
Chapter III

Optimal stopping

III.1 Introduction

The goal of this chapter is to determine the best time (if any) at which one has to stop
a stochastic process in order to maximize a given criterion. The following two examples
are typical of the problems which will be solved. Their solution are given respectively in
Examples III.8 and III.18.

Example III.1 (Marriage of a princess: the setting). In a faraway old age, a princess had to
choose a prince for a marriage among ζ candidates. At step 1 ≤ n < ζ, she interviews the
n-th candidate and at the end of the interview she either accepts to marry the candidate or
refuses. In the former case the process stop and she get married with the n-th candidate; in
the latter case the rebuked candidate leaves forever and the princess moves on to step n+1.
If n = ζ, she has no more choice but to marry the last candidate. What is the best strategy
for the princess if she wants to maximize the probability to marry the best prince?

Example III.2 (Castle to sell). A princess want to sell her castle, let Xn be the n-th price
offer. However, preparing the castle for a visit of a potential buyer has a cost, say c > 0 per
visit. So the gain of the selling at step n ≥ 1 will be Gn = Xn−nc or Gn = max1≤k≤nXk−nc
if the princess can recall a previous interested buyer. In this infinite time horizon setting,
what is the best strategy of the princess to maximize her gain.

We consider a game over the discrete time interval J0, ζK with horizon ζ ∈ N̄ = N
⋃

{∞},
where at step n ≤ ζ we can either stop and receive the gain or reward Gn or continue to step
n+1 if n+1 ≤ ζ. Eventually in the infinite horizon case, ζ =∞, if we never stop, we receive
the gain G∞. We assume the gains G = (Gn, n ∈ J0, ζK) form a sequence of random variables
on a probability space (Ω,P,G) taking values in [−∞,+∞).

We assume the information available is given by a filtration F = (Fn, n ∈ J0, ζK) with
Fn ⊂ G, and a strategy corresponds to a stopping time. Let T(ζ) be the set of all stopping
times with respect to the filtration F taking values in J0, ζK. We shall assume that E[G+

τ ] <
+∞ for all τ ∈ T(ζ), where x+ = max(0, x). In particular, the expectation E[Gτ ] is well
defined and belongs to [−∞,+∞). Thus, the maximal gain of the game G is:

V∗ = sup
τ∈T(ζ)

E[Gτ ].
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A stopping time τ ∈ T(ζ) will be said optimal for the game G if V∗ = E[Gτ ].

The next theorem, which is a direct consequences of Corollaries III.7 and III.20, is the main
result of this Chapter. For a real sequence (an, n ∈ N̄), we set lim sup an = lim

nր∞
sup

∞>k≥n
ak.

Theorem III.3. Let ζ ∈ N̄, G = (Gn, n ∈ J0, ζK) be a sequence of random variables taking
values in [−∞,+∞) and F = (Fn, n ∈ N̄) be a filtration. Assume the integrability condition:

E

[

sup
n∈J0,ζK

G+
n

]

<∞. (III.1)

If ζ ∈ N or if ζ =∞ and
lim supGn ≤ G∞ a.s., (III.2)

then, there exists an optimal stopping time.

Notice that (III.1) implies that E[G+
τ ] < +∞ for all τ ∈ T(ζ). When the horizon ζ is

finite, then condition (III.1) is equivalent to

E[G+
n ] < +∞ for all n ∈ J0, ζK. (III.3)

When the sequence G is adapted to the filtration F , we shall also consider a particular
solution S = (Sn, n ∈ J0, ζK) to the so called optimal (or Bellman) equations:

Sn = max (Gn,E[Sn+1|Fn]) for 0 ≤ n < ζ, (III.4)

as well as the stopping time τ∗ ∈ T(ζ):

τ∗ = inf{n ∈ J0, ζJ; Sn = Gn}, (III.5)

with the convention inf ∅ = ζ. In this setting, we shall prove that τ∗ is the minimal optimal
stopping time provided that V∗ > −∞. We shall also prove that the stopping time:

τ∗∗ = inf{n ∈ J0, ζK; Sn > E[Sn+1|Fn]}.

is the maximal optimal stopping time provided that V∗ > −∞, see Exercises III.1 and III.4.

The finite horizon case (ζ < ∞) is presented in Section III.2, and the infinite horizon
case (ζ = ∞), which is much more delicate (in particular for the definition of S), is pre-
sented in Section III.3. We consider the approximation of the infinite horizon case by finite
horizon cases in Section III.4. Eventually, Section III.5 is devoted to the Markov chain setting.

The presentation of this Chapter follows [2] also inspired by [4], see also [1, 3] and the
references therein. Concerning the infinite horizon case, we consider stopping time taking
values in N̄ (instead of N in most text books). Since in some standard applications, the gain
of not stopping in finite time is G∞ = −∞ (which de facto implies the optimal stopping time
is finite unless V∗ = −∞), we shall consider rewards Gn taking values in [−∞,+∞) (instead
of assuming that E[|Gn|] < +∞ in most text books). In this setting, the results are general
and easy to present, see Theorem III.3. The drawback of this setting is that we shall not
rely on the martingale approach which is the corner stone of the Snell envelope approach, see
Remark III.6 and Exercise III.1.
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III.2 Finite horizon case

We assume in this section that ζ ∈ N. Example III.4 on the marriage of a princess stresses
out that the process G may not be adapted to the filtration F . We shall first consider in
Section III.2.1 the adapted case, and then deduce in Section III.2.2 the general case.

Example III.4 (Marriage of a princess: the mathematical framework). We continue Example
III.1. The princess wants to maximize the probability to marry the best prince. This corre-
sponds to the gain Gn = 1{Σn=1}, with Σn the (random) rank of the n-th candidate among
the ζ candidates. The observation at step n is the relative rank Rn of the n-th candidate.
So the available information at step n is given by the σ-field Fn = σ(R1, . . . , Rn). Notice in
particular that Σn is unobserved at step n and thus not Fn-measurable (unless n = ζ). There-
fore the sequence G = (Gn, n ∈ J1, ζK) is not adapted to the filtration F = (Fn, n ∈ J1, ζK).
(Notice that to stick to the presentation of this section, we could set G0 = −∞ and F0 the
trivial σ-field.)

III.2.1 The adapted case

We assume ζ ∈ N, the sequence G = (Gn, n ∈ J0, ζK) is adapted to the filtration F = (Fn, n ∈
J0, ζK), and that the integrability condition (III.3) (or equivalently (III.1)) holds. Recall T(ζ)
is the set of stopping times with respect to the filtration F taking values in J0, ζK. Notice
that (III.3) implies that E[G+

τ ] < +∞ for all τ ∈ T(ζ).

We define the sequence S = (Sn, n ∈ J0, ζK) recursively by Sζ = Gζ and the optimal
equations (III.4). The following Proposition gives a solution to the optimal stopping time in
the setting of this section.

Proposition III.5. Let ζ ∈ N and G = (Gn, n ∈ J0, ζK) be an adapted sequence such that
E[G+

n ] < +∞ for all n ∈ J0, ζK. The stopping time τ∗ given by (III.5) (with (Sn, n ∈ J0, ζK)
defined by Sζ = Gζ and (III.4)) is optimal and V∗ = E[S0].

Proof. For n ∈ J0, ζK, we define Tn as the set of all stopping times with respect to the filtration
F taking values in Jn, ζK, as well as the stopping time τn = inf{k ∈ Jn, ζK; Sk = Gk}. Notice
that n ≤ τn ≤ ζ. We first prove by downward induction that:

Sn ≥ E[Gτ |Fn] a.s. for all τ ∈ Tn, (III.6)

Sn = E[Gτn |Fn] a.s.. (III.7)

Notice that (III.6) and (III.7) are clear for n = ζ.

Let n ∈ J0, ζ − 1K. We assume (III.6) and (III.7) hold for n+1 and prove them for n. Let
τ ∈ Tn and consider the stopping time τ

′ = max(τ, n+ 1) ∈ Tn+1. We have:

E[Gτ |Fn] = Gn1{τ=n} + E[Gτ ′ |Fn]1{τ>n}, (III.8)

as τ = τ ′ on {τ > n}. We get that a.s.:

E[Gτ ′ |Fn] = E [E[Gτ ′ |Fn+1]Fn] ≤ E[Sn+1|Fn] (III.9)
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where we used (III.6) (with n+1 and τ ′) for the first inequality. Using the optimal equations
(III.4), we get:

E[Sn+1|Fn] ≤ Sn. (III.10)

Since (III.4) gives also Gn ≤ Sn, we get using (III.8) that a.s.

E[Gτ |Fn] ≤ Sn. (III.11)

This gives (III.6).

Consider τn instead of τ in (III.8). Then notice that on {τn > n}, we have max(τn, n+1) =
τn+1. Then the inequality in (III.9) (with τ ′ = τn+1) is in fact an equality thanks to (III.7)
(with n + 1). The inequality in (III.10) is also an equality on {τn > n} by definition of τn.
Then use that Gn = Sn on {τn = n}, so that (III.11), with τn instead of τ , is also an equality.
This gives (III.7). We then deduce that (III.6) and (III.7) hold for all n ∈ J0, ζK.

Notice that τ∗ = τ0 by definition. We deduce from (III.6), with n = 0, that E[S0] ≥ E[Gτ ]
for all τ ∈ T(ζ), and from (III.7), that E[S0] = E[Gτ∗ ]. This gives V∗ = E[S0] and τ∗ is
optimal.

Remark III.6 (Snell envelope). Assume that E[|Gn|] < ∞ for all n ∈ J0, ζK. Notice from
(III.4) that S is a super-martingale and that S dominates G. It is left to the reader to check
that S is in fact the smallest super-martingale which dominates G. It is called the Snell
enveloppe of G. For n ∈ J0, ζK, using that Sn = E[Sn+1|Fn] on {τ∗ > n}, we have:

Sn∧τ∗= Sτ∗1{τ∗≤n} + Sn1{τ∗>n}= Sτ∗1{τ∗≤n} + E[Sn+11{τ∗>n}|Fn] = E
[

S(n+1)∧τ∗ |Fn

]

.
(III.12)

This gives that (Sn∧τ∗ , n ∈ J0, ζK) is a martingale.

Exercise III.1. Assume that E[|Gn|] < ∞ for all n ∈ J0, ζK. Prove that τ is an optimal
stopping time if and only if Sτ = Gτ a.s. and (Sn∧τ , n ∈ J0, ζK) is a martingale. Deduce that
τ∗ is the minimal optimal stopping time (that is: if τ is optimal, then a.s. τ ≥ τ∗). Using the
Doob decomposition, see Remark IV.1, of the super-martingale S, prove that the stopping
time:

τ∗∗ = inf{n ∈ J0, ζJ; Sn > E[Sn+1|Fn]},

with the convention inf ∅ = ζ, is the maximal optimal stopping time. △

III.2.2 The general case

If the sequence G = (Gn, n ∈ J0, ζK) is not adapted to the filtration F , then we shall consider
the corresponding adapted sequence G′ = (G′n, n ∈ J0, ζK) given by:

G′n = E[Gn|Fn].

Thanks to Jensen inequality, we have E[(G′n)
+] ≤ E[G+

n ] < +∞ for all n ∈ J0, ζK. Recall T(ζ)
is the set of all stopping time with respect to the filtration F taking values in J0, ζK. Thanks
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to Fubini, we get that for τ ∈ T(ζ):

E[Gτ ] =

ζ
∑

n=0

E[Gn1{τ=n}] =

ζ
∑

n=0

E[G′n1{τ=n}] = E[G′τ ].

We thus deduce the maximal gain for the game G is also the maximal gain for the game G′.
The following Corollary is then an immediate consequence of Proposition III.5.

Corollary III.7. Let ζ ∈ N and G = (Gn, n ∈ J0, ζK) be such that E[G+
n ] < +∞ for all

n ∈ J0, ζK. Set Sζ = E[Gζ |Fζ ] and Sn = max (E[Gn|Fn],E[Sn+1|Fn]) for 0 ≤ n < ζ. Then
the stopping time τ∗ = inf{n ∈ J0, ζK; Sn = E[Gn|Fn]} is optimal and V∗ = E[S0].

Example III.8 (Marriage of a princess: the solution). We continue Example III.4. Recall
Σn is the rank of the n-th candidate among the ζ candidates, and Gn = 1{Σn=1} is the
gain for the princess if she chooses the n-th candidate. We assume the random permutation
Σ = (Σn, n ∈ J1, ζK) is uniformly distributed on the set Sζ of permutation on J1, ζK.

For a permutation σ = (σ1, . . . , σζ), we define the sequence of partial ranks r(σ) =
(r1, . . . , rζ) such that rn is the partial rank of σn in (σ1, . . . , σn). In particular, we have

r1 = 1 and rζ = σζ . Set E =
∏ζ

n=1J1, nK the state space of r(σ). It is easy to get that r is
one-to-one from Sζ to E. Set r(Σ) = (R1, . . . , Rn), so that Rn is the observed partial rank of
the n-th candidate. The filtration F = (Fn, n ∈ J1, ζK) generated by the observations is thus
given by Fn = σ(R1, . . . , Rn).

Since r is one-to-one, we deduce that r(Σ) is uniform on E. Since E has a product form,
we get that the random variables R1, . . . , Rn are independent and Rn is uniform on J1, nK.

The event {Σn = 1} is equal to {Rn = 1}
⋂ζ

k=n+1{Rk > 1}. Using the independence of
(Rn+1, . . . , Rζ) with Fn, we deduce that:

E[Gn|Fn] = E[1{Σn=1}|Fn] = 1{Rn=1}

ζ
∏

k=n+1

P(Rk > 1) =
n

ζ
1{Rn=1}.

By a direct induction, we get from the definition of Sn given in Corollary III.7 that Sn is a

function of Rn and more precisely Sn = max
(

n
ζ
1{Rn=1}, sn+1

)

, with sn+1 = E[Sn+1|Fn] =

E[Sn+1] as Sn+1, which is a function of Rn+1, is independent of Fn. The sequence (sn, n ∈
J1, ζK) is non-increasing as (Sn, n ∈ J1, ζK) is a super-martingale. We deduce that τ∗ = γn∗

for some n∗, where for n ∈ J1, ζK, the strategy γn corresponds to first observe n−1 candidate
and then choose the next one who is better than those who have been observed (or the last
if there is none): γn = inf{k ∈ Jn, ζK; Rk = 1}, with the convention that inf ∅ = ζ. We set
Γn = E[Gγn ] the gain corresponding to the strategy γn. We have Γ1 = 1/ζ and for n ∈ J2, ζK:

Γn =

ζ
∑

k=n

P(γn = k,Σk = 1) =

ζ
∑

k=n

P(Rn > 1, . . . , Rk = 1, . . . , Rζ > 1) =
n− 1

ζ

ζ
∑

k=n

1

k − 1
·
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Notice that ζΓ1 = ζΓζ = 1. For n ∈ J1, ζ − 1K, we have ζ(Γn − Γn+1) = 1 −
∑ζ−1

j=n 1/j. We

deduce that Γn is maximal for n∗ = inf{n ≥ 1;
∑ζ−1

j=n 1/j ≤ 1}. We also have V∗ = Γn∗
.

For ζ large, we get n∗ ∼ ζ/ e, so the optimal strategy is to observe a fraction 1/ e ≃ 37% of
the candidates, and then choose the next best one (or the last if there is none); the probability
to get the best prince is then V∗ = Γn∗

≃ n∗/ζ ≃ 1/ e ≃ 37%.

III.3 Infinite horizon case

We assume in this section that ζ = ∞. Let (Fn, n ∈ N) be a filtration. For simplicity, we
write T = T(∞) for the set of stopping times taking values in N̄. Notice the definition of
stopping time, and thus of the set T, does not depend on the choice of F∞ as long as this
σ-field contains Fn for all n ∈ N. For this reason, we shall take for F∞ the smallest possible
σ-field whose existence is given by the next lemma.

Lemma III.9. There exists a smallest σ-field containing
⋃

n∈NFn.

The smallest σ-field containing
⋃

n∈NFn is denoted by
∨

n∈NFn.

Proof. Let F be the set of all σ-fields containing
⋃

n∈NFn. Notice F is non-empty as it contains
G. Since the intersection of any family of σ-fields is a σ-field, we deduce that

⋂

F ′∈FF
′ is the

smallest σ-field containing
⋃

n∈NFn.

We use the following convention. The limit operator limn→∞ will be understood as
limn→∞;n<∞, and for a real sequence (an, n ∈ N̄), we set lim sup an = limn→∞ sup∞>k≥n ak.
as well as lim inf an = limn→∞ inf∞>k≥n ak.

The next two Examples illustrates the hypothesis on the gain process G = (Gn, n ∈ N̄)
which we shall use to get the existence of an optimal stopping time.

Example III.10. We consider the gain process G given by Gn = 1 − 1/n for n ∈ N and
G∞ = 0. Clearly we have V∗ = 1 and there is no optimal stopping time.

The absence of optimal stopping time in Example III.10 is due to the “bad” value of G∞.
For this reason, we will consider the continuity condition (III.2).

Example III.11. Let (Xn, n ∈ N) be independent Bernoulli random variables such that
P(Xk = 1) = P(Xk = 0) = 1/2. We consider the gain process G = (Gn, n ∈ N̄) given
by G0 = 0, Gn = (2n − 1)

∏n
k=1Xk for n ∈ N

∗ and a.s. G∞ = limn→∞Gn = 0. Let F be the
natural filtration of the process G. We have E[Gn] = 1 − 2−n so that V∗ ≥ 1. Notice G is a
non-negative sub-martingale as:

E[Gn+1|Fn] =
2n+1 − 1

2n+1 − 2
Gn ≥ Gn.

Thus, for any τ ∈ T, we have E[Gτ∧n] ≤ E[Gn] ≤ 1. And by Fatou Lemma, we get E[Gτ ] ≤ 1.
Thus, we deduce that V∗ = 1.
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Since E[Gn+1|Fn] > Gn on {Gn 6= 0} and Gn+1 = Gn on {Gn = 0}, we get at step n
that the expected future gain at step n+ 1 is better than the gain Gn. Therefore it is more
interesting to continue than to stop at step n. However this strategy will provide the gain
G∞ = 0, and is thus not optimal. We deduce there is no optimal stopping time.

The absence of optimal stopping time in Example III.11 is due to the “bad” integra-
bility condition as E[limn→∞Gn] < limn→∞ E[Gn]. For this reason, we will consider the
integrability condition (III.1).

The main result of this section is that if (III.1) and (III.2) hold, then there exists an op-
timal stopping time τ∗ ∈ T, see Corollary III.20. The main idea of the infinite horizon case,
inspired by the finite horizon case, is to consider a process S = (Sn, n ∈ J0, ζK) satisfying the
optimal equations (III.4). But since the initialization of S given in the finite horizon case is
now useless, we shall rely on a definition given by (III.6) and (III.7). However, we need to
consider a measurable version of the supremum of E[Gτ |Fn], where τ is any stopping time
such that τ ≥ n. This is developed in Section III.3.1. Then, as in Section III.2, we will
consider separately the adapted case in Sections III.3.2 and III.3.3, and then the general case
in Section III.3.4.

III.3.1 Essential supremum

The following proposition asserts the existence of a minimal random variable dominating a
family (which might be uncountable) of random variables in the sense of a.s. inequality. We
set R̄ = [−∞,+∞].

Proposition III.12. Let (Xt, t ∈ T ) be a family of random variables taking values in R̄.
There exists a unique (up to the a.s. equivalence) random variable X∗ taking values in R̄

such that:

(i) For all t ∈ T , P(X∗ ≥ Xt) = 1.

(ii) If there exists a random variable Y such that for all t ∈ T , P(Y ≥ Xt) = 1, then a.s.
Y ≥ X∗.

The random variable X∗ of the previous proposition is called the essential supremum of
(Xt, t ∈ T ) and is denoted by:

X∗ = ess sup
t∈T

Xt.

Proof. Since we are only considering inequalities between real random variables, by mapping
R̄ onto [0, 1] with an increasing one-to-one function, we can assume that Xt takes values in
[0, 1] for all t ∈ T .

Let I be the family of all countable sub-families of T . For each I ∈ I, consider the
(well defined) random variable XI = supt∈I Xt and define α = supI∈I E[XI ]. There exists a
sequence (In, n ∈ N) such that limn→+∞ E[XIn ] = α. The set I∗ =

⋃

n∈N In is countable and
thus I∗ ∈ I. Set X∗ = XI∗ . Since E[XIn ] ≤ E[X∗] ≤ α for all n ∈ N, we get E[X∗] = α.



40 CHAPTER III. OPTIMAL STOPPING

For any t ∈ T , consider J = I∗
⋃

{t}, which belongs to I, and notice that XJ =
max(Xt,X∗). Since α = E[X∗] ≤ E[XJ ] ≤ α, we deduce that E[X∗] = E[XJ ] and thus
a.s. XJ = X∗, that is P(X∗ ≥ Xt) = 1. This gives (i).

Let Y be as in (ii). Since I∗ is countable, we get that a.s. Y ≥ X∗. This gives (ii).

III.3.2 The adapted case: regular stopping times

We assume in this section that the sequence G = (Gn, n ∈ N̄) is adapted to the filtration
F = (Fn, n ∈ N̄), with F∞ =

∨

n∈NFn. We shall consider the following hypothesis which is
slightly weaker than (III.1):

(H) There exists a non-negative integrable random variable M such that for all n ∈ N̄, we
have a.s. Gn ≤ E[M |Fn].

Condition (H) implies that for all τ ∈ T, we have a.s. G+
τ ≤ E[M |Fτ ]. Notice that if (III.1)

holds then (H) holds with M = supk∈N̄G+
k .

For n ∈ N, let Tn = {τ ∈ T; τ ≥ n} be the set of stopping times larger than or equal to
n. We define the subset of Tn of regular stopping times, T

′
n, such that for all finite k ≥ n:

E[Gτ |Fk] > Gk a.s. on {τ > k}.

Notice that T′n is non-empty as it contains n and that the definition of regular stopping time
depends on the gain sequence G.

Lemma III.13. Assume that G is adapted and a.s. E[G+
τ ] < +∞ for all τ ∈ T. Let n ∈ N.

(i) If τ ∈ Tn, then there exists a regular stopping time τ ′ ∈ T
′
n such that τ ′ ≤ τ and a.s.

E[Gτ ′ |Fn] ≥ E[Gτ |Fn].

(ii) If τ ′, τ ′′ ∈ T
′
n are regular, then the stopping time τ = max(τ ′, τ ′′) ∈ T

′
n is regular and

a.s. E[Gτ |Fn] ≥ max (E[Gτ ′ |Fn],E[Gτ ′′ |Fn]).

Proof. Let τ ∈ Tn and set τ ′ = inf{k ≥ n; E[Gτ |Fk] ≤ Gk} with the convention that
inf ∅ = ∞. Notice that τ ′ is a stopping time and that a.s. n ≤ τ ′ ≤ τ . On {τ ′ = ∞}, we
have τ = ∞ and a.s. Gτ ′ = G∞ = Gτ . For ∞ > m ≥ n, we have, on {τ ′ = m}, that a.s.
E[Gτ ′ |Fm] = Gm ≥ E[Gτ |Fm]. We deduce that for all finite k ≥ n a.s. on {τ ′ ≥ k}:

E[Gτ ′ |Fk] =
∑

m∈Jk,∞K

E
[

E[Gτ ′ |Fm]1{τ ′=m}|Fk

]

≥
∑

m∈Jk,∞K

E
[

E[Gτ |Fm]1{τ ′=m}|Fk

]

.

And thus, for all finite k ≥ n:

E[Gτ ′ |Fk]1{τ ′≥k} ≥ E[Gτ |Fk]1{τ ′≥k}. (III.13)

We have on {τ ′ > k}, E[Gτ |Fk] > Gk. Then use (III.13) to get that τ
′ is regular. Take k = n

in (III.13) and use that τ ′ ≥ n a.s. to get the last part of (i).
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Let τ ′, τ ′′ ∈ T
′
n and τ = max(τ ′, τ ′′). By construction τ is a stopping time. We have for

all m ≥ k ≥ n and k finite:

E[Gτ1{τ ′=m}|Fk] = E[Gτ ′1{m=τ ′≥τ ′′}|Fk] + E[Gτ ′′1{τ ′′>τ ′=m}|Fk].

Using that τ ′′ ∈ T
′
n, we get for all finite m ≥ k ≥ n:

E[Gτ ′′1{τ ′′>τ ′=m}|Fk] = E
[

E[Gτ ′′ |Fm]1{τ ′′>m}1{τ ′=m}|Fk

]

≥ E[Gm1{τ ′′>τ ′=m}|Fk].

We deduce that for all m ≥ k ≥ n and k finite:

E[Gτ1{τ ′=m}|Fk] ≥ E[Gτ ′1{τ ′=m}|Fk]. (III.14)

By summing (III.14) over m with m > k and using that τ ′ ∈ T
′
n, we get:

E[Gτ |Fk]1{τ ′>k} ≥ E[Gτ ′ |Fk]1{τ ′>k} > Gk1{τ ′>k}.

By symmetry, we also get E[Gτ |Fk]1{τ ′′>k} > Gk1{τ ′′>k}. Since {τ > k} = {τ ′ > k}
⋃

{τ ′′ >
k}, this implies that E[Gτ |Fk] > Gk a.s. on {τ > k}. Thus, τ is regular.

By summing (III.14) over m with m ≥ k = n, and using that τ ′ ≥ n a.s., we get
E[Gτ |Fn] ≥ E[Gτ ′ |Fn]. By symmetry, we also have E[Gτ |Fn] ≥ E[Gτ ′′ |Fn]. We deduce the
last part of (ii).

The next lemma is the main result of this section.

Lemma III.14. We assume that G is adapted and hypothesis (H) and (III.2) hold. Then,
for all n ∈ N, there exists τ◦n ∈ Tn such that a.s. ess supτ∈Tn

E[Gτ |Fn] = E[Gτ◦n |Fn].

Proof. We set X∗ = ess supτ∈Tn
E[Gτ |Fn]. According to the proof of Proposition III.12,

there exists a sequence (τk, k ∈ N) of elements of Tn such that X∗ = supk∈N E[Gτk |Fn].
Thanks to (i) of Lemma III.13, there exists a sequence (τ ′k, k ∈ N) of regular stopping times,
elements of T′n, such that E[Gτ ′

k
|Fn] ≥ E[Gτk |Fn]. According to (ii) of Lemma III.13, for all

k ∈ N, the stopping time τ ′′k = max0≤j≤k τ
′
j belongs to T

′
n, the sequence (E[Gτ ′′

k
|Fn], k ∈ N)

is non-decreasing and E[Gτ ′′
k
|Fn] ≥ E[Gτ ′

k
|Fn] ≥ E[Gτk |Fn]. In particular, we get X∗ =

supk∈N E[Gτk |Fn] ≤ supk∈N E[Gτ ′′
k
|Fn] ≤ X∗, so that a.s. X∗ = lim supk→∞ E[Gτ ′′

k
|Fn].

Let τ◦n ∈ Tn be the limit of the non-decreasing sequence (τ
′′
k , k ∈ N). Set Yk = E[M |Fτ ′′

k
].

Thanks to Corollary IV.3, we have that the sequence (Yk, k ∈ N) converges a.s. and in L1

towards Y∞ = E[M |Fτ◦n
]. Then, we use Lemma IV.2 with Xk = Gτ ′′

k
to get that X∗ ≤

E[lim supk→∞Gτ ′′
k
|Fn]. Thanks to (III.2), we have a.s. lim supk→∞Gτ ′′

k
≤ Gτ◦n

. So we get
that a.s. X∗ ≤ E[Gτ◦n |Fn]. To conclude use that by definition of X∗, we have E[Gτ◦n |Fn] ≤ X∗
and thus X∗ = E[Gτ◦n |Fn].

We have the following Corollary.

Corollary III.15. We assume that G is adapted and hypothesis (H) and (III.2) hold. Then,
we have that τ◦0 is optimal that is V∗ = E[Gτ◦0

].

Proof. Lemma III.14 gives that E[Gτ ] ≤ E[Gτ◦0
] for all τ ∈ T. Thus τ◦0 is optimal.

Exercise III.2. Assume that hypothesis (H) and (III.2) hold. Let n ∈ N. Prove that the limit
of a non-decreasing sequence of regular stopping times, elements of T′n, is regular. Deduce
that τ◦n in Lemma III.14 is regular, that is τ◦n belongs to T

′
n. △
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III.3.3 The adapted case: optimal equations

We assume in this section that the sequence G = (Gn, n ∈ N̄) is adapted to the filtration
F = (Fn, n ∈ N̄), with F∞ =

∨

n∈NFn. Recall that Tn = {τ ∈ T; τ ≥ n} for n ∈ N. We
assume (H) holds. We set for n ∈ N:

Sn = ess sup
τ∈Tn

E[Gτ | Fn]. (III.15)

The next proposition is the main result of this section.

Proposition III.16. We assume that G is adapted and hypothesis (H) and (III.2) hold.
Then, for all n ∈ N, we have E[S+

n ] < +∞. The sequence (Sn, n ∈ N) satisfies the optimal
equations (III.4). We also have V∗ = E[S0].

Proof. Recall that (H) implies E[G+
τ ] < +∞ for all τ ∈ Tn. Then use Lemma III.14 to

deduce that E[S+
n ] = E[G+

τ◦n
] < +∞. For τ ∈ Tn, we have (III.8) and (III.9) by definition of

the essential supremum for Sn+1. We deduce that a.s. E[Gτ | Fn] ≤ max(Gn,E[Sn+1| Fn]).
This implies, see (ii) of Proposition III.12, that a.s. Sn ≤ max(Gn,E[Sn+1| Fn]).

According to Lemma III.14, there exists τ◦n+1 ∈ Tn+1 such that a.s. Sn+1 = E[Gτ◦n+1
|Fn+1].

Since τ◦n+1 (resp. n) belongs also to Tn, we have Sn ≥ E[Gτ◦n+1
|Fn] = E[Sn+1|Fn] (resp.

Sn ≥ Gn). This implies that Sn ≥ max(Gn,E[Sn+1| Fn]). And thus (Sn, n ∈ N) satisfies the
optimal equations.

Use Corollary III.15 and Lemma III.14 to get V∗ = E[S0].

We conclude this section by giving an explicit optimal stopping time.

Proposition III.17. We assume that G is adapted and hypothesis (H) and (III.2) hold.
Then τ∗ defined by (III.5), with (Sn, n ∈ N) given by (III.15), is optimal.

Proof. If V∗ = −∞ then nothing has to be proven. So, we assume V∗ > −∞. According to
Corollary III.15, there exists an optimal stopping time τ .

In a first step, we check that τ ′ = min(τ, τ∗) is also optimal. Since E[G+
τ ] < +∞, by

Fubini and the definition of Sn, we have:

E
[

Gτ1{τ>τ∗}

]

=
∑

n∈N

E
[

Gτ1{τ>τ∗=n}

]

=
∑

n∈N

E
[

E[Gτ |Fn]1{τ>τ∗=n}

]

≤
∑

n∈N

E
[

Sn1{τ>τ∗=n}

]

.

Since Sn = Gn on {τ∗ = n} for n ∈ N, we deduce that:

E
[

Gτ1{τ>τ∗}

]

≤
∑

n∈N

E
[

Gn1{τ>τ∗=n}

]

= E
[

Gτ∗1{τ>τ∗}

]

.

This implies that:

E [Gτ ] = E
[

Gτ1{τ>τ∗}

]

+ E
[

Gτ1{τ≤τ∗}
]

≤ E
[

Gτ∗1{τ>τ∗}

]

+ E
[

Gτ1{τ≤τ∗}
]

= E [Gτ ′ ] .

And thus τ ′ is optimal.
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In a second step we check that a.s. τ ′ = τ∗. Let us assume that P(τ
′ < τ∗) > 0. Recall

τ◦n defined in Lemma III.14. We define the stopping time τ ′′ by τ ′′ = τ∗ on {τ
′ = τ∗} and

τ ′′ = τ◦n on {n = τ ′ < τ∗} for n ∈ N. Since E[G+
τ ′′ ] < +∞, by Fubini and the definition of Sn,

we have:

E
[

Gτ ′′1{τ ′<τ∗}

]

=
∑

n∈N

E
[

Gτ◦n1{n=τ ′<τ∗}

]

=
∑

n∈N

E
[

E[Gτ◦n |Fn]1{n=τ ′<τ∗}

]

=
∑

n∈N

E
[

Sn1{n=τ ′<τ∗}

]

.

Since Sn > Gn on {τ∗ > n} for n ∈ N, we deduce that:

E
[

Gτ ′′1{τ ′<τ∗}

]

>
∑

n∈N

E
[

Gn1{n=τ ′<τ∗}

]

= E
[

Gτ ′1{τ ′<τ∗}

]

unless E
[

Gτ ′′1{τ ′<τ∗}

]

= E
[

Gτ ′1{τ ′<τ∗}

]

= −∞. The latter case is not possible since
E [Gτ ′ ] = V∗ > −∞. Thus, we deduce that E

[

Gτ ′′1{τ ′<τ∗}

]

> E
[

Gτ ′1{τ ′<τ∗}

]

. This im-
plies (using again that E[Gτ ′ ] > −∞) that:

E [Gτ ′′ ] = E
[

Gτ ′1{τ ′=τ∗}

]

+ E
[

Gτ ′′1{τ ′<τ∗}

]

> E
[

Gτ ′1{τ ′=τ∗}

]

+ E
[

Gτ ′1{τ ′<τ∗}

]

= E [Gτ ′ ] .

This is impossible as τ ′ is optimal. Thus, we have a.s. τ ′ = τ∗ and τ∗ is optimal.

Exercise III.3. Assume that G is adapted and hypothesis (H) and (III.2) hold and V∗ > −∞.

1. Deduce from the proof of Proposition III.17, that τ∗ is the minimal optimal stopping
time.

2. Deduce that if G∞ = −∞ a.s., then a.s. τ∗ is finite.

△

Exercise III.4. We assume that G is adapted and hypothesis (H) and (III.2) hold. We set:

Wn = ess sup
τ∈Tn+1

E[Gτ | Fn] and τ∗∗ = inf{n ∈ N; Gn > Wn}, (III.16)

with the convention that inf ∅ = +∞.

1. Prove that Wn = E[Sn+1|Fn] and that τ∗∗ is optimal.

2. Assume that V∗ > −∞. Prove that if τ is optimal, then a.s. τ∗ ≤ τ ≤ τ∗∗.

△

Exercise III.5. Assume that G is adapted and hypothesis (H) and (III.2) hold, as well as
V∗ > −∞. Prove that τ∗ is regular. △

Example III.18 (Castle to sell: setting and solution). Continuation of Example III.2. Let
X be a random variable taking values in [−∞,+∞) such that E[(X+)2] < +∞ and P(X >
−∞) > 0. Let (Xn, n ∈ N

∗) be a sequence of independent random variables distributed as
X. Let c > 0. We assume we can call back a previous buyer so that the gain at step n ∈ N

∗

is given by Gn =Mn−nc, with Mn = max1≤k≤nXk and Xk is the proposal of the k-th buyer
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of the castle. We set G∞ = −∞. We consider the σ-field Fn = σ(X1, . . . ,Xn) for n ∈ N
∗

and F∞ =
∨

n∈N∗ Fn. (Notice that to stick to the presentation of this section, we could set
G0 = −∞ and F0 the trivial σ-field.)

We first assume that X is bounded below, that is there exists a ∈ R such that a.s. X ≥ a.
Notice that max(x, y) = (x−y)++y for x, y ∈ R. In particular, if Y is a real random variable
independent of X, we get:

E[max(X,Y )|Y ] = f(Y ) + Y with f(x) = E[(X − x)+].

We deduce that:

E[Gn+1|Fn] = E[max(Xn+1,Mn)|Mn]− (n+ 1)c = f(Mn)− c+Gn.

Since E[X+] is finite, we get that the function f(x) = E[(X − x)+] is continuous strictly de-
creasing on (−∞, x0), with x0 = sup{x ∈ R; P(X ≥ x) > 0}, and such that limx→−∞ f(x) =
+∞ and limx→x0 f(x) = 0. Since a.s. limn→∞Mn = x0, we get that a.s. limn→∞ f(Mn) = 0.
Thus the stopping time τ = inf{n ∈ N

∗, f(Mn) ≤ c} is a.s. finite. From the properties of
f , we deduce there exists a unique c∗ ∈ R such that f(c∗) = c. Using that (f(Mn), n ∈ N

∗)
is non increasing and that it jumps at record times of the sequence (Xn, n ∈ N

∗), we get the
representation:

τ = inf{n ∈ N
∗, Xn ≥ c∗}.

Furthermore, for n ∈ N
∗, we have a.s. that:

E[Gn+1|Fn] > Gn on {n < τ}, (III.17)

E[Gn+1|Fn] ≤ Gn on {n ≥ τ}. (III.18)

According to Lemma III.19, we have that (III.1) and (III.2) hold. According to Proposi-
tion III.17, τ∗ given by (III.5) is optimal. We deduce from (III.17) that a.s. τ∗ ≥ τ . Since a.s.
X ≥ a and (III.1) holds, we get that E[|Gn|] < +∞ for all n ∈ N

∗. Mimicking the proof of
the stopping theorem for super-martingale, using that τ∗ ≥ τ , we deduce from (III.18) that
a.s. on {τ = n} for all finite k ≥ n:

E[Gτ∗∧k|Fn] ≤ Gn.

Letting k goes to infinity, we deduce from (III.2) and Fatou lemma that E[Gτ∗ |Fn] ≤ Gn a.s.
on {τ = n}. Since τ is bounded, this gives E[Gτ∗ ] ≤ E[Gτ ]. Since τ∗ is optimal, we deduce
that τ is also optimal (and in fact equal to τ∗ as τ∗ is the minimal optimal stopping time
according to Exercise III.3). We have:

V∗ = E[Gτ ] = E[Xτ ]− cE[τ ] =
E[X1{X≥c∗}]

P(X ≥ c∗)
−

c

P(X ≥ c∗)
=

E[(X − c∗)
+]− c

P(X ≥ c∗)
+ c∗ = c∗,

where we used that τ is geometric with parameter P(X ≥ c∗) for the third equality and
E[(X − c∗)

+] = f(c∗) = c for the last.
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If X is not bounded below by a constant a, we set Xa = max(a,X), Ma
n = max(a,Mn)

and Ga
n =Ma

n −nc for n ∈ N
∗. Let V a

∗ = supτ∈T E[G
a
τ ], with T the set of stopping times with

respect to the filtration F . Since Gn ≤ Ga
n for all n ∈ N

∗, we deduce that V∗ ≤ V a
∗ . According

to the first part, we get that V a
∗ = E[Ga

τa ] = ca∗ with τa = inf{n ∈ N
∗, Xa

n ≥ ca∗} and ca∗ the
unique root of E[(max(X, a)−x)+] = c. Let c∗ be the unique root of E[(X−x)+] = c and set
τ = inf{n ∈ N

∗, Xn ≥ c∗}. Notice that for a < c∗ we have ca∗ = c∗, and thus τ
a = τ as well

as Ga
τa = Gτ . We deduce that V∗ ≥ E[Gτ ] = V a

∗ , and thus V∗ = E[Gτ ] = c∗ and τ is optimal.

If one can not call back a previous buyer, then the gain is G′′n = Xn − nc. Let V ′′∗ be the
corresponding maximal gain. On the one hand, since G′′n ≤ Gn for all n ∈ N, we deduce that
V ′′∗ ≤ V∗. On the other hand, we have G

′′
τ = Gτ . This implies that V

′′
∗ ≥ E[G′′τ ] = E[Gτ ] = V∗.

We deduce that V ′′∗ = c∗ and τ is also optimal in this case.

Lemma III.19. Let X be a random variable taking values in [−∞,+∞). Let (Xn, n ∈ N
∗) be

a sequence of random variables distributed as X. Let c ∈]0,+∞[. Set Gn = max1≤k≤nXk−nc
for n ∈ N

∗. If E[(X+)2] < +∞, then E[supn∈N∗ G+
n ] < +∞ and lim supGn = −∞.

With the notation of Lemma III.19, one can prove that if the random variables (Xn, n ∈
N
∗) are independent then E[supn∈N∗(G′′n)

+] < +∞ implies that E[(X+)2] < +∞.

Proof. Assume that E[(X+)2] < +∞. Since Xn − nc ≤ Gn ≤ max1≤k≤n(Xk − kc) for all
n ∈ N

∗, we deduce that supn∈N∗ Gn = supn∈N∗(Xn − nc). This gives:

E

[

sup
n∈N∗

G+
n

]

= E

[

sup
n∈N∗

(Xn − nc)+
]

≤ E

[

∑

n∈N∗

(Xn − nc)+
]

= E

[

∑

n∈N∗

(X − nc)+
]

,

where we used Fubini (twice) and that Xn is distributed as X in the last equality. Then use
that for x ∈ R:

∑

n∈N∗

(x− n)+ ≤
∑

n∈N∗

x+1{n<x+} ≤ (x+)2,

to get E
[

∑

n∈N∗(X − nc)+
]

≤ E[(X+)2]/c < +∞. So we obtain E

[

supn∈N∗ G+
n

]

< +∞.

Set G′n = max1≤k≤nXk − nc/2. Using the previous result (with c replaced by c/2),
we deduce that supn∈N∗(G′n)

+ is integrable and thus a.s. lim supG′n < +∞. Since Gn =
G′n − nc/2, we get that a.s. lim supGn ≤ lim supG′n − limnc/2 = −∞.

III.3.4 The general case

We state the main result of this section. Let T denote the set of stopping times (taking values
in N̄) with respect to the filtration (Fn, n ∈ N).

Corollary III.20. Let G = (Gn, n ∈ N̄) be a sequence of random variables such that (III.1)
and (III.2) hold. Then there exists an optimal stopping time.

Proof. According to the first paragraph of Section III.3, without loss of generality, we can
assume that F∞ =

∨

n∈NFn. If G is adapted to the filtration F = (Fn, n ∈ N̄) then use
M = supn∈N̄ G+

n , so that (H) holds, and Corollary III.15 to conclude.
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If the sequence G is not adapted to the filtration F , then we shall consider the corre-
sponding adapted sequence G′ = (G′n, n ∈ N̄) given by G′n = E[Gn|Fn] for n ∈ N̄. Notice G′

is well defined thanks to (III.1). Thanks to (III.1), we can use Fubini lemma to get for τ ∈ T:

E[Gτ ] =
∑

n∈N̄

E[Gn1{τ=n}] =
∑

n∈N̄

E[G′n1{τ=n}] = E[G′τ ].

We thus deduce the maximal gain for the game G is also the maximal gain for the game G′.

Let M = E
[

supn∈N̄G+
n |F∞

]

. Notice then that (H) holds with G replaced by G′. Then,
to conclude using Corollary III.15, it is enough to check that (III.2) holds with G replaced
by G′.

For a ∈ R and n ≥ k finite, using Jensen inequality, we get:

max(a,G′n) ≤ E[max(a,Gn)|Fn] ≤ E
[

max
(

a, sup
ℓ∈Jk,∞K

Gℓ

)∣

∣Fn

]

.

Since E
[

|max
(

a, supℓ∈Jk,∞K Gℓ

)

|
]

is finite thanks to (III.1), we deduce from Corollary IV.3
that:

lim
n→+∞

E
[

max
(

a, sup
ℓ∈Jk,∞K

Gℓ

)∣

∣Fn

]

= E
[

max
(

a, sup
ℓ∈Jk,∞K

Gℓ

)∣

∣F∞
]

.

Thus we get max(a, lim supG′n) ≤ E
[

max
(

a, supℓ∈Jk,∞K Gℓ

)∣

∣F∞
]

. Letting k goes to infinity,
we get by dominated convergence and using (III.2) that:

max(a, lim supG′n) ≤ E
[

max
(

a, lim supGn

)
∣

∣F∞
]

≤ E[max(a,G∞)| F∞].

This gives lim supG′n ≤ E[max(a,G∞)| F∞]. Letting a goes to −∞, we get by monotone
convergence that lim supG′n ≤ E[G∞| F∞] = G′∞. Thus (III.2) holds with G replaced by G′.
This finishes the proof.

Exercise III.6. Let G = (Gn, n ∈ N̄) be a sequence of random variables such that (III.1) and
(III.2) hold. Let τ∗ = inf{n ∈ N; ess supτ∈Tn

E[Gτ |Fn] = E[Gn|Fn]} with inf ∅ = ∞. Prove
that τ∗ is optimal. △

III.4 From finite horizon to infinite horizon

In the finite horizon case, the random variable Sn is defined recursively, and thus defined in
a constructive way. There is no such constructive way in the infinite horizon case. Thus, is
it a natural to ask if the infinite horizon case is the limit of finite horizon cases, when the
horizon ζ goes to infinity. We shall give sufficient condition for this to hold.

We assume in this section that the sequence G = (Gn, n ∈ N̄) is adapted to the filtration
F = (Fn, n ∈ N̄) (with F∞ =

∨

n∈NFn), and that (III.1) holds. We shall also consider the
following assumption which is stronger than (III.2):

lim supGn = G∞ a.s.. (III.19)
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Recall that Tn = {τ ∈ T; τ ≥ n} for n ∈ N and set Tζ = {τ ∈ T; τ ≤ ζ} for ζ ∈ N. For

ζ ∈ N and n ∈ J0, ζK we define Tζ
n = Tn

⋂

T
ζ as well as:

Sζ
n = ess sup

τ∈Tζ
n

E[Gτ | Fn]. (III.20)

From Sections III.2.1 and III.3.3, we get that Sζ
ζ = Gζ and Sζ = (Sζ

n, n ∈ J0, ζK) satisfies the

optimal equations (III.4). For n ∈ N, the sequence (Sζ
n, ζ ∈ Jn,∞J) is non-decreasing and

denote by S∗n its limit. Notice that (S∗n, n ∈ N) satisfies the optimal equations (III.4) with
ζ = ∞. In fact (S∗n, n ∈ N) is the smallest sequence satisfying the optimal equations (III.4)

with ζ = ∞. For n ∈ N, we have a.s. S∗n = ess sup
τ∈T

(b)
n

E[Gτ | Fn], where T
(b)
n = Tn

⋂

T
(b)

and T
(b) ⊂ T is the subset of bounded stopping times.

By construction of Sn, we have for all n ∈ N:

S∗n ≤ Sn, (III.21)

The sequence (τ ζ∗ , ζ ∈ N), with τ ζ∗ = inf{n ∈ J0, ζK; Sζ
n = Gn}, is non-decreasing and thus

converge to a limit, say τ∗∗ ≤ τ∗ with τ∗∗ ∈ N̄ and

τ∗∗ = inf{n ∈ N; S∗n = Gn}. (III.22)

We set V ζ
∗ = E[Sζ

0 ] = supτ∈Tζ E[Gτ ] and V∗ = E[S0] = supτ∈T E[Gτ ]. Let V ∗∗ be the non-

decreasing limit of the sequence (V ζ
∗ , ζ ∈ N), so that V ∗∗ ≤ V∗. We shall say the infinite

horizon case is the limit of the finite horizon cases if V ∗∗ = V∗. Notice, we don’t have V
∗
∗ = V∗

in all cases, see Example III.21 taken from [3].

Example III.21. Let (Xn, n ∈ N
∗) be independent random variables such that P(Xn = 1) =

P(Xn = −1) = 1/2 for all n ∈ N. Let c = (cn, n ∈ N
∗) be a strictly increasing sequence such

that 0 < cn < 1 for all n ∈ N
∗ and limn→∞ cn = 1. We define G0 = 0, G∞ = 0, and for

n ∈ N
∗:

Gn = min
(

1,Wn

)

− cn,

with Wn =
∑n

k=1Xk. Notice that Gn ≤ 1 and a.s. lim supGn = G∞ so that (III.1) and
(III.19) hold. (Notice also that E[|Gn|] for all n ∈ N̄.) Since E[Wn+1|Fn] = Wn, we deduce
from Jensen inequality that a.s. E[min(1,Wn+1)|Fn] ≥ min(1,Wn). Then use that the
sequence c is strictly increasing to get that for all n ∈ N a.s. Gn > E[Gn+1|Fn]. The optimal

equations imply that Sζ
n = Gn for all n ∈ J0, ζK and ζ ∈ N and thus τ ζ∗ = 0. We deduce that

S∗n = Gn for all n ∈ N, τ∗∗ = 0 and V ∗∗ = 0.

Since (III.1) and (III.2) hold, we deduce there exists an optimal stopping time for the
infinite horizon case. The stopping time τ = inf{n ∈ N

∗; Wn = 1} is a.s. strictly positive and
finite. On {τ = n}, we have that Gn = 1− cn as well as Gm ≤ 0 < Gn for all m ∈ J0, n − 1K
and Gm ≤ 1− cm < Gn for all m ∈Kn,∞K. We deduce that Gτ = supτ ′∈TGτ ′ , that is τ = τ∗
is optimal. Notice that V∗ > V ∗∗ = 0 and a.s. τ∗ > τ∗∗ = 0. Thus, the infinite horizon case is
not the limit of the finite horizon cases.
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We end this Section by giving sufficient conditions so that the infinite horizon case is
the limit of the finite horizon cases. In particular, we shall consider the following condition
(which is stronger than (III.2)):

lim
nր∞

Gn = G∞ a.s.. (III.23)

Proposition III.22. Let (Gn, n ∈ N) be an adapted sequence of random variables taking
values in R and define G∞ by (III.19). Assume that (III.1) holds and that the sequence
(Tn, n ∈ N), with Tn = supk≥nGk −Gn, is uniformly integrable. If there exists an a.s. finite
optimal stopping time or if (III.23) holds, then the infinite horizon case is the limit of the
finite horizon cases.

Proof. If V∗ = −∞, nothing has to be proven. Let us assume that V∗ > −∞. According to
Proposition III.17 (and since (III.1) implies condition (H)), there exists an optimal stopping
time, say τ . Since E[Gmin(τ,n)] ≤ V n

∗ , we get:

0 ≤ V∗ − V n
∗ ≤ E[Gτ −Gmin(τ,n)] = E

[

1{n<τ<∞}(Gτ −Gn)
]

+ E
[

1{τ=∞}(G∞ −Gn)
]

≤ E
[

1{n<τ<∞}Tn

]

+ E
[

1{τ=∞}(G∞ −Gn)
+
]

.

Recall (Tn, n ∈ N) is uniformly integrable. Since a.s. limn→+∞ 1{n<τ<∞} = 0, we deduce
from Corollary IV.5 (with Yn = |Tn|) that limn→+∞ E

[

1{n<τ<∞}Tn

]

= 0.
If τ is a.s. finite, then we have E

[

1{τ=∞}(G∞ −Gn)
+
]

= 0. If (III.23) holds, then we
have that a.s. limn→+∞(G∞ −Gn)

+ = 0. Since 1{τ=∞}(G∞ −Gn)
+ ≤ |Tn|, we deduce from

Corollary IV.5 (with Yn = |Tn|) that limn→+∞ E
[

1{τ=∞}(G∞ −Gn)
+
]

= 0. In both cases,
we deduce that limn→∞ V∗ − V n

∗ = 0. This gives the result.

We give an immediate Corollary of this result.

Corollary III.23. Let (Gn, n ∈ N) be an adapted sequence of random variables taking values
in R and define G∞ by (III.19). Assume that for n ∈ N we have Gn = Zn − Wn, with
(Zn, n ∈ N) adapted, E[supn∈N |Zn|] < +∞ and (Wn, n ∈ N) an adapted non-decreasing
sequence of non-negative random variables. If there exists an a.s. finite optimal stopping
time or if (III.23) holds, then the infinite horizon case is the limit of the finite horizon cases.

Proof. For k ≥ n, we have Gk −Gn ≤ Zk − Zn ≤ 2 supℓ∈N |Zℓ|. This gives that the sequence
(Tn = supk≥nGk − Gn, n ∈ N) is non-negative and bounded by 2 supℓ∈N |Zℓ|, hence it is
uniformly integrable. We conclude using Proposition III.22.

Using super-martingale theory, we can prove directly the following result (which is not a
direct consequence of the previous Corollary with Wn = 0).

Proposition III.24. Let (Gn, n ∈ N) be an adapted sequence of random variables taking
values in R and define G∞ by (III.19). Assume that E[supn∈N |Gn|] < +∞. Then the infinite
horizon case is the limit of the finite horizon cases. Further more, we have that a.s. τ∗ = τ∗∗ ,
where τ∗ is defined by (III.5) with (Sn, n ∈ N) given by (III.15), and τ∗∗ is defined by (III.22)
with (S∗n, n ∈ N) given by (III.20).



III.5. THE MARKOVIAN CASE 49

Proof. Recall that (S∗n, n ∈ N) satisfies the optimal equations (III.4) with ζ =∞. Since it is
bounded by supn∈N |Gn| which is integrable, it is a super-martingale and it converges a.s. to a
limit say S∗∞. We have S

∗
n ≥ Gn for all n ∈ N, which implies thanks to (III.19) that S∗∞ ≥ G∞.

Since (S∗n, n ∈ N) is a uniformly integrable super-martingale, we deduce from the stopping
theorem, see Corollary IV.4, that for n ∈ N fixed, we have S∗n ≥ E[S∗τ |Fn] ≥ E[Gτ |Fn] a.s.
for all stopping time τ ≥ n. This implies that S∗n ≥ Sn a.s. according to Proposition III.12.
Thanks to (III.21), we get that a.s. S∗n ≤ Sn and thus a.s. S∗n = Sn for all n ∈ N. In
particular, we have V∗ = V ∗∗ . Thus, the infinite horizon case is the limit of the finite horizon
cases. Using (III.22), we get that a.s. τ∗ = τ∗∗ .

Example III.25 (Castle to sell: from finite to infinite horizon). We keep notations and hy-
pothesis from Example III.18 and consider the gain Gn =Mn − nc with Mn = max1≤k≤nXk

and c > 0. Recall the random variables (Xk, k ∈ N
∗ are independent and distributed as X.

We assume furthermore that E[|X|] < +∞. Notice hypothesis of Corollary III.23 are not
fulfilled (with Zn = Mn and Wn = nc) unless X is bounded. However, we can follow the
proof of Proposition III.22 to check the infinite horizon case is the limit of the finite horizon
cases. Since the optimal stopping time τ∗ = inf{n ∈ N

∗, Xn ≥ c∗} is a.s. finite, see Example
III.18, we have, with the notation of the proof of Proposition III.22 that:

0 ≤ V∗ − V n
∗ ≤ E[Gτ∗ −Gmin(τ∗,n)] = E

[

1{n<τ∗<∞}(Gτ∗ −Gn)
]

≤ E
[

1{n<τ∗<∞}(Xτ∗ −X1)
]

,

where we used Gτ∗ − Gn = Xτ∗ − τ∗c −Mn + nc ≤ Xτ∗ − X1 for the last equation. Since
Xτ∗ and X1 are integrable, we get limn→+∞ E

[

1{n<τ∗<∞}(Xτ∗ −X1)
]

= 0 by dominated
convergence. That is limn→+∞ V n

∗ = V∗ and thus the infinite horizon case is the limit of the
finite horizon cases. (Notice that if 1 > P(X = −∞) > 0, then the infinite horizon case is no
more the limit of the finite horizon cases as V n

∗ = −∞ for all n ∈ N
∗.)

If one can not call back a previous buyer, then the gain is G′′n = Xn − nc. Let V∗ (resp.
(V ′′∗ )

n) denote the maximal gain when the horizon is infinite (resp. equal to n). Arguing as
above, we get:

0 ≤ V ′′∗ − (V ′′∗ )
n ≤ E

[

1{n<τ∗<∞}(Xτ∗ −Xn)
]

= E
[

1{n<τ∗<∞}(Xτ∗ −X1)
]

,

as conditionally on {n < τ∗ <∞}, (Xτ∗ ,Xn) and (Xτ∗ ,X1) have the same distribution. And
we deduce the infinite horizon case is the limit of the finite horizon cases.

Example III.26. Extend Proposition III.24 to the non adapted case.

III.5 The Markovian case

We assume in this section that ζ =∞. Let (Fn, n ∈ N) be a filtration and we write T(b) ⊂ T

for the subset of bounded stopping times. Let (Xn, n ∈ N) be a Markov chain with state space
E (at most countable) and transition kernel P . Let ϕ be a non-negative function defined on
E. We shall consider the optimal stopping problem for the game with gain Gn = ϕ(Xn) for
n ∈ N and G∞ = lim supGn.

We set:
ϕ0 = ϕ and, for n ∈ N, ϕn+1 = max(ϕ,Pϕn).



50 CHAPTER III. OPTIMAL STOPPING

Lemma III.27. The sequence of functions (ϕn, n ∈ N) is non-decreasing and converges to
a limit say ϕ∗ such that ϕ∗ = max(ϕ,Pϕ∗). For any non-negative function g such that
g ≥ max(ϕ,Pg), we have that g ≥ ϕ∗.

Proof. By an elementary induction argument, we get that the sequence (ϕn, n ∈ N) is non-
decreasing. Let ϕ∗ be its limit. By monotone convergence, we get that ϕ∗ = max(ϕ,Pϕ∗).
Let g be a non-negative function g such that g ≥ max(ϕ,Pg), we have by induction that
g ≥ ϕn and thus g ≥ ϕ∗.

We now give the main result of this section.

Proposition III.28. Let x ∈ E and ϕ a non-negative function defined on E. Assume that
Ex[supn∈N ϕ(Xn)] < +∞. Then, we have:

ϕ∗(x) = sup
τ∈T(b)

Ex[ϕ(Xτ )] = sup
τ∈T

Ex[ϕ(Xτ )] = E[ϕ(Xτ∗)],

with τ∗ = inf{n ∈ N; Xn ∈ {ϕ = ϕ∗}},

and the conventions inf ∅ = +∞ and ϕ(X∞) = lim supϕ(Xn).

Proof. We keep notations from Section III.4. Recall definition (III.20) of Sζ
n for the finite

horizon ζ ∈ N. We deduce from (III.4) and Sζ
ζ = Gζ , that Sζ

n = ϕζ−n(Xn) for all 0 ≤

n ≤ ζ < ∞ and τ ζ∗ = inf{n ∈ J0, ζK; ϕζ−n(Xn) = ϕ(Xn)}. Lemma III.27 implies that

S∗n = limζր∞ Sζ
n = ϕ∗(Xn) and thus

τ∗∗ = lim
ζր∞

τ ζ∗ = inf{n ∈ N; Xn ∈ {ϕ = ϕ∗}}, (III.24)

with the convention that inf ∅ = ∞. According to Proposition III.24, the infinite horizon
case is the limit of the finite horizon cases and the optimal stopping time τ∗ given by (III.5)
is a.s. equal to τ∗∗ . We deduce that V∗ = Ex[S

∗
0 ] = ϕ∗(x).



Chapter IV

Divers

Let T be the set of stopping times taking values in N̄ = N
⋃

{+∞}.

Remark IV.1 (Doob decomposition of a super-martingale).

We shall use the following result.

Lemma IV.2. Let G′ ⊂ G be a σ-field. Let X = (Xn, n ∈ N), resp. Y = (Yn, n ∈ N), be
a sequence of random variables taking values in [−∞,+∞), resp. in [0,+∞), such that a.s.
for all n ∈ N, X+

n ≤ Yn and Y converges a.s. towards a limits, say Y∞ and limn→+∞ E[Yn] =
E[Y∞]. Then, we have lim supE[Xn|G

′] ≤ E[lim supXn|G
′].

Proof. Recall x− = max(0,−x) and x = x+ − x−. By Fatou lemma, we have that a.s.:

E[Y∞|G
′]− lim supE[X+

n |G
′] = lim inf E[Yn −X+

n |G
′]

≥ E[lim inf(Yn −X+
n )|G

′] = E[Y∞|G
′]− E[lim supX+

n |G
′].

Thus, we have that a.s. lim supE[X+
n |G

′] ≤ E[lim supX+
n |G

′]. By Fatou lemma, we have also
that a.s. lim inf E[X−

n |G
′] ≥ E[lim infX−

n |G
′], that is lim supE[−X−

n |G
′] ≤ E[lim sup−X−

n |G
′].

By summing, we deduce that a.s. lim supE[Xn|G
′] ≤ E[lim supXn|G

′].

Corollary IV.3. Let M be an integrable random variables. Let F = (Fn, n ∈ N) be a
filtration. Set F∞ =

∨

n∈NFn. Set Mτ = E[M |Fτ ] for any stopping time τ , taking values
in N̄, with respect to the filtration F . Then, for any converging sequence of stopping times
(τn, n ∈ N), with τ = limn→+∞ τn, we have that the sequence (Mτn , n ∈ N) converges a.s.
and in L1 towards Mτ .

Corollary IV.4. Let (Mn, n ∈ N) be a super-martingale converging to M∞. Assume that
(Mn, n ∈ N) is uniformly integrable. Then for all stopping times τ ≤ τ ′ taking values in N̄,
we have a.s. Mτ ≥ E[Mτ ′ |Fτ ].

Corollary IV.5. Let (Xn, n ∈ N) a sequence of random variables taking values in R which
converges a.s. to a finite random variable and such that |Xn| ≤ Yn, where the sequence
of random variables (Yn, n ∈ N) is uniformly integrable. Then the sequence (Xn, n ∈ N)
converges in L1.

51
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Proof. Set X∞ = limn→+∞Xn and W = supn∈N |Xn|. We have:

E[|X∞|] ≤ lim inf
n→+∞

E[|Xn|] ≤ sup
n∈N

E[Yn] < +∞,

where we used Fatou lemma for the first inequality and that (Yn, n ∈ N) is uniformly inte-
grable for the last. We have:

E[|Xn −X∞|] ≤ E
[

1{W≤c}|Xn −X∞|
]

+ E
[

1{W>c}(Yn + |X∞|)
]

.

Let ε > 0. Since W is finite a.s. as X∞ is finite, using that (Yn, n ∈ N) and X∞ are
uniformly integrable, we have that for c large enough supn∈N E

[

1{W>c}(Yn + |X∞|)
]

≤ ε. by
dominated convergence, we get that limn→+∞ E

[

1{W≤c}|Xn −X∞|
]

= 0. This gives that
lim supn→+∞ E[|Xn −X∞|] ≤ ε. Then use that ε > 0 is arbitrary to conclude.
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