I Conditional expectation

Vocabulary (english/français): σ -field = tribu; nested = emboité(es); (0, 1) = |0,1|.

Exercise I.1 (Nested σ -fields). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X a real random variable non-negative or integrable. Let \mathcal{H} and \mathcal{G} be two σ -fields such that $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$. Prove that:

$$\mathbb{E}\left[\mathbb{E}[X|\mathcal{G}] \,|\, \mathcal{H}\right] = \mathbb{E}\left[\mathbb{E}[X|\mathcal{H}] \,|\, \mathcal{G}\right] = \mathbb{E}[X|\mathcal{H}].$$

 \triangle

 \triangle

Exercise I.2 (Indicators). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $A, B \in \mathcal{F}$ be two events. Describe $\sigma(\mathbf{1}_B)$ and then compute $\mathbb{E}[\mathbf{1}_A|\mathbf{1}_B]$.

Exercise I.3 (Random walk). Let $(X_n, n \in \mathbb{N}^*)$ be identically distributed independent real random variables non-negative or integrable. Let $S_n = \sum_{k=1}^n X_k$ for $k \in \mathbb{N}^*$. Compute $\mathbb{E}[X_1|S_2]$ and deduce $\mathbb{E}[X_1|S_n]$ for $n \geq 2$.

Exercise I.4 (Symmetric random variable). Let X be a real random variable which is symmetric, that is X and -X have the same distribution. Compute $\mathbb{E}[X|X^2]$.

 \triangle

Exercise I.5 (X conditioned on |X|). Let X be an absolutely continuous real random variable with density f. Compute $\mathbb{E}[X||X|]$ and $\mathbb{E}[X|X^2]$.

 \triangle

Exercise I.6 (Geometric distribution). Let $(X_n, n \in \mathbb{N}^*)$ be independent Bernoulli random variables with parameter $p \in (0, 1)$. Let $T = \inf\{n \ge 1; X_n = 1\}$ with the convention that $\inf \emptyset = +\infty$. (Notice that T is geometric with parameter p.) Compute $\mathbb{E}[T|X_1]$ and deduce $\mathbb{E}[T]$.

 \triangle

Exercise I.7 (Variance). Let X be a real random variable such that $\mathbb{E}[X^2] < +\infty$. Let \mathcal{F} be a σ -field. Check that $\mathbb{E}[X|\mathcal{F}]^2$ is integrable and prove that:

$$\operatorname{Var}(\mathbb{E}[X|\mathcal{F}]) \le \operatorname{Var}(X)$$

 \triangle

 \triangle

Exercise I.8 (Equality). Let X and Y be two integrable real random variables such that a.s. $\mathbb{E}[X|Y] = Y$ and $\mathbb{E}[Y|X] = X$.

- 1. Check that $\mathbb{E}\left[(X Y)\mathbf{1}_{\{Y \leq a\}}\right] = 0$ for all $a \in \mathbb{R}$.
- 2. Prove that $\mathbb{E}\left[|X Y|\mathbf{1}_{\{Y \le a < X \text{ or } X \le a < Y\}}\right] = 0$ for all $a \in \mathbb{R}$.
- 3. Deduce that a.s. X = Y.

Exercise I.9 (Kolmogorov's maximal inequality). Let $(X_n, n \in \mathbb{N}^*)$ be independent real random variables with the same distribution. We assume $\mathbb{E}[X_1^2] < +\infty$ and $\mathbb{E}[X_1] = 0$. Let x > 0. We set $S_n = \sum_{k=1}^n X_k$ for $n \in \mathbb{N}^*$ and $T = \inf\{n \in \mathbb{N}^*; |S_n| \ge x\}$ with the convention that $\inf \emptyset = +\infty$.

- 1. Prove that $\mathbb{P}(T=k) \leq \frac{1}{x^2} \mathbb{E}\left[S_k^2 \mathbf{1}_{\{T=k\}}\right]$ for all $k \in \mathbb{N}^*$.
- 2. Check that $\sum_{k=1}^{n} \mathbb{P}(T=k) = \mathbb{P}(\max_{1 \le k \le n} |S_k| \ge x).$
- 3. By noticing that $S_n^2 \ge S_k^2 + 2S_k(S_n S_k)$, prove Kolmogorov's maximal inequality: for all x > 0 and $n \in \mathbb{N}^*$,

$$\mathbb{P}\left(\max_{1\le k\le n} |S_k| \ge x\right) \le \frac{\mathbb{E}[S_n^2]}{x^2}$$

/	$\langle \rangle$
_	_