
Stochastic Process
(Discrete Markov chains, Martingales, Brownian motion)
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Vocabulary (english/français) : positive = strictement positif ; irreducible = irréductible ;
hitting time = temps d’atteinte ; eigen-value = valeur propre ; eigen-vector = vecteur propre.

Exercice 1 (Q-process). Let E be a finite state space and E∗ ⊂ E such that 2 ≤ Card (E∗) <
Card (E). Let X = (Xn, n ∈ N) be an irreducible Markov chain on E. We consider the first
hitting time of Ec

∗ :
τ = inf{n ≥ 0;Xn 6∈ E∗}.

The aim of this problem is to study the distribution of X conditionally on {τ = +∞}, which
will be called the Q-process associated to X and E∗.

I Preliminaries

1. Compute P(τ = +∞). Explain why the distribution of X conditionally on {τ = +∞} is
not well defined.

Let P be the transition matrix of X and π its invariant probability measure. We set P∗ =
(P (x, y);x, y ∈ E∗). The notation P∗

n corresponds to the usual matrix product of P∗ with itself
n times. For g a function defined on E∗ or E, we define P∗g by :

P∗g(x) =
∑

y∈E∗

P (x, y)g(y), x ∈ E∗.

2. (a) Check that P∗g(x) = Ex

[

g(X1)1{τ>1}

]

for x ∈ E∗.

For all x ∈ E and n ∈ N, we set :

hn(x) = Px(τ > n),

so that h0(x) = 1E∗
. We set 1 the constant function equal to 1.

(b) Prove that, on E∗, we have hn+1 = P∗hn and thus hn = P∗
n
1.

(c) More generally, prove that for all x ∈ E∗ and g a function defined on E∗, we have :

P∗
ng(x) = Ex

[

g(Xn)1{τ>n}

]

.

We assume that there exists n ≥ 1 such that for all x, y ∈ E∗, we have P∗
n(x, y) > 0. Perron-

Frobenius’ Theorem asserts that there exists for P∗ :

— an eigen-value λ > 0,

— a function ϕ (seen as a column vector) defined on E∗ positive which is an eigen-vector on
the right associated to λ,

— a probability measure ν (see as a lign vector) defined on E∗ with ν(x) > 0 for all x ∈ E∗

which is an eigen-vector on the left associated to à λ,
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such that limn→+∞ λ−nPn
∗ = ϕν that is :

lim
n→+∞

λ−nP∗
n(x, y) = ϕ(x)ν(y), x, y ∈ E∗. (1)

3. (a) We assume in this question only that the distribution of X0 is ν, that is P(X0 = x) =
ν(x) for x ∈ E∗ and P(X0 = x) = 0 for x 6∈ E∗. Compute P(τ > n) for n ∈ N.

(b) Identify the distribution of τ if the distribution of X0 is ν. Deduce that λ < 1.

We set ϕ(x) = 0 for x 6∈ E∗. We define M = (Mn, n ∈ N) with :

Mn = λ−nϕ(Xn)1{τ>n}.

4. (a) Prove that M converges a.s. and give its limit. Prove that M is a martingale.

(b) Using (1), prove that limn→+∞ λ−nhn(x) = ϕ(x), for x ∈ E∗.

(c) We assume that P(X0 ∈ E∗) > 0. Let ν0 denote the distribution of X0. Let n ∈ N

be fixed. Prove that, for p0 large enough, the sequence (hp(x)/E[hp+n(X0)], p ≥ p0)
is uniformly bounded in x ∈ E and that for all x ∈ E :

lim
p→+∞

hp(x)

E[hp+n(X0)]
= λ−nϕ(x)

ν0ϕ
· (2)

II Q-process

We denote by ν0 the distribution of X0 and we assume that ν0(E∗) = 1, that is P(τ ≥ 1) = 1.
Let Y = (Yn, n ∈ N) be a sequence of random variables taking values in E∗, such that for all
A ⊂ (E∗)

n, we have :

P

(

(Y0, . . . , Yn) ∈ A
)

= E

[

Mn

E[Mn]
1{(X0,...,Xn)∈A}

]

.

1. Using (2), prove that for all A ∈ (E∗)
n, we have :

lim
p→+∞

P

(

(X0, . . . ,Xn) ∈ A|τ > n+ p
)

= P

(

(Y0, . . . , Yn) ∈ A
)

.

We shall say the process Y is the process X conditioned to stay in E∗.

2. (a) Let n ∈ N. Let f be a function defined on E∗ and g a function defined on E∗
n+1.

Prove that :
E [f(Yn+1)g(Y0, . . . , Yn)] = E [g(Y0, . . . , Yn)F (Yn)] ,

with a function F which shall be precised.

(b) Deduce that Y is a Markov chain with transition matrix Q defined by :

Q(x, y) =
ϕ(y)

λϕ(x)
P∗(x, y), x, y ∈ E∗.

(c) Check that Y is irreducible that it has an invariant probability measure ρ, which shall
not be computed. Check that Y is aperiodic.
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3. (a) Compute Q2, Qn and then limn→+∞Qn. Deduce a formula for ρ and compute νϕ =
∑

z∈E∗

ν(z)ϕ(z).

(b) Prove that if X is reversible with respect to a probability measure π on E, then Y is
reversible with respect to a probability measure, say ρ̂ on E∗. Determine ρ̂ using π
and ϕ.

(c) If X is reversible with respect to a probability measure say π on E, deduce from the
previous question an expression of ν using π and ϕ. Check that

∑

z∈E π(z)ϕ(z) =
∑

z∈E π(z)ϕ(z)2.

4. (a) Compute the following limits for x ∈ E∗ and A ⊂ E∗ :

lim
n→+∞

lim
p→+∞

Px(Xn ∈ A|τ > n+ p),

lim
p→+∞

lim
n→+∞

Px(Xn ∈ A|τ > n+ p).

Check that those two limits are equal.

(b) Compute for x ∈ E∗ and A ⊂ E∗ :

lim
n→+∞

Px(Xn ∈ A|τ > n).

And check if this limit is equal to the ones of the previous question.

△
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Vocabulary (english/français) : bounded below = minoré.

Solutions

I Preliminaries

Exercice 1 1. As the Markov chain is irreducible on a finite state space, it is recurrent. Thus
for any initial condition X0, we get that a.s. τ is finite. Therefore, the problem is not well
posed as the conditionning event {τ = +∞} is of zero probability.

2. (a) For x ∈ E∗, we have τ > 0 and thus :

P∗g(x) =
∑

y∈E

P (x, y)g(y)1{y∈E∗} = Ex

[

g(X1)1{τ>1}

]

,

as under Px, {τ > 1} = {X1 ∈ E∗}.

(b) We prove the relation by induction. Using the Markov property, we get for x ∈ E∗ :

P∗hn(x) = Ex

[

hn(X1)1{τ>1}

]

= Ex

[

PX1
(τ > n)1{τ>1}

]

= Px(τ > n+ 1) = hn+1(x).

(c) We prove the relation by induction. We set gn(x) = P∗
ng(x). Question 1 gives that

g1(x) = Ex

[

g(X1)1{τ>1}

]

. We assume the relation gk(x) = Ex

[

g(Xk)1{τ>k}

]

is true
for k ≤ n. Using the Markov property at time 1, we get :

gn+1(x) = P∗gn(x) = Ex

[

EX1

[

g(Xn)1{τ>n}

]

1{τ>1}

]

= Ex

[

g(Xn+1)1{τ>n+1}

]

.

3. (a) We deduce from the previous question with g = 1 that, for n ∈ N, we have :

P(τ > n) =
∑

x∈E∗

ν(x)Ex

[

1{τ>n}

]

= νP∗
n
1 = λnν1 = λn.

(b) We get that τ has a geometric distribution with parameter (1− λ) if λ < 1 and that
P(τ = +∞) = 1 if λ = 1. According to question 1, τ is a.s. finite for all initial random
condition X0. We deduce that λ < 1.

4. (a) As τ is finite, we deduce that Mn = 0 on {n ≥ τ}. Thus M converges a.s. towards 0.
M is a martingale according to question I.4 as ϕ is an eigen-vector of P∗ associated
with the eigen-value λ. The martingale is not uniformly integrable if P(X0 ∈ E∗) > 0
as E[ϕ(X0)] > 0 = E[M∞]. If P(X0 ∈ E∗) = 0, then the martingale is constant equal
to 0 and is thus uniformly integrable.

(b) We get Pn
∗ = λn(ϕν + Rn) with limn→+∞Rn(x, y) = 0 for all x, y ∈ E∗. As ν is a

probability measure on E∗, we get :

hn = P∗
n
1E∗

= λn(ϕ+ rn),

with rn = Rn1. As E∗ is finite, we deduce that limn→+∞ supx∈E∗

|rn(x)| = 0.

(c) Let ν0 be the distribution of X0. As E is finite, we get limp→+∞ λ−pν0hp = ν0ϕ > 0.
In particular, for p0 big enough, the sequence (λ−pν0hp, p ≥ 0) is bounded below by a
positive constant. Thus, for all x ∈ E, the sequence (hp(x)/ν0hn+p, p ≥ p0) converges
towards λ−nϕ(x)/ν0ϕ. Furthermore, the sequences are uniformly bounded below in
x as E is finite.
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II Q-process

1. We have :

P((X0, . . . ,Xn) ∈ A|τ > n+ p) =
E
[

1{(X0,...,Xn)∈A}1{τ>n+p}

]

ν0hn+p

=
E
[

1{(X0,...,Xn)∈A}1{τ>n}PXn
(τ > p)

]

ν0hn+p

= E

[

1{(X0,...,Xn)∈A}1{τ>n}
hp(Xn)

ν0hp+n

]

.

where we conditioned with respect to (X0, . . . ,Xn) in the second equality, and used the
Markov property in the second. We deduce from the previous question that the sequence
(hp(Xn)/E[hp+n(X0)], p ≥ p0) is and that it converges P-a.s. towards λ−nϕ(Xn)/ν0ϕ =
Mn/E[M0] = Mn/E[Mn]. The dominated convergence theorem ensures that :

lim
p→+∞

E

[

1{(X0,...,Xn)∈A}1{τ>n}
hp(Xn)

ν0hp+n

]

= E

[

1{(X0,...,Xn)∈A}1{τ>n}
Mn

E[Mn]

]

= P((Y0, . . . , Yn) ∈ A).

2. (a) Let n ∈ N. Let f be a function defined on E∗ and g a function defined on E∗
n+1. We

have :

E [f(Yn+1)g(Y0, . . . , Yn)] = E

[

f(Xn+1)
Mn+1

E[Mn+1]
g(X0, . . . ,Xn)

]

=
1

E[M0]
E
[

1{τ>n}g(X0, . . . ,Xn)λ
−n−1

1{Xn+1∈E∗}f(Xn+1)
]

=
1

E[M0]
E [g(X0, . . . ,Xn)MnF (Xn)]

= E [g(Y0, . . . , Yn)F (Yn)] ,

where we used the Markov property for the last but one inequality with

F (x) =
1

λϕ(x)
Ex

[

1{X1∈E∗}ϕ(X1)f(X1)
]

=
1

λϕ(x)
P∗(ϕf)(x).

(b) We deduce from the previous question that :

E [f(Yn+1)|Y0, . . . , Yn] = F (Yn).

The sequence (Yn, n ∈ N) is thus a Markov chain. Its transition matrix Q is given by

Q(x, y) =
ϕ(y)

λϕ(x)
P∗(x, y), x, y ∈ E∗.

(c) We have Q(x, y) > 0 if and only if P∗(x, y) > 0. Since there exists n > 0 such that
Pn
∗ (x, y) > 0 for all x, y ∈ E∗, we deduce that Q

n(x, y) > 0 for all x, y ∈ E∗. Therefore
the Markov chain Y is irreducible and aperiodic. Since E∗ is finite, we deduce it has
a unique invariant probability measure.

5



3. (a) We have :

Q2(x, y) =
∑

z∈E∗

1

λ2ϕ(x)
ϕ(y)P∗(x, z)P∗(z, y) =

ϕ(y)

λ2ϕ(x)
P∗

2(x, y).

By itereation, we obtain :

Qn(x, y) =
ϕ(y)

λnϕ(x)
P∗

n(x, y).

We get :
lim

n→+∞
Qn(x, y) = ϕ(y)ν(y).

As Y is aperiodic, we deduce from the ergodic theorem that limn→+∞Qn(x, y) = ρ(y)
and thus ρ(y) = ϕ(y)ν(y) for y ∈ E∗.

Since ρ is a probability measure, we notice that νϕ = 1.

(b) If P is reversible with respect to π, then for x, y ∈ E∗, we have π(x)P∗(x, y) =
π(y)P∗(y, x). We deduce that :

Q(x, y) =
ϕ(y)

λϕ(x)
P∗(x, y) =

π(y)ϕ(y)

λπ(x)ϕ(x)
P∗(y, x) =

π(y)ϕ(y)2

π(x)ϕ(x)2
Q(y, x).

We deduce also that :

π(x)ϕ(x)2Q(x, y) = π(y)ϕ(y)2Q(y, x).

Therefore, Q is reversible with respect to the probability measure ρ̂, with :

ρ̂(x) =
π(x)ϕ(x)2

∑

z∈E π(z)ϕ(z)2
.

(c) The probability measure ρ̂ is also invariant for Q. By uniqueness, it is equal to ρ. We
deduce that :

ν(x) =
π(x)ϕ(x)

π(ϕ2)
, x ∈ E∗.

As ν is a probability measure, we deduce that πϕ = π(ϕ2).

4. We have :

lim
n→+∞

lim
p→+∞

Px(Xn ∈ A|τ > n+ p) = lim
n→+∞

P(Yn ∈ A) = ρ(A).

With gp(x) = λ−p
1A(x)hp(x), we have :

lim
n→+∞

Px(Xn ∈ A|τ > n+ p) = lim
n→+∞

1

hn+p(x)
Ex

[

1A(Xn)hp(Xn)1{τ>n}

]

= lim
n→+∞

λp

hn+p(x)
Pn
∗ gp(x)

= νgp.
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As limp→+∞ gp = 1Aϕ, we deduce that :

lim
p→+∞

lim
n→+∞

Px(Xn ∈ A|τ > n+ p) = ν(ϕ1A) = ρ(A).

We get :

lim
n→+∞

Px(Xn ∈ A|τ > n) = lim
n→+∞

Pn
∗ (1A)(x)

Pn
∗ 1

= ν(A).

The measure ν is called the quasi-stationary distribution of Xn in E∗.

We deduce that, for all A ⊂ E∗ :

lim
n→+∞

lim
p→+∞

Px(Xn ∈ A|τ > n+ p) = lim
p→+∞

lim
n→+∞

Px(Xn ∈ A|τ > n+ p).

But, unless ϕ = 1, this quantity is not equal to limn→+∞ Px(Xn ∈ A|τ > n) for all A ⊂ E∗.
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