing dynamics, optimization and constraints
yields a cost-effectiveness problem

Minimize abatement costs

min
a(t0),...,a(T−1)

T−1∑

t=t0

(
1

1 + re
)t−t0 Cost

(
a(t),Q(t)

)

︸ ︷︷ ︸

abatement costs

under the gwp-co2 dynamics

{
M(t + 1) = M(t)− δ(M(t)−M−∞) + αEmiss

(
Q(t)

)
(1− a(t))

Q(t + 1) = (1 + g)Q(t)

and under target constraint

M(T ) ≤ M♯

︸ ︷︷ ︸

CO2 concentration
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Natural resources management issues and viability Examples of decision models
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Natural resources management issues and viability Examples of decision models

Populations can be described by abundances at ages

Jack Mackrel abundances (Chilean data)
are measured in thousand of individuals

13651022 thousand of age < 1 (recruits)
7495888 thousand of age ∈ [1, 2[
6804151
4191318
4582943
2500338
1139182
523261
269328
166390
95606 thousand of age ≥ 11
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Natural resources management issues and viability Examples of decision models

We now line up the ingredients
of a harvested population age-class dynamical model

Time t ∈ N measured in years

Abundances at age
N = (Na)a=1,...,A ∈ X = R

A
+

a ∈ {1, . . . ,A} age class index

A = 3 for anchovy
A = 8 for hake
A = 40 for bacalao

Control variable λ ∈ U = R+

is fishing effort
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Natural resources management issues and viability Examples of decision models

One year older every year. . .

Except for the recruits (a = 1) and the last age class (a = A),

Na(t + 1) = e

−

mortality

︷ ︸︸ ︷

(Ma−1
︸ ︷︷ ︸

natural

+λ(t)Fa−1
︸ ︷︷ ︸

fishing

)

Na−1(t), a = 2, . . . ,A− 1

where

Ma stands for
the natural mortality-at-age a

Fa is the harvesting mortality rate
of individuals of age a,
also called exploitation pattern-at-age a,
related to the mesh size for instance

the control variable λ(t) is the fishing effort,
or the exploitation pattern multiplier
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Natural resources management issues and viability Examples of decision models

The last age-class may comprise a plus-group

NA is the abundance of individuals of age above A− 1.

NA(t + 1) = NA−1(t) exp
(
− (MA−1 + λ(t)FA−1)

)

+ π
︸︷︷︸

0 or 1

NA(t) exp
(
− (MA + λ(t)FA)

)

The parameter π ∈ {0, 1} is related to the existence of a so-called plus-group:

if we neglect the survivors older than age A then π = 0
(for anchovy)

else π = 1, and the last age class is a plus group
(for hake)
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Natural resources management issues and viability Examples of decision models

The stock-recruitment function mathematically turns
spawning stock biomass into future recruits abundance

The spawning stock biomass is

SSB(N) =

A∑

a=1

γa
︸︷︷︸

proportion

mass
︷︸︸︷
µa Na

︸︷︷︸

abundance

with

γa proportion of matures-at-age a

µa weight-at-age a

stock-recruitment relationship S/R: biomass → abundance

N1(t + 1)
︸ ︷︷ ︸

future recruits

= S/R
(

SSB
(
N(t)

)

︸ ︷︷ ︸

spawning biomass

)
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Natural resources management issues and viability Examples of decision models

Here are traditional examples
of stock-recruitment functions

Recruitment involves complex biological and environmental processes that
fluctuate in time, and are difficult to integrate into a population model
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u
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s

constant: S/R(B) = R

linear: S/R(B) = rB

Beverton-Holt: S/R(B) = B
α+βB

Ricker: S/R(B) = αBe−βB
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Natural resources management issues and viability Examples of decision models

And here are the state vector and the control

The state vector N(t) is forged with abundances at age

N(t) =










N1(t)
N2(t)

...
NA−1(t)
NA(t)










∈ R
A
+

The scalar control λ(t) is the fishing effort multiplier
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Natural resources management issues and viability Examples of decision models

A harvested population age-class model is an
A—dimensional controlled dynamical system

N1(t + 1) = S/R
(

spawning biomass
︷ ︸︸ ︷

SSB
(
N(t)

) )

recruitment

N2(t + 1) = e−(M1+λ(t)F1)N1(t)

Na(t + 1) = e

−

mortality

︷ ︸︸ ︷

(Ma−1
︸ ︷︷ ︸

natural

+λ(t)Fa−1
︸ ︷︷ ︸

fishing

)

Na−1(t), a = 2, . . . ,A− 1

NA−1(t + 1) = e−(MA−2+λ(t)FA−2)NA−2(t)

NA(t + 1) = e−(MA−1+λ(t)FA−1)NA−1(t) + πe−(MA+λ(t)FA)
︸ ︷︷ ︸

plus group

NA(t)
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Natural resources management issues and viability Examples of decision models

The ices precautionary approach uses indicators and
reference points to tackle ecological objectives

International Council for the Exploration of the Sea precautionary approach

keeping (or restoring) spawning stock biomass SSB indicator
above a threshold reference point Blim

restricting fishing effort to have mean fishing mortality F indicator
below a threshold reference point Flim

Definition Notation Anchovy Hake

F limit RP Flim / 0.35
SSB limit RP (t) Blim 21 000 100 000
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Natural resources management issues and viability Examples of decision models

Spawning biomass and fishing mortality are outputs
of the harvested population age-class model

Spawning stock biomass

SSB(N) =

A∑

a=1

γa
︸︷︷︸

proportion

mass
︷︸︸︷
µa Na

︸︷︷︸

abundance

with reference point SSB(N) ≥ Blim

Mean fishing mortality over age range from ar to Ar

F (λ) :=
λ

Ar − ar + 1

a=Ar∑

a=ar

Fa

with reference point F (λ) ≤ Flim
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Natural resources management issues and viability Discrete–time viability
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Natural resources management issues and viability Discrete–time viability

A control system connects input and output variables

Input variables

Control wood logs
Uncertainty wood humidity

metal conductivity

Output variables

soup quality
water vapor
temperature (internal
state)
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Natural resources management issues and viability Discrete–time viability

Discrete-time nonlinear state-control systems
are special input-output systems

A specific output is distinguished, and is labeled state,
when the system may be written as

x(t + 1) = Dyn(t, x(t), u(t)), t ∈ T = {t0, t0 + 1, . . . ,T − 1}

the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, etc.)

the state variable x(t) belongs to the finite dimensional state space X = R
nX ;

(stocks, biomasses, abundances, capital, etc.)

the control variable u(t) is an element of the control space U = R
nU

(outflows, catches, harvesting effort, investment, etc.)

the dynamics Dyn maps T× X× U into X

(storage, age-class model, population dynamics, economic model, etc.)
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Natural resources management issues and viability Discrete–time viability

We dress natural resources management issues
in the formal clothes of control theory in discrete time

Control theory
in discrete time

blanco

Ecology Economics Modeling
Life-cycle Decision Simulations
Patches under

uncertainty

Problems are framed as

find controls/decisions
driving a dynamical system
to achieve various goals

Three main ingredients are

controlled dynamics ®

constraints �
criterion to optimize
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Natural resources management issues and viability Discrete–time viability

We mathematically express the objectives pursued
as control and state constraints

For a state-control system,
we cloth objectives as constraints

and we distinguish

control constraints (rather easy)
state constraints (rather difficult)

Viability theory deals with state constraints
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Natural resources management issues and viability Discrete–time viability

Constraints may be explicit on the control variable
and are rather easily handled by reducing the decision set

Examples of control constraints

Irreversibility constraints, physical bounds
�

0 ≤ a(t) ≤ 1 , 0 ≤ h(t) ≤ B(t) , 0 ≤ q(t) ≤ min{S(t), q♯} ,

Tolerable costs c
(
a(t),Q(t)

)
≤ c♯

Control constraints / admissible decisions

u(t)
︸︷︷︸

control

∈ B
(
t, x(t)

)

︸ ︷︷ ︸

admissible set

, t = t0, . . . ,T − 1

Easy because control variables u(t) are precisely those variables whose values the
decision-maker can fix at any time within given bounds
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Natural resources management issues and viability Discrete–time viability

Meeting constraints bearing on the state variable is delicate
due to the dynamics pipeline between controls and state

State constraints / admissible states

x(t)
︸︷︷︸

state

∈ A(t)
︸︷︷︸

admissible set

, t = t0, . . . ,T

Examples (“tipping points”)

co2 concentration M(t) ≤ M♯

biomass B♭ ≤ B(t) ≤ B♯

State constraints are mathematically difficult because of “inertia”

x(t) = function
︸ ︷︷ ︸

iterated dynamics

(
u(t − 1), . . . , u(t0)
︸ ︷︷ ︸

past controls

, x(t0)
)
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Natural resources management issues and viability Discrete–time viability

Target and asymptotic state constraints are special cases

Final state achieves some target

x(T )
︸ ︷︷ ︸

final state

∈ A(T )
︸ ︷︷ ︸

target set

Example: co2 concentration

State converges toward a target

lim
t→+∞

x(t)
︸ ︷︷ ︸

asymptotic state

∈ A(∞)
︸ ︷︷ ︸

target set

Example: convergence towards an endemic state in epidemiology
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Natural resources management issues and viability Discrete–time viability

Some economists recommend objectives to be
expressed in their own units, without aggregation

The “Stiglitz-Sen-Fitoussi”
Commission (2009)
déconseille de privilégier un
indicateur synthétique unique
car, quel que soit l’indicateur
envisagé, l’agrégation de
données disparates ne va pas
de soi
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Natural resources management issues and viability Discrete–time viability

When dealing with economic and environmental objectives,
this disaggregated approach is coined co-viability

Co-viability when

m environmental constraints:
conservation, viability
I economic constraints:
production, efficiency

C. Béné, L. Doyen, and D. Gabay
A viability analysis for a bio-economic
model.
Ecological Economics, 36:385–396, 2001
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Natural resources management issues and viability Discrete–time viability

Can we solve the compatibility puzzle between dynamics
and objectives by means of appropriate controls?

Given a dynamics that
mathematically embodies the causal
impact of controls on the state

Imposing objectives bearing on
output variables (states, controls)

Is it possible to find a control path
that achieves the objectives
for all times?
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Natural resources management issues and viability Discrete–time viability

Crisis occurs when constraints are trespassed at least once

An initial state is not viable if,
whatever the sequence of controls,
a crisis occurs

There exists a time when
one of the state or control
constraints is violated
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Natural resources management issues and viability Discrete–time viability

The compatibility puzzle can be solved when
the initial viability kernel Viab(t0) is not empty

Viable initial states form the viability kernel (Jean-Pierre Aubin)

Viab(t) :=







initial
states
x ∈ X

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

there exist a control path u(·) =
(
u(t), u(t + 1), . . . , u(T − 1)

)

and a state path x(·) =
(
x(t), x(t + 1), . . . , x(T )

)

starting from x(t) = x at time t
satisfying for any time s ∈ {t, . . . ,T − 1}
x(s + 1) = Dyn

(
s, x(s), u(s)

)
dynamics

u(s) ∈ B(s, x(s)) control constraints
x(s) ∈ A(s) state constraints
and x(T ) ∈ A(T ) target constraints






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Natural resources management issues and viability Discrete–time viability

The viability kernel is included in the state constraint set

The largest set is the
state constraint set A

It includes the smaller blue
viability kernel Viab(t0)

The green set measures
the incompatibility between
dynamics and constraints:
good start, but inevitable crisis!
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Natural resources management issues and viability Discrete–time viability

The viability program aims at turning
a priori constraints, with state constraints,
into a posteriori constraints, without state constraints

A priori constraints, with state constraints







x(t0) ∈ X

x(t + 1) = Dyn
(
t, x(t), u(t)

)

u(t) ∈ B
(
t, x(t)

)
control constraints

x(t) ∈ A(t) state constraints

are turned into a posteriori constraints, without state constraints
except for the initial state







x(t0) ∈ Viab(t0) initial state constraint
x(t + 1) = Dyn

(
t, x(t), u(t)

)

u(t) ∈ B
viab
(
t, x(t)

)
control constraints
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Natural resources management issues and viability Discrete–time viability

The viability kernels satisfy
a backward dynamic programming equation

Proposition

Assume that T < +∞. The viability kernels Viab(t) satisfy a
backward induction, where t runs from T − 1 down to t0:

Viab(T ) = A(T )

Viab(t) = { admissible states x ∈ A(t) |

there exists an admissible control u ∈ B(t, x)

such that the future state Dyn(t, x , u)

belongs to the next viability kernel Viab(t + 1) }
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Natural resources management issues and viability Discrete–time viability

The dynamic programming equation
yields viable controls

The following viable regulation set

B
viab(t, x) := {u ∈ B(t, x) | Dyn(t, x , u) ∈ Viab(t + 1)}

is not empty if and only if x ∈ Viab(t)

B
viab(t, x) 6= ∅ ⇐⇒ x ∈ Viab(t)

Any u ∈ B
viab(t, x) is said to be a viable control

A viable policy is a mapping Pol : T× X → U such that

Pol(t, x) ∈ B
viab(t, x)

for all (t, x) ∈ T× X
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Natural resources management issues and viability Discrete–time viability

“Policies” are closed-loop controls

Deterministic control theory appeals to
open-loop control, �

that is, a time-dependent sequence
(planning, scheduling)

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ∈ U
︸ ︷︷ ︸

control

Another notion of solution is
a decision rule, �×E a policy,
that is, a mapping

Pol : (t, x) ∈ T× X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

which “closes the loop” between
time t–state x and control u
(and is especially relevant in presence of
uncertainties)
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Natural resources management issues and viability Discrete–time viability

Monotonicity assumptions on dynamics and constraints
can help identify viable decision rules

Monotonicity assumptions

Dynamics Dyn is monotonous:

the more abundant today, the more tomorrow
the more harvested today, the less abundance tomorrow
(monospecific models and technical interactions)

Constraints/objectives are monotonous functions

Results

Lower and upper approximations of the viability kernel

Precautionary viable decision rules
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Natural resources management issues and viability Are the ICES fishing quotas recommendations “sustainable”?

Outline of the presentation
1 Natural resources management issues and viability

Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)

Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Natural resources management issues and viability Are the ICES fishing quotas recommendations “sustainable”?

Is the ices precautionary approach sustainable?

The precautionary approach (PA) may be sketched as follows

the condition SSB(N) ≥ Blim is checked
if valid, the following usual advice is given

λUA

abundance
︷︸︸︷

(N)
︸ ︷︷ ︸

effort

= max{λ ∈ R+ |

next year spawning biomass
︷ ︸︸ ︷

SSB(Dyn(N, λ)) ≥ Blim

and F (λ)
︸︷︷︸

fishing mortality

≤ Flim}

Is it possible to apply the ICES precautionary rule every year?

If so, can we remain within precautionary bounds as follows?

SSB(N(t)) ≥ Blim and F (λ(t)) ≤ Flim , ∀t = t0, t0 + 1, . . .
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Natural resources management issues and viability Are the ICES fishing quotas recommendations “sustainable”?

The ices precautionary rule is sustainable or not,
depending on the stock-recruitment model

Bay of Biscay anchovy

S/R
Relationship Constant Constant Constant Constant Linear Ricker

(2002) (2004)

Condition Rmean ≥ R Rgm ≥ R Rmin ≥ R Rmin ≥ R γ1µ1r ≥ 1

Left hand side 14 016 ×106 7 109 ×106 3 964 ×106 696 ×106 0.84 0

Right hand side 1 312 ×106 1 312 ×106 1 312 ×106 1 312 ×106 1 21 000

Sustainable yes yes yes no no no

For species with late maturation, like hake,
ices precautionary approach is never sustainable!
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Outline of the presentation

1 Natural resources management issues and viability
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Despite calls to an “ecosystem approach”,
stocks management remains monospecific

The World Summit on Sustainable Development (Johannesburg, 2002)
encouraged the application of the “ecosystem approach” by 2010

but. . . following the Summit, the signatory States undertook
to restore and exploit their stocks at maximum sustainable yield (MSY)

The MSY is a concept which relies upon a monospecific dynamic model
Ḃ = f (B)− qEB where B is biomass, and E fishing effort
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Perú is World 2nd for marine and inland capture fisheries

The northern Humboldt current system off Perú
covers less than 0.1% of the world ocean
but presently sustains
about 10% of the world fish catch
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We were lucky enough that IMARPE entrusted us
yearly data of anchoveta and merluza stock and catches
from 1971 to 1985
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We consider two species targeted by two fleets
in a biomass ecosystem dynamic

We embody stocks and fishing interactions
in a two-dimensional dynamical model

future biomass
︷ ︸︸ ︷

A(t + 1) = A(t)

growth factor
︷ ︸︸ ︷

RA

(
A(t),H(t)

) (
1− EA(t)

︸ ︷︷ ︸

effort

)

H(t + 1) = H(t)RH

(
A(t),H(t)

)(
1−

control
︷ ︸︸ ︷

EH(t)
)

State vector (A(t),H(t)) represents biomasses

Control vector (EA(t),EH(t)) is fishing effort of each species

Catches are EA(t)RA

(
A(t),H(t)

)
A(t) and EH(t)RH

(
A(t),H(t)

)
H(t)

(measured in biomass)
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Our objectives are twofold: conservation and production

The viability kernel is the set of initial species biomasses
(
A(t0),H(t0)

)

from which appropriate effort controls
(
EA(t),EH(t)

)
, t = t0, t0 + 1, . . .

produce a trajectory of biomasses
(
A(t),H(t)

)
, t = t0, t0 + 1, . . .

such that the following goals are satisfied

preservation (minimal biomass thresholds)

A stocks: A(t) ≥ S♭
A

H stocks: H(t) ≥ S♭
H

economic/social requirements (minimal catch thresholds)

A catches: EA(t)RA

(
A(t),H(t)

)
A(t) ≥ C ♭

A

H catches: EH(t)RH

(
A(t),H(t)

)
H(t) ≥ C ♭

H
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We provide an explicit expression for the viability kernel
under rather weak assumptions

Proposition

If the thresholds S♭
A, S

♭
H and C ♭

A,C
♭
H meet the inequalities

S♭
ARA(S

♭
A, S

♭
H)− S♭

A
︸ ︷︷ ︸

surplus

≥ C ♭
A and S♭

HRH(S
♭
A, S

♭
H)− S♭

H
︸ ︷︷ ︸

surplus

≥ C ♭
H

the viability kernel is given by

{

(A,H) | A ≥ S♭
A, H ≥ S♭

A, ARA(A,H)− S♭
A ≥ C ♭

A, HRH(A,H)− S♭
H ≥ C ♭

H

}
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We taylor a Lotka-Volterra decision model

to hake-anchovy Peruvian fisheries scarce data
Hake-anchovy Peruvian fisheries data between 1971 and 1981, in thousands of tonnes (103 tons)

anchoveta stocks= [11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407]

merluza stocks= [347 437 455 414 538 735 636 738 408 312 148]

anchoveta captures= [9184 3493 1313 3053 2673 3211 626 464 1000 223]

merluza captures= [26 13 133 109 85 93 107 303 93 159 69]

(a) Anchovy (b) Hake

Figure: Comparison of observed and simulated biomasses of anchovy and hake using a
Lotka-Volterra model with density-dependence in the prey. Model parameters are
R = 2.25, L = 0.945, κ = 67 113 × 103 t (K = 37 285 × 103 t), α = 1.22× 10−6 t−1,
β = 4.845× 10−8 t−1.
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Here is the Lotka-Volterra decision model

A is the prey biomass (anchovy)

H is the predator biomass (hake)

The discrete-time Lotka-Volterra system is

A(t + 1) = A(t)

RA

(
A(t),H(t)

)

︷ ︸︸ ︷

(
R −

R

κ
A(t)− αH(t)

) (
1− EA(t)

)

H(t + 1) = H(t)
(
L+ βA(t)

)

︸ ︷︷ ︸

RH

(
A(t),H(t)

)

(
1− EH(t)

)
,

The associated deterministic viability kernel is

V(t0) =
{

(A,H) | A ≥ S♭
A,

1
α
[R − R

κ
A− S♭

A+C♭
A

A
] ≥ H ≥ max{S♭

H+C♭
H

L+βA
, S♭

H}
}
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

For given biomasses and catches thresholds,
we display the associated viability kernel

Minimal biomasses thresholds

S♭
A = 7 000 kt (anchovy)

S♭
H = 200 kt (hake)

Minimal catches thresholds

C ♭
A = 2 000 kt (anchovy)

C ♭
H = 5 kt (hake)

First acid test: plotting years of observed biomasses

The range of values for viable states fits with measured biomasses

Theoretically, a viable management with guaranteed biomasses and catches
would have been possible since the initial state ⋆ is viable
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Let us make a pause on our way
towards ecosystem viable yields

Let us turn back on what we have covered so far

taking in consideration both ecological and economic objectives
we have identified the viable states starting from which
both objectives can be guaranteed as time flies

And let us change the perspective

by first guaranteeing the ecological objectives
and then identifying compatible captures that can be guaranteed
when starting from a given initial state
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We use the viability kernel the other way round,
to design ecosystem viable yields

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07
0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

9e+05 1 Considering that first are given
minimal biomass conservation
thresholds S♭

A ≥ 0 , S♭
H ≥ 0

2 for initial biomasses
A0 ≥ S♭

A and H0 ≥ S♭
H ,

the following catch levels,
if positive, can be
sustainably maintained

C ♭,⋆
A (A0,H0) = min

{
S♭
ARA(S

♭
A, S

♭
H)− S♭

A;A0RA(A0,H0)− S♭
A

}

C ♭,⋆
H (A0,H0) = min

{
S♭
HRH(S

♭
A, S

♭
H)− S♭

H ;H0RH(A0,H0)− S♭
H

}
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

And now, the second acid test. . .We compare theoretical
ecosystem viable yields to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

And now, the second acid test. . .We compare theoretical
ecosystem viable yields to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

And now, the second acid test. . .We compare theoretical
ecosystem viable yields to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300

Hake 49 56, 8 55 35
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

And now, the second acid test. . .We compare theoretical
ecosystem viable yields to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300

Hake 49 56, 8 55 35

Quotas are maximal bounds on catches

Ecosystem viable yields (EVY) are minimal guaranteed yields

EVY are obtained by “puzzling” viable effort rules:
one can harvest more than the predator EVY to let the prey increase

Instituto del Mar del Perú showed interest for this transparent method
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Summary

We have laid out examples of natural resources management problems
where objectives are framed as constraints,
using the apparatus of mathematical control theory

We have provided solutions derived from viability theory methods

And now, how do we move from deterministic dynamics and constraints
to the uncertainty situation?
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Risk management, robust and stochastic viability

Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
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Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

Outline of the presentation
1 Natural resources management issues and viability

Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)

Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

A control system connects input and output variables

Input variables

Control wood logs
Uncertainty wood humidity

metal conductivity

Output variables

soup quality
water vapor
temperature (internal
state)
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

Uncertainty is pervasive in natural resources management

Environmental uncertainties
(El Niño)

Habitats changes, mortality, natality

Scientific uncertainties
(structure of trophic networks,
ecosystem services)
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

We plug incertain variables
into the carbon cycle model “à la Nordhaus”

Economic production Q(t)

Q(t + 1) =
(

1 +

economic growth
︷ ︸︸ ︷

g
(
we(t)

) )

Q(t)

co2 concentration M(t)

M(t + 1) = M(t)− δ(M(t)−M−∞) + α(wp(t))
︸ ︷︷ ︸

physics

technologies
︷ ︸︸ ︷

Emiss
(
Q(t),wz(t)

)) (
1− a(t)

)

Vector of uncertainties w(t) = (we(t),wp(t),wz(t)) on

economic growth
technologies
climate dynamics
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

Uncertainties abound in population growth
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Stock-recruitment relationship
condenses in one function complex
mechanisms of birth, dispersion,
predation, habitats, physical
conditions, etc.

Natural mortality (deseases,
predation) between age-classes is
poorly known
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

We plug incertain variables
into the harvested age-class model

N1(t + 1) = S/R
(

SSB
(
N(t)

)
, w(t)

︸︷︷︸

birth mortality, etc.

)

recruitment

N2(t + 1) = e−(M1+λ(t)F1)N1(t)

... =
...

Na(t + 1) = e−(

mortality

︷ ︸︸ ︷

Ma−1 +λ(t)Fa−1)Na−1(t), a = 2, . . . ,A− 1

NA(t + 1) = e−(MA−1+λ(t)FA−1)NA−1(t) + πe−(MA+λ(t)FA)NA(t)
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

Uncertainty variables are new input variables
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

Input control variables are in the hands
of the decision-maker at successive time periods

Control variables u(t) ∈ U

The decision-maker can choose the values of control variables u(t) at any time
within given bounds

at successive time periods

annual catches
years, months:
starting of energy units like nuclear plants
weeks, days, intra-day: starting of hydropower units

within given bounds

fishing quotas
turbined capacity
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

Input uncertain variables are out of the control
of the decision-maker

Uncertain variables w(t) ∈ W

are variables

that take more than one single value (else they are deterministic)

and over which the decision-maker (DM) has no control whatsoever

Stationary parameters:
unitary cost of co2 emissions

Trends or seasonal effects:
energy consumption pathway, mean temperatures,
mean prices

Stochastic processes:
rain inputs in a dam, energy demand, prices

Else (set membership):
costs of climate change damage,
water inflows in a dam
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

Uncertainty variables are new input variables
in a discrete-time nonlinear state-control system

A specific output is distinguished, and is labeled “state” (more on this later),
when the system may be written

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)
, t ∈ T = {t0, t0 + 1, . . . ,T − 1}

time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N

(the time period [t, t + 1[ may be a year, a month, etc.)

state x(t) ∈ X := R
n (biomasses, abundances, etc.)

control u(t) ∈ U := R
p (catches or harvesting effort)

uncertainty w(t) ∈ W := R
q

(recruitment or mortality uncertainties, climate fluctuations or trends, etc.)

dynamics Dyn maps T× X× U×W into X

(biomass model, age-class model, economic model)
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

What have we covered so far?
Uncertainty variables are new input variables

x(t + 1) = Dyn
(
t, x(t), u(t), w(t)

︸︷︷︸

uncertainty

)

The future state x(t + 1) is no longer predictable

because of the uncertain term w(t),

but the current state x(t) carries information relevant for decision-making,

and we shed light on the notion of policy
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Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

“Policies” are closed-loop controls

Deterministic control theory appeals to
open-loop control, �

that is, a time-dependent sequence
(planning, scheduling)

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ∈ U
︸ ︷︷ ︸

control

Another notion of solution is
a decision rule, �×E a policy,
that is, a mapping

Pol : (t, x) ∈ T× X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

which “closes the loop” between
time t–state x and control u
(and is especially relevant in presence of
uncertainties)
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Summary

Control variables are defined rather unambiguously:
the DM can select their values at any time within given sets

The distinction between input and output variables is relative to a system:
for two interconnected dams, the water release from the upper to the lower
dam can be “seen” as an input to the lower dam or as a control variable for
the two-dams system

In various examples of natural resources management,
we have seen so-called uncertain variables

Uncertain variables are variables

which take more than one single value (else they are deterministic)
and over which the decision-makers have no control whatsoever

Uncertain and control variables combine in a dynamical model
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We call scenario a temporal sequence of uncertainties

Scenarios are special cases of “states of Nature”

A scenario (pathway, chronicle) is a sequence of uncertainties

w(·) :=
(
w(t0), . . . ,w(T − 1)

)
∈ Ω := W

T−t0

HHH

HHC

HCH

HCC

CHH

CHC

CCH

CCC

El tiempo se bifurca perpetuamente hacia innumerables futuros
(Jorge Luis Borges, El jard́ın de senderos que se bifurcan)
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Water inflows historical scenarios
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Beware! Scenario holds a different meaning
in other scientific communities

In practice, what modelers call a
“scenario” is a mixture of

a sequence of uncertain variables
(also called a pathway, a
chronicle)
a policy Pol

and even a static or dynamical
model

In what follows

scenario = pathway = chronicle
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Along a given scenario, the system is deterministic

Une intelligence qui, à un instant
donné, connâıtrait toutes les forces
dont la nature est animée, la position
respective des êtres qui la composent,
si d’ailleurs elle était assez vaste pour
soumettre ces données à l’analyse,
embrasserait dans la même formule les
mouvements des plus grands corps de
l’univers, et ceux du plus léger atome.
Rien ne serait incertain pour elle, et
l’avenir comme le passé seraient
présents à ses yeux.

Pierre-Simon Laplace,
Essai philosophique sur les probabilités
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State and control solution maps are defined inductively
along each scenario

Pick up

a scenario w(·) =
(
w(t0),w(t0 + 1), . . . ,w(T )

)
∈ Ω

a policy Pol : (t, x) ∈ T× X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

an initial state x(t0) = x0 ∈ X

1 Plug the state x(t0) into the “machine” Pol → initial decision
u(t0) = Pol(t0, x(t0))

2 Run the dynamics → second state x(t0 + 1) = Dyn(t0, x(t0), u(t0),w(t0))

3 Second decision u(t0 + 1) = Pol(t0 + 1, x(t0 + 1))

4 And so on x(t0 + 2) = Dyn(t0 + 1, x(t0 + 1), u(t0 + 1),w(t0 + 1))

5 . . .
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State and control solution maps

Let be given

a policy Pol : T× X → U

a scenario w(·) ∈ Ω

and an initial state x0 at initial time t0

State solution map

The state solution map XDyn[t0, x0, Pol,w(·)] is the unique state path
x(·) = (x(t0), x(t0 + 1), . . . , x(T )) solution of dynamic

x(t + 1) = Dyn
(
t, x(t), Pol

(
t, x(t)

)
,w(t)

)
, t = t0, . . . ,T − 1

starting from the initial condition x(t0) = x0 at time t0
and associated with policy Pol and scenario w(·)

The control solution map UDyn[t0, x0, Pol,w(·)] is the associated decision path
u(·) = (u(t0), u(t0 + 1), . . . , u(T − 1)) where u(t) = Pol

(
t, x(t)

)

Everything above extends to the hazard-decision case

Michel De Lara (École des Ponts ParisTech) IMARPE, Perú, 30 January 2014 February 5, 2014 82 / 149



Risk management, robust and stochastic viability Uncertain systems, policies and viable scenarios

Summary

A scenario is a temporal sequence of uncertainties

State feedback policies correspond to perfect observation of the state

State and control solution maps are defined inductively along each scenario

Outputs of a state-control system with uncertainty are now contingent upon
scenarios

What is off-line information on scenarios?
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A scenario is said to be viable for a given policy if
the state and control trajectories satisfy the constraints

Viable scenario under given policy

A scenario w(·) ∈ Ω is said to be viable under policy Pol : T× X → U

if the trajectories x(·) and u(·) generated by the dynamics

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)
, t = t0, . . . ,T − 1

with the policy
u(t) = Pol

(
t, x(t)

)

satisfy the state and control constraints

u(t) ∈ B
(
t, x(t)

)

︸ ︷︷ ︸

control constraints

and x(t) ∈ A(t)
︸ ︷︷ ︸

state constraints

, ∀t = t0, . . . ,T

The set of viable scenarios is denoted by ΩPol,t0,x0
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We look after policies that make
the corresponding set of viable scenarios “large”

Set of viable scenarios

ΩPol,t0,x0 := {w(·) ∈ Ω | the state constraints

XDyn[t0, x0, Pol,w(·)](t) ∈ A(t)

and the control constraints

UDyn[t0, x0, Pol,w(·)] ∈ B
(
t, x(t)

)

are satisfied for all times t = t0, . . . ,T}

The larger set ΩPol,t0,x0 of viable scenarios, the better,
because the policy Pol is able to maintain the system within constraints
for a large “number” of scenarios

But “large” in what sense? Robust? Probabilistic?
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Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)
Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Robust viability dissects how to channel the system inside
constraints whatever the scenarios

Let Ω ⊂ Ω be a subset of the set Ω of scenarios

The robust viability problem

Identify the initial states x0 ∈ X for which there exists
at least one viable robust policies Pol : T× X → U such that

the state trajectories given by the state solution map
x(t) = XDyn[t0, x0, Pol,w(·)](t) satisfy the following state constraints

x(t) ∈ A(t) for t = t0, . . . ,T

and the control constraints u(t) = Pol
(
t, x(t)

)
∈ B

(
t, x(t)

)

are satisfied for t = t0, . . . ,T − 1

for all scenarios w(·) ∈ Ω
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The robust viability kernel is the set of initial states for
which the robust viability problem can be solved

Robust viability kernel

Viab1(t0) :=







x0 ∈ X

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

there exists a policy Pol ∈ U

such that for all scenario w(·) ∈ Ω
the state constraints x(t) ∈ A(t)
and the control constraints
u(t) = Pol

(
t, x(t)

)
∈ B

(
t, x(t)

)

are satisfied for all times t = t0, . . . ,T







where the state x(t) = XDyn[t0, x0, Pol,w(·)](t) is given by the state solution map
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The robust viability kernel and viable scenarios are related

x0 ∈ Viab1(t0)
︸ ︷︷ ︸

robust viability kernel

⇐⇒







there exists a policy Pol ∈ U,

Ω ⊂ ΩPol,t0,x0
︸ ︷︷ ︸

viable scenarios
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Robust viability kernels and robust viable policies
can be defined for all times

Robust viability kernel at time t

The robust viability kernel at time t is the subset of states

Viab1(t) :=






x ∈ X

∣
∣
∣
∣
∣
∣

there exists Pol ∈ U
ad such that

for all scenario w(·) ∈ Ω
x(s) ∈ A(s) for s = t, . . . ,T







where x(s) = XDyn[t, x , Pol,w(·)](s) is given by the state solution map

The final viability kernel is the whole target set: Viab1(T ) = A(T )

Viable robust policies

U
viab

1 (t, x) :=






Pol ∈ U

ad

∣
∣
∣
∣
∣
∣

for all scenario w(·) ∈ Ω
XDyn[t, x , Pol,w(·)](s) ∈ A(s)
for s = t, . . . ,T






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The viability program aims at turning state constraints
into control constraints

A priori constraints, with state constraints







x(t0) ∈ X

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)

u(t) ∈ B
(
t, x(t)

)
control constraints

x(t) ∈ A(t) state constraints

are turned into a posteriori constraints, without state constraints
except for the initial state







x(t0) ∈ Viab(t0) initial state constraint
x(t + 1) = Dyn

(
t, x(t), u(t),w(t)

)

u(t) ∈ B
viab
(
t, x(t)

)
⊂ B

(
t, x(t)

)
control constraints

ex ante state constraints → ex post control constraints
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Product scenarios subsets embody time independence

HH

HM

HL

MH

MM

ML

LH

LM

LL

There is no time independence because
the range of values of w(t + 1) depends
on the value of w(t):
w(t) = H ⇒ w(t + 1) ∈ {M, L}
w(t) = M ⇒ w(t + 1) ∈ {M}

HH

HM

HL

MH

MM

ML

LH

LM

LL

There is time independence because
Ω = {H,M} × {M, L} ⊂ Ω
is a product set
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Risk management, robust and stochastic viability Robust viability

A priori information on the scenarios
may be set membership
The product case

Uncertain variables may be restricted to subsets, period by period

w(t) ∈ S(t)

so that some scenarios are selected and the rest are excluded

w(·) ∈ S(t0)× · · · × S(T ) ⊂ Ω = W
T+1−t0

Bounded water inflows in a dam

If only an upper bound on water inflows is known, we represent off-line
information by

0 ≤ a(t) ≤ a♯
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The robust dynamic programming equation is a
backward equation relating the robust viability kernels

Let Ω ⊂ Ω be a subset of the set Ω of scenarios

Robust dynamic programming equation

If the scenarios vary within a rectangle Ω = S(t0)× · · · × S(T )
(corresponding to independence in the stochastic setting),
the robust viability kernels satisfy the following backward induction,
where t runs from T − 1 down to t0

Viab1(T ) = A(T )

Viab1(t) =






x ∈ A(t)

∣
∣
∣
∣
∣
∣

there exists an admissible control u ∈ B(t, x)
such that for all scenarios w ∈ S(t)
one has that Dyn(t, x , u,w) ∈ Viab1(t + 1)






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The robust dynamic programming equation yields
the robust viable controls

Robust viable controls

For any time t and state x , robust viable controls are

B
viab

1 (t, x) :=

{u ∈ B(t, x) | ∀w ∈ S(t) , Dyn(t, x , u,w) ∈ Viab1(t + 1)}

Proposition

Viable robust policies are those Pol ∈ U such that

Pol(t, x) ∈ B
viab

1 (t, x) , ∀t ∈ T , ∀x ∈ Viab1(t)
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The viability program is achieved

Robust viable controls exist at time t if and only if
the state x belongs to the robust viability kernel at time t:

B
viab

1 (t, x) 6= ∅ ⇐⇒ x ∈ Viab1(t)

A solution to the viability problem is

an initial state x0
and a policy Pol

such that

x0 ∈ Viab1(t0)

Pol(t, x) ∈ B
viab
1 (t, x) , ∀t ∈ T , ∀x ∈ Viab1(t)
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Outline of the presentation
1 Natural resources management issues and viability

Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)

Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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We consider two species targeted by two fleets
in a biomass ecosystem dynamics with uncertainties

We embody uncertainties, stocks and fishing interactions
in a two-dimensional dynamical model

future biomass
︷ ︸︸ ︷

A(t + 1) = A(t)

growth factor
︷ ︸︸ ︷

RA

(
A(t),H(t),wA(t)

︸ ︷︷ ︸

uncer

) (
1− EA(t)

︸ ︷︷ ︸

effort

)

H(t + 1) = H(t)RH

(
A(t),H(t),

tainty
︷ ︸︸ ︷

wH(t)
)(
1−

control
︷ ︸︸ ︷

EH(t)
)

Uncertainties wA(t) and wH(t) are discrepancies

State vector (A(t),H(t)) represents biomasses

Control vector (EA(t),EH(t)) is fishing effort of each species

Catches are EA(t)RA

(
A(t),H(t),wA(t)

)
A(t) and

EH(t)RH

(
A(t),H(t),wH(t)

)
H(t)
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Our objectives are twofold: conservation and production

The robust viability kernel is the set of initial species biomasses
(
A(t0),H(t0)

)

from which at least one appropriate policy
produces biomasses and effort trajectories
such that the following goals are satisfied

for all the scenarios
(
wA(t),wH(t)

)
, t = t0, t0 + 1, . . . ,T

preservation (minimal biomass thresholds)

A stocks: A(t) ≥ S♭
A

H stocks: H(t) ≥ S♭
H

economic/social requirements (minimal catch thresholds)

A catches: EA(t)RA

(
A(t),H(t),wA(t)

)
A(t) ≥ C ♭

A

H catches: EH(t)RH

(
A(t),H(t),wH(t)

)
H(t) ≥ C ♭

H
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We taylor a Lotka-Volterra decision model

to hake-anchovy Peruvian fisheries scarce data,
and qualify the discrepancies as uncertainties
Hake-anchovy Peruvian fisheries data between 1971 and 1981, in thousands of tonnes (103 tons)

anchoveta stocks= [11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407]

merluza stocks= [347 437 455 414 538 735 636 738 408 312 148]

anchoveta captures= [9184 3493 1313 3053 2673 3211 626 464 1000 223]

merluza captures= [26 13 133 109 85 93 107 303 93 159 69]

(a) Anchovy (b) Hake

Figure: Comparison of observed and simulated biomasses of anchovy and hake using a
Lotka-Volterra model with density-dependence in the prey. Model parameters are
R = 2.25, L = 0.945, κ = 67 113 × 103 t (K = 37 285 × 103 t), α = 1.22× 10−6 t−1,
β = 4.845× 10−8 t−1.
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Here is the Lotka-Volterra decision model with uncertainty

A is the prey biomass (anchovy)

H is the predator biomass (hake)

The discrete-time Lotka-Volterra system with uncertainty is

A(t + 1) = A(t)

RA

(
A(t),H(t),wA(t)

)

︷ ︸︸ ︷

(
wA(t) + R −

R

κ
A(t)− αH(t)

) (
1− EA(t)

)

H(t + 1) = H(t)
(
wH(t) + L+ βA(t)

)

︸ ︷︷ ︸

RH

(
A(t),H(t),wH (t)

)

(
1− EH(t)

)
,
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We make a tough assumption on the set of scenarios

An uncertainty scenario is a time sequence of uncertainty couples

(
wA(·),wH(·)

)
=

((
wA(t0),wH(t0)

)
, . . . ,

(
wA(T − 1),wH(T − 1)

))

We assume that, at each time t,
the uncertainties (wA(t),wH(t)) can take any value in a two-dimensional set

(wA(t),wH(t)) ∈ S(t) ⊂ R
2

Therefore, from one time t to the next t + 1, uncertainties can be drastically
different, since (wA(t),wH(t)) is not related to (wA(t + 1),wH(t + 1))

Such an independence assumption is materialized by the property that
a scenario can take any value in a product set

(
wA(·),wH(·)

)
∈

T−1∏

t=t0

S(t)
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In practice, we consider stationary uncertainty sets
forged from empirical data

In practice, we consider stationary uncertainty sets S(t) = S

We define wA(t) and wH(t) such that







A(t + 1) = A(t)
(
wA(t) + R − R

κ
A(t)− αH(t)

)(
1− vA(t)

)

H(t + 1) = H(t)
(
wH(t) + L+ βA(t)

)(
1− vH(t)

)

where (A(t),H(t))t=t0,...,T and (vA(t), vH(t))t=t0,...,T−1

denote the empirical biomass and effort trajectories

Therefore, our tough assumption on the set of scenarios is:
any of the possible uncertainty of any year
can materialize any other year
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Empirical distribution of the uncertainties
(wA(t),wH(t))t=t0,...,T−1
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We first consider the empirical uncertainty set
and a refinement

The empirical uncertainties set is

S
E = {(wA(t),wH(t))|t = t0, . . . ,T − 1}

︸ ︷︷ ︸

empirical discrepancies

∪ {(0, 0)}
︸ ︷︷ ︸

deterministic case

The refined empirical uncertainties set SER

is made of 900 uncertainty couples delineated by a 30× 30 grid over the
surface [wmin

A ,wmax
A ]× [wmin

H ,wmax
H ], including all the uncertainty couples

in S
E

Since {(0, 0)} ⊂ S
E ⊂ S

ER ,
the corresponding robust and deterministic viability kernels satisfy

Viab
ER
1 (t0) ⊂ Viab

E
1 (t0) ⊂ Viab(t0)

Michel De Lara (École des Ponts ParisTech) IMARPE, Perú, 30 January 2014 February 5, 2014 105 / 149



Risk management, robust and stochastic viability Robust viability kernel (anchovy–hake application)

Figure: Uncertainty sets SE (diamonds) and S
ER (grid)
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Risk management, robust and stochastic viability Robust viability kernel (anchovy–hake application)

The robust viability kernels are noticeably smaller
than the deterministic one
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Now, we focus on worst-case uncertainties

Numerical simulations led us to consider the three following uncertainty sets

S
L = {(

wmin
A

2
,
wmin

H

2
), (

wmin
A

2
,
wmax

H

2
)}

S
M = {(wmin

A ,w
min
H ), (wmin

A ,w
max
H )}

S
H = 1.1 ∗ SM

Since {(0, 0)} ⊂ S
L ⊂ S

M ⊂ S
H , the corresponding robust and deterministic

viability kernels satisfy

Viab
H
1 (t0) ⊂ Viab

M
1 (t0) ⊂ Viab

L
1(t0) ⊂ Viab(t0)
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Figure: Uncertainty sets SL (crosses), SM (diamonds) and S
H (triangles)
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Risk management, robust and stochastic viability Robust viability kernel (anchovy–hake application)

Figure: Robust viability kernels ViabL
1(t0), Viab

M
1 (t0) and ViabH

1 (t0) and the
deterministic viability kernel
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Risk management, robust and stochastic viability Stochastic viability

Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)

Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Risk management, robust and stochastic viability Stochastic viability

Maximizing the probability of success may be an objective

How to gamble if you must,
L.E. Dubbins and L.J. Savage,
1965

Imagine yourself at a casino with
$1,000. For some reason, you
desperately need $10,000 by morning;
anything less is worth nothing for your
purpose.

The only thing possible is to gamble
away your last cent, if need be, in an
attempt to reach the target sum of
$10,000.

The question is how to play, not whether.
What ought you do? How should you play?

Diversify, by playing 1 $ at a time?
Play boldly and concentrate, by playing
10,000 $ only one time?

What is your decision criterion?
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Risk management, robust and stochastic viability Stochastic viability

The set Ω of scenarios can be equipped
with a probability P (though this is a delicate issue!)

In practice, one often assumes that the components
(
w(t0), . . . ,w(T − 1)

)

form an independent and identically distributed sequence of random variables,
or form a Markov chain, or a time series
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Risk management, robust and stochastic viability Stochastic viability

The viability probability is the probability
of satisfying constraints under a policy

Viability probability

The viability probability associated with
the initial time t0, the initial state x0 and the policy Pol

is the probability P [ΩPol,t0,x0 ] of the set ΩPol,t0,x0 of viable scenarios

P [ΩPol,t0,x0 ] = Proba







scenarios along which
the state x(·) and control u(·) trajectories
generated by dynamics Dyn and policy Pol

starting from initial state x0 at initial time t0
satisfy the constraints
from initial time t0 to horizon T






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Risk management, robust and stochastic viability Stochastic viability

The maximal viability probability is the upper bound
for the probability of satisfying constraints

Maximal viability probability and optimal viable policy

The maximal viability probability is

max
Pol

P [ΩPol,t0,x0 ]

An optimal viable policy Pol⋆ satisfies

P [ΩPol⋆,t0,x0 ] ≥ P [ΩPol,t0,x0 ]

In a sense, any optimal viable policy makes the set of viable scenarios
the “largest” possible
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Risk management, robust and stochastic viability Stochastic viability

Let us introduce the stochastic viability Bellman function

Suppose that the primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 2),w(T − 1)

)

are independent under the probability P

Bellman function / stochastic viability value function

Define the probability-to-go as

V (t, x) :=

max
Pol

P

(

w(·) ∈ Ω |

control constraints
︷ ︸︸ ︷

Pol
(
s, x(s)

)
∈ B

(
s, x(s)

)
and

state constraints
︷ ︸︸ ︷

x(s) ∈ A(s) for s ≥ t
)

where x(s + 1) = Dyn
(
s, x(s), Pol

(
s, x(s)

)
,w(s)

)
and x(t) = x

The function V (t, x) is called stochastic viability value function
or Bellman function

The original problem is V (t0, x0)
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Risk management, robust and stochastic viability Stochastic viability

The dynamic programming equation
is a backward equation satisfied by
the stochastic viability value function

Proposition

If the primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 2),w(T − 1)

)
are

independent under the probability P, the stochastic viability value function V (t, x)
satisfies the following backward induction, where t runs from T − 1 down to t0

V (T , x) = 1A(T )(x)

V (t, x) = 1A(t)(x) max
u∈B(t,x)

Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))]
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Risk management, robust and stochastic viability Stochastic viability

The stochastic viable dynamic programming equation
yields stochastic viable policies

For any time t and state x , let us assume that the set

B
viab(t, x) := argmax

u∈B(t,x)

(

1A(t)(x)Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))])

of viable controls is not empty

Proposition

Then, any (measurable) policy Pol such that Pol⋆(t, x) ∈ B
viab(t, x) is an optimal

viable policy which achieves the maximal viability probability

V (t0, x0) = max
Pol

P [ΩPol,t0,x0 ]
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Risk management, robust and stochastic viability Bycatches in a nephrops-hake fishery

Outline of the presentation
1 Natural resources management issues and viability

Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)

Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Risk management, robust and stochastic viability Bycatches in a nephrops-hake fishery

We set up a dynamical age-class model
of hake and nephrops in technical interaction

Nh
1(t + 1) = wh(t) uncertain hake recruitment

Nn
1(t + 1) = wn(t) uncertain nephrops recruitment

Nh
a(t + 1) = Nh

a−1(t)




1−Mh

a−1 −

hake bycatch
︷ ︸︸ ︷

u(t)F nh
a−1 −F hh

a−1






Nn
a(t + 1) = Nn

a−1(t)




1−Mn

a−1 −

nephrops fishing mortality
︷ ︸︸ ︷

u(t)F nn
a−1






Nh
A(t + 1) = Nh

A−1(t)
(
1−Mh

A−1 − u(t)F nh
A−1 − F hh

A−1

)

+Nh
A(t)

(
1−Mh

A − u(t)F nh
A − F hh

A

)

Nn
A(t + 1) = Nn

A−1(t)
(
1−Mn

A−1 − u(t)F nn
A−1

)

+Nn
A(t)

(
1−Mn

A − u(t)F nn
A

)
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Risk management, robust and stochastic viability Bycatches in a nephrops-hake fishery

The relative effort of the nephrops fleet
has to be controlled to ensure both
nephrops fleet profitability and hake preservation

Economic objective: nephrops fishery is economically viable if the gross
return is greater than a threshold

P
(
Nn(t), u(t)

)

︸ ︷︷ ︸

payoff

≥ P♭

Ecological objective: fishery is ecologically viable if its impact by bycatch on
the hake biology is compatible with
sufficient recruitment of mature hakes

Nh
4 (t)

︸ ︷︷ ︸

fourth age−class

≥ (Nh
4 )

♭
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Risk management, robust and stochastic viability Bycatches in a nephrops-hake fishery

An optimal viable policy can be calculated
thanks to monotonicity properties

Due to monotonicity properties

of the dynamics, increasing in the state variable
and decreasing in the control
of the constraints, increasing in the state variable
and decreasing in the control

we can prove that

Pol⋆(t,N) = inf{u ∈ [0, u♯] | P(Nn, u) ≥ P♭}

is an optimal viable policy
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Risk management, robust and stochastic viability Bycatches in a nephrops-hake fishery

We draw the maximal viability probability

as a function of the guaranteed thresholds P ♭ and (Nh
4 )

♭

Michel De Lara (École des Ponts ParisTech) IMARPE, Perú, 30 January 2014 February 5, 2014 123 / 149



Risk management, robust and stochastic viability Bycatches in a nephrops-hake fishery

We draw the iso-values for the maximal viability probability

as a function of guaranteed thresholds P ♭ and (Nh
4 )

♭
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

Outline of the presentation
1 Natural resources management issues and viability

Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)

Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

Tourism issues impose constraints upon traditional
economic management of a hydro-electric dam

Maximizing the revenue
from turbinated water

under a tourism constraint
of having enough water
in July and August
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

The red stock trajectories fail to meet
the tourism constraint in July and August
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

We consider a single dam nonlinear dynamical model
in the decision-hazard setting

We can model the dynamics of the water volume in a dam by

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

}

S(t) volume (stock) of water at the beginning of period [t, t + 1[

a(t) inflow water volume (rain, etc.) during [t, t + 1[

q(t) turbined outflow volume during [t, t + 1[

decided at the beginning of period [t, t + 1[
chosen such that 0 ≤ q(t) ≤ min{S(t), q♯}
supposed to depend on the stock S(t) but not on the inflow water a(t)

the setting is called decision-hazard:
a(t) is not available at the beginning of period [t, t + 1[
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

In the risk-neutral economic approach,
an optimal management maximizes the expected payoff

Suppose that

at the horizon, the final volume S(T ) has a value Final
(
S(T )

)
,

the “final value of water”
turbined water q(t) is sold at price p(t),
related to the price at which energy can be sold at time t

a probability P is given on the set Ω = R
T−t0 × R

T−t0

of water inflows scenarios
(
a(t0), . . . , a(T − 1)

)

and prices scenarios
(
p(t0), . . . , p(T − 1)

)

The traditional (risk-neutral) economic problem is to maximize the
intertemporal payoff (without discounting if the horizon is short)

maxE






T−1∑

t=t0






price
︷︸︸︷

p(t)

turbined
︷︸︸︷

q(t) −ǫq(t)2
︸ ︷︷ ︸

turbined costs




+

final volume utility
︷ ︸︸ ︷

Final
(
S(T )

)





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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

We now have a stochastic optimization problem,
where the tourism constraint still needs
to be dressed in formal clothes

Traditional cost minimization/payoff maximization

maxE






T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t)− ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

Final
(
S(T )

)






Tourism constraint

volume S(t) ≥ S♭ , ∀t ∈ { July, August }

In what sense should we consider this inequality which involves the
random variables S(t) for t ∈ { July, August }?
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

Robust / almost sure / probability constraint

Robust constraints: for all the scenarios in a subset Ω ⊂ Ω

S(t) ≥ S♭ , ∀t ∈ { July, August }

Almost sure constraints

Probability







water inflow scenarios along which
the volumes S(t) are above the
threshold S♭ for periods t in summer






= 1

Probability constraints, with “confidence” level p ∈ [0, 1]

Probability







water inflow scenarios along which
the volumes S(t) are above the
threshold S♭ for periods t in summer






≥ p

and also by penalization, or in the mean, etc.
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

Our problem may be clothed as a stochastic optimization
problem under a probability constraint

The traditional economic problem is maxE [P(T )]
where the payoff/utility criterion is

P(T ) =

T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t)− ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

Final
(
S(T )

)

and a failure tolerance is accepted

Probability







water inflow scenarios along which
the volumes S(t) ≥ S♭

for periods t in July and August






≥ 90%

Details concerning the theoretical and numerical resolution are available on
demand ;-)
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

Details concerning the theoretical and numerical resolution
are available on demand ;-)

π0 = 1 and πt+1 ={

1{xt+1≥xref} × πt if t ∈ T

πt else

P [xτ ≥ xref , ∀τ ∈ T ]
= E

[
1{xτ≥xref , ∀τ∈T }

]

= E
[∏

τ∈T 1{xτ≥xref}

]

= E [πT ]
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

90% of the stock trajectories meet the tourism constraint
in July and August
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

Our resolution approach brings a sensible improvement
compared to standard procedures
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

However, though the expected payoff is optimal,
the payoff effectively realized can be far from it
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

We propose a stochastic viability formulation
to treat symmetrically and to guarantee
both environmental and economic objectives

Given two thresholds to be guaranteed

a volume S♭ (measured in cubic hectometers hm3)
a payoff P♭ (measured in numeraire $)

we look after policies achieving the maximal viability probability

Π(S♭,P♭) = max Proba







water inflow scenarios along which
the volumes S(t) ≥ S♭

for all time t ∈ { July, August }
and the final payoff P(T ) ≥ P♭







Π(S♭,P♭) is the maximal probability
to guarantee to be above the thresholds S♭ and P♭
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

The stochastic viability formulation
requires to redefine state and dynamics

The state is the couple x(t) =
(
S(t),P(t)

)
volume/payoff

The control u(t) = q(t) is the turbined water

The dynamics is

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

} ,

t = t0, . . . ,T − 1

P(t + 1)
︸ ︷︷ ︸

future payoff

= P(t)
︸︷︷︸

payoff

+ p(t)q(t)− ǫq(t)2
︸ ︷︷ ︸

turbined water payoff

, t = t0, . . . ,T − 2

P(T ) = P(T − 1) + Final
(
S(T )

)

︸ ︷︷ ︸

final volume utility
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

In the stochastic viability formulation,
objectives are formulated as state constraints

The control constraints are

u(t) ∈ B
(
t, x(t)

)
⇐⇒ 0 ≤ q(t) ≤ S(t)

The state constraints are

x(t) ∈ A(t) ⇐⇒

{
S(t) ≥ S♭ , ∀t ∈ { July, August }

P(T ) ≥ P♭
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

For each couple of thresholds on payoff and stock,
we write a dynamic programming equation

Abstract version

V (T , x) = 1A(T )(x)

V (t, x) = 1A(t)(x) max
u∈B(t,x)

Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))]

Specific version

V (T ,S ,P) = 1{P≥P♭}

V (T − 1, S ,P) = max
0≤q≤S

Ea(t)

[

V
(

t + 1, S − q + a(t),P + Final
(

S
)

)]

V (t,S ,P) = max
0≤q≤S

Ea(t)

[

V
(

t + 1, S − q + a(t),P + pq − ǫq2
)]

, t 6∈ { July, August }

V (t,S ,P) = 1{S≥S♭} max
0≤q≤S

Ea(t)

[

V
(

t + 1, S − q + a(t),P + pq − ǫq2
)]

,

t ∈ { July, August }
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

We plot the maximal viability probability Π(S ♭
,P ♭)

as a function of guaranteed thresholds S ♭ and P ♭

For example, the probability
to guarantee

a final payoff above
P♭ = 1 Meuros

and a volume above
S♭ = 40 hm3 in July
and August

is about 90%
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

We plot iso-values for the maximal viability probability

as a function of guaranteed thresholds S ♭ and P ♭
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Risk management, robust and stochastic viability Dam management under environmental/tourism constraint

The probability distribution of the random gain
reflects the viability objectives
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Contribution to quantitative sustainable management

Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management, robust and stochastic viability
Uncertain systems, policies and viable scenarios
Robust viability
Robust viability kernel (anchovy–hake application)
Stochastic viability
Bycatches in a nephrops-hake fishery
Dam management under environmental/tourism constraint

3 Contribution to quantitative sustainable management
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Contribution to quantitative sustainable management

In the resource managers literature, the distinction
between objectives and decision rules is often blurred

In practice, we observe that resource
managers generally

design decision rules

which directly incorporate objectives

with confusion between objectives
and decision rules
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Contribution to quantitative sustainable management

Mismatch can be avoided by highlighting the distinction
between objectives and decision rules

Control theory makes a clear distinction
between objectives and decision rules

objectives ⇒ adapted decision rules

More specifically, viability theory puts
emphasis on consistency between dynamics
and objectives

objectives + dynamics ⇒ decision rules
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Contribution to quantitative sustainable management

At the end of the day, where do we stand?

Conceptual framework for
quantitative sustainable
management

Managing ecological and economic
conflicting objectives

Ecosystem viable yields as a
contribution to the “ecosystem
approach”

Displaying tradeoffs between
ecology and economy sustainability
thresholds and risk
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Contribution to quantitative sustainable management

“Nul n’est mieux servi que par soi-même”
“Self-promotion, nobody will do it for you” ;-)

M. De Lara, L. Doyen, Sustainable Management of Natural Resources.
Mathematical Models and Methods, Springer, 2008.
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Contribution to quantitative sustainable management

THANK YOU!
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