IV Ergodic properties of Markov chains

Vocabulary (english/français): irreducible = irréductible; convergence in distribution = convergence en loi.

Exercise IV.1 (Metropolis-Hastings algorithm). Let π be a given positive probability distribution on a discrete space E. The aim of the Metropolis-Hastings¹ algorithm is to sample (asymptotically) according to π .

We consider an irreducible transition matrix Q, called selection matrix, on E such that for all $x, y \in E$, if Q(x, y) = 0 then Q(y, x) = 0.

For $x, y \in E$ such that Q(x, y) > 0, let $(\rho(x, y), \rho(y, x)) \in (0, 1]^2$ be such that:

$$\rho(x, y)\pi(x)Q(x, y) = \rho(y, x)\pi(y)Q(y, x).$$
(IV.1)

The function ρ is called the acceptance probability. Notice the following function ρ satisfies IV.1:

$$\rho(x,y) = \gamma\left(\frac{\pi(y)Q(y,x)}{\pi(x)Q(x,y)}\right), \text{ for all } x, y \in E \text{ such that } Q(x,y) > 0, \text{ (IV.2)}$$

with γ a function taking values in (0, 1] such that $\gamma(u) = u\gamma(1/u)$.

Let X_0 be a random variable on E with probability distribution μ_0 . At step n, conditionally on the random variables X_0, \ldots, X_n , let Y_{n+1} distributed according to $Q(X_n, \cdot)$ and with probability $\rho(X_n, Y_{n+1})$, we accept the transition and we set $X_{n+1} = Y_{n+1}$. If the transition is rejected, we set $X_{n+1} = X_n$.

1. Prove the functions $\gamma(u) = \min(1, u)$ (which corresponds to the Metropolis algorithm, which is very commonly used) and $\gamma(u) = u/(1+u)$

 $^{^1\}mathrm{W.}$ Hastings: Monte Carlo sampling methods using Markov chains and their applications. $Biometrika,\,57{:}97{-}109,\,1970.$

- 2. Check that $X = (X_n, n \in \mathbb{N})$ is a Markov chain and compute its transition matrix P.
- 3. Prove that X is irreducible. And check that X is reversible with respect to π .
- 4. Prove that unless Q is periodic and reversible with respect to π , then X is aperiodic. Prove that X converge in distribution towards π .
- 5. Study the convergence of the sequence $(\frac{1}{n}\sum_{k=1}^{n} f(X_k), n \in \mathbb{N}^*)$ for some real function defined on E.

Exercise IV.2 (Parameter estimation). Let $X = (X_n, n \in \mathbb{N})$ be an irreducible positive recurrent Markov chain on a countable state space E with transition matrix P and invariant probability π . The aim of this exercise is to give an estimation of the parameter π and P of the Markov chain X.

1. For $x \in E$ and $n \in \mathbb{N}^*$, we set $\hat{\pi}(x; n) = \frac{1}{n} \operatorname{Card} \{1 \leq k \leq n; X_k = x\}$. Prove that a.s. for all $x \in E$, $\lim_{n \to +\infty} \hat{\pi}(x; n) = \pi(x)$.

We set $Z = (Z_n, n \in \mathbb{N}^*)$ with $Z_n = (X_{n-1}, X_n)$.

- 2. Prove that Z is an irreducible Markov chain on $E_2 = \{(x, y) \in E^2; P(x, y) > 0\}$. And compute its transition matrix.
- 3. Compute the invariant probability distribution of Y and deduce that Y is recurrent positive.
- 4. For $x, y \in E$ and $n \in \mathbb{N}^*$, we set:

$$\hat{P}(x,y;n) = \frac{\text{Card } \{1 \le k \le n; Z_k = (x,y)\}}{\text{Card } \{0 \le k \le n-1; X_k = x\}},$$

with the convention that $\hat{P}(x, y; n) = 0$ if Card $\{0 \le k \le n - 1; X_k = x\} = 0$. Prove that a.s. for all $(x, y) \in E_2$, $\lim_{n \to +\infty} \hat{P}(x, y; n) = P(x, y)$.

Ι	Λ.
<u></u>	_

 \triangle