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Suppose you want to decarbonize
an economic sector, a firm, an industrial process

With 100 visions of the next decades
(about markets, technologies. . .),
you can build 100 optimal decarbonization paths

Each path is perfectly adapted to one vision
Yet, what happens if the future is different from the vision?

We propose a method to design
a single robust decarbonization policy
that takes into account those 100 scenarios altogether
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Plan versus policy

Plan

The decisions are function of time

Xto

| S N

instant ty instant t; instant t, instant t3

Xty Xty Xty

Synonyms
programme, planning, roadmap

Policy

The decisions are function
of time and information

instant to instant t; instant t, instant t;

Synonyms
strategy, adaptative plan
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Application case: decarbonization of a taxi fleet
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Decarbonization of a taxi fleet
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A taxi company aims at achieving
CO, emission reductions at least cost

Emission reductions are assessed
with respect to a reference trajectory
(business as usual)

In the reference trajectory,
the fleet is made up of 100% of diesel-vehicles

Set of decarbonization actions
A = {gasoline, hybrid-gasoline, hybrid-diesel}

What actions should be implemented?
In which quantities?

8/59



Modeling and data

< Decarbonization problems
require
» unitary emission reductions
factors
> unitary costs factors

¢ Their assessment
mobilize experts

s» The data are uncertain

» depends on expert
> vary between bounds

Nom Unite Signification
Caractéristiques d'un véhicule v
L/km Quantité de carburant ou électricité consommée
CONSO(v) |\ kWb /km | par un véhicule sur un kilometre
POIDS(v) t Poids du véhicule sans batterie
STOCK(v) KWh Qpagte de stockage d'une batterie d’un véhicule
électrique ou hybride
COUTu(v) < cTouc de Tocation d'un véhicule sur une période
A(v) km Durée de vie du véhicule
Facteurs d'émission
, Emissions de CO; liées a la consommation
FEetec kgCOzeq/kWh d'électricité
Emissions de CO; liées 3 la consommation
/
FEgazole kgC02ea/L | 4o gazole
e \gCO2eq/L | Emisions de CO; Tices 3 Ta consommation
d'essence
Emissions de CO; liées a la fabrication
/
FEabrication kgCO2eq/t | 1 " i ile
Emissions de CO; liées a la fabrication des
Flsateerie | kgCO2eq/KWh | 1+ ies des vehicules électriques ou hybrides
Données lies a la conjecture économique
Pprent €/ baril Prix du baril de Brent
Pco, €/kgCO2eq | Valeur de la taxe carbone
Peec €/kWh Prix de I'électricite
Données liées a I'activité de I'entreprise
D ‘ km/an

Distance annuelle moyenne parcourue
par un véhicule
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The classic anticipative approach for decarbonization
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A linear problem in an anticipative framework

% Admissible decisions are quantities of actions of decarbonization

Z X; < number of Vehicles}
acA

(Xa)aeA ek = {(Xa)aeA S Rf

% unitary costs (¢z)aca
% unitary emission reductions (e,),c4

% emission reductions target e’

total cost
—
min Z CaXa
xeX
acA
subject to Z €,X; > et
acA
——

emission reductions
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Solutions (extreme) of the anticipative approach

olution of the
anticipative pro

Xhg

Figure: Variables domain (in white) and solution of the anticipative approach
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What happens if we change the data?

1

Xhg

Figure: Variables domain (in white) and two solutions (extreme) of the
anticipative approach
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The more visions, the more extreme solutions

s
® solutions of the anticipative problem
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Figure: Variables domain (in white) and solutions (extreme) of the anticipative
approach
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Qutline of the presentation

The classic anticipative approach for decarbonization

Discussion
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Discussion

» We have presented the structure
of the optimal decarbonization problem

» The formulation is anticipative
as it involves single values
for the future costs and unitary emissions

» Yet, emissions and costs depend on future uncertainties
(mileage, fuel prices. ..)

» We now turn to a stochastic nonanticipative formulation
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Data for the stochastic nonanticipative approach

The stochastic nonanticipative approach requires
> a finite set S of scenarios (future uncertainties)
> a family {(7r5,p57 (¢3)acas (eg)aeA), s€e 8} of possible data
associated with the scenarios where

- 7° is the probability of the scenario s
- unitary costs and emissions now depend on the scenario
- p° is the carbon compensation price (in €/tCOzeq)

Emissions (kgCOs)

Figure: Histogram of unitary costs Figure: Histogram of unitary
of actions emission reductions of actions
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Linear formulation
of the stochastic nonanticipative approach

We set the stochastic optimization problem,
with a new recourse decision variable ¢°,
representing carbon compensation after uncertainty is resolved

Mean cost on scenarios

min 7r5( cixa + q°p° )
2. (2

X, (g° RS
xXe ,(q )SESE 2cA

compensation cost

s.t. Z exa + q° >e ., VYseS8
acA

compensation

g >0, VseS
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Equivalent convex formulation
of the stochastic nonanticipative approach

cost of actions mean compensation cost
——
min E CaX E s p*le? — E esx
ex 2Xa T+ P [ a a}JF
acA seS acA

convex term

» We minimize a convex function of x so that,
in contrast with the solutions of the anticipative approach,
the solutions of the stochastic approach can be inner solutions
(mixed solutions)

» The convex term can be interpreted as an economic penalty
when the decision-maker falls short of the emission reductions target
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Solution (inner) of the stochastic approach

5
® solutions of the anticipative problem
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* stochastic problem
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Figure: Solution of the stochastic approach inside the optimization domain
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Now for a numerical application

» We have set up a stochastic nonanticipative approach
to make solutions more robust to uncertainty

» We are going to perform a numerical application

» We will observe that solutions are not systematically inner. ..
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Qutline of the presentation

The stochastic nonanticipative approach (risk neutral)

Numerical application to the taxi fleet decarbonization problem

24 /59



Anticipative versus nonanticipative solutions

» The solution of the stochastic problem
has been fitted on 10,000 scenarios,
for a carbon price of 750€/tCO,eq (discussed later)

» The solution of the anticipative problem
has been fitted on the mean scenario (over the 10,000 scenarios)

Problem Gasoline | Hybrid-Diesel | Hybrid-Gasoline
Anticipative 0 31 0
Stochastic 0 34 0

» We do not observe mixed solutions &
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Assessment of solutions

» We have generated 1,000,000 test scenarios for emissions and costs

» Solutions of the anticipative and stochastic approaches
have been assessed on each scenario

» As in the stochastic nonanticipative approach,
the solution of the anticipative problem is penalized
when it falls short of the emission reductions target
(at the same carbon compensation price)

» Costs and emission reductions of the solutions
are represented on histograms
(x-axis=value of the parameter, y-axis=frequency of the value)
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Nonanticipative approach makes for
thinner tail cost distributions

Solution du probléme anticipatif

Colt moyen

0000
Solution du probléme stochastique

100000

Colt moyen

su000
Co(t (euros)

Figure: Histograms of the costs of the solutions of the anticipative and
stochatic nonanticipative problems (the more to the left, the better)
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Nonanticipative approach with high compensation prices
leads to more emission reductions

Solution du pi é anticipatif

---- Cible d'émissions abattues e*

Solution du probléme stochastique
j—q T
‘ rrrrr Cible d'émissions abattues e*

Emissions abattues (kgCO2)

Figure: Histograms of the emission reductions in the solutions
of the anticipative and stochatic nonanticipative problems
(the more to the right, the better)
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With the anticipative solution,
compensation costs are higher

60000 4 BN Colt des actions de décarbonation
W Colt de la compensation
50000

40000

30000 +

Codt (euros)

20000 4

10000 -

0
Solution du probléme Solution du probléme
anticipatif stochastique

Figure: Part of carbon compensation in each solution
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Qutline of the presentation

The stochastic nonanticipative approach (risk neutral)

Sensitivity of solutions to the carbon compensation price
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Discussion about the compensation price of carbon

)r(nei)ré Z Caxs + Z?‘('Sps [ — Z e;xaLr

acA seS acA

» What is the impact of the carbon compensation price?

» Even if carbon compensation price p® should be uncertain
(depends on the scenario s),

we have fixed its value to p to facilitate interpretations
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Influence of the compensation price
on the solution of the stochastic nonanticipative problem

i)ﬂi:(zz?fgg:teﬁ)n Gasoline | Hybrid-diesel | Hybrid-gasoline
44.6 (carbon tax) 0 0 0
100 0 0 0
200 0 0 0
250 (SVC2030) 0 25 0
350 0 28 0
500 (SVC2040) 0 31 0
775 (SVC2050) 0 34 0
1,000 0 36 0

Table: Solution of the stochastic problem according to the carbon
compensation price
(SVC2030 means "shadow value of carbon in 2030 in France")
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Qutline of the presentation

The stochastic nonanticipative approach (risk neutral)

Discussion
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Discussion

¥,
"0

The stochastic nonanticipative optimization framework

» highlights the possible gap between targeted and observed emissions
» introduces recourse variables penalizing this gap

K7
"0

High carbon compensation value
calls for more decarbonization commitment

We obtain a single solution for 10,000 scenarios ®)
yet we do not observe mixed solutions ®

0,
0’0

0,
0‘0

We now turn to a formulation with risk
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Qutline of the presentation
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Qutline of the presentation
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Motivation for the risk-averse approach

% In the (risk-neutral) stochastic nonanticipative approach,
high costs are balanced by low costs in the mean cost

< What happens if we put more weight on high costs?
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Value at risk = quantile

Once chosen the risk level A € [0,1] (probability), we define

VaR, (X) = inf {x € R, P(X>x) < A}

rise of A
“—
Ll
1
Confort zone : Risky zone
(probability 1 — X) 1 (probability \)
1
1
1
1
1
/\
VaR, (X) X

Figure: Illustration of value at risk, risky zone and confort zone
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Tail value at risk = expectation above value at risk

TVaR, (X) = E [X|X > VaR, (X)] (> VaR, (X))

1
1
Confort zone : Risky zone
(probability 1 — X) 1 (probability \)
1
1
1 1
i 1
1
1 l
1
VaRj (X) TVaRjy (X) X

Figure: lllustration of tail value at risk
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Qutline of the presentation

The stochastic nonanticipative approach with risk

Formulation of the risk-averse optimization problem
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The risk-averse problem and its parameters

min (1 —6) E[COSTS] + 6 TVaR, (COSTS)

» ) is a probability defining the size of the risky zone

Worst cost Stochastic problem
minimization (risk-neutral)
I ]
I 1
A—=0 A=1

» 0 is a coefficient of weight on the risk measure

Stochastic problem Totally risk-averse
(risk-neutral) problem
I |
0=0 =1
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Linear formulation of the risk-averse problem

E[[X - ul4]
A

Hence the linear formulation of the risk-averse problem

min (1—9)(ZEaXa+Zﬂ'SqSPS) +9(%Z¢rsv5+u)

TVaR,, (X):inf{ +u, ue R}

s.t. Zejxa+q526#, Vse S
acA
VSEchanrqsps—u, Vse S
acA
vi>0, Vse S
qg° >0, Vs e S
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Intermediate solutions between risk-neutral problem
and minimization of the worst case

Solution du probléme stochastique (ou risque-neutre)

5 ) =
Xng

Figure: Evolution of the solutions of the risk-averse problem for § = 1
when X varies between 1 (red point on the graph, risk-neutral)
and 0 (other side of the path on the graph, worst case scenario)

» Reducing the risky zone (X ) calls for more decarbonization actions
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Intermediate solutions between risk-neutral
and totally risk-averse problems

® Solution du probléme stochastique (ou risque-neutre)

5p
jop \

Xhe

5 ) =
Xng

Figure: Evolution of the solutions of the risk-averse problem for A = 0.05
when 6 varies between 0 (red point on the graph, risk-neutral)
and 1 (other side of the path on the graph, totally risk averse)

» Increasing risk weight (6 ) calls for more decarbonization actions
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Qutline of the presentation

The stochastic nonanticipative approach with risk

Numerical application to the taxi fleet decarbonization problem
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Comparison of the solutions of the three methods

Problem Gasoline | Hybrid-Diesel | Hybrid-Gasoline
Anticipative 0 31 0
Stochastic
(risk-neutral) 0 34 0
Risk-averse
(A= 0.05, 6 = 0.8) 0 25 14

Table: Solutions of the three approaches for a carbon compensation price of
750€/TCO2eq

> The risk-averse approach yields mixed solutions ©
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Comparison of costs histograms

Solution du probléme anticipatif

- Value at Risk associée a A

Solution du probleme

Solution du probléme risque-averse (A = 0.05, 6=0.8)

Colt moyen
Value at Risk associée a A

Colt (euros)

Figure: Cost histograms induced by the solutions of the three approaches

(the more to the left, the better)

Codit moyen
Value at Risk associée a A
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Comparison of emissions histograms

Solution du probléme anticipatif

Cible d'émissions abattues e*

Solution du probleme

Solution du probléme risque-averse (A = 0.05, 6=0.8)

Cible d'émissions abattues e*

Emissions Abattues (kgCO2)

Figure: Emissions histograms induced by the solutions of the three approaches

(the more to the right, the better)

Cible d'émissions abattues e*

1PN G4
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With the risk-averse approach,
compensation costs are even lower

70000 A

BN Colt des actions de décarbonation
mm Co(t de la compensation

60000 -

50000 -

w

o g

g 3
o o
> S

Colt (euros)

20000 -

10000 -

04
Solution du probléme Solution du probléme Solution du probléme
anticipatif stochastique risque-averse (A =0.05, 8 =0.8)

Figure: Part of carbon compensation in each solution
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Qutline of the presentation

The stochastic nonanticipative approach with risk

Sensitivity of the solution to risk parameters
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Mixed solutions appear as risk aversion increases
(A —>0and § — 1)

risk-neutral

totally
risk-averse

risk-neutral worst case
A=1 A=05 A=0.2 A=0.01
E HG HE|E HG HE|E HG HE|E HG HE
0 0 34 0 0 34 0 0 34 0 0 34 0
020 34 0 0 35 0 0 35 0 0 34 0
040 34 0 0 35 0 0 37 0 0 35 0
06 |0 34 0 0 35 0 0 38 0 0 25 11
080 34 0 0 36 0 0 30 8 0 23 16
1 0 34 0 0 36 0 0 26 12 10 23 17

Table: Solutions of the risk-averse problem for several values 6 and X and a
carbon compensation price of 750€/tCOzeq

51/59



The tail of the cost distribution becomes thiner
as one gets more risk-averse

totally
risk-neutral risk-averse

. 8 P B R
.t B EFE

toward the
minimization
of the
worts cost

.t P EEE
IEEERE)

PEEEEE
IEEEEE

Figure: Histograms of the costs of solutions of the risk-averse problem for
different values of A and 6
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The more risk averse, the less compensation

totally
risk-neutral risk-averse

A=07,6=1

EEEEERE]

[EEEREE]

EEEEEEE]
EEEEREE]

toward the - — - - -
minimization - . - -
of the - - - -
worts cost - - - -

l i

Figure: Histograms of the emission reduction obtained without compensation
of solutions of the risk-averse problem for diferent values of X and 6
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Qutline of the presentation

The stochastic nonanticipative approach with risk

Discussion
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Discussion

% Including risk-aversion into the stochastic approach
makes for cost distributions with thiner right tails

< High risk aversion encourages mixed solutions

% Risk-averse formulations require a trade-off
between mean cost and thin-tail distribution
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Qutline of the presentation

Conclusion and perspectives
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Conclusion

% We have formulated optimal decarbonization problems,
in which emissions and costs are observed after the decisions
and are subject to future uncertainties

% The stochastic framework
> produces a single solution that takes into account
a range of plausible futures altogether
> enables the anticipation and the penalization
of the gap between observed and targeted emission reductions

% In our numerical experiments, we have observed that

> extreme solutions exist even in the stochastic case
» as the carbon compensation price increases, more actions are taken
» as risk-aversion increases, mixed solutions are favoured

and tails of cost distributions get thiner
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Perspectives

This project would benefit from
% applications to other case studies

% an in-depth economic work about the
meaning and the value of the
carbon compensation cost

% the development of multistage approaches,
allowing decisions at several timesteps

58 /59



Thanks for your attention!
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Présentation du Citepa

Statut

« Association privée a but non lucratif créée

en 1961
« Environ 85 adhérents

Communication

+ Portail internet

» Lettre mensuelle

= C’est dans UAir
«+ Fiche de synthése thématique
« Journée d'études

Missions

- Connaitre, coordonner, promouvoir,

réaliser, et diffuser des études, essais et
recherches concernant la pollution
atmosphérique

CITEPA

Budget et ressources

= Environ 3,9 M€

« Effectif : environ 35 personnes

« Pouvoirs publics francais ~ 50%, industriels
et fédérations, organismes internationaux
~ 50%
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The decarbonization problem

Data

Objective

Question

YVVY

>

Y

emission reductions target e#
action set A

unitary costs of actions (¢s)ac.
unitary emission factors (e;)aca

We want fulfill the emission reductions commitment
at least cost

What actions should be implemented?
In which quantities?
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Introduction of risk measures

» Two cost distributions can have the same mean value,
but can be looked at differently by the decision-maker

» Thin-tail costs distribution are perceived as less risky
than fat-tail costs distribution

Thin_Tail Fat Tail

Figure: Thin-tail cost distribution Figure: Fat-tail cost distribution
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Tail value

at risk on thin-tail and fat-tail distributions

>

VaRj (X) TVaR, (X) X
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Influence of the carbon compensation price on the solution

risk-neutral worst case
CO, compensation A=1 A=05 A=02 A=0.01
price (€/TCO2eq) |G HE HG G HE HG G HE HG |G HE HG
44.6 (carbontax) | 0 0 0 |0 O 0 |0 O 0|0 O 0
200 0 0 0|0 O 0|0 O 0|0 O 0
250 (SPC2030) 0 25 0|0 O 0|0 O 0|0 O 0
300 0 26 0 0 0 0 0 0 0 0 0 0
350 0 28 0 |0 27 2 10 0 0|0 0 0
400 0 29 0 |0 29 2 /0 0 0|0 O 0
450 0 30 0 |0 32 1 0 0 0|0 O 0
500 (SPC2040) 0 31 0 |0 33 1 0 18 14 |0 O 0
550 0 32 0 |0 34 1 0 21 13 |0 O 0
600 0 32 0 |0 34 1 0 23 120 0 0
700 0 33 0 |0 35 1 0 25 12 |0 25 15
775 (SPC2050) 0 34 0 |0 36 1 0 26 11 |0 27 14
900 0 35 0 |0 37 1 0 27 11 |0 30 12
1000 0 36 0 |0 41 1 0 28 11 [0 31 11

Table: Solutions of the risk-averse problem for different values of A and of the
carbon compensation price, when 6§ = 1
(SVC2030 means "shadow value of carbon in 2030 in France")
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