
Chapter I

A starter on measure theory and

random variables

In this chapter, we present in Section I.1 a basic tool kit in measure theory with in mind the
applications to probability theory, and in Section I.2 we develop the corresponding integration
and expectation. The presentation of this chapter follows closely [6], see also [8].

I.1 Measures and measurable functions

I.1.1 Measurable space

Let Ω be a set also called a space. A measure on a set Ω is function which gives the “size”
of subsets of Ω. We shall see that, if one asks the measure to satisfy some natural additive
property, it is not always possible to define the measure of any subsets of Ω. For this reason,
we shall consider families of sub-sets of Ω called σ-fields. We denote by P(Ω) = {A;A ⊂ Ω}
the set of all subsets of Ω.

Definition I.1. A collection of subsets of Ω, F ⊂ P(Ω), is called a σ-field on Ω if: (i)
Ω ∈ F ; (ii) A ∈ F ⇒ Ac ∈ F ; (iii) if (Ai, i ∈ I) is a finite or countable collection of elements
of F , then

⋃

i∈I Ai ∈ F .
We call (Ω,F) a measurable space and a set A ∈ F is said F-measurable.

When there is no ambiguity on the σ-field we shall simply say that A is measurable instead
of F-measurable. In a probability setting a measurable set is also called an event. Properties
1 and 2 implies that ∅ is measurable. Notice that P(Ω) and {∅,Ω} are a σ-fields. The latter
is called the trivial σ-field. When Ω is at most countable, unless otherwise specified, we shall
consider the σ-field P(∅).

Proposition I.2. Let C ⊂ P(Ω). There exists a smallest σ-field on Ω which contains C. It
is denoted by σ(C).

Proof. Let (Fj , j ∈ J) be the collection of σ-fields containing C. This collection is not empty
as it contains P(Ω). It is left to the reader to check that

⋂

j∈J Fj is a σ-field. Clearly, this is
the smallest σ-field containing C.

1
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Remark I.3. Let C = {A1, . . . , An}, with n ∈ N
∗, be a finite family of subsets of Ω. It is

elementary to check that F =
{
⋃

I∈I CI ; I ⊂ P(J1, nK)
}

, with CI =
⋂

i∈I Ai
⋂

j 6∈I A
c
j and

I ⊂ J1, nK, is a σ-field. Notice that CI
⋂

CJ = ∅ for I 6= J . Thus, the subsets CI are atoms
of F in the sense that if B ∈ F , then CI

⋂

B is equal to CI or to ∅.
We shall prove that σ(C) = F . Since by construction CI ∈ σ(C) for all I ⊂ J1, nK, we

deduce that F ⊂ σ(C). On the other hand, for all i ∈ J1, nK, we have Ai =
⋃

I∋iCI . This
gives that C ⊂ F , and thus σ(C) ⊂ F . In conclusion, we get σ(C) = F . ♦

If F and G are σ-fields, we denote by F ∨ G the smallest σ-field containing F and G.
More generally, if (Fi, i ∈ I) is a family of σ-fields, we denote by

∨

i∈I Fi the smallest σ-field
containing

⋃

i∈I Fi.

Definition I.4. If E is a topological space, then the Borel σ-field, B(E), on E is the smallest
σ-field containing all the open sets. An element of B(E) is called a Borel set.

Usually the Borel σ-field on E is different from P(E). Vitali1 give an example of a sub-set
of R which is not a Borel set.

We shall consider product measurable spaces: if (Ai, i ∈ I) is a collection of set, then its
product is denoted by

∏

i∈I Ai = {(ωi, i ∈ I);ωi ∈ Ai ∀i ∈ I}.

Definition I.5. Let ((Ωi,Fi), i ∈ I) be a collection (possibly infinite) of measurable spaces.
The corresponding product measurable space is (Ω,F), with the product space Ω =

∏

i∈I Ωi

and the product σ-field F =
⊗

i∈I Fi being the smallest σ-field on Ω containing all the product
sets

∏

i∈I Ai with Ai ∈ Fi for all i ∈ I such that Ai = Ωi but for a finite number of indices.

Remark I.6. Since all the open subsets of R can be written as the union of a countable number
of bounded open intervals, we deduce that the Borel σ-field is the smallest σ-field containing
all the intervals (a, b) for a < b.

We deduce from the definition of the product σ-field, that the Borel σ-field on R
d, d ≥ 1,

is the smallest σ-field containing
∏d

i=1(ai, bi) for all ai < bi and 1 ≤ i ≤ d. ♦

I.1.2 Measures

We give in this section the definition and some properties of measures and probability mea-
sures.

Definition I.7. Let (Ω,F) be a measurable space.

• A function µ defined on F and taking values in [0,+∞] is σ-additive if for all finite or
countable collection (Ai, i ∈ I) of measurable sets mutually disjoint, that is Ai ∈ F for
all i ∈ I and Ai ∩Aj = ∅ for all i 6= j, we have:

µ

(

⋃

i∈I

Ai

)

=
∑

i∈I

µ(Ai). (I.1)

1J. Stern. ”Le problème de la mesure.” Séminaire Bourbaki 26 (1983-1984): 325-346. http://eudml.org/
doc/110033.
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• A measure µ on (Ω,F) is a σ-additive function defined on F and taking values in
[0,+∞]. We call (Ω,F , µ) a measured space.

• A probability measure P on (Ω,F) is a measure on (Ω,F) with total mass 1: P(Ω) = 1.
The measured space (Ω,F ,P) is also called a probability space.

• A measurable set of measure 0, is said to be negligible.

Example I.8. We give some examples of measure (check these are indeed measures). Let Ω
be a space.

• The counting measure Card is defined by A 7→ Card (A) for A ⊂ Ω, with Card (A) the
cardinal of A.

• Let ω ∈ Ω. The Dirac measure at ω, δω, is defined by A 7→ δω(A) = 1A(ω) for A ⊂ Ω.

• The Lebesgue measure λ on (R,B(R)), which will be introduced in Remarks I.19 and
I.23, is such that λ([a, b]) = b − a for all a < b. In particular, any point has Lebesgue
measure zero, as well as, by σ-additivity, any countable set.

Notice that the counting measure and the Dirac measures are measures on (Ω,F) for any
σ-field F on Ω. △

Assuming only the additivity property (that is I is assumed to be finite in (I.1)), instead
of the stronger σ-additivity property, for the definition of measures2 leads to a substantially
different and less efficient approach. We give elementary properties of measures.

Proposition I.9. Let µ be a measure on (Ω,F). We have the following properties.

1. µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B), for all A,B ∈ F .

2. Let A,B ∈ F such that A ⊂ B. We have the monotony property: µ(A) ≤ µ(B).

3. Let (An, n ∈ N) be a sequence of elements of F such that An ⊂ An+1 for all n ∈ N. We
have the monotone convergence property:

µ

(

⋃

n∈N

An

)

= lim
n→+∞

µ(An).

4. Let (Ai, i ∈ I) be a finite or countable collection of measurable sets. We have the in-
equality µ

(
⋃

i∈I Ai

)

≤
∑

i∈I µ(Ai). In particular a finite or countable union of negligible
sets is negligible.

Proof. We prove property 1. The sets A∩Bc, A∩B and Ac∩B are measurable and mutually
disjoint. Using the additivity property tree times, we get:

µ(A ∪B) + µ(A ∩B) = µ(A ∩Bc) + 2µ(A ∩B) + µ(Ac ∩B) = µ(A) + µ(B).

2H. Föllmer and A. Schied. Stochastic finance. An introduction in discrete time. De Gruyter, 2011.
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We prove property 2. As Ac∩B ∈ F , we get by additivity that µ(B) = µ(A)+µ(Ac∩B).
Then use µ(Ac ∩B) ≥ 0, to conclude.

We prove property 3. We set B0 = A0 and Bn = An ∩ Ac
n−1 for all n ∈ N

∗ so that
⋃

n≤N Bn = AN for all N ∈ N
∗ and

⋃

n∈NBn =
⋃

n∈NAn. The sets (Bn, n ≥ 0) are mea-
surable and disjoints 2 by 2. By σ-additivity, we get µ(AN ) = µ(

⋃

n≤N Bn) =
∑

n≤N µ(Bn)

and µ
(
⋃

n∈NAn

)

= µ
(
⋃

n∈NBn

)

=
∑

n∈N µ(Bn). Use the convergence of the partial sums
∑

n≤N µ(Bn), whose terms are non-negative, towards
∑

n∈N µ (Bn) as N goes to infitiny to
conclude.

Property 4 is a direct consequence of properties 1 and 3.

We end this section with an evident property for probability measures.

Corollary I.10. Let (Ω,F ,P) be a probability space. For all A ∈ F , we have P(Ac) =
1− P(A).

Proof. Let A ∈ F . By Definition I.1, we get Ac ∈ F . Since Ω = A ∪Ac and A ∩Ac = ∅, by
addivity, we get P(A) + P(Ac) = P(A ∪Ac) = P(Ω) = 1. This gives the result.

We end this section with the definition of independent events.

Definition I.11. Let (Ω,F ,P) be a probability space. The events (Ai, i ∈ I) are said to be
independent if for all finite subset J ⊂ I, we have:

P





⋂

j∈J

Aj



 =
∏

j∈J

P(Aj).

A collection of σ-fields (Fi, i ∈ I) are said independent if for all Ai ∈ Fi, i ∈ I, the events
(Ai, i ∈ I) are independent.

I.1.3 Caracterisation of probability measures

In this section, we prove that if two probability measures coincide on a sufficiently large family
of events, then they are equal. After introducing monotone classes, we prove the monotone
class theorem.

Definition I.12. A collection A of sub-sets of Ω is a monotone class if:

1. Ω ∈ A.

2. A,B ∈ A and A ⊂ B imply B ∩Ac ∈ A.

3. If (An, n ∈ N) is an increasing sequence of elements of A, then we have
⋃

n∈N An ∈ A.

Theorem I.13 (Mononote class Theorem). Let C be a collection of sub-sets of Ω stable by
finite intersection. All monotone class containing C also contains σ(C).
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Proof. Let A be the intersection of all monotone classes containing C. It is easy to check that
A is the smallest monotone class containing C. It is clear that A satisfies properties 1 and 2
from Definition I.1. To check that property 3 from Definition I.1 holds also, so that A is a
σ-field, it is enough, according to property 3 from Definition I.12, to check that A is stable
by finite intersection. Let B ∈ C. It is easy to check that AB = {A ⊂ Ω;A ∩ B ∈ A} is a
monotone class and that it contains C and thus A. Therefore, for all B ∈ C, A ∈ A, we get
A ∈ AB and thus A ∩B ∈ A.

Let B ∈ A. It is easy to check that AB = {A ⊂ Ω;A ∩ B ∈ A} is a monotone class.
According to the previous part, it contains C and thus A. In particular, for all B ∈ A, A ∈ A,
we get A ∈ AB and thus A ∩ B ∈ A. We deduce that A is stable by finite intersection and
is therefore a σ-field. To conclude, notice that A contains C and thus σ(C) also.

Corollary I.14. Let P and P
′ be two probability measures defined on a measurable space

(Ω,F) Let C ⊂ F be a collection of events stable by finite intersection. If P(A) = P
′(A) for

all A ∈ C, then we have P(B) = P
′(B) for all B ∈ σ(C).

Proof. Notice that A = {A ∈ F ;P(A) = P
′(A)} is a monotone class. It contains C. By the

monotone class theorem, it contains σ(C).

The next corollary is an immediate consequence of Definition I.4 and Corollary I.14.

Corollary I.15. Let E be a topological space. Two probability measures on (E,B(E)) which
coincide on the open sets are equal.

Exercise I.1. Let P and P
′ be two probability measures on (R,B(R)) such that P((−∞, a]) =

P
′((−∞, a]) for all a in a dense subset of R. Prove that P = P

′. △

I.1.4 Construction of probability measures

We give in this section, without proofs, the main theorem which allows to build the usual
measures such as Lebesgue measure and product measure.

Definition I.16. A collection, A, of subsets of Ω is called a Boolean algebra if:

1. Ω ∈ A.

2. If A ∈ A, then Ac ∈ A.

3. If A,B ∈ A, then A ∪B ∈ A.

It is easy to check that a Boolean algebra is stable by finite intersection. A probability
distribution can be defined on a Boolean algebra (to be compared with Definition I.7).

Definition I.17. Let A be a Boolean algebra. A probability measure on (Ω,A) is a map P
defined on A taking values in [0,+∞] such that:

1. Total mass equal to 1: P(Ω) = 1.

2. Additivity: for all A,B ∈ A disjoint, P(A ∪B) = P(A) + P(B).
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3. Continuity at ∅: for all sequences (An, n ∈ N) such that An ∈ A, An+1 ⊂ An for all
n ∈ N and

⋂

n∈NAn = ∅, then the sequence (P(An), n ∈ N) converges to 0.

The following extension theorem allows to extend a probability measure on a Boolean
algebra to a probability measure on the σ-field generated by the Boolean algebra. Its proof
can be found in Section I.5 of [8] or in Section 3 of [1].

Theorem I.18 (Carathéodory extension theorem). Let P be a probability measure defined
on a Boolean algebra A of Ω. There exists a unique probability measure P on (Ω, σ(A)) such
that P and P coincide on A.

This extension theorem allows to prove the existence of the Lebesgue measure.

Proposition I.19 (Lebesgue measure). There exists a probability measure P on the mea-
surable space ([0, 1),B([0, 1))), called Lebesgue measure, such that P([a, b)) = b − a for all
0 ≤ a ≤ b ≤ 1.

Remark I.20. Let λ1 denote the Lebesgue measure on [0, 1). Then, the Lebesgue measure
on R, λ, is defined by: for all Borel set A of R, λ(A) =

∑

x∈Z λ1 ((A+ x) ∩ [0, 1)), where
A+x = {z+x, z ∈ A}. It is easy to check that λ is σ-additive (and thus a measure according
to Definition I.7). Moreover, we have that λ([a, b]) = λ((a, b)) = b− a for all a < b. ♦

Let ((Ωi,Fi,Pi), i ∈ I) be a collection of probability spaces. The Boolean algebra A of
finite unions of sets of the form

∏

i∈I Ai, where Ai ∈ Fi for all i ∈ I and Ai = Ωi but for
a finite number of indices, generate the product σ-field F =

⊗

i∈I Fi on the space product
Ω =

∏

i∈I Ωi.

Proposition I.21. The map P defined on sets
∏

i∈I Ai, where Ai ∈ Fi for all i ∈ I and
Ai = Ωi but for a finite number of indices, by P

(
∏

i∈I Ai

)

=
∏

i∈I Pi (Ai) can be extended as
a probability measure on (Ω,A).

Using the extension theorem, we can prove that the probability measure in Proposition
I.21 defined on A has a unique extension on F , which we denote by P, see [?].

Definition I.22. The probability P defined on F =
⊗

i∈I Fi, such that P
(
∏

i∈I Ai

)

=
∏

i∈I Pi (Ai), where Ai ∈ Fi for all i ∈ I and Ai = Ωi but for a finite number of indices, is
called the product probability measure. It is denoted by P =

⊗

i∈I Pi. The probability space
(Ω,F ,P) is called product probability space.

Remark I.23. The Lebesgue measure λ⊗d
1 on ([0, 1)d,B([0, 1)d)), with d ≥ 2, is the prod-

uct probability measure
⊗d

i=1 λ1, with λ1 the Lebesgue measure on ([0, 1),B([0, 1))). The
Lebesgue measure λ⊗d on R

d is defined by: for all Borel set A ∈ R
d, λ⊗d(A) =

∑

x∈Zd λ
⊗d
1 (A+

x∩ [0, 1)d), where A+x = {z+x, z ∈ A}. It is clear that the Lebesgue measure is σ-additive
and is thus a measure on R

d. ♦
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I.1.5 Measurable functions

Let f be a function defined on a space S and taking values in a space E. For A ⊂ E, we set
f−1(A) = {x ∈ S; f(x) ∈ A}. It is easy to check that for A ⊂ E and (Ai, i ∈ I) a collection
of subsets of E, we have:

f−1(Ac) = f−1(A)c, f−1

(

⋃

i∈I

Ai

)

=
⋃

i∈I

f−1(Ai) and f−1

(

⋂

i∈I

Ai

)

=
⋂

i∈I

f−1(Ai). (I.2)

Let S and E be σ-fields respectively on S and E.

Definition I.24. A function f defined on space S and taking values in a space E is mea-
surable from the measurable space (S,S) to the measurable space (E, E) if for all A ∈ E,
f−1(A) ∈ S.

When there is no possible ambiguity on the σ-fields S and E , we simply say that f is
measurable.

Example I.25. Let A ⊂ S. The (real-valued) indicator function 1A is defined by:

1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. (I.3)

If A is measurable (with respect to the σ-field S on S) then 1A is measurable (with respect
to (S,S) and (R,B(R))). △

We deduce from the properties (I.2) and from the definition of a σ-field the following
elementary corollary.

Corollary I.26. Let f be a function from S to E and E a σ-field on E. The collection
(f−1(A);A ∈ E) is a σ-field on S. It is denoted by σ(f). The function f is measurable from
(S,S) to (E, E) if and only if σ(f) ⊂ S.

The next proposition is useful to prove that a function is measurable.

Proposition I.27. Let C be a collection of subsets of E which generates the σ-field E on E.
A function f from S to E is measurable from (S,S) to (E, E) if and only if for all A ∈ C,
f−1(A) ∈ S.

Proof. We denote by I the σ-field generated by (f−1(A), A ∈ C). We have I ⊂ σ(f). It is
easy to check that the collection (A ∈ E; f−1(A) ∈ I) is a σ-field on E. It contains C and
thus E . This implies that σ(f) ⊂ I and thus σ(f) = I. We conclude using Corollary I.26.

We deduce the following important result.

Corollary I.28. A continuous function defined on a topological space and taking values in
a topological space is measurable with respect to the Borel σ-fields.

The next proposition concerns function taking values in product spaces.



8 CHAPTER I. A STARTER ON MEASURE THEORY AND RANDOM VARIABLES

Proposition I.29. Let (S,S) and ((Ei, Ei), i ∈ I) be measurable spaces. For all i ∈ I, let
fi a function defined on S taking values in Ei and set f = (fi, i ∈ I). The function f is
measurable from (S,S) to (

∏

i∈I Ei,
⊗

i∈I Ei) if and only if for all i ∈ I, the function fi is
measurable from (S,S) to (Ei, Ei).

Proof. By definition, the σ-field
⊗

i∈I Ei is generated by
∏

i∈I Ai with Ai ∈ Ei and for all
i ∈ I but one, Ai = Ei. Let

∏

i∈I Ai be such a set and let i0 denote the only index, if any,
such that Ai0 6= Ei0 . Set g = (fi, i ∈ I). We have g−1

(
∏

i∈I Ai

)

= f−1
i0

(Ai0) ∈ S. Thus if g
is measurable so is fi0 . The converse is a consequence of Proposition I.27.

The proof of the next proposition is immediate.

Proposition I.30. Let (Ω,F), (S,S), (E, E) be three measurable spaces, f a measurable
function defined on Ω taking values in S and g a measurable function defined on S taking
values in E. The composed function g ◦ f defined on Ω and taking values in E is measurable.

We shall consider functions taking values in R = R
⋃

{±∞} = [−∞,+∞]. The Borel
σ-field on R, B(R), is by definition the σ-field generated by B(R), {+∞} and {−∞}. We
say a function is real-valued if it takes values in R or R. With the convention 0 · ∞ = 0, the
product of two real-valued functions is always defined. The sum of two functions f and g
taking values in R is well defined if (f, g) does not take the values (+∞,−∞) or (−∞,+∞).

Corollary I.31. Let f and g be measurable real-valued functions defined on the same space.
The functions fg, max(f, g) are measurable. If (f, g) does not take the values (+∞,−∞)
and (−∞,+∞), then the function f + g is measurable.

Proof. The R
2
-valued functions defined on R

2
by (x, y) 7→ xy, (x, y) 7→ max(x, y) and

(x, y) 7→ (x + y)1
{(x,y)∈R

2
\{(−∞,+∞),(+∞,−∞)}}

are continuous on R
2 and thus measurable

on R
2 according to Corollary I.28. Thus, they are also measurable on R

2
. The corollary is

thus a consequence of Proposition I.30.

We recall that if (an, n ∈ N) is an R-valued sequence then:

lim inf
n→∞

an = lim
n→∞

inf{ak, k ≥ n} and lim sup
n→∞

an = lim
n→∞

sup{ak, k ≥ n}

are well defined and belong to R. Furthermore, the sequence (an, n ∈ N) is said to converge in
R (resp. R) if lim infn→∞ an = lim supn→∞ an and this common value, denoted by limn→∞ an,
belongs to R (resp. R). The next proposition asserts that the limit of measurable function is
measurable.

Proposition I.32. Let (fn, n ∈ N) be a sequence of real-valued measurable functions defined
on S. The functions lim supn→+∞ fn and lim infn→+∞ fn are measurable. The set of conver-
gence of the sequence, {x ∈ S; lim supn→+∞ fn(x) = lim infn→+∞ fn(x)}, is measurable. In
particular, if the sequence (fn, n ∈ N) converges, then its limit, denoted by limn→+∞ fn, is
also measurable.
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Proof. It is easy to check the σ-field B(R) is generated by [−∞, a) for a ∈ R. Notice then
that for a ∈ R:

{x ∈ S; lim sup
n→+∞

fn(x) < a} =
⋃

k∈N∗

⋃

m∈N

⋂

n≥m

{

x ∈ S; fn(x) ≤ a−
1

k

}

.

Since the functions fn are measurable, we deduce that {x ∈ S; lim supn→+∞ fn(x) < a} is
also measurable for all a ∈ R. According to Proposition I.27, we deduce that lim supn→+∞ fn
is measurable. Since lim infn→+∞ fn = − lim supn→+∞(−fn), we deduce that lim infn→+∞ fn
is measurable.

Let h = lim supn→+∞ fn − lim infn→+∞ fn, with the convention +∞ − ∞ = 0. The
function h is measurable thanks to Corollary I.31. Since the set of convergence is equal to
h−1({0}) and that {0} is a Borel set, we deduce that the set of convergence is measurable.

We end this section with a very useful result which completes Proposition I.30.

Proposition I.33. Let (Ω,F), (S,S) be measurable spaces, f a measurable function defined
on Ω taking values is S and ϕ a measurable function from (Ω, σ(f)) to (R,B(R)). Then,
there exists a measurable function g defined on S taking values in R such that ϕ = g ◦ f .

Proof. By simplicity, we assume that ϕ takes its values in R instead of R. For all k ∈ Z, n ∈ N

the sets An,k = ϕ−1([k2−n, (k+1)2−n)) are σ(f)-measurable. Thus, for all n ∈ N, there exists
a collection (Bn,k, k ∈ Z) of sets of S disjoints 2 by 2 such that

⋃

k∈ZBn,k = S, Bn,k ∈ S
and f−1(Bn,k) = An,k for all k ∈ Z. For all n ∈ N, the function gn = 2−n

∑

k∈Z k1Bn,k

is measurable from S to R, and we have gn ◦ f ≤ ϕ ≤ gn ◦ f + 2−n. The function g =
lim supn→+∞ gn is measurable according to Proposition I.32, and we have g ◦ f ≤ ϕ ≤
2−n + g ◦ f for all n ∈ N. This implies that g ◦ f = ϕ.

I.1.6 Probability distribution and random variables

We first start with the definition of the image measure (or push-forward measure) which
is obtained by transferring a measure using a measurable function. The proof of the next
Lemma is elementary and left to the reader.

Lemma I.34. Let (E, E , µ) be a measured space, (S,S) a measurable space, and f a mea-
surable function defined on E and taking values in S. We define the function µf on S by
µf (A) = µ(f−1(A)) for all A ∈ S. Then µf is a measure.

The measure µf is called the push-forward measure (or image measure) of µ by f .

In what follow, we consider a probability space (Ω,F ,P).

Definition I.35. Let (E, E) be a measurable space. A random variable X defined on Ω and
taking values in E is a measurable function from (Ω,F) to (E, E). Its probability distribution
or law is the image probability measure PX .
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We recall that the events {ω;X(ω) ∈ A} = X−1(A) are usually written as {X ∈ A}.

We say that two E-valued random variables X and Y are equal in distribution, and we

write X
(d)
= Y , if PX = PY . We say a random variable is real-valued if it takes values in R or

R. If X is a real valued random variable, its cumulative distribution function FX is defined
by FX(x) = P(X ≤ x) for all x ∈ R. It is easy to deduce from Exercise I.1 that if X and
Y are real-valued random variables, then X and Y are equal in distribution if and only if
FX = FY .

We say that two random variables X and Y defined on the same probability space are
equal a.s., and we write X

a.s.
= Y , if P(X = Y ) = 1.

Let ((Ei, Ei), i ∈ I) be a collection of measurable spaces and X = (Xi, i ∈ I) a random
variable taking values in the product space

∏

i∈I Ei endowed with the product σ-field. Ac-
cording to Proposition I.29, Xj is an Ej-valued random variable for all j ∈ I. Its marginal
probability distribution can be recovered from the distribution of X as

P(Xj ∈ Aj) = P

(

X ∈
∏

i∈I

Ai

)

with Ai = Ei pour i 6= j.

We now give the definition of independent random variables.

Definition I.36. The random variables (Xi, i ∈ I) are said independent if the σ-fields
(σ(Xi), i ∈ I) are independent. Equivalently, the random variables (Xi, i ∈ I) are said
independent if for all finite subset J ⊂ I, all Aj ∈ Ej with j ∈ J , we have:

P(Xj ∈ Aj for all j ∈ J) =
∏

j∈J

P(Xj ∈ Aj).

We deduce from this definition that if the marginal distributions Pi of all the random
variable Xi for i ∈ I are known and if the (Xi, i ∈ I) are independent, then the distribution
of X is the product probability

⊗

i∈I Pi introduced in Definition I.22.

We end this section with the Bernoulli scheme.

Theorem I.37. Let P be a probability distribution on a measurable space (E, E). Let I be a
set of indices. Then, there exists a probability space and an sequence (Xi, i ∈ I) of random
variables defined on this spaces which are independent and with distribution probability P.

When P is the Bernoulli probability distribution and I = N
∗, then (Xn, n ∈ N

∗) is called
a Bernoulli scheme.

Proof. For i ∈ I, set Ωi = E, Fi = E and Pi = P. Consider the product space Ω =
∏

i∈I Ωi

with the product σ-field and the product probability. For all i ∈ I, we consider the random
variable: Xi(ω) = ωi where ω = (ωi, i ∈ I). We deduce that the random variables (Xi, i ∈ I)
are independent with probability distribution P.
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I.2 Integration, Expectation

Using the results from the integration theory of Sections I.2.1 and I.2.2, we introduce the in
Section I.2.4 the expectation of real-valued or Rd-valued random variables and give some well
known inequalities. In Section I.2.5 we collect some further results on independence.

I.2.1 Integration: construction and properties

Let (S,S, µ) be a measured space. The set R is endowed with the Borel σ-field. We use the
convention 0 · ∞ = 0. A function f defined on S is simple if it is real-valued, measurable
and if there exists a representation n ∈ N

∗, α1, . . . , αn ∈ [0,+∞], A1, . . . , An ∈ S such
that f =

∑n
k=1 αk1Ak

. The integral of f with respect to µ, denoted by
∫

f dµ or µ(f) or
∫

f(x)µ(dx), is defined by:

µ(f) =

n
∑

k=1

αkµ(Ak) ∈ [0,+∞].

Lemma I.38. Let f be a simple function defined on S. The integral µ(f) does not depend
on the choice of its representation.

Proof. Consider two representations for f : f =
∑n

k=1 αk1Ak
=
∑m

ℓ=1 βℓ1Bℓ
, with n,m ∈ N

∗

and A1, . . . , An, B1, . . . , Bm ∈ S. We shall prove that
∑n

k=1 αkµ(Ak) =
∑m

ℓ=1 βℓµ(Bℓ).

According to Remark I.3, there exits a finite family of measurable sets (CI , I ∈ P(J1, n+
mK)) such that CI

⋂

CJ = ∅ if I 6= J and for all k ∈ J1, nK and ℓ ∈ J1,mK there exists
Ik ⊂ J1, nK and Jℓ ⊂ J1,mK such that Ak =

⋃

I∈Ik
CI and Bℓ =

⋃

I∈Jℓ
CI . We deduce that:

f =
∑

I

(

n
∑

k=1

αk1{I∈Ik}

)

1CI
=
∑

I

(

m
∑

ℓ=1

βℓ1{I∈Jℓ}

)

1CI

and thus
∑n

k=1 αk1{I∈Ik} =
∑m

ℓ=1 βℓ1{I∈Jℓ} for all I such that CI 6= ∅. We get:

n
∑

k=1

αkµ(Ak) =
∑

I

(

n
∑

k=1

αk1{I∈Ik}

)

µ(CI) =
∑

I

(

m
∑

ℓ=1

βℓ1{I∈Jℓ}

)

µ(CI) =
m
∑

ℓ=1

βℓµ(Bℓ),

where we used the additivity of µ for the first and third equalities. This ends the proof.

It is elementary to check that if f and g are simple functions, then we get:

µ(af + bg) = aµ(f) + bµ(g) for a, b ∈ [0,+∞[ (linearity), (I.4)

f ≤ g ⇒ µ(f) ≤ µ(g) (monotony). (I.5)

Definition I.39. Let f be a [0,+∞]-valued measurable function defined on S. We define the
integral of f with respect to the measure µ by:

µ(f) = sup{µ(g); 0 ≤ g ≤ f g simple}.
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The next lemma give a representation of µ(f) using that f is the non-decreasing limit of
a sequence of simple functions. Such sequence exists. Indeed, one can define for n ∈ N

∗ the
simple function fn by fn(x) = min(n, 2−n⌊2nf(x)⌋) for x ∈ S with the convention ⌊+∞⌋ =
+∞. The functions (fn, n ∈ N

∗) are measurable and their non-decreasing limit is f .

Lemma I.40. Let f be a [0,+∞]-valued function defined on S and (fn, n ∈ N) a non-
decreasing sequence of simple functions such that limn→+∞ fn = f . Then, we have that
limn→+∞ µ(fn) = µ(f).

Proof. It is enough to prove that for all non-decreasing sequence of simple functions (fn, n ∈
N) and simple function g such that limn→+∞ fn ≥ g, we have limn→+∞ µ(fn) ≥ µ(g). We
deduce from the proof of Lemma I.38 that there exists a representation of g such that g =
∑N

k=1 αk1Ak
and the measurable sets (Ak, 1 ≤ k ≤ N) are mutually disjoint. Using this

representation and the linearity, we see it is enough to consider the particular case g = α1A,
with α ∈ [0,+∞], A ∈ S and fn1Ac = 0 for all n ∈ N.

By monotony, the sequence (µ(fn), n ∈ N) is non-decreasing and thus limn→+∞ µ(fn) is
well defined, taking values in [0,+∞].

The result is clear if α = 0. We assume that α > 0. Let α′ ∈ [0, α[. For n ∈ N, we
set Bn = {x ∈ A; fn(x) ≥ α′}. The sequence (Bn, n ∈ N) is non-decreasing with A as
limit because limn→+∞ fn ≥ g. The monotone property for measure, see property 3 from
Proposition I.9, implies that limn→+∞ µ(Bn) = µ(A). As µ(fn) ≥ α′µ(Bn), we deduce that
limn→+∞ µ(fn) ≥ α′µ(A) and that limn→+∞ µ(fn) ≥ µ(g) as α′ ∈ [0, α[ is arbitrary.

Corollary I.41. The linearity and monotony properties, see (I.4) and (I.5), also hold for
[0,+∞]-valued measurable functions f and g defined on S.

Proof. Let (fn, n ∈ N) and (gn, n ∈ N) be two non-decreasing sequences of simple functions
converging respectively towards f and g. Let a, b ∈ [0,+∞[. The non-decreasing sequence
(afn + bgn, n ∈ N) of simple functions converges towards af + bg. By linearity, we get:

µ(af + bg) = lim
n→+∞

µ(afn + bgn) = a lim
n→+∞

µ(fn) + b lim
n→+∞

µ(gn) = aµ(f) + bµ(g).

Assume f ≤ g. The non-decreasing sequence (max(fn, gn), n ∈ N) of simple functions
converges towards g. By monotony, we get:

µ(f) = lim
n→+∞

µ(fn) ≤ lim
n→+∞

µ(max(fn, gn)) = µ(g).

Definition I.42. Let (S,S, µ) be a measured space. A measurable real-valued function f
defined on S is µ-integrable if µ(|f |) < +∞. The integral of f with respect to the measure µ,
denoted by µ(f) or

∫

f dµ or
∫

f(x) µ(dx) is defined by:

µ(f) = µ(f+)− µ(f−) with f+ = max(f, 0) and f− = max(−f, 0).

We directly get the following corollary.
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Corollary I.43. The linearity property, see (I.4) with a, b ∈ R, and the monotony property
(I.5) hold for real-valued measurable µ-integrable functions f and g defined on S.

We deduce that the set L1((S,S, µ)) of real-valued µ-integrable functions defined on S
is a vector space. When there is no ambiguity on the state S, we shall write instead L1(µ)
and even L1 if there is no ambiguity on the measure µ. Let L1

(+), resp. L
1
(−), denote the set

of real-valued functions f such that µ(f−) < +∞, resp. µ(f+) < +∞. The linearity and
monotony properties (I.4) and (I.5) hold on L1

(+) and L1
(−). We shall say that µ(f) is well

defined if f ∈ L1
(+)

⋃

L1
(−) that is if min(µ(f+), µ(f−)) is finite. Notice that f is µ-integrable

if max(µ(f+), µ(f−)) is finite.

A property is said to hold µ-almost everywhere (µ-a.e.) if it holds on a measurable set
B such that µ(Bc) = 0. If µ is a probability measure, then one says µ-almost surely (µ-a.s.)
for µ-a.e.. we shall omit µ and write a.e. or a.s. when there is no ambiguity on the measure.

Lemma I.44. Let f ≥ 0 be a real-valued measurable function defined on S. We have:

µ(f) = 0 ⇐⇒ f = 0 µ-a.e..

Proof. The equivalence is clear if f is simple.

When f is not simple, consider a non-decreasing sequence of simple (non-negative) func-
tions (fn, n ∈ N) which converges towards f . As {x; f(x) 6= 0} is the non-decreasing limit
of the measurable sets {x; fn(x) 6= 0}, n ∈ N, we deduce from the monotony property from
Proposition I.9, that f = 0 a.e. if and only if fn = 0 a.e. for all n ∈ N. We get that f = 0
a.e. if and only if µ(fn) = 0 for all n ∈ N. As (µ(fn), n ∈ N) is non-decreasing and converges
towards µ(f), we deduce that µ(fn) = 0 for all n ∈ N if and only if µ(f) = 0. We deduce
that f = 0 a.e. if and only if µ(f) = 0.

We deduce the next corollary which asserts that it is enough to know f a.e. to compute
its integral.

Corollary I.45. Let f and g be two [0,+∞]-valued measurable functions defined on S. If
a.e. f = g, then we have µ(f) = µ(g).

Proof. By hypothesis the measurable set A = {f 6= g} is such that µ(A) = 0. We deduce
that a.e. f1A = 0 and g1A = 0. This implies that µ(f1A) = µ(g1A) = 0. By linearity, we
get:

µ(f) = µ(f1Ac) + µ(f1A) = µ(g1Ac) = µ(g1Ac) + µ(g1A) = µ(g).

The relation f = g a.e. is an equivalence relation on the set of real-valued measurable
functions defined on S. We shall identify a function f with its equivalent class {g, f = g a.e.}.
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I.2.2 Integration: convergence theorems

The a.e. convergence for sequences of measurable functions introduced below is weaker than
the simple convergence and adapted to the convergence of integrals. Let (S,S, µ) be a mea-
sured space.

Definition I.46. Let (fn, n ∈ N) be a sequence of real-valued measurable functions defined
on S. The sequence is said to converge a.e. if a.e. lim infn→+∞ fn = lim supn→+∞ fn. We
denote by limn→+∞ fn any element of the equivalent class of the measurable functions which
are a.e. equal to lim infn→+∞ fn.

Notice that Proposition I.32 assures indeed that lim infn→+∞ is measurable. We thus
deduce the following corollary.

Corollary I.47. If a sequence of real-valued measurable functions defined on S converges
a.s., then its limit is measurable.

We now give the three main results on the convergence of integrals for sequence of con-
verging functions.

Theorem I.48 (Monotone convergence theorem). Let (fn, n ∈ N) be a sequence of real-valued
measurable functions defined on S. We assume that, for all n ∈ N, a.e. 0 ≤ fn ≤ fn+1. We
have:

lim
n→+∞

∫

fn dµ =

∫

lim
n→+∞

fn dµ.

Proof. The set A = {x; fn(x) < 0 or fn(x) > fn+1(x) for some n ∈ N} is of 0 measure as
countable union of measurable sets of 0 measure. Thus, we get a.e. fn = fn1Ac for all n ∈ N.
Corollary I.45 implies that, replacing fn by fn1Ac without loss of generality, it is enough to
prove the theorem under the stronger conditions: for all n ∈ N, 0 ≤ fn ≤ fn+1. We set
f = limn→+∞ fn the non-decreasing (everywhere) limit of (fn, n ∈ N).

For all n ∈ N, let (fn,k, k ∈ N) be a non-decreasing limit of simple functions which
converges towards fn. We set gn = max{fi,n; 1 ≤ i ≤ n}. The non-decreasing sequence
(gn, n ∈ N) converges to f and thus limn→+∞

∫

gn dµ =
∫

f dµ. By monotony, gn ≤ fn ≤ f
implies

∫

gn dµ ≤
∫

fn dµ ≤
∫

f dµ. Taking the limit, we get limn→+∞

∫

fn dµ =
∫

f dµ.

Exercise I.2. Let fn(x) = n−1 |x| for n ∈ N
∗ and x ∈ R. Check that limn→+∞

∫

R
fn(x)dx 6=

∫

R
limn→+∞ fn(x)dx. Does this contradict the monotone convergence theorem? △

It is easy to check the following corollary using the monotone convergence theorem to get
the σ-additivity.

Corollary I.49. Let f be a real-valued measurable functions defined on S. If f ≥ 0 a.e.,
then the function fµ defined on S by fµ(A) =

∫

1Af dµ is a measure on (S,S).

Fatou’s lemma will be used for the proof of the dominated convergence theorem, but it
is also interesting by itself.
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Lemma I.50 (Fatou’s lemma). Let (fn, n ∈ N) be a sequence of real-valued measurable
functions defined on S such that a.e. fn ≥ 0 for all n ∈ N. We have the semi-continuity
property:

∫

lim inf
n→+∞

fn dµ ≤ lim inf
n→+∞

∫

fn dµ.

Proof. The function lim infn→+∞ fn is the non-decreasing limit of the sequence (gn, n ∈ N)
with gn = infk≥n fk. We get:

∫

lim inf
n→+∞

fn dµ = lim
n→+∞

∫

gn dµ ≤ lim
n→+∞

inf
k≥n

∫

fk dµ = lim inf
n→+∞

∫

fn dµ,

where we used the monotone convergence theorem for the first equality and the monotony
property of the integral for the inequality.

The next theorem and the monotone convergence theorem are very useful to exchange
integration and limit.

Theorem I.51 (Dominated convergence theorem). Let f, g, (fn, n ∈ N) and (gn, n ∈ N) be
real-valued measurable functions defined on S. We assume that a.e.: |fn| ≤ gn for all n ∈ N,
f = limn→+∞ fn and g = limn→+∞ gn. We also assume that limn→+∞

∫

gn dµ =
∫

g dµ and
∫

g dµ < +∞. Then, we have:

lim
n→+∞

∫

fn dµ =

∫

lim
n→+∞

fn dµ.

When gn = g for all n ∈ N, the above theorem is called the Lebesgue’s theorem.

Proof. As a.e. |f | ≤ g and
∫

g dµ < +∞, we get the function f is integrable. The functions
gn + fn and gn − fn are a.e. non-negative. Fatou’s lemma with gn + fn and gn − fn gives:
∫

g dµ +

∫

f dµ =

∫

(g + f) dµ ≤ lim inf
n→+∞

∫

(gn + fn) dµ =

∫

g dµ+ lim inf
n→+∞

∫

fn dµ,
∫

g dµ −

∫

f dµ =

∫

(g − f) dµ ≤ lim inf
n→+∞

∫

(gn − fn) dµ =

∫

g dµ− lim sup
n→+∞

∫

fn dµ.

Since
∫

g dµ is finite, we deduce from those inequalities that
∫

f dµ ≤ lim infn→+∞

∫

fn dµ
and that lim supn→+∞

∫

fn dµ ≤
∫

f dµ. Thus the sequence (
∫

fn dµ, n ∈ N) converges
towards

∫

f dµ.

Exercise I.3. Let fn(x) = 1[n,n+1](x) for n ∈ N and x ∈ R. Check that limn→+∞

∫

R
fn(x)dx 6=

∫

R
limn→+∞ fn(x)dx. Does this contradict the monotone convergence theorem, Fatou’s lem-

man or the dominated convergence theorem? △

We shall use the next Corollary in Chapter IV, which is a direct consequence of Fatou’s
lemma and dominated convergence theorem.

Corollary I.52. Let f, g, (fn, n ∈ N) be real-valued measurable functions defined on S. We
assume that µ(fn) is well defined and a.e.: f+

n ≤ g for all n ∈ N, f = limn→+∞ fn and that
∫

g dµ < +∞. Then, we have that µ(f) is well defined and:

lim sup
n→+∞

∫

fn dµ ≤

∫

lim
n→+∞

fn dµ.
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I.2.3 Integration: Fubini theorem and inequalities

We start with the Fubini’s theorem. Let (E, E , ν) and (S,S, µ) be two measured spaces. The
product space E × S is endowed with the product σ-field.

Theorem I.53 (Fubini’s theorem). Let f be a [0,+∞]-valued measurable function defined
on E × S.

1. For all x ∈ E, the function y 7→ f(x, y) defined on S is measurable.

2. The function x 7→
∫

f(x, y) µ(dy) defined on E is measurable.

3. There exists a unique measure on (E × S, E ⊗ S), denoted by ν ⊗ µ and called product
measure such that:

ν ⊗ µ(A×B) = ν(A)µ(B) for all A ∈ E, B ∈ S. (I.6)

4. We have:

∫

f(x, y) ν ⊗ µ(dx, dy) =

∫ (∫

f(x, y) µ(dy)

)

ν(dx) (I.7)

=

∫
(
∫

f(x, y) ν(dx)

)

µ(dy). (I.8)

Formulas (I.7) and (I.8) holds for any R-valued measurable function defined E×S which are
integrable that is

∫

|f(x, y)| ν ⊗ µ(dx, dy) < +∞.

We shall write ν(dx)µ(dy) for ν ⊗ µ(dx, dy). If the measures ν and µ are probabilities,
then the definition of the product measure ν ⊗ µ coincide with the ones given in Definition
I.22.

Proof. Properties 1 and 2 are immediate for the functions f = 1C with C = A × B, A ∈ E
and B ∈ S. The monotone class theorem with Corollary I.31 and the Proposition I.32 imply
the result holds for all C ∈ E ⊗ S. Then the result also holds for every simple function
thanks to Corollary I.31, and then for every [0,+∞]-valued measurable functions thanks to
Proposition I.32 and the dominated convergence theorem.

For all C ∈ E ⊗ S, we set ν ⊗ µ(C) =
∫ (∫

1C(x, y) µ(dy)
)

ν(dx). The σ-additivity of ν
and µ and the dominated convergence implies that ν ⊗ µ is a measure on (E × S, E ⊗ S). It
is clear that (I.6) holds. The family of sets A × B where A ∈ E , B ∈ S is stable by finite
intersection and generates E ⊗ S. The monotone class theorem implies there exists at most
one measure such that (I.6) holds. This ends the proof of property 3.

Property 4 holds clearly for functions f = 1C with C = A × B, A ∈ E and B ∈ S.
Monotone class theorem with Corollary I.31, Proposition I.32 and the monotone convergence
theorem imply that the results holds also for all C ∈ E ⊗ S. We deduce the result for
all simple functions thanks to Corollary I.31, and then for all [0,+∞]-valued measurable
functions thanks to Proposition I.32 and the monotone convergence theorem.
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Let f be a R-valued measurable function defined E × S which is integrable with respect
to ν ⊗ µ. We deduce from (I.7) and then (I.8) with f replaced by |f | that NE = {x ∈
E;
∫

|f(x, y)| µ(dy) = +∞} has 0 ν-measure, and then that NS = {y ∈ S;
∫

|f(x, y)| ν(dx) =
+∞} has 0 µ-measure. We set g = f1Nc

E
×Nc

S
. We can subtract (I.7) with f replaced by

max(−g, 0) to (I.7) with f replaced by max(g, 0) and we get (I.7) with f replaced by g.
Since ν ⊗ µ-a.e. f = g, Lemma I.44 implies that (I.7) holds. Equality (I.8) is deduced by
symmetry.

Exercise I.4. Prove that:

∫

]0,1[

(

∫

]0,1[

x2 − y2

(x2 + y2)2
dy

)

dx =
π

4
·

Deduce that the function f(x, y) =
x2 − y2

(x2 + y2)2
is not integrable with respect to the Lebesque

measure on ]0, 1[2. (Hint: compute the derivative with respect to y of y/(x2 + y2).) △

We end this section with very useful inequalities.

Proposition I.54. Let f and g be two real-valued measurable functions.

• Hölder inequality. Let p, q ∈ (1,+∞) such that 1
p +

1
q = 1. Assume that |f |p and |g|q

are integrable. Then fg is integrable and we have:

∫

|fg| dµ ≤

(∫

|f |p dµ

)1/p (∫

|g|q dµ

)1/q

.

The Hölder inequality is an equality if and only there exist c, c′ ∈ [0,+∞) such that
(c, c′) 6= (0, 0) and a.e. c|f |p = c′|g|q .

• Cauchy-Schwarz inequality. Assume that f2 and g2 are integrable. Then fg is
integrable and we have:

∫

|fg| dµ ≤

(∫

f2 dµ

)1/2 (∫

g2 dµ

)1/2

.

Furthermore, we have
∫

fg dµ =
(∫

f2 dµ
)1/2 (∫

g2 dµ
)1/2

if and only there exist c, c′ ∈
[0,+∞) such that (c, c′) 6= (0, 0) and a.e. c f = c′ g.

• Minkowski inequality. Let p ∈ [1,+∞). Assume that |f |p and |g|p are integrable.
We have:

(
∫

|f + g|p dµ

)1/p

≤

(
∫

|f |p dµ

)1/p

+

(
∫

|g|p dµ

)1/p

.

Proof. Hölder inequality. The Young inequality states that for a, b ∈ [0,+∞], p, q ∈ ]0, 1[
such that 1

p +
1
q = 1, we get ab ≤ 1

p a
p + 1

q b
q (with equality if and only if a = b). Indeed, this



18 CHAPTER I. A STARTER ON MEASURE THEORY AND RANDOM VARIABLES

inequality is obvious if a or b belongs to {0,+∞}. For a, b ∈ (0,+∞), using the convexity to
the exponential function, we get:

ab = exp

(

log(ap)

p
+

log(bq)

q

)

≤
1

p
exp (log(ap)) +

1

q
exp (log(bq)) =

1

p
ap +

1

q
bq.

If µ(|f |p) = 0 or µ(|g|q) = 0, the Hölder is trivially true as a.e. fg = 0 thanks to Lemma
I.44. If this is not the case, then integrating with respect to µ in the Young inequality with
a = |f |/µ(|f |p) and b = |g|/µ(|g|q) gives the result. Because of the strict convexity of the
exponential, if a and b are finite, then the Young inequality is an equality if and only if a and
b are equal. This implies that, if |f |p and |g|q are integrable, then the Hölder inequality is an
equality if and only there exist c, c′ ∈ [0,+∞) such that (c, c′) 6= (0, 0) and a.e. c|f |p = c′|g|q.

The Cauchy-Schwarz inequality is the Hölder inequality with p = q = 2. If the equality
holds then we get c|f | = c′|g| for some c, c′ ∈ [0,+∞) such that (c, c′) 6= (0, 0), and

∫

(|fg| −
fg) dµ = 0. Use Lemma I.44 to conclude that a.e. |fg| = fg and thus a.e. c f = c′ g.

The case p = 1 of the Minkowski inequality comes from the triangular inequality in R.
Let p > 1. We assume that

∫

|f+g|p dµ > 0, otherwise the inequality is trivial. Using Hölder
inequality, we get:

∫

|f + g|p dµ ≤

∫

|f ||f + g|p−1 dµ+

∫

|g||f + g|p−1 dµ

≤

(

(
∫

|f |p dµ

)1/p

+

(
∫

|g|p dµ

)1/p
)

(
∫

|f + g|p dµ

)(p−1)/p

.

Dividing by
(∫

|f + g|p dµ
)(p−1)/p

gives the Minkowski inequality.

I.2.4 Expectation and inequalities

We consider the particular case of probability measure. Let (Ω,F ,P) be a probability space.
Let X be a real-valued random variable. The expectation of X is by definition the integral of
X with respect to the probability measure P and is denoted by E[X]. The expectation E[X] is
well defined if X is P-integrable that is if min(E[X+],E[X−]) is finite, where X+ = max(X, 0)
and X− = max(−X, 0). Recall that X is integrable if by definition max(E[X+],E[X−]) is
finite.

Example I.55. If A is an event, then 1A is a random variable and we have E[1A] = P(A).
Taking A = Ω, we get obviously that E[1] = 1. △

The next elementary lemma is very useful to compute expectation in practice. Recall the
distribution of X, denoted by PX , has been introduced in Definition I.35.

Lemma I.56. Let X be an random variable taking values in a measured space (E, E). Let
ϕ be a real-valued function defined on (E, E). If E[ϕ(X)] is well defined or equivalently if
∫

ϕPX is well defined, then we have E[ϕ(X)] =
∫

ϕ dPX .
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Proof. Assume that ϕ is simple and that ϕ =
∑n

k=1 αk1Ak for some n ∈ N
∗, αk ∈ [0,+∞],

Ak ∈ F . We have:

∫

ϕ ◦X dP = E[ϕ(X)] =

n
∑

k=1

αkP(X ∈ Ak) =

n
∑

k=1

αkPX(Ak) =

∫

ϕdPX .

Then use the monotone convergence theorem to get E[ϕ(X)] =
∫

ϕdPX when ϕ is measurable
and [0,+∞]-valued. Use the definition of E[ϕ(X)] and

∫

ϕdPX , when they are well defined,
to conclude when ϕ is measurable and real-valued.

Obviously, if X and Y have the same distribution, then E[ϕ(X)] = E[ϕ(Y )] for all real-
valued function ϕ such that E[ϕ(X)] is well defined, in particular if ϕ is bounded.

Remark I.57. We explicit the closed formula for the expectation when X is a discrete random
variable taking values in (E, E), that is the set ∆ = {x ∈ R, P(X = x) > 0}, which is finite
or countable, is measurable and P(X ∈ ∆) = 1. Let ϕ be a [0,+∞]-valued function defined
on E. Then we have:

E[ϕ(X)] =
∑

x∈∆

ϕ(x)P(X = x). (I.9)

Equation (I.9) also holds for ϕ a real-valued function as soon as E[ϕ(X)] is well defined (that
is min(E[ϕ+(X)],E[ϕ−(X)] is finite). ♦

A real-valued random variable X is square-integrale if X2 is integrable that is E[X2] is
finite. Since 2 |x| ≤ 1 + |x|2, we deduce from the monotony property of the expectation that
if X is square integrable, then it is integrable.

For X = (X1, . . . ,Xd) and R
d-valued random variable, we say that X is integrable if

Xi is integrable for all i ∈ J1, dK, and we set E[X] = (E[X1], . . . ,E[Xd]). We say that X is
square-integrable if Xi is square-integrable for all i ∈ J1, dK

We complete the inequalities given in Proposition I.54.

Proposition I.58.

• Tchebychev inequality. Let X be real-valued random variable. Let a > 0. We have:

P(|X| ≥ a) ≤
E[X2]

a2
.

• Jensen inequality. Let X be an R
d-valued integrable random variable. Let ϕ be a

real-valued measurable convex function defined on R
d. We have that E[ϕ(X)] is well

defined and:

ϕ(E[X]) ≤ E[ϕ(X)]. (I.10)

Furthermore, if ϕ is strictly convex, the inequality in (I.10) is an equality if and only
if X is a.s. constant.

Remark I.59. If X is a real-valued integrable random variable, we deduce from Cauchy-
Schwarz inequality or Jensen inequality that E[X]2 ≤ E[X2]. ♦
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Proof. Since 1{|X|≥a} ≤ X2/a2, we deduce the Tchebychev inequality from the monotony
property of the expectation and Example I.55.

Let 〈·, ·〉 denote the scalar product of R
d. Since the function ϕ is convex (and thus

measurable), for all a ∈ R
d there exists λa ∈ R

d such that ϕ(x) ≥ ϕ(a) + 〈λa, x − a〉 for
all x ∈ R

d. Taking a = E[X] and x = X, we obtain ϕ(X) ≥ ϕ(a) + 〈λa,X − a〉 and thus
ϕ(X) ≥ −|ϕ(a)| − |λa|(|a| + |X|). Since X is integrable, we deduce that E[ϕ(X)−] < +∞,
where x− = max(−x, 0), and thus E[ϕ(X)] is well defined. Then, using the monotony of the
expectation, take the expectation in ϕ(x) ≥ ϕ(a) + 〈λa, x− a〉 with a = E[X] to get (I.10).

If ϕ is strictly convex, then ϕ(X) > ϕ(a)+〈λa,X−a〉 on {X 6= a}. Taking the expectation
in this inequality with a = E[X], we deduce that (I.10) is an equality if a.s. X = E[X].

We give the definition of the variance and covariance. Let X be a real-valued square
integrable (and thus integrable) random variable. Its variance Var(X) is defined by Var(X) =
E[(X − E[X])2]. By linearity, we get:

Var(X) = E[(X − E[X])2] = E[X2]− 2E[X]E[X] + E[X]2 = E[X2]− E[X]2.

It is easy to check that for a, b ∈ R, we have:

Var(aX + b) = a2 Var(X).

Using Lemme I.44 with f = (X − E[X])2, we deduce that Var(X) = 0 implies there exists a
constant a such that a.e. X = a.

Let X,Y be two real-valued square-integrable random variables. Thanks to Cauchy-
Schwarz inequality, we get that XY is integrable. The covariance of X and Y , Cov(X,Y ), is
defined by:

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

Notice that Cov(X,X) = Var(X) and by linearity, we get:

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ). (I.11)

The covariance can be defined for random vectors as follows.

Definition I.60. Let X = (X1, . . . ,Xd) and Y = (Y1, . . . , Yp) be respectively two R
d-valued

and R
p-valued random variables with d, p ∈ N

∗. We assume that X and Y are square-
integrable. The covariance of X and Y , Cov(X,Y ), is and d× p matrix defined by:

Cov(X,Y ) = (Cov(Xi, Yj), i ∈ J1, dK, j ∈ J1, pK).

I.2.5 Independence

Recall the independence of σ-fields given in Definition I.11 and of random variables given in
Definition I.36.
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Proposition I.61. Let n ≥ 2, (E1, E1), . . . , (En, En) be measurable spaces, and (X1, . . . ,Xn)
be a random variable taking values in the product space

∏n
i=1 Ei endowed with the product

σ-field. The random variables X1, . . . ,Xn are independent if and only if for all bounded
real-valued measurable function fi defined on Ei, we have:

E

[

n
∏

i=1

fi(Xi)

]

=

n
∏

i=1

E[fi(Xi)]. (I.12)

Proof. If (I.12) is true, then taking fi = 1Ai
with Ai ∈ Ei, we deduce from Defintions I.11

and I.36 that X1, . . . ,Xn are independent.
If X1, . . . ,Xn are independent, then Definition I.11 implies that (I.12) holds for indicator

functions. By linearity, we get (I.12) holds also for simple functions. Use monotone conver-
gence theorem to get (I.12) holds also for [0,+∞]-valued measurable functions. Use again
linearity, to deduce (I.12) holds for bounded real-valued measurable functions.

Exercise I.5.

• Extend (I.12) to functions fi such that fi ≥ 0 for all i ∈ J1, nK or to functions fi such
that fi(Xi) is integrable for all i ∈ J1, nK.

• Let X and Y be real-valued integrable random variable. Prove that if X and Y are
independent, then XY is integrable and Cov(X,Y ) = 0. Give an example such that X
and Y are square-integrable not independent but with Cov(X,Y ) = 0.

• Prove that if X1, . . . ,Xn are independent real-valued integrable random variables, then
Var (

∑n
i=1Xi) =

∑n
i=1 Var(Xi).

• Let (Ai, i ∈ I) be independent events. Prove that (1Ai
, i ∈ I) are independent random

variables and deduce that (Ac
i , i ∈ I) are also independents events.

△

I.3 Convergence in distribution

TBD
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