Stochastic Process
(Discrete Markov chains, Martingales, Brownian motion)
2A ENPC, 2016

Vocabulary (english/frangais) : positive = strictement positif ; irreducible = irréductible ;
hitting time = temps d’atteinte ; eigen-value = valeur propre ; eigen-vector = vecteur propre.

Exercice 1 (Q-process). Let E be a finite state space and E, C E such that 2 < Card (E,) <
Card (E). Let X = (X,,,n € N) be an irreducible Markov chain on E. We consider the first
hitting time of EY :

7 =1inf{n > 0; X,, € E.}.

The aim of this problem is to study the distribution of X conditionally on {7 = +o0}, which
will be called the Q-process associated to X and FEi,.

I Preliminaries

1. Compute P(7 = +00). Explain why the distribution of X conditionally on {7 = +o0} is
not well defined.

Let P be the transition matrix of X and m its invariant probability measure. We set P, =
(P(z,y);x,y € E.). The notation P," corresponds to the usual matrix product of P, with itself
n times. For g a function defined on F, or E, we define P,g by :

Pug(x) = Y P(x,y)g(y), =€ E..
yEE*
2. (a) Check that P.g(x) = E, [g(X1)1{,51y] for z € E,.
For all z € F and n € N, we set :

hp(z) = Py(7 > n),

so that ho(xz) = 1g,. We set 1 the constant function equal to 1.
(b) Prove that, on E,, we have h,; = Pih, and thus h, = P,"1.
(c) More generally, prove that for all z € E, and g a function defined on E,, we have :

Prg(x) = Eqy [Q(Xn)l{r>n}] :

We assume that there exists n > 1 such that for all z,y € E,, we have P,"(z,y) > 0. Perron-
Frobenius’ Theorem asserts that there exists for P, :

— an eigen-value A > 0,

— a function ¢ (seen as a column vector) defined on E, positive which is an eigen-vector on
the right associated to A,

— a probability measure v (see as a lign vector) defined on F, with v(z) > 0 for all x € E,
which is an eigen-vector on the left associated to a A,



such that lim,_, . A™"P]* = v that is :

lim AP (x,y) = p(z)v(y), =,y € E,. (1)

n——+0o00
3. (a) We assume in this question only that the distribution of Xj is v, that is P(Xp = z) =
v(z) for z € E, and P(Xp = x) =0 for x ¢ E,.. Compute P(7 > n) for n € N.
(b) Identify the distribution of 7 if the distribution of X is v. Deduce that A < 1.

We set ¢(z) =0 for x & E,. We define M = (M,,,n € N) with :
M, = A_nSD(Xn)]-{T>n}'

4. (a) Prove that M converges a.s. and give its limit. Prove that M is a martingale.
(b) Using (1), prove that lim, o0 A" "hy(2) = @(x), for z € E,.

(c) We assume that P(Xy € E,) > 0. Let vy denote the distribution of Xy. Let n € N
be fixed. Prove that, for pg large enough, the sequence (hy,(x)/E[hpn(Xo)],p > po)
is uniformly bounded in x € E and that for all z € F :

. hp(z) _ppla)
pETooE[h,,M(XO)] =A Yo 2)

IT Q-process

We denote by vy the distribution of X and we assume that vo(E,) = 1, that is P(7 > 1) = 1.
Let Y = (Y,,n € N) be a sequence of random variables taking values in FE\, such that for all
A C (E.)", we have :

My
]P’((YO, e ,Yn) S A) =K [ml{(xo,...,Xn)eA}} :

1. Using (2), prove that for all A € (E,)", we have :

lim P((Xo,...,Xn) € Alr > n+p) =P((Y,...,Ya) € A).

p——+00

We shall say the process Y is the process X conditioned to stay in FE,.

2. (a) Let n € N. Let f be a function defined on E, and g a function defined on E,"*1.
Prove that :

Elf(Yas1)g(Yo,... . Ya)| = E[g(Yo, ..., Yn)F(Yn)],
with a function F' which shall be precised.
(b) Deduce that Y is a Markov chain with transition matrix @ defined by :

Q(r,y) =

P.(z,y), x,y€ E,.
Ap(z) @)

(c) Check that Y is irreducible that it has an invariant probability measure p, which shall
not be computed. Check that Y is aperiodic.



3. (a) Compute Q?, Q" and then lim,_, - Q". Deduce a formula for p and compute vy =
>eem, V(2)P(2)-
(b) Prove that if X is reversible with respect to a probability measure 7 on F, then Y is
reversible with respect to a probability measure, say p on F,. Determine p using 7
and (.

(c) If X is reversible with respect to a probability measure say = on F, deduce from the
previous question an expression of v using 7 and ¢. Check that ) _p7(2)p(2) =

Y enm(2)p(2)%.

4. (a) Compute the following limits for € F, and A C E, :

lim lim P.(X, € A7 > n+p),

n—+o0 p—+oo
pgrfoongrfm]?x(Xn € AlT > n+p).
Check that those two limits are equal.
(b) Compute for x € E, and A C E, :

lim P,(X, € A|T > n).

n—-+o00

And check if this limit is equal to the ones of the previous question.



Vocabulary (english/francais) : bounded below = minoré.

Solutions

I Preliminaries

FEzxercice 1

1. As the Markov chain is irreducible on a finite state space, it is recurrent. Thus

for any initial condition X, we get that a.s. 7 is finite. Therefore, the problem is not well
posed as the conditionning event {7 = +o0} is of zero probability.

2. (a)

For x € E,, we have 7 > 0 and thus :

=Y P,y)9W)yeny = B [9(X1)1ron]
yeE
as under P, {7 > 1} = {X; € E,}.
We prove the relation by induction. Using the Markov property, we get for x € E, :

Phn(z) = By [hn(X1)1gr21y] = Eo [Px, (7 > n)1{T>1}] =P,(r >n+1) = hpq1(x).

We prove the relation by induction. We set g,(z) = (:U) Question 1 gives that
g1(x) = E, [g(X1)1{7>1}] We assume the relation gi(z) = E, [g(Xk) 1{7‘>k‘}:| is true
for k < n. Using the Markov property at time 1, we get

gn+1($) = P*gn(x) =E, [EX1 [g(Xn)1{7>n}] 1{T>1}] =E, [g(Xn+1)1{T>n+1}] .

We deduce from the previous question with g = 1 that, for n € N, we have :

P(r>n)= Z v(2)Ey [1rsny] = P 1 = A"w1 = X"

rEF,

We get that 7 has a geometric distribution with parameter (1 — \) if A < 1 and that
P(r = +00) = 1if A = 1. According to question 1, 7 is a.s. finite for all initial random
condition Xg. We deduce that A < 1.

As 7 is finite, we deduce that M,, = 0 on {n > 7}. Thus M converges a.s. towards 0.
M is a martingale according to question 1.4 as ¢ is an eigen-vector of P, associated
with the eigen-value A. The martingale is not uniformly integrable if P(X, € E,) > 0
as E[p(Xo)] > 0 =E[My]. If P(X( € E,) =0, then the martingale is constant equal
to 0 and is thus uniformly integrable.

We get P' = \"(¢v + Ry,) with lim,, 1 Ry(z,y) = 0 for all z,y € E,. As v is a
probability measure on F,, we get :

hn = P*nlE* = )\n(()@ + V“n),

with 7, = R, 1. As FE, is finite, we deduce that lim,_ . sup,cp, [rn(z)| = 0.

Let vg be the distribution of Xy. As E is finite, we get limy,_, o A"Prph, = vop > 0.
In particular, for py big enough, the sequence (A Prphy, p > 0) is bounded below by a
positive constant. Thus, for all € E, the sequence (hy,(x)/vohn4p, P > po) converges
towards \™"¢(x)/vpp. Furthermore, the sequences are uniformly bounded below in
x as F is finite.



IT Q-process

1.

2.

We have :
E 1 1 T>N
P((Xo,...,X,) € Al > n+p) = (X Xret) Lronin)
Vohnp
Vo lnp
hp(Xn)
=E|1 1 L :
|: {(Xo,....Xn)eA} H{r>n} Vth+n:|

where we conditioned with respect to (Xo,...,X,) in the second equality, and used the

Markov property in the second. We deduce from the previous question that the sequence
(hp(X0)/E[hpsn(Xo)],p > po) is and that it converges P-a.s. towards A "p(X,,)/vop =
M, /E[My] = M,,/E[M,,]. The dominated convergence theorem ensures that :

M,
=F 1{(Xo,...,Xn)eA}1{T>"}m

= P((Yo,...,Y,) € A).

hyp(Xn)
— 1 L
proo {(Xo,- Xn)eA} Hr>n} vohp4n

(a) Let n € N. Let f be a function defined on E, and g a function defined on E,""!. We

have :
Mn+1
E[f(Yat1)9(Yo,....Yy)] =E [f(Xnﬂ)mg(Xo, e ,Xn)]
1 o
= EMo] E[1{r5019(Xo, - Xo) AN yx o ema f(Xng)]
1

=E [g(Yo7 e 7Yn)F(Yn)] )

where we used the Markov property for the last but one inequality with
1 1

= E; |1 X)) f(X1)| = P, .

o@) [ {XleE*}‘P( 1) f( 1)] (pf)(z)

F(x
) Ap()
(b) We deduce from the previous question that :

E[f(Ypi1)|Yo,....Y,] = F(Yy).

The sequence (Y;,,n € N) is thus a Markov chain. Its transition matrix @ is given by

e(y)
Q(x7y) = —P*(l',y), x7y€E*-
Ap(x)

(c) We have Q(z,y) > 0 if and only if P,(x,y) > 0. Since there exists n > 0 such that
Pl (z,y) > 0forall xz,y € E,, we deduce that Q" (x,y) > 0 for all z,y € E,. Therefore
the Markov chain Y is irreducible and aperiodic. Since F, is finite, we deduce it has
a unique invariant probability measure.



3. (a) We have :
S Melx) Ao(x)
By itereation, we obtain :
n vY) o
Q x,Y) = P* x,y).
(@) = 3ol P (@)
We get :
Jim Q" (w,y) = e(y)r(y).
AsY is aperiodic, we deduce from the ergodic theorem that lim,, - Q" (x,y) = p(y)
and thus p(y) = ¢(y)v(y) for y € E,.
Since p is a probability measure, we notice that vy = 1.
(b) If P is reversible with respect to =, then for xz,y € E,, we have n(z)Pi(z,y) =
7(y) Py (y, ). We deduce that :
(y) m(y)e(y) m(y)e(y)’
Qz,y) = P z,y) = 7~ = Py,2) = 50y, ).
D e M D T T R e P P
We deduce also that :
(@)e()’Q(z,y) = m(y)e(y)*Qly, 7).
Therefore, @ is reversible with respect to the probability measure p, with :
2
. w(x)p(x
ooy = FE@RP
2zen™(2)p(2)
(c) The probability measure p is also invariant for ). By uniqueness, it is equal to p. We
deduce that :
v(z) = M, z € B,
m(p?)
As v is a probability measure, we deduce that mp = 7(p?).
4. We have :

lim lim Py(X, € Alr >n+p) = EI-E P(Y, € A) = p(4).

n—-+00 p—-+400

With gp,(z) = A1 4(x)hy(z), we have :

im Po(X, € Alr >ntp)= lim_ Tt (@)

Ey [14(Xn)hp(Xn)1(rom]

lim —~ _pr
= @

= V{p.



As limy,, 1o gp = 149, we deduce that :

lim lim P.(X, € At > n+p) =v(pla) = p(A4).

p——+00 n——+00

We get :
P11
lim Py(X, € Alr >n)= lim Pr(1a)(@)

n=s—+oo n—-+00 Pr1

=v(A).

The measure v is called the quasi-stationary distribution of X, in E,.
We deduce that, for all A C F, :

lim lim Py(X, € Alr>n+p)= lim lim P,(X, € A7 >n+p).

n—+0o00 p—+oo p—+00 n——+00

But, unless ¢ = 1, this quantity is not equal to lim,,_, { oo Po.(X,, € A|T > n) for all A C E,.



