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SMALLER POPULATION SIZE AT THE MRCA TIME FOR
STATIONARY BRANCHING PROCESSES1

BY YU-TING CHEN AND JEAN-FRANÇOIS DELMAS

University of British Columbia and Université Paris-Est

We consider an elementary model of random size varying population
governed by a stationary continuous-state branching process. We compute
the distributions of various variables related to the most recent common an-
cestor (MRCA): the time to the MRCA, the size of the current population and
the size of the population just before the MRCA. In particular we observe a
natural mild bottleneck effect as the size of the population just before the
MRCA is stochastically smaller than the size of the current population. We
also compute the number of individuals involved in the last coalescent event
of the genealogical tree, that is, the number of individuals at the time of the
MRCA who have descendants in the current population. By studying more
precisely the genealogical structure of the population, we get asymptotics for
the number of ancestors just before the current time. We give explicit com-
putations in the case of the quadratic branching mechanism. In this case, the
size of the population at the MRCA is, in mean, 2/3 of the size of the current
population. We also provide in this case the fluctuations for the renormalized
number of ancestors.

1. Introduction. A large literature is devoted to constant size population
models. It goes back to Wright [49] and Fisher [23] in discrete time, and Moran
[41] in continuous time. Models for constant infinite population in continuous time
with spatial motion were introduced by Fleming and Viot [24]. On the other hand,
the study of the genealogical tree of constant size population was initiated by King-
man [31], and described in a more general setting by Pitman [45] and Sagitov [48].
The complete description of the genealogy of the Fleming–Viot process can be
partially done using the historical super-process by Dawson and Perkins [13] and
precisely by using the look-down process developed by Donnelly and Kurtz [14,
15] or the stochastic flows from Bertoin and Le Gall [9–11].

However, it is natural to consider random size varying population models.
Branching population models, for which sizes of the population are random, go
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back to Galton and Watson [25] in discrete time. Jirina [28] considered continuous-
state branching process (CB) models corresponding to individuals with infinitesi-
mal mass. The genealogy of those processes can be partially described through the
historical superprocess. However the continuum Lévy tree introduced by Le Gall
and Le Jan [36] and developed later by Duquesne and Le Gall [16] allows to give
a complete description of the genealogy in the critical and sub-critical cases. See
the approach of Abraham and Delmas [1] or Berestycki, Kyprianou and Murillo
[7] for a description of the genealogy in the super-critical cases.

The two families of models—models of constant size population and models
of branching population—are, in certain cases, related. The case of a quadratic
branching corresponds to the fact that only two genealogical lines of the popula-
tion genealogical tree can merge together. In this particular case, it is possible to
establish links between the constant size population model and CB models. Thus,
conditionally on having a constant population size, the Dawson–Watanabe super-
process is a Fleming–Viot process; see [18]. On the other hand, using a time change
(with speed proportional to the inverse of the population size), it is possible to re-
cover a Fleming–Viot process from a Dawson–Watanabe super-process; see [43].
Birkner et al. [12] have given similar results for stable branching mechanisms. In
the same spirit, Kaj and Krone [29] studied the genealogical structure of models
of random size varying population models and recovered the Kingman coalescent
with a random time change.

Recently, some authors studied the coalescent process (or genealogical tree) of
random size varying population; in this direction see [40] and [32] for branch-
ing process, [27] for stationary random size varying population and [22] for the
dynamics of the time to the most recent common ancestor in branching processes.

Our primary interest is to present an elementary model of random size varying
population and exhibit some interesting properties which could not be observed in
the constant size model. The most striking example is the natural mild bottleneck
effect: in a stationary regime, the size of the population just before the most recent
common ancestor (MRCA) is stochastically smaller than the current population
size. Our second goal is to give some properties of the coalescent tree such as:
time to the most recent common ancestor (TMRCA), asymptotic behavior of the
number of recent ancestors, number of individuals involved in the last coalescent
event (i.e., the number of individuals at the time of the MRCA who have descen-
dants in the current population).

One of the major drawbacks of the branching population models is that either
the population becomes extinct or decreases to 0, which happens with probabil-
ity 1 in the (sub)critical cases, or blows up exponentially fast with positive proba-
bility in the super-critical case. In particular there is no stationary regime, and the
study of the genealogy of a current population depends on the arbitrary original
size and time of the initial population. To circumvent this problem, we consider a
sub-critical CB, Y = (Yt , t ≥ 0), with branching mechanism ψ given by (1). We
get the Q-process by conditioning Y to nonextinction (which is an event of zero
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probability); see [38] and [33]. The Q-process can also be seen as a CB with immi-
gration; see [47]. We take the opportunity to present a probabilistic construction of
independent interest for the Q-process in Corollary 3.5 which relies on a Williams
decomposition of CB described in [2]. A first study of the genealogical tree of the
Q-process can be found in [32].

We consider the Q-process under its stationary distribution and defined on the
real line Z = (Zt , t ∈ R). Its Laplace transform [see (3.6)] is given by

E[e−λZt ] = exp
(
−

∫ ∞
0

ds ψ̃ ′(u(λ, s))

)
, λ ≥ 0, t ∈ R,

where ψ̃(λ) = ψ(λ) − λψ ′(0). In order for Zt to be finite, we shall assume condi-
tion (A2), ∫ 1

0

(
1

vψ ′(0)
− 1

ψ(v)

)
dv < +∞.

In order for the TMRCA to be finite, we assume condition (A1),∫ ∞
1

dv

ψ(v)
< +∞.

Notice a very similar condition exists to characterize coalescent processes which
descend from infinity; see [6].

As in the look-down representation for constant size population, we shall repre-
sent the process Z using the picture of an immortal individual which gives birth to
independent sub-populations or families; see Figure 1. For fixed time t0 = 0 (which
we can indeed choose to be equal to 0 by stationarity), we consider A the TMRCA
of the population living at time 0, ZA = Z(−A)− the size of the population just be-
fore the MRCA, ZI the size of the population at time 0 which has been generated
by the immortal individual over the time interval (−A,0) and ZO = Z0 − ZI the
size of the population at time 0 which has been generated by the immortal individ-
ual at time −A. In Theorem 4.1, we give the joint distribution of (A,ZA,ZI ,ZO).
One interesting phenomenon is Corollary 4.3.

COROLLARY. Conditionally on A, ZA, ZI and ZO are independent.

In particular, conditionally on A, ZA and Z are independent. Conditionally on
A, ZA depends on the past before −A of the process Z and has to die at time 0,
ZO corresponds to the size of the population at time 0 generated at time −A, and
ZI corresponds to the size of the population at time 0 generated by the immortal
individual over the time interval (−A,0). Then, as the immortal individual gives
birth to independent populations, the corollary is then intuitively clear.

One of the most striking results, the natural mild bottleneck effect, is stated in
Proposition 4.5.
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FIG. 1. The bold lines in the first figure depict the space–time evolution of particles. The area of
the shaded region in the second figure is contributed by the oldest clan alive at time t = 0.

PROPOSITION. ZA is stochastically smaller than Z0.

Thus just before the MRCA, the population size is unusually small. Notice this
result is not true in general if one considers the size of the population at the MRCA
instead of just before; see Remark 4.6. We get nice quantitative results for the
quadratic branching mechanism case; see Corollary 7.2.

COROLLARY. Assume ψ is quadratic [and given by (45)]. We have a.s.

P(ZA < Z0|A) = 11
16 and E[ZA|A] = 2

3E[Z0|A]
and, in particular,

P(ZA < Z0) = 11
16 and E[ZA] = 2

3E[Z0].

Notice that ZA is stochastically smaller than Z0; it is not a.s. smaller.
We also give in Theorem 4.7 the joint distribution of Z0 and the TMRCA of

the immortal individual and n individuals picked at random in the population at
time 0. See also related results in [32].

We investigate in Proposition 5.2 the joint distribution of A,Z0 and NA, where
NA + 1 represents the number of individuals involved in the last coalescent event
of the genealogical tree. Under a first moment condition on Z, we get that if the
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TMRCA is large, then the last coalescent event is likely to involve only two indi-
viduals. In the stable case, this first moment condition is not satisfied, and the last
coalescent event does not depend on the TMRCA; see Remark 5.6. This suggests
a result similar to the one obtained in [12]: in the stable case, the topology of the
genealogical tree (which does not take into account the length of the branches)
may not depend on its depth given by the TMRCA.

After giving a more precise description of the genealogy of Z using continuum
Lévy trees, we compute in Lemma 6.4 the joint law of Z0 and the number of
ancestors at time −s, Ms , of the population at time 0. Following [17], we get that
a.s.

lim
s↓0

Ms

c(s)
= Z0,

where c(s) is related to the extinction probability of Y and defined by
∫ ∞
c(t)

dv
ψ(v)

= t .
We can make precise the fluctuations in the asymptotic stable case [ψ(λ) ∼ aλα0

at infinity, with α0 ∈ (1,2)] and the quadratic case (corresponding to α0 = 2), as
well as the fluctuation of Z−s near Z0, see Theorems 6.7 and 7.8. Notice that in
the asymptotic stable case Ms

c(s)
− Z0 and Z−s − Z0, properly scaled, converge to

the same limit, whereas this is not the case in the quadratic branching mechanism.

THEOREM. Assume ψ is quadratic [and given by (45)]. The following conver-
gences hold in distribution:

√
c(s)E[Z]

(
Ms

c(s)
− Z0

)
(d)−→

s↓0+(Z0 − Z′
0)

and √
c(s)E[Z](Z−s − Z0)

(d)−→
s↓0+

√
2(Z0 − Z′

0),

where Z′
0 is distributed as Z0 and independent of Z0.

See Theorems 7.8 for the joint distribution convergence.
The paper is organized as follows. We first recall well-known facts on CB in

Section 2. We introduce in Section 3 the corresponding stationary CB, which is
related to the Q-process of the CB, and give its first properties. We give the joint
distribution of (A,ZA,ZI ,ZO) in Section 4 and prove the natural bottleneck ef-
fect, that is, ZA is stochasitcally smaller than Z0. We compute the number of old
families (or number of individuals involved in the last coalescent event) in Sec-
tion 5 and the asymptotics of the number of ancestors in Section 6. A first conse-
quent part of the latter section is devoted to the introduction of the genealogy of
CB processes using continuum random Lévy trees. We give more detailed results
in the quadratic branching setting of Section 7.
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2. Continuous-state branching process (CB). We recall some well-known
facts on continuous-state branching process (CB); see, for example, [37] and ref-
erences therein. We consider a sub-critical branching mechanism ψ : for λ ≥ 0,

ψ(λ) = αλ + βλ2 +
∫
(0,+∞)

π(d�)[e−λ� − 1 + λ�],(1)

where α = ψ ′(0) > 0, β ≥ 0 and π is a Radon measure on (0,+∞) such that∫
(0,+∞)(� ∧ �2)π(d�) < +∞. We consider the nontrivial case, that is either β > 0

or π((0,1)) = +∞. Notice that ψ is convex, of class C 1 on [0,+∞) and of class
C∞ on (0,+∞) and ψ ′′(0+) ∈ (0,+∞].

Let Px be the law of a CB Y = (Yt , t ≥ 0) started at mass x ≥ 0 and with branch-
ing mechanism ψ , and let Ex be the corresponding expectation. The process Y is
a càdlàg R+-valued Feller process, and 0 is a cemetery point. The process Y has
no fixed discontinuities. For every λ > 0 and for every t ≥ 0, we have

Ex[e−λYt ] = e−xu(λ,t),(2)

where the function u is the unique nonnegative solution of

u(λ, t) +
∫ t

0
ψ(u(λ, s)) ds = λ, λ ≥ 0, t ≥ 0.(3)

Note that the function u is equivalently characterized as the unique nonnegative
solution of ∫ λ

u(λ,t)

dr

ψ(r)
= t, λ ≥ 0, t ≥ 0,(4)

or as the unique nonnegative solution of, for λ ≥ 0,{
∂tu + ψ(u) = 0, t > 0,
u(λ,0),= λ.

(5)

The Markov property of Y implies that for all λ, s, t ≥ 0,

u(u(λ, t), s) = u(λ, t + s).(6)

Let N be the canonical measure (we shall also call it excursion measure) asso-
ciated to Y . It is a σ -finite measure which intuitively describes the distribution of
Y started at an infinitesimal mass. We recall that if∑

i∈I

δxi ,Y
i (dx, dY )

is a Poisson point measure with intensity 1[0,+∞)(x) dx N[dY ], then∑
i∈I

1{xi≤x}Y i(7)
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is distributed as Y under Px . In particular, we have, for λ ≥ 0,

N[1 − e−λYt ] = lim
x↓0

1

x
Ex[1 − e−λYt ] = u(λ, t).

For convenience, we put Yt = 0 for t < 0.
Let ζ = inf{t;Yt = 0} be the extinction time of Y . We consider the function

c(t) = N[ζ > t] = N[Yt > 0] = lim
λ→∞ ↑ u(λ, t).(8)

We shall assume throughout this paper, but for Sections 3.1 and 3.3, that the fol-
lowing strong extinction property holds:∫ ∞

1

dv

ψ(v)
< +∞.(A1)

It follows from (4) and (8) that c is the unique nonnegative solution of∫ ∞
c(t)

dv

ψ(v)
= t, t > 0.(9)

Thanks to (A1), we get that c(t) is finite for all t > 0 and N[ζ = +∞] = 0. We also
get that c is continuous decreasing and thus one-to-one from (0,+∞) to (0,+∞).
Letting λ go to infinity in (6) yields that for s, t ≥ 0

u(c(t), s) = c(t + s).(10)

3. Stationary CB. In contrast to the Wright–Fisher population model, CB
models do not exhibit stationary distributions. However, by conditioning sub-
critical CB to nonextinction (see [21, 33] and [47] for details), one gets the so-
called Q-process, which we denote by Y ′′. This process is a CB process with im-
migration in the sense of [30] and may have a stationary distribution. As pointed
out in [3] (see also [19] or [20]), this process has a heuristic interpretation by intro-
ducing a fixed infinite ancestral lineage. Namely, it is an independent sum of the
process Y and the size of families thrown off by an “immortal individual” where
the law of each family coincides with that of a generic family of Y .

We introduce the process Y ′′ in Section 3.1 as well as its stationary version Z.
Then we check in Section 3.2, that under (A1) the process Y ′′ is indeed the
Q-process associated to Y . This gives then a natural interpretation of Z. We give
preliminary results on the process Z in Sections 3.3 and 3.4.

3.1. Poisson point measure of CB. We consider the following Poisson point
measures:

• Let N0(dr, dt) = ∑
i∈I δ(ri ,ti )(dr, dt) be a Poisson point measure on (0,+∞)×

R with intensity

rπ(dr) dt.
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• Conditionally on N0, let (N1,i , i ∈ I ), where N1,i (dt, dY ) = ∑
j∈J1,i

δtj ,Y j (dt ,
dY ), be independent Poisson point measures with respective intensity

riδti (dt)N[dY ].
Notice that for all j ∈ J1,i , we have tj = ti . We set J1 = ⋃

i∈I J1,i and
N1(dt, dY ) = ∑

j∈J1
δtj ,Y j (dt, dY ).

• Let N2(dt, dY ) = ∑
j∈J2

δtj ,Y j (dt, dY ) be a Poisson point measure independent
of (N0, N1) and with intensity

2β dt N[dY ].
We set J = J1 ∪ J2. We shall call Y j , with j ∈ J a family and tj its birth time.

We will consider the two following processes Y ′′ = (Y ′′
t , t ≥ 0) and their sta-

tionary version Z = (Zt , t ∈ R):

Y ′′
t = ∑

j∈J ,tj>0

Y
j
t−tj

,(11)

Zt = ∑
j∈J

Y
j
t−tj

.(12)

We will denote by P the probability measure under which Y ′′ and Z are defined
and E the corresponding expectation.

At this stage, let us emphasize there is another natural decomposition of Y ′′
and Z. For i ∈ I , set Y i = ∑

j∈J1,i
Y j and I = I ∪ J2. The random measure

N3(dt, dY ) = ∑
i∈I

δti ,Y
i (dt, dY )(13)

is a Poisson point measure with intensity dt μ(dY ) and

μ(dY ) = 2βN[dY ] +
∫
(0,+∞)

�π(d�)P�(dY ).(14)

We have

Y ′′
t = ∑

i∈I;ti>0

Y i
t−ti

,(15)

Zt = ∑
i∈I

Y i
t−ti

.(16)

We shall call Y i , with i ∈ I , a clan and ti its birth time. For j ∈ J2, Y j is a clan
and a family. Notice that a.s. two clans have different birth time, but families in the
same clan have the same birth time.

The presentation with clans is simpler than the representation with families, and
most of the results can be obtained by using the following representation by Pois-
son random measures. We will use the family representation in Sections 5 and 6.
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We define ψ̃ by

ψ̃(λ) = ψ(λ) − λψ ′(0) = ψ(λ) − αλ.(17)

The next lemma is the exponential formula for Poisson point measure; see Sec-
tion XII.1 of [46].

LEMMA 3.1. Let F be a nonnegative measurable function. We have

E
[
e−∑

j∈J F(tj ,Y j )] = exp
(
−

∫
R

dt ψ̃ ′(
N

[
1 − e−F(t,Y )])).(18)

PROOF. Using basic properties of Poisson point measures, we get

E
[
e−∑

j∈J F(tj ,Y j )]
= E

[
e−∑

j∈J1
F(tj ,Y j )]

E
[
e−∑

j∈J2
F(tj ,Y j )]

= E
[
e−∑

i∈I riN[1−e−F(ti ,Y )]]e−2β
∫

dtN[1−e−F(t,Y )]

= e− ∫
dt

∫
(0,+∞) �π(d�)(1−exp(−�N[1−e−F(t,Y )]))e−2β

∫
dt N[1−e−F(t,Y )]

= e− ∫
dt ψ̃ ′(N[1−e−F(t,Y )]).

This gives the desired formula. �

PROPOSITION 3.2. The process Y ′′ is a CB with branching mechanism ψ and
immigration function ψ̃ ′

ψ̃ ′(λ) = 2βλ +
∫
(0,+∞)

�π(d�)(1 − e−λ�)

started at Y ′′
0 = 0.

PROOF. This is a direct consequence of Lemma 3.1 and results from [30]. �

In particular, Y ′′ is a strong Markov process started at 0, and its transition kernel
is characterized by the following: for λ ≥ 0, t ≥ 0, r ≥ 0

E[e−λY ′′
t |Y ′′

0 = r] = exp
(
−ru(λ, t) −

∫ t

0
ψ̃ ′(u(λ, s)) ds

)
.

The next result is then straightforward.

COROLLARY 3.3. For each t ∈ R, (Zs; s ≥ t) has the same law as a CB with
branching mechanism ψ and immigration function ψ̃ ′ started at the invariant dis-
tribution P(Zt ∈ ·).
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3.2. Q-process. We check the process Y ′′ is indeed the Q-process for CB using
Williams’s decomposition.

Let m > 0 and νm(dt) = ∑
i∈Im

riδti (dt), where
∑

i∈Im
δ(ri ,ti )(dr, dt) is a Pois-

son point measure with intensity

1[0,m](t)e−rc(m−t)rπ(dr) dt.

Conditionally on νm, let N (m)(dt, dY ) = ∑
j∈J m δtj ,Y j (dt, dY ) be a Poisson point

measure with intensity(
νm(dt) + 2β1[0,m](t) dt

)
N[dY, ζ < m − t].

The next proposition is a consequence of Theorem 3.3 in [2].

PROPOSITION 3.4. Assume (A1) holds. Under N, conditionally on {ζ = m},
Y is distributed as (Y ′

t , t ≥ 0) where

Y ′
t = ∑

j∈J m

Y
j
t−tj

.

It is then easy to deduce the following corollary using representation (15) of Y ′′.

COROLLARY 3.5. Assume (A1) holds. The limit distribution of Y under N,
conditionally on {ζ = m}, as m goes to infinity, is the distribution of Y ′′ from
Proposition 3.2.

PROOF. The proof relies on the monotonic convergence of the intensities of
Poisson point measures. Let ν(dt, dr, du) = ∑

i∈I riδri (dr)δti (dt)δui
(du), where∑

i∈I δ(ri ,ti ,ui )(dr, dt, du) is a Poisson point measure with intensity

1[0,+∞)(t)1[0,1](u)rπ(dr) dt du.

Conditionally on ν, let
∑

j∈J δ(tj ,Y j ,rj ,uj )(dt, dY, dr, du) be a Poisson point mea-
sure with intensity(

ν(dt, dr, du) + 2β1[0,+∞)(t) dt δ0(dr)δ0(du)
)
N[dY ].

We denote by ζ j the extinction time of Y j . For m > 0, we set

M(m)(dt, dY ) = ∑
j∈J

1{ζ j<m−tj }1{tj<m}1{uj<exp(−rc(m−tj ))}δtj ,Y j (dt, dY ).

Notice that M(m) is distributed as N (m) and that (M(m),m > 0) is an increasing
sequence with limit

M(∞)(dt, dY ) = ∑
j∈J

δtj ,Y j (dt, dY ).
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Notice that M(∞)(dt, dY ) is distributed as 1{t≥0}(N1 + N2)(dt, dY ). Let us con-

sider the processes Y (m) = (Y
(m)
t , t ≥ 0) and Y (∞) = (Y

(∞)
t , t ≥ 0) defined by

Y
(m)
t = ∑

j∈J
1{ζ j<m−tj }1{tj<m}1{uj<exp(−rc(m−tj ))}Y j

t−tj
and Y

(∞)
t = ∑

j∈J
Y

j
t−tj

.

Then we deduce from Proposition 3.4 that Y (m) is defined as Y under N condition-
ally on {ζ = m}. Furthermore the process Y (∞) is defined as Y ′′. By construction,
we get that a.s. the sequence (Y (m),m ≥ 0) increases to Y (∞). This gives the result.

�

Corollary 3.5 readily implies that the Q-process associated to Y , that is, the limit
distribution of Y under N, conditionally on {ζ ≥ m}, as m goes to infinity, is the
distribution of Y ′′ from Proposition 3.2.

3.3. Stationary CB. We first give an interpretation of Z in terms of the under-
lying populations. At time t , Zt correspond to the size of a population generated
by an immortal individual (with zero mass) which gives birth at rate 2β to clans
(or families) which sizes evolve independently as Y under N and at rate rπ(dr) to
clans with initial size r which evolve independently as Y under Pr .

By construction the process Z is stationary. The next lemma which gives the
Laplace transform of Z is a direct consequence of the construction of Z.

LEMMA 3.6. For all t ∈ R and λ ≥ 0, the Laplace transform of Zt is given by

E[e−λZt ] = exp
(
−

∫ ∞
0

ds ψ̃ ′(u(λ, s))

)
.(19)

PROOF. Using Lemma 3.1, we have

E[e−λZt ] = exp
(
−

∫
R

ds ψ̃ ′(N[1 − e−λYt−s ])
)

= exp
(
−

∫ ∞
0

ds ψ̃ ′(u(λ, s))

)
. �

We shall consider the following assumption:∫ +∞
1

� log(�)π(d�) < +∞.(A2)

The next lemma is well known [notice condition (A1) is not assumed].

LEMMA 3.7. In the sub-critical case, the following conditions are equiva-
lent:

(i) (A2) holds;
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(ii)
∫ 1

0 ( 1
αv

− 1
ψ(v)

) dv < +∞;
(iii) Er [Yt log(Yt )] < +∞ for some t > 0 and r > 0;
(iv) Er [Yt log(Yt )] < +∞ for all t > 0 and r > 0.

PROOF. For (i) ⇔ (ii), see [26], proof of Theorem 4a, and for (ii) ⇔ (iii) [or
(iv)] use Lemma 1, page 25, of [5]. �

The next proposition gives a condition for finiteness of Z; see also [44] in a
more general framework.

PROPOSITION 3.8. We have P(Z0 < +∞) = 1 if and only if (A2) holds.

PROOF. Thanks to (19), we get P(Z0 < +∞) = 1 if and only if

lim
λ→0

∫ ∞
0

ds ψ̃ ′(u(λ, s)) = 0.

As λ �→ u(λ, s) decreases to 0 as λ goes down to 0 for all s ≥ 0, we deduce by
dominated convergence that P(Z0 < +∞) = 1 if and only if

∫ ∞
0 ds ψ̃ ′(u(λ, s)) <

+∞ for at least one λ > 0.
Notice that ∂tu + ψ(u) = 0 implies ψ ′(u) = −∂2

t u/∂tu, and hence for every
0 ≤ t < T < +∞ we have∫ T

t
ψ̃ ′(u(λ, s)) ds = log

(
ψ(u(λ, t))eαt

ψ(u(λ,T ))eαT

)
.(20)

We deduce that T �→ ψ(u(λ,T ))eαT is decreasing. Thus, we get that∫ ∞
0

ds ψ̃ ′(u(λ, s)) < +∞
if and only if limT →+∞ ψ(u(λ,T ))eαT > 0. Thanks to (4) we have limT →+∞ u(λ,
T ) = 0. Since limλ↓0 ψ(λ)/λ = α > 0, we get that limT →+∞ ψ(u(λ,T ))eαT > 0
if and only if limT →+∞ u(λ,T )eαT > 0.

We deduce from (4) that

u(λ,T )eαT = λ exp
(
α

∫ λ

u(λ,T )
dr

(
1

ψ(r)
− 1

αr

))
.(21)

Thus we deduce from Lemma 3.7 that P(Z0 < +∞) = 1 if and only if (A2) holds.
�

COROLLARY 3.9. Assume (A2) holds. We have for λ > 0, t ∈ R,

E[Zte
−λZt ] = ψ̃ ′(λ)

ψ(λ)
E[e−λZt ].(22)

In particular, we have

E[Zt ] = ψ ′′(0+)

ψ ′(0)
∈ (0,+∞].(23)



2046 Y.-T. CHEN AND J.-F. DELMAS

PROOF. We deduce from (19) that

E[Zte
−λZt ] = E[e−λZt ] ∂λ

∫ ∞
0

ψ̃ ′(u(λ, s)) ds.

We deduce from (4) that λ �→ u(λ, s) is increasing and of class C∞ on (0,+∞)

and that

∂λu(λ, s) = ψ(u(λ, s))

ψ(λ)
= −∂su(λ, s)

ψ(λ)
.(24)

Thus, we get

∂λ

∫ ∞
0

ψ̃ ′(u(λ, s)) ds =
∫ ∞

0
ψ ′′(u(λ, s))∂λu(λ, s) ds

= − 1

ψ(λ)

∫ ∞
0

ψ ′′(u(λ, s))∂su(λ, s) ds

= ψ̃ ′(λ)

ψ(λ)
.

The last part of the corollary is immediate. �

REMARK 3.10. Assumption (A1) is not needed to define the process Y ′′ or
the stationary process Z. However, the study of MRCA for Z is not relevant if
(A1) does not hold.

Notice, we will introduce a complete genealogical structure for Z in Section 6
by using a genealogical structure of the families (Y j , j ∈ J ).

From now on, we shall assume that (A1) and (A2) are in force.

3.4. Further property for stationary CB. By construction, we deduce that for
all t ∈ R, the process (Zs+t , s ≥ 0) is a CB with branching mechanism ψ and im-
migration function ψ̃ ′ started as the stationary distribution whose Laplace trans-
form is given by (19). Then Proposition 1.1 in [30] implies that Z is a Hunt process,
and, in particular, it is càdlàg and strongly Markov taking values in [0,+∞]. By
stationarity and since +∞ is a cemetery point for Z, we deduce that a.s. for all
t ∈ R, Zt is finite.

Next, we recall some asymptotic properties of the functions u and c given in
Lemma 3.1 of [32].

LEMMA 3.11. For every λ ∈ (0,∞), we have

lim
t→∞

u(λ, t)

c(t)
= e−αc−1(λ),(25)

and there exists κ∗ ∈ (0,∞) such that

lim
t→∞ c(t)eαt = κ∗.(26)
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We compute some integrals of ψ̃ ′.

PROPOSITION 3.12. The followings hold for every 0 ≤ t < ∞:

∫ ∞
t

ψ̃ ′(u(λ, s)) ds = log
(

ψ(u(λ, t))eαt+αc−1(λ)

κ∗α

)
, λ > 0,(27)

∫ ∞
t

ψ̃ ′(c(s)) ds = log
(

ψ(c(t))eαt

κ∗α

)
,(28)

where the constant κ∗ is defined in Lemma 3.11.

PROOF. We deduce from (20), (25) and (26) that

lim
T →∞ψ(u(λ,T ))eαT = lim

T →∞
ψ(u(λ,T ))

u(λ,T )

u(λ,T )

c(T )
c(T )eαT = αe−αc−1(λ)κ∗,

and (27) follows by letting T → ∞ for both sides of (20). Then, let λ go to infinity
in (27) to get (28), and use the monotone convergence theorem. �

As a consequence of (27) with t = 0 and Lemma 3.6, we get the following
corollary.

COROLLARY 3.13. For all t ∈ R and λ ≥ 0, the Laplace transform of Zt is
given by

E[e−λZt ] = exp
(
−

∫ ∞
0

ds ψ̃ ′(u(λ, s))

)
= e−αc−1(λ)κ∗α

ψ(λ)
.(29)

Eventually, we check that Z is nonzero. Recall our notations in Section 3.1.
Let ζi = inf{t > 0;Y i

t = 0} be the duration of the family or clan Y i and ti + ζi its
extinction time, with i in I , J1 or J2.

PROPOSITION 3.14. We have

P

(∑
i∈I

1(ti ,ti+ζi )(t) > 0,∀t ∈ R

)
= 1.

In particular, we have P(∃t ∈ R;Zt = 0) = 0.

For −∞ < a < b < +∞, we will consider in the forthcoming proof

Na,b = ∑
i∈I

1{ti<a;b<ti+ζi},(30)



2048 Y.-T. CHEN AND J.-F. DELMAS

the number of clans born before a and still alive at time b. Notice Na,b is a Poisson
random variable with parameter

�(b − a) :=
∫

dr μ(dY )1(−∞,a)(r)1{ζ+r>b}

=
∫ ∞
b−a

dr ψ̃ ′(c(r))(31)

= log
(

ψ(c(b − a))eα(b−a)

κ∗α

)
,

where we have used (14) the definition of μ for the first equality and (28) for the
last equality.

PROOF OF PROPOSITION 3.14. Observe that no clan surviving at time t ∈
(a, b) implies that there are no clan surviving on any nondegenerate interval con-
taining t . Hence, for any n ≥ 1, we have

{
∃t ∈ (a, b),

∑
i∈I

1(ti ,ti+ζi )(t) = 0
}

⊂
n⋃

j=1

{Nuj−1,uj
= 0} ∪

n+1⋃
j=1

{Nvj−1,vj
= 0},

where uj = a + j (b−a)/n and vj = a + (2j −1)(b−a)/2n. Notice that Nuj−1,uj

and Nvj−1,vj
are Poisson random variables with parameter θn = �((b − a)/n). We

deduce that

P

(
∃t ∈ (a, b),

∑
i∈I

1(ti ,ti+ζi )(t) = 0
)

≤ (2n + 1)e−θn .(32)

Therefore the first part of the proposition will be proved as soon as limn→+∞ n ×
exp(−θn) = 0 which, thanks to formula (31), will be implied by limt→0 tψ(c(t)) =
+∞ and thus by

lim
λ→+∞

∫ +∞
λ

dr

ψ(r)
ψ(λ) = +∞.(33)

Hypothesis on β and π imply there exists a constant c0 > 0 such that

αλ ≤ ψ(λ) ≤ c0λ
2 and lim

λ→+∞ψ(λ)/λ = +∞.

Therefore (33) is in force.
The second part of the proposition is clear by definition of ζi and representa-

tion (16). �

4. TMRCA and populations sizes. We consider the coalescence of the ge-
nealogy at a fixed time t0. Thanks to stationarity, we may assume that t0 = 0, and
we write Z instead of Z0. There are infinitely many clans contributing to the popu-
lation at time 0. The Poisson random variable introduced in (30), with b = 0, gives
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the number of clans born before a and still alive at time 0. Notice its parameter
is finite; see (31). Therefore, there are only finitely many clans born before a and
alive at time 0. In particular, this implies that there is one unique oldest clan alive
at time 0. We denote by −A the birth time of this unique oldest clan at time 0,

A = − inf{ti ≤ 0;Y i−ti
> 0, i ∈ I}.

We set ZO the population size of this clan at time 0.

ZO := Y i−ti
if A = −ti .

The time A is also the time to the most recent common ancestor (TMRCA) of the
population at time 0. The size of all the clans alive at time 0 with birth time in
(−A,0) is given by

ZI := Z − ZO.

We are also interested in the size of the population just before the most recent
common ancestor (MRCA).

ZA := Z(−A)− = ∑
i∈I

Y i
(−A−ti )

1{ti<−A}.

THEOREM 4.1. The joint distribution of (A,ZA,ZI ,ZO) is characterized by
the following: for λ,γ, η ≥ 0 and t ≥ 0,

E[e−λZA−γZI −ηZO ;A ∈ dt]
= dt

(
ψ̃ ′(c(t)) − ψ̃ ′(u(η, t))

)
(34)

× exp
(
−

∫ t

0
ds ψ̃ ′(u(γ, s)) −

∫ ∞
0

ds ψ̃ ′(u(
λ + c(t), s

)))
.

PROOF. Given f , a nonnegative Borel measurable function defined on R, we
have

E[e−λZA−γZI −ηZO

f (A)]
= E

[∑
j∈I

exp
(
−λ

∑
i∈I,ti<tj

Y i
(tj−ti )

− γ
∑

i∈I,ti>tj

Y i−ti
− ηY

j
−tj

)

× f (−tj )1{Y j
−tj

>0,
∑

i∈I,ti<tj
1{Y i−ti

>0}=0}
]

=
∫ ∞

0
dt μ(e−ηYt ;Yt > 0)f (t)E

[
exp

(
−γ

∑
i∈I,ti>−t

Y i−ti

)]

× lim
K→∞ E

[
exp

(
−λ

∑
ti<−t

(
Y i

(−t−ti )
+ K1{Y i−ti

>0}
))]

,
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where we used that Poisson point measures over disjoint sets are independent. We
have

μ(e−ηYt ;Yt > 0) = μ
(
1{Yt>0} − (1 − e−ηYt )

)
= ψ̃ ′(c(t)) − ψ̃ ′(u(η, t)).

Using Lemma 3.1, we get

E

[
exp

(
−γ

∑
i∈I,ti>−t

Y i−ti

)]
= exp

(
−

∫ t

0
ds ψ̃ ′(u(γ, s))

)
.

We also have

lim
K→∞ E

[
exp

(
−λ

∑
i∈I,ti<−t

(
Y i

(−t−ti )
+ K1{Y i−ti

>0}
))]

= exp
(
−

∫
ds 1{s>0}μ

(
1 − e−λYs 1{Ys+t=0}

))

= exp
(
−

∫
ds 1{s>0}μ

(
1 − e−λYs PYs (Yt = 0)

))

= exp
(
−

∫
ds 1{s>0}μ

(
1 − e−(λ+c(t))Ys

))

= exp
(
−

∫ ∞
0

ds ψ̃ ′(u(λ + c(t), s)
))

,

where we used exponential formulas for Poisson point measure in the first equality
and the Markov property of Y for the second equality. Putting things together, we
then get (34). �

It is then easy to derive the distribution of the TMRCA A; see also [22].

COROLLARY 4.2. The distribution function of A is given by

P(A ≤ t) = E
[
e−c(t)Z] = exp

(
−

∫ ∞
t

ds ψ̃ ′(c(s))
)
,

and A has density fA, with respect to the Lebesgue measure given by

fA(t) = ψ̃ ′(c(t)) exp
(
−

∫ ∞
t

ds ψ̃ ′(c(s))
)

1{t>0} = ψ̃ ′(c(t))
ψ(c(t))

e−αtκ∗α1{t>0}.(35)

PROOF. This is a direct consequence of Theorem 4.1 and (10). Use Lemma 3.6
to get (35). �

The next result is a direct consequence of Theorem 4.1.



SMALLER POPULATION SIZE AT THE MRCA TIME 2051

COROLLARY 4.3. Conditionally on A, the three random variables ZI ,ZA

and ZO are independent.

We can also give the mean of the population size just before the most recent
common ancestor (MRCA) [to be compared to the mean size of the current popu-
lation given by (23)].

COROLLARY 4.4. Let t > 0. We have

E[e−λZA |A = t] = E[e−(λ+c(t))Z]
E[e−c(t)Z] and E[ZA|A = t] = ψ̃ ′(c(t))

ψ(c(t))
.(36)

PROOF. We deduce from Theorem 4.1 that

E[e−λZA;A ∈ dt] = dt ψ̃ ′(c(t)) exp
(
−

∫ ∞
0

ds ψ̃ ′(u(
λ + c(t), s

)))
.

Thanks to (19), this implies that

E[e−λZA |A = t] = e− ∫ ∞
0 dsψ̃ ′(u(λ+c(t),s))

e− ∫ ∞
0 dsψ̃ ′(u(λ+c(t),s))

= E[e−(λ+c(t))Z]
E[e−c(t)Z] ·

The second part of the corollary is then a consequence of (22). �

We deduce from (36) that the distribution of ZA conditionally on {A = t} con-
verges, as t goes to infinity, to the distribution of Z.

As another application of Theorem 4.1, we get that the population just before
the MRCA, ZA, is stochastically smaller than the current population, Z. Note that
strong inequality, namely inequality in the almost-surely sense, does not hold in
general (see Section 7).

PROPOSITION 4.5. We have P(ZA ≤ z|A = t) ≥ P(Z ≤ z) for all z ≥ 0 and
t ≥ 0. Hence, the population size ZA is stochastically smaller than Z: P(ZA ≤
z) ≥ P(Z ≤ z) for all z ≥ 0. In particular, we have

E[ZA|A] ≤ E[Z] a.s.

PROOF. The first equality of (36) implies that for any nonnegative measurable
function F defined on R,

E[F(ZA)|A = t] = E[F(Z)e−c(t)Z]
E[e−c(t)Z] .

Note that e−c(t)Z − E[e−c(t)Z] is nonnegative for Z less than 1
−c(t)

log(E[e−c(t)Z])
and nonpositive otherwise, and that limz→∞ E[e−c(t)Z;Z ≤ z]−E[e−c(t)Z]P(Z ≤
z) = 0. We deduce that

P(ZA ≤ z|A = t) = E[e−c(t)Z;Z ≤ z]
E[e−c(t)Z] ≥ P(Z ≤ z).
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For the last assertion, recall that for any nonnegative random variable, we have
E[X] = ∫ ∞

0 P(X > x)dx. �

REMARK 4.6. Instead of considering ZA, the size of the population just be-
fore the MRCA, we could consider the size of the population at the MRCA, ZA+,
which is formally given by

ZA+ = ZA + ∑
i∈I

Y i
01{ti=−A}.

Notice we do not take into account the contribution of i ∈ J2 as for these indices
we have Y i

0 = 0. (In particular if π = 0, then Z is continuous and ZA = ZA+.)
Similar computations as those in the proof of Theorem 4.1 yield the following: for
λ, t > 0

E[e−λZA+|A = t] = E[e−λZA |A = t]ψ
′(λ + c(t)) − ψ ′(λ)

ψ ′(c(t)) − ψ ′(0)
.

If ψ ′′(0) = +∞, then we get that limt→+∞ E[e−λZA+|A = t] = 0. Thus, condition-
ally on {A = t} with t large, we have that ZA+ is likely to be very large. (Intuitively,
a clan is born at time −t which has survived up to time 0, and if t is large, it is
very likely to have a large initial size.) Therefore, ZA+ is not stochastically smaller
than Z in the general case.

We may also consider the TMRCA of the immortal individual and individuals
taken independently and uniformly among the current population living at time t .
Let Jn

t ⊂ I be the indices of the clans of the randomly chosen n individuals alive
at time t . (One individual chosen at random in the population at time t belongs to
the clan, i with probability Y i

t−ti
/Zt .) Notice that Card(J n

t ) ≤ n. The TMRCA for
the n individuals alive at time t and the immortal individual is given by

An
t := − inf{ti; i ∈ Jn

t , i ∈ I}.
Because of stationarity, we shall focus on t = 0 and write An for An

t . The joint
distribution law of Z and An can be characterized by the following result.

THEOREM 4.7. For any n ≥ 1 and any λ,T ≥ 0, we have

E
[
Zne−λZ1{An≤T }

] = e−αc−1(λ)κ∗α
ψ(u(λ,T ))

(−1)n
∂n

∂nη

(
ψ(u(λ + η,T ))

ψ(λ + η)

)∣∣∣∣
η=0

.(37)

By integrating (37) n times in λ over [λ,+∞) we get an expression of
E[e−λZ1{An≤T }] for all λ ≥ 0 and T ≥ 0, which characterizes the joint distribu-
tion of (Z,An). Thus, Theorem 4.7 indeed characterizes the joint distribution of Z

and An.
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PROOF OF THEOREM 4.7. By definition, we have

E
[
Zne−λZ1{An≤T }

]

= E

[
Zn

∑
i1,...,in

Y
i1−ti1

Z
· · · Y

in−tin

Z

n∏
k=1

1{−tik ≤T }e−λZ

]

= E

[(∫
N3(ds, dY )Y−s1{−s≤T }

)n

exp
(
−λ

∫
N3(ds, dY )Y−s

)]

= (−1)n
∂n

∂nη
E

[
exp

(
−

∫
N3(ds, dY )

(
ηY−s1{−s≤T } + λY−s

))]∣∣∣∣
η=0

= (−1)n
∂n

∂nη
exp

(
−

∫ ∞
T

ds ψ̃ ′(u(λ, s)) −
∫ T

0
ds ψ̃ ′(u(λ + η, s)

))∣∣∣∣
η=0

,

where N3 in the second equality is defined by (13). The result then follows from
(20) and (27). �

REMARK 4.8. Following almost the same lines as the proof of Theorem 4.7,
one can characterize explicitly the joint distribution of {(Zrj ,A

nj
rj );1 ≤ j ≤ m} for

any m,n1, . . . , nm ∈ N
∗ and −∞ < r1 < r2 < · · · < rm < ∞.

5. Number of old families. We now consider the number families in the old-
est clan alive at time 0. This corresponds to the number of individuals involved in
the last coalescent event of the genealogical tree. To this end, we take representa-
tion (12) for Z.

DEFINITION 5.1. The number of oldest families alive at time 0 (excluding the
immortal particle) is defined by

NA = ∑
j∈J

1{A=−tj ,Y
j
−tj

>0} = ∑
j∈J

1{A=−tj ,ζj>−tj }.(38)

We have NA ≥ 1. In the particular case π = 0 and β > 0, we have J = J2 and
NA = 1.

The following proposition gives the joint law of A, NA and Z.

PROPOSITION 5.2. We have for a ∈ [0,1], λ ≥ 0, t ≥ 0,

E[aNA

e−λZ|A = t] = ψ ′(c(t)) − ψ ′((1 − a)c(t) + au(λ, t))

ψ̃ ′(c(t))
e− ∫ t

0 ψ̃ ′(u(λ,r)) dr

and

E[aNA |A = t] = ψ ′(c(t)) − ψ ′((1 − a)c(t))

ψ̃ ′(c(t))
= 1 − ψ̃ ′((1 − a)c(t))

ψ̃ ′(c(t))
.
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PROOF. Recall notations from Section 3.1. For i ∈ I , we set J ∗
i = J1,i if i ∈ I

and J ∗
i = {i} if i ∈ J2. Given any nonnegative function f , we have, using (12)

and (16),

E[aNA

e−λZf (A)]
= E

[
e−λ

∑
k∈I Y k−tk

∑
i∈I

a

∑
j∈J∗

i
1{ζj >−ti }f (−ti)1{Y i−ti

�=0}1{∑k′∈I,t
k′<ti

1{Yk′
−ti

>0}=0}
]

=
∫ ∞

0
ds f (s)E

[
e−λ

∑
k∈I Y k−tk

1{tk>−s}]
P

(∑
k∈I

1{tk<−s,Y k
s >0} = 0

)

×
(

2βN[ae−λYs 1{Ys>0}]

+
∫
(0,+∞)

�π(d�)E�

[
a

∑
j∈J3

1{Yj
s >0}e−λ

∑
j∈J3

Y
j
s 1{∑j∈J3

Y
j
s >0}

])
,

where
∑

j∈J3
δY j (dY ) is under E� a Poisson point measure with intensity �N[dY ].

We have

E
[
e−λ

∑
k∈I Y k−tk

1{tk>−s}]
P

(∑
k∈I

1{tk<−s,Y k
s >0} = 0

)
= e− ∫ s

0 dr ψ̃ ′(u(λ,r))−∫ ∞
s dr ψ̃ ′(c(r)).

We also have

N
[
e−λYs 1{Ys>0}

] = N[Ys > 0] − N[1 − e−λYs ] = c(s) − u(λ, s)

and

E�

[
a

∑
j∈J3

1{Yj
s >0}e−λ

∑
j∈J3

Y
j
s 1{∑j∈J3

Y
j
s >0}

]

= E�

[
a

∑
j∈J3

1{Yj
s >0}e−λ

∑
j∈J3

Y
j
s
] − P�

( ∑
j∈J3

Y j
s = 0

)

= exp
(−�N

[
(1 − ae−λYs )1{Ys>0}

]) − exp(−�N[Ys > 0])
= exp

(−�N[Ys > 0] + �aN[e−λYs ]1{Ys>0}
) − exp(−�N[Ys > 0])

= exp
(−�

(
(1 − a)c(s) − au(λ, s)

)) − exp(−�c(s)).

Thus, we get

2βN
[
ae−λYs 1{Ys>0}

]
+

∫
(0,+∞)

�π(d�)E�

[
a

∑
j∈J3

1{Yj
s >0}e−λ

∑
j∈J3

Y
j
s 1{∑j∈J3

Y
j
s >0}

]
= ψ ′(c(s)) − ψ ′((1 − a)c(s) + au(λ, s)

)
.
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Putting things together, we obtain

E[aNA

e−λZf (A)]
=

∫ ∞
0

ds f (s)e− ∫ s
0 dr ψ̃ ′(u(λ,r))−∫ ∞

s dr ψ̃ ′(c(r))

× [
ψ ′(c(s)) − ψ ′((1 − a)c(s) + au(λ, s)

)]
.

Then, use (35) for the density of A to get the result. �

COROLLARY 5.3. We have

P(NA = n|A = t) = (−1)n+1 c(t)nψ(n+1)(c(t))

n!ψ̃ ′(c(t))
, n ∈ N

∗.(39)

Suppose that ψ ′′(0+) < ∞ (i.e., E[Z] < +∞). Then, we have

E[NA|A = t] = ψ ′′(0)
c(t)

ψ̃ ′(c(t))
.

Furthermore the function t �→ E[NA|A = t] is nonincreasing.

PROOF. The first two assertions are straightforward consequences of Proposi-
tion 5.2. To get the monotonicity of t �→ E[NA|A = t], we simply notice that both
t �→ c(t) and

x �→ ψ̃ ′(x)

x
= 2β +

∫ ∞
0

π(d�)�
1 − e−x�

x

are nonincreasing. �

REMARK 5.4. Suppose that ψ ′′(0+) < ∞. We deduce from (39) that

lim
t→+∞P(NA = 1|A = t) = 1.

Thus, the distribution of NA conditionally on {A = t} converges as t goes from
infinity to 1. So roughly speaking NA is likely to be equal to 1 if the TMRCA (or
age of the oldest clan alive) is large. Notice that if ψ ′′(0+) = +∞, this result may
be false (see the next remark).

REMARK 5.5. While the foregoing corollary shows that the conditional ex-
pectation of NA given A = t is monotonic, it is not true, in general, that the con-
ditional distribution of NA given A = t is stochastically monotonic. For example,
this is not the case if ψ ′′(0) < ∞, β > 0, π �= 0 and ψ̃ ′(λ) ∼ 2βλ as λ goes to
infinity. Indeed, using the Laplace transform of NA, one gets that, conditionally
on {A = t}, NA converges in distribution to 1 as t goes to 0 or infinity, whereas
NA is not equal to 1 a.s. as π �= 0.
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REMARK 5.6. Let us consider the stable cases, ψ(λ) = αλ + c0λ
1+α0 , with

c0 > 0 and α0 ∈ (0,1]. We deduce from Corollary 5.3 that

E[aNA |A = t] = 1 − (1 − a)α0 .

In particular, NA is independent of A. The case α0 = 1 corresponds to the
quadratic branching mechanism, and we get that a.s. NA = 1. For α0 ∈ (0,1),
we deduce from (39) that for n ∈ N

∗

P(NA = n|A = t) = 1

n!α0

n−1∏
k=1

(k − α0).

For α0 ∈ (0,1), we have ψ ′′(0+) = +∞, and the result of Remark 5.4 does not
hold.

6. Asymptotics for the number of ancestors. The number N−s,0 defined by
(30) of clans born before time −s and alive at time 0 is nondecreasing and is
distributed as a Poisson random variable with parameter �(s) given by (31). As
�(s) goes to infinity as s goes down to 0, we deduce that N−s,0 tends to infinity
almost surely as s ↓ 0+. A natural question is then how fast the numbers N−s,0
tend to infinity. It follows from the definition of the Poisson random measure N3
in (13) that {N−�−1(s),0; s ≥ 0} is Poisson process with parameter 1, and by the
strong law of large numbers for Lévy processes (see [8]), we deduce that

lim
s↓0+

N−s,0

�(s)
= 1 almost surely.

One can also ask how fast the number Ms of ancestors at time −s of the current
population living at time 0 tends to infinity. To answer this question, we need to
introduce the genealogy of the families. Notice the genealogy of a CB contains
more information than the CB itself.

6.1. Genealogy of CB. We recall here the definition of the Lévy continuum
random tree (CRT) introduced in [35, 36] and developed later in [16] for critical
or sub-critical branching mechanism. See also [17, 34] for a real trees setting.

We first recall the coding of a compact real tree by a continuous function
g : [0,+∞) → [0,+∞) with compact support and such that g(0) = 0. We also
assume that g is not identically 0. For every 0 ≤ s ≤ t , we set

mg(s, t) = inf
u∈[s,t]g(u) and dg(s, t) = g(s) + g(t) − 2mg(s, t).

We then introduce the equivalence relation s ∼ t if and only if dg(s, t) = 0. Let Tg

be the quotient space [0,+∞)/ ∼. It is easy to check that dg induces a distance
on Tg . Moreover, (Tg, dg) is a compact real tree (see [17], Theorem 2.1). We say
that g is the height process of the tree Tg . For instance, when g is a normalized
Brownian excursion, the associated real tree is Aldous’s CRT [4].

We get from Section 3.2 in [17] and Theorem 1.4.3 in [16] [for the continuity
of H under (A1)] the following result.
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THEOREM 6.1. Under (A1), there exists a continuous process H = (Hs ,
s ≥ 0), called height process, and a càdlàg process L(H) = (La, a > 0), called
local time of H , defined under a σ -finite measure N, called the excursion measure
of H , such that N-a.e.:

• H0 = 0, Hs = 0 for s ≥ σ where σ is finite and defined by

σ = inf{s > 0;Hs = 0};
• for all a > 0,

lim
ε↓0

1

ε

∫ σ

0
1{a−ε<Hr≤a} dr = La in L1(N).

• The process L(H) is distributed under the excursion measure N as Y under its
excursion measure N.

In order to simplify notations, we shall identify Y with L(H) as well as N

with N.
The tree (TH ,dH ) corresponding to H is called a Lévy tree. Informally, La mea-

sures the number of vertices (in fact leaves) of TH at level a under N.
Let a > 0 be fixed. We consider the excursions of the height process H above a

under the excursion measure N. Precisely, let (uk, vk), k ∈ K be the excursions of
H above a over the time interval [0, σ ]. We set Hk = (H(uk+s)∧vk

− a, s ≥ 0).
The next result is a consequence of Proposition 4.2.3 in [16].

PROPOSITION 6.2. Conditionally on (Lr, r ≤ a), the measure∑
k∈K

δHk(dH)

is a Poisson point measure with intensity La
N[dH ].

We give a definition for the number of ancestors, which will be used in the next
section.

DEFINITION 6.3. The number of ancestors at time a of the population (coded
by H ) alive at time b is the number of excursions of H above level a which reach
level b > a.

Ra,b(H) = ∑
k∈K

1{ζk≥b−a},

where ζk = max{Hk
s , s ≥ 0}.



2058 Y.-T. CHEN AND J.-F. DELMAS

6.2. Genealogy of Z. Recall notations from Section 6.1.
We use formulation (12) to construct the genealogy of Z. Recall notation N0

from Section 3.1:

• Conditionally on N0, let Ñ1(dt, dH) = ∑
j∈J1

δtj ,Hj (dt, dH) be a Poisson
point measure with intensity ν(dt)N[dH ] with ν(dt) = ∑

i∈I riδti (dt).
• Let Ñ2(dt, dH) = ∑

j∈J2
δtj ,Hj (dt, dH) be a Poisson point measure indepen-

dent of (N0, Ñ1) and with intensity 2β dt N[dH ].
We will write Y j for L(Hj ) for j ∈ J = J1 ∪ J2. Thus notation (12) is still
consistent with the previous sections, thanks to Proposition 6.2. And the process∑

j∈J δtj ,Hj allows to code for the genealogy of the families of Z.
Let s > 0. Following Definition 6.3, we consider Ms the number of ancestors at

time −s of the current population living at time 0, excluding the immortal individ-
ual.

Ms = ∑
j∈J

1{tj<−s}R−s−tj ,−tj (H
j ).

6.3. Asymptotics for the number of ancestors. We first give a technical lemma,
whose proof is postponed to the end of this section.

LEMMA 6.4. The joint distribution of Ms and Z0, conditionally on Z−s , is
characterized by the following equation: for η,λ ≥ 0 s > 0,

E[e−ηMs−λZ0 |Z−s] = e− ∫ s
0 dr ψ̃ ′(u(λ,r))e−Z−s [(1−e−η)c(s)+e−ηu(λ,s)].(40)

In particular, Ms is, conditionally on Z−s , distributed as a Poisson random vari-
able with parameter c(s)Z−s .

In a sense, Ms counts the number of excursions of the height process at time
−s above level s. It is well known, see the second equality in (21) of [17], that for
CSBP processes, the number of excursions at level t −ε which reach level t divided
by c(ε) (i.e., the excursion measure of all the excursions with height larger than ε)
converge a.s. to the local time at level t . Mimicking the proof of the second equality
in (21) of [17], which relies on the fact that Ms is increasing and distributed as a
Poisson random variable with (random) parameters which converge, we get the
following result.

COROLLARY 6.5. The following convergence holds:

lim
s→0

Ms

c(s)
= Z0 almost surely.
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REMARK 6.6. Suppose in addition that
∫ ∞

0 �2π(d�) < ∞. Set π̃(d�) =
�2π(d�). Then the π̃ -coalescent Nμ defined in [6], where N

μ
t is the number of

ancestors at time t for the coalescent process, comes down from infinity by the
assumption (A2) (see [6] and the references therein). It was shown in [6] (see also
[39]) that the speed of coming down from infinity satisfies

lim
t↓0+

N
μ
t

c(t)
= 1 almost surely.(41)

From the heuristic duality between coalescence and branching processes, our result
in Corollary 6.5 can be seen as a duality to (41).

The next theorem gives the speed of convergence of Z−s and Ms/c(s) to Z0
when ψ behaves like a power at infinity; for the quadratic case, see Theorem 7.8.
Notice the behavior is different in the asymptotic stable case and in the quadratic
case.

THEOREM 6.7. Assume there exists a > 0 and α0 ∈ (1,2) such that
limλ→+∞ λ−α0ψ(λ) = a. Set h(s) = s−1/α0 . Then the following convergence holds
in distribution:(

Z−s, h(s)

(
Z0 − Ms

c(s)

)
, h(s)(Z0 − Z−s)

)
(d)−→

s↓0+(Z0,VZ0,VZ0),

where V is a stable process independent of Z0 with Laplace transform E[e−λVt ] =
eatλα0 .

The Lévy measure of V is 1{x>0}x−α0−1 dx up to a multiplicative constant.

PROOF OF THEOREM 6.7. Let λ ≥ 0 and η ≥ 0. We get from Lemma 6.4 that

E
[
e−ηh(s)(Z0−c(s)−1Ms)−λh(s)(Z0−Z−s )|Z−s

] = e− ∫ s
0 drψ̃ ′(u((λ+η)h(s),r))e−�sZ−s ,

where we set

�s = (
1 − eηh(s)/c(s))c(s) + eηh(s)/c(s)u

(
(λ + η)h(s), s

) − λh(s).(42)

Let q > 0 be fixed. Notice that sψ(rh(s)) is bounded near 0. Then we deduce from
(4) that u(qh(s), s) ≤ qh(s) and

u(qh(s), s) = qh(s) − aqα0 + o(1),

where o(1) denotes any function of s which converges to 0 as s goes down to 0.
Using (20), we get∫ s

0
dr ψ̃ ′(u(qh(s), r)) = log

(
ψ(qh(s))

ψ(u(qh(s), s))eαs

)
= o(1).(43)
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We deduce from (9) that c(s) ∼ (as(α0 − 1))−1/(α0−1) at infinity. Thus, we get
h2(s)/c(s) is of order s−2/α0+1/(α0−1) = s(2−α0)/(α0−1)α0 and thus h2(s)/c(s) =
o(1). We compute

�s =
(
−η

h(s)

c(s)
+ 1

c(s)
o(1)

)
c(s)

+
(

1 + 1√
c(s)

o(1)

)(
(λ + η)h(s) − a(λ + η)α0 + o(1)

) − λh(s)

= −a(λ + η)α0 + o(1).

We deduce that for any η ≥ 0, λ ≥ 0 and b > a(λ + η)α0 , we have, for s small
enough,

E
[
e−bZ−s e−ηh(s)(Z0−c(s)−1Ms)−λh(s)(Z0−Z−s )

]
= E

[
e−bZ−s e(a(λ+η)α0+o(1))Z−s

] + o(1)

= E
[
e−bZ0e(a(λ+η)α0+o(1))Z0

] + o(1)

−→
s↓0+ E

[
e−bZ0ea(λ+η)α0Z0

]
= E

[
e−bZ0e−(λ+η)VZ0

]
.

An easy adaptation of [42] to multidimensional Laplace transform yields the result.
�

PROOF OF LEMMA 6.4. For any b, η,λ ≥ 0, we have

E[e−bZ−s−ηMs−λZ0]
= E

[
e
−λ

∑
j∈J 1{−s≤tj ≤0}Y j

−tj
]

× E

[
exp

(
−bZ−s − ηMs − λ

∑
j∈J

1{tj<−s}Y j
−tj

)]

= exp
(
−

∫ s

0
dr ψ̃ ′(u(λ, r))

)
(44)

× E

[
exp

(
− ∑

j∈J
1{tj<−s}

(
bY

j
−s−tj

+ ηR−s−tj ,−tj (H
j ) + λY

j
−tj

))]

= exp
(
−

∫ s

0
dr ψ̃ ′(u(λ, r))

)

× exp
(
−

∫ ∞
0

da ψ̃ ′(
N

[
1 − exp

(−bYa − ηRa,a+s(H) − λYa+s

)]))
,
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where we used that Poisson random measures over disjoint sets are independent in
the first equality, Lemma 3.1 in the second equality and a immediate generalization
of Lemma 3.1 to genealogies in the third equality.

Using notations from Section 6.1 on the Poissonian representation of the height
process above level a from Proposition 6.2, we get

N
[
1 − e−bYa−ηRa,a+s (H)−λYa+s

] = N
[
1 − e−bYa−∑

k∈K η1{ζk≥s}−λY (Hk)s
]

= N
[
1 − e−Ya(b+N[1−exp(−η1{ζ≥s}−λYs)])].

Recall that on {ζ < s} we have Ys = 0. As 1 − exp(−η1{ζ≥s} − λYs) = (1 −
e−η)1{ζ≥s} + e−η(1 − e−λYs ), we deduce that

N
[
1 − e−bYa−ηRa,a+s (H)−λYa+s

] = N[1 − e−λ′Ya ] = u(λ′, a)

with λ′ = b + (1 − e−η)c(s) + e−ηu(λ, s). Then we use Lemma 3.6 to write

exp
(
−

∫ ∞
0

da ψ̃ ′(
N

[
1 − exp

(−bYa − ηRa,a+s(H) − λYa+s

)]))

= exp
(
−

∫ ∞
0

da ψ̃ ′(u(λ′, a))

)

= E[e−λ′Z−s ].
Plugging this in (44), we deduce (40). �

7. The quadratic branching mechanism. Let (ek;k ∈ N) be independent ex-
ponential random variables with mean 1.

7.1. Preliminaries. In this section we give some explicit distributions and
more precise results for the case of quadratic branching mechanism.

ψ(λ) = βλ2 + 2βθλ,(45)

where β > 0 and θ > 0. We have

u(λ, t) = 2θλ

(2θ + λ)e2θβt − λ
, c(t) = 2θ

e2θβt − 1
, κ∗ = 2θ.

For every t ∈ R, it follows from Corollary 3.3 that the process {Zs+t ; s ≥ 0} has
the same distribution as the strong solution of the following stochastic differential
equation:

dXs =
√

2βXs dWs + 2β(1 − θXs) ds

with initial law P(Z0 ∈ ·), where W is a standard Brownian motion; see [46],
Section XI.3, for the existence of strong solution.
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7.2. Joint law of the TMRCA and populations sizes. We have the following
representations.

THEOREM 7.1. Assume ψ is given by (45).

(i) We have, for λ ≥ 0,

E[e−λZ] =
(

2θ

2θ + λ

)2

and Z
(d)= 1

2θ
(e1 + e2).(46)

(ii) We have, for t ≥ 0,

P(A ≤ t) = (1 − e−2θβt )2 and A
(d)= 1

2θβ
max(e1, e2).(47)

(iii) Conditionally on {A = t}, we have the following distribution representa-
tion:

(ZA,ZI ,ZO)
(d)=

(
e1 + e2

2θ + c(t)
,

e3 + e4

2θ + c(t)
,

e5

2θ + c(t)

)
.(48)

PROOF. By Lemma 19, we have

E[e−λZ] =
(

2θ

2θ + λ

)2

.

This gives (i). Using Theorem 4.1, we obtain

E[e−λZA−γZI −ηZO ;A ∈ dt]

= 2β(2θ)6e6θβt (e2θβt − 1)

[(2θ + η)e2θβt − η][(2θ + γ )e2θβt − γ ]2[(2θ + λ)e2θβt − λ]2 dt.

We then deduce (ii) and (iii). �

We then are able to compare more precisely the size of the current population
Z = ZI + ZO with the size of the population ZA just before the birth time of the
MRCA. As (Zt , t ∈ R) is continuous, notice that that ZA is also the size of the
population at the birth time of the MRCA. Recall that ZA is stochastically smaller
than Z. The next corollary indicates that ZA is, however, not a.s. smaller than Z.

COROLLARY 7.2. Assume ψ is given by (45). We have a.s.

P(ZA < Z|A) = 11
16 and E[ZA|A] = 2

3E[Z|A]
as well as

P(ZA < Z) = 11
16 and E[ZA] = 2

3E[Z].
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PROOF. We have

P(ZA < Z|A) = P(e1 + e2 < e3 + e4 + e5) = 11
16 .

The other equalities are obvious. �

There is also an interesting result (which is not valid for general branching
mechanism) which can be interpreted by time reversal. Recall ζ is the extinction
time of Y .

PROPOSITION 7.3. Assume ψ is given by (45). Conditionally on Z, A is dis-
tributed as ζ under PZ : for all t ≥ 0

P(A ≤ t |Z) = e−c(t)Z = PZ(ζ ≤ t).(49)

PROOF. We deduce from (46) and (47) that the densities of Z and A are

fA(t) = 4θβe−2θβt (1 − e−2θβt )1{t>0} and fZ(z) = (2θ)2ze−2θz1{z>0}.(50)

We also deduce from (48) the density of Z, conditionally on A = t .

fZ|A=t (z) = (
2θ + c(t)

)3
z2e−(2θ+c(t))z1{z>0}.

Using Bayes’s rule, we get the density of A conditionally on Z = z: for z, t > 0

fA|Z=z(t) = fZ|A=t (z)
fA(t)

fZ(z)
= z(2θ)2β

(e2θβt − 1)2 e2θβt exp
(
− 2θz

e2θβt − 1

)

= −c′(t)ze−c(t)z.

We obtain P(A ≤ t |Z) = e−c(t)Z . Then, we conclude as

Pr (ζ ≤ t) = e−rN[ζ≥t] = e−rc(t),

where we used the Poissonian representation of Y given by (7). �

Notice that (49) implies that

P
(
c(A)Z ≥ c(t)Z|Z) = P(A ≤ t |Z) = e−c(t)Z.

We obtain that c(A)Z is independent of Z and c(A)Z
(d)= e1. We thus deduce the

following corollary.

COROLLARY 7.4. Assume ψ is given by (45). We have the following repre-
sentation:

(Z, c(A),ZA)
(d)=

(
e1 + e2

2θ
,2θ

e3

e1 + e2
,

1

2θ

e1 + e2

e1 + e2 + e3
(e4 + e5)

)
.

REMARK 7.5. It is also easy to check that conditionally on {Z = z}, A is
distributed as 1

2βθ
log(1 + 2θz

e3
). In particular, we deduce that A is distributed as

1
2βθ

log(1 + e1+e2
e3

).
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7.3. TMRCA for n individuals. Next, we consider the joint distribution of Z

and An the TMRCA of the immortal individual and n individuals chosen at ran-
dom among the current population. The next result is a direct application of Theo-
rem 4.7.

PROPOSITION 7.6. Assume ψ is given by (45). We set s = 1 − e−2βθt . We
have, for n ∈ N

∗,

E
[
Zne−λZ1{An∈[0,t]}

] = (n + 1)!sn

(2θ + λs)n

(
2θ

2θ + λ

)2

,

and the size-biased distribution of An is the maximum of n independent exponen-
tial random variables with mean 1,

E
[
Zn1{An∈[0,t]}

] = E[Zn](1 − e−2βθt )n.

We can compute explicitly the distribution of A1. See also [32], Section 3, for
similar computations in a slightly different setting.

PROPOSITION 7.7. Assume ψ is given by (45). We set s = 1 − e−2βθt . We
have

P(A1 ≤ t) = 2
s

1 − s

(
1 + s

1 − s
log(s)

)
and

(51)

P
(
c(A1)Z ≥ x|Z) = 2

x
− 2

x2 (1 − e−x).

In particular, c(A1)Z is independent of Z.

Notice that P(A ≤ t) = s2 so that we recover from (51) the trivial inequality
P(A1 ≤ t) ≥ P(A ≤ t) as A ≥ A1.

PROOF OF PROPOSITION 7.6. Applying Theorem 4.7, we get

E
[
e−λZ1{A1≤t}

]
=

∫ ∞
λ

dη E
[
Ze−ηZ1{A1≤t}

]
(52)

= 2(e2θβt − 1)2
(

1

(e2θβt − 1)

2θ

2θ + λ
− log

(
1 + 1

(e2θβt − 1)

2θ

2θ + λ

))
.

In particular, the distribution of A1 is given by

P(A1 ≤ t) = 2(e2θβt − 1)2
(

1

(e2θβt − 1)
− log

(
1 + 1

(e2θβt − 1)

))
.
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Applying inverse Laplace transforms to (52) and using the density of Z given
in (50), we get that the conditional law of A1 given Z,

P(A1 ≤ t |Z) = 2(e2θβt − 1)2

(2θ)2Z

(
2θ

e2θβt − 1
+ e−2θZ/(e2θβt−1) − 1

Z

)
,

which implies that

P
(
2θZ/(e2θβA1 − 1) > x

) = 2

x
− 2

x2 (1 − e−x). �

7.4. Fluctuations for the renormalized number of ancestors. Finally, we com-
plete corollary 6.5 by giving the fluctuations for the renormalized number of an-
cestors (to be compared with Theorem 6.7 in the stable case, recall that Z0 = Z).

THEOREM 7.8. Assume ψ is given by (45). Then the following convergence
holds in distribution:(

Z−s,
√

c(s)

(
Z − Ms

c(s)

)
,
√

c(s)(Z − Z−s)

)
(d)−→

s↓0+

(
Z,

BZ√
2
,
BZ + WZ√

2

)
,

where (Bt , t ≥ 0) and (Wt , t ≥ 0) are two independent standard Brownian motions
indepedent of Z. In particular, the following convergences hold in distribution:

√
c(s)E[Z]

(
Ms

c(s)
− Z

)
(d)−→

s↓0+(Z − Z′)

and √
c(s)E[Z](Z−s − Z)

(d)−→
s↓0+

√
2(Z − Z′),

where Z′ is distributed as Z and independent of Z.

PROOF. We follow the proof of Theorem 6.7, with h(s) = √
c(s), up to for-

mula (43). Then notice that h2(s)/c(s) = 1 [instead of o(1) in the proof of Theo-
rem 6.7]. We have, for r > 0,

u
(
r
√

c(s), s
) = r

√
c(s)

(
1 − r√

c(s)
+ o

(
1/

√
c(s)

))
.

So we have for �s defined by (42) the following approximation:

�s = −
(

η√
c(s)

+ η2

2c(s)
+ o

(
1/c(s)

))
c(s) − λ

√
c(s)

+
(

1 + η√
c(s)

+ o
(
1/

√
(c(s))

))
(λ + η)

√
c(s)

(
1 − λ + η√

c(s)
+ o

(
1/

√
c(s)

))

= −
(

η2

2
+ λ2 + λη

)
+ o(1).
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We deduce that for any η ≥ 0, λ ≥ 0 and b > (
η2

2 + λ2 + λη), we have, for s small
enough,

E
[
e−bZ−s e−η

√
c(s)(Z0−c(s)−1Ms)−λ

√
c(s)(Z0−Z−s )

]
= E

[
e−bZ−s e(η2/2+λ2+λη+o(1))Z−s

] + o(1)

−→
s↓0+E

[
e−bZ0e(η2/2+λ2+λη)Z0

]

= E
[
e−bZ0e−(η/

√
2)BZ0−(λ/

√
2)(BZ0+WZ0 )].

An easy adaptation of [42] to multidimensional Laplace transform yields the first
part of the theorem. Then notice that BZ0 is distributed as

√
2θ(Z0 − Z′

0) to con-
clude. �
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