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A CONTINUUM-TREE-VALUED MARKOV PROCESS1

BY ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Université d’Orléans and Université Paris-Est

We present a construction of a Lévy continuum random tree (CRT) as-
sociated with a super-critical continuous state branching process using the
so-called exploration process and a Girsanov theorem. We also extend the
pruning procedure to this super-critical case. Let ψ be a critical branch-
ing mechanism. We set ψθ (·) = ψ(· + θ) − ψ(θ). Let � = (θ∞,+∞) or
� = [θ∞,+∞) be the set of values of θ for which ψθ is a conservative
branching mechanism. The pruning procedure allows to construct a decreas-
ing Lévy-CRT-valued Markov process (Tθ , θ ∈ �), such that Tθ has branch-
ing mechanism ψθ . It is sub-critical if θ > 0 and super-critical if θ < 0. We
then consider the explosion time A of the CRT: the smallest (negative) time
θ for which the continuous state branching process (CB) associated with Tθ

has finite total mass (i.e., the length of the excursion of the exploration pro-
cess that codes the CRT is finite). We describe the law of A as well as the
distribution of the CRT just after this explosion time. The CRT just after ex-
plosion can be seen as a CRT conditioned not to be extinct which is pruned
with an independent intensity related to A. We also study the evolution of
the CRT-valued process after the explosion time. This extends results from
Aldous and Pitman on Galton–Watson trees. For the particular case of the
quadratic branching mechanism, we show that after explosion the total mass
of the CB behaves like the inverse of a stable subordinator with index 1/2.
This result is related to the size of the tagged fragment for the fragmentation
of Aldous’s CRT.

1. Introduction. Continuous state branching processes (CB in short) are non-
negative real valued Markov processes first introduced by Jirina [19] that satisfy a
branching property: the process (Zt , t ≥ 0) is a CB if its law when starting from
x+x′ is equal to the law of the sum of two independent copies of Z starting respec-
tively from x and x ′. The law of such a process is characterized by the so-called
branching mechanism ψ via its Laplace functionals. The branching mechanism ψ

of a CB is given by

ψ(λ) = α̃λ + βλ2 +
∫
(0,+∞)

π(d	)
[
e−λ	 − 1 + λ	1{	≤1}

]
,

where α̃ ∈ R, β ≥ 0 and π is a Radon measure on (0,+∞) such that
∫
(0,+∞)(1 ∧

	2)π(d	) < +∞. The CB is said to be respectively sub-critical, critical, super-
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critical when ψ ′(0) > 0, ψ ′(0) = 0 or ψ ′(0) < 0. We will write (sub)critical for
critical or sub-critical. Notice that ψ is smooth and strictly convex if β > 0 or
π �= 0.

It is shown in [20] that all these CBs can be obtained as the limit of renor-
malized sequences of Galton–Watson processes. A genealogical tree is naturally
associated with a Galton–Watson process and the question of existence of such a
genealogical structure for CB arises naturally. This question has given birth to the
theory of continuum random trees (CRT), first introduced in the pioneer work of
Aldous [7–9]. A continuum random tree (called Lévy CRT) that codes the geneal-
ogy of a general (sub)critical branching process has been constructed in [22, 23]
and studied further in [16]. The main tool of this approach is the so-called explo-
ration process (ρs, s ∈ R

+), where ρs is a measure on R
+, which codes for the

CRT. For (sub)critical quadratic branching mechanism (π = 0), the measure ρs is
just the Lebesgue measure over an interval [0,Hs], and the so-called height pro-
cess (Hs, s ∈ R

+) is a Brownian motion with drift reflected at 0. In [15], a CRT is
built for super-critical quadratic branching mechanism using the Girsanov theorem
for Brownian motion.

We propose here a construction for general super-critical Lévy tree, using the
exploration process, based on ideas from [15]. We first build the super-critical tree
up to a given level a. This tree can be coded by an exploration process, and its law
is absolutely continuous with respect to the law of a (sub)critical Lévy tree, whose
leaves above level a are removed. Moreover, this family of processes (indexed by
parameter a) satisfies a compatibility property, and hence there exists a projective
limit which can be seen as the law of the CRT associated with the super-critical
CB. This construction enables us to use most of the results known for (sub)critical
CRT. Notice that another construction of a Lévy CRT that does not make use of
the exploration process has been proposed in [18] as the limit, for the Gromov–
Hausdorff metric, of a sequence of discrete trees. This construction also holds in
the super-critical case but is not easy to use to derive properties for super-critical
CRT.

In a second time, we want to construct a “decreasing” tree-valued Markov pro-
cess. To begin with, if ψ is (sub)critical, for θ > 0 we can construct, via the pruning
procedure of [5], from a Lévy CRT T associated with ψ , a sub-tree Tθ associated
with the branching mechanism ψθ defined by

∀λ ≥ 0 ψθ(λ) = ψ(λ + θ) − ψ(θ).

By [1, 25], we can even construct a “decreasing” family of Lévy CRTs (Tθ , θ ≥ 0)

such that Tθ is associated with ψθ for every θ ≥ 0.
In this paper, we consider a critical branching mechanism ψ and denote by �

the set of real numbers θ (including negative ones) for which ψθ is a well-defined
conservative branching mechanism (see Section 5.3 for some examples). Notice
that � = [θ∞,+∞) or (θ∞,+∞) for some θ∞ ∈ [−∞,0]. We then extend the
pruning procedure of [5] to super-critical branching mechanisms in order to define
a Lévy CRT-valued process (Tθ , θ ∈ �) such that:
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• for every θ ∈ �, the Lévy CRT Tθ is associated with the branching mechanism
ψθ ;

• all the trees Tθ , θ ∈ � have a common root;
• the tree-valued process (Tθ , θ ∈ �) is decreasing in the sense that for θ < θ ′, Tθ ′

is a sub-tree of Tθ .

Let ρθ be the exploration process that codes for Tθ . We denote by Nψ the excur-
sion measure of the process (ρθ , θ ∈ �), that is under Nψ , each ρθ is the excursion
of an exploration process associated with ψθ . Let σθ denote the length of this ex-
cursion. The quantity σθ corresponds also to the total mass of the CB associated
with the tree Tθ . We say that the tree Tθ is finite (under Nψ ) if σθ is finite (or
equivalently if the total mass of the associated CB is finite). By construction, we
have that the trees Tθ for θ ≥ 0 are associated with (sub)critical branching mech-
anisms and hence are a.e. finite. On the other hand, the trees Tθ for negative θ

are associated with super-critical branching mechanisms. We define the explosion
time

A = inf{θ ∈ �,σθ < +∞}.
For θ ∈ �, we define θ̄ as the unique nonnegative real number such that

ψ(θ̄) = ψ(θ)(1)

(notice that θ̄ = θ if θ ≥ 0). If θ∞ /∈ �, we set θ̄∞ = limθ↓θ∞ θ̄ . We give the distri-
bution of A under Nψ (Theorem 6.5). In particular we have, for all θ ∈ [θ∞,+∞),

Nψ [A > θ ] = θ̄ − θ.

We also give the distribution of the trees after the explosion time (Tθ , θ ≥ A) (The-
orem 6.7 and Corollary 8.2). Of particular interest is the distribution of the tree at
its explosion time, TA.

The pruning procedure can been viewed, from a discrete point of view, as a per-
colation on a Galton–Watson tree. This idea has been used in [11] (percolation on
branches) and in [4] (percolation on nodes) to construct tree-valued Markov pro-
cesses from a Galton–Watson tree. The CRT-valued Markov process constructed
here can be viewed as the continuous analog of the discrete models of [11] and [4]
(or maybe a mixture of both constructions). However, no link is actually pointed
out between the discrete and the continuous frameworks.

In [11] and [4], another representation of the process up to the explosion time
is also given in terms of the pruning of an infinite tree [a (sub)critical Galton–
Watson tree conditioned on nonextinction]. In the same spirit, we also construct
another tree-valued Markov process (T ∗

θ , θ ≥ 0) associated with a critical branch-
ing mechanism ψ . In the case of a.s. extinction (i.e., when

∫ +∞ dv
ψ(v)

< +∞),
T ∗

0 is distributed as T0 conditioned to survival. The tree T ∗
0 is constructed via a

spinal decomposition along an infinite spine. Then we define the continuum-tree-
valued Markov process (T ∗

θ , θ ≥ 0) again by a pruning procedure. Let θ ∈ (θ∞,0).
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We prove that under the excursion measure Nψ , given A = θ , the process (Tθ+u,

u ≥ 0) is distributed as the process (T ∗̄
θ+u

, u ≥ 0) (Theorem 8.1).

When the branching mechanism is quadratic, ψ(λ) = λ2/2, some explicit com-
putations can be carried out. Let σ ∗

θ be the total mass of T ∗
θ and τ = (τθ , θ ≥ 0)

be the first passage process of a standard Brownian motion, that is a stable sub-
ordinator with index 1/2. We get (Proposition 9.1) that (σ ∗

θ , θ ≥ 0) is distributed
as (1/τθ , θ ≥ 0) and that (σA+θ , θ ≥ 0) is distributed as (1/(V + τθ ), θ ≥ 0) for
some random variable V independent of τ . Let us recall that the pruning procedure
of the tree can be used to construct some fragmentation processes (see [1, 6, 25])
and the process (σθ , θ ≥ 0), conditionally on σ0 = 1, represents then the evolution
of a tagged fragment. We hence recover a well-known result of Aldous–Pitman
[10]: conditionally on σ0 = 1, (σθ , θ ≥ 0) is distributed as (1/(1 + τθ ), θ ≥ 0) (see
Corollary 9.2).

The paper is organized as follows. In Section 2, we introduce an exponential
martingale of a CB and give a Girsanov formula for CBs. We recall in Section 3
the construction of a (sub)critical Lévy CRT via the exploration process and some
useful properties of this exploration process. Then we construct, in Section 4, the
super-critical Lévy CRT via a Girsanov theorem involving the same martingale as
in Section 2. We recall in Section 5 the pruning procedure for critical or sub-critical
CRTs and extend this procedure to super-critical CRTs. We construct in Section 6
the tree-valued process (Tθ , θ ∈ �), or more precisely the family of exploration
processes (ρθ , θ ∈ �) which codes for it. We also give the law of the explosion
time A and the law of the tree at this time. In Section 7, we construct an infinite
tree and the corresponding pruned sub-trees (T ∗

θ , θ ≥ 0), which are given by a
spinal representation using exploration processes. We prove in Section 8 that the
process (TA+u, u ≥ 0) is distributed as the process (T ∗

U+u, u ≥ 0) where U is a
positive random time independent of (T ∗

θ , θ ≥ 0). We finally make the explicit
computations for the quadratic case in Section 9.

Notice that all the results in the following sections are stated using exploration
processes which code for the CRT, instead of the CRT directly. An informal de-
scription of the links between the CRT and the exploration process is given at the
end of Section 3.6.

2. Girsanov’s formula for continuous branching process.

2.1. Continuous branching process. Let ψ be a branching mechanism of a
CB: for λ ≥ 0,

ψ(λ) = α̃λ + βλ2 +
∫
(0,+∞)

π(d	)
[
e−λ	 − 1 + λ	1{	≤1}

]
,(2)

where α̃ ∈ R, β ≥ 0, and π is a Radon measure on (0,+∞) such that
∫
(0,+∞)(1 ∧

	2)π(d	) < +∞. We shall say that ψ has parameter (α̃, β,π).
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We shall assume that β �= 0 or π �= 0. We have ψ(0) = 0 and ψ ′(0+) = α̃ −∫
(1,+∞) 	π(d	) ∈ [−∞,+∞). In particular, we have ψ ′(0+) = −∞ if and only if∫
(1,+∞) 	π(d	) = +∞. We say that ψ is conservative if for all ε > 0

∫ ε

0

1

|ψ(u)| du = +∞.(3)

Notice that (3) is fulfilled if ψ ′(0+) > −∞, that is, if
∫
(1,+∞) 	π(d	) < +∞. If

ψ is conservative, the CB associated with ψ does not explode in finite time a.s.
Let Pψ

x be the law of a CB Z = (Za, a ≥ 0) started at x ≥ 0 and with branching
mechanism ψ , and let Eψ

x be the corresponding expectation. The process Z is a
Feller process and thus has a càd-làg version. Let F = (Fa, a ≥ 0) be the filtration
generated by Z completed the usual way. For every λ > 0, for every a ≥ 0, we
have

Eψ
x [e−λZa ] = e−xu(a,λ),(4)

where function u is the unique nonnegative solution of

u(a,λ) +
∫ a

0
ψ(u(s, λ)) ds = λ, λ ≥ 0, a ≥ 0.(5)

This equation is equivalent to
∫ λ

u(a,λ)

dr

ψ(r)
= a, λ ≥ 0, a ≥ 0.(6)

If (3) holds, then the process is conservative: a.s. for all a ≥ 0, Za < +∞.
Let q0 be the largest root of ψ(q) = 0. Since ψ(0) = 0, we have q0 ≥ 0. If

ψ is (sub)critical, since ψ is strictly convex, we get that q0 = 0. If ψ is super-
critical, if we denote by q∗ > 0 the only real number such that ψ ′(q∗) = 0, we
have q0 > q∗ > 0. See Lemma 2.4 for the interpretation of q0.

If f is a function defined on [γ,+∞), then for θ ≥ γ , we set for λ ≥ γ − θ

fθ (λ) = f (θ + λ) − f (θ).

If ν is a measure on (0,+∞), then for q ∈ R, we set

ν(q)(d	) = e−q	ν(d	).(7)

REMARK 2.1. If π(q)((1,+∞)) < +∞ for some q < 0, then ψ given by (2)
is well defined on [q,+∞) and, for θ ∈ [q,+∞), ψθ is a branching mechanism
with parameter (α̃ + 2βθ + ∫

(0,1] π(d	)	(1 − e−θ	), β,π(θ)). Notice that for all
θ > q , ψθ is conservative. And, if the additional assumption∫

(1,+∞)
	π(q)(d	) =

∫
(1,+∞)

	e|q|	π(d	) < +∞

holds, then |(ψq)
′(0+)| < +∞ and ψq is conservative.
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2.2. Girsanov’s formula. Let Z = (Za, a ≥ 0) be a conservative CB with
branching mechanism ψ given by (2) with β �= 0 or π �= 0, and let (Fa, a ≥ 0) be
its natural filtration. Let q ∈ R such that q ≥ 0 or q < 0 and

∫
(1,+∞) 	e|q|	π(d	) <

+∞. Then, thanks to Remark 2.1, ψ(q) and ψq are well defined and ψq is conser-

vative. Then we consider the process Mψ,q = (M
ψ,q
a , a ≥ 0) defined by

Mψ,q
a = eqx−qZa−ψ(q)

∫ a
0 Zs ds.(8)

THEOREM 2.2. Let q ∈ R such that q ≥ 0 or q < 0 and
∫
(1,+∞) 	e|q|	π(d	) <

+∞.

(i) The process Mψ,q is a F -martingale under P
ψ
x .

(ii) Let a, x ≥ 0. On Fa , the probability measure P
ψq
x is absolutely continuous

with respect to Pψ
x and

dP
ψq
x |Fa

dPψ
x |Fa

= Mψ,q
a .

Before going into the proof of this theorem, we recall Proposition 2.1 from [2].
For μ a positive measure on R, we set

H(μ) = sup
{
r ∈ R;μ([r,+∞)

)
> 0

}
,(9)

the maximal element of its support. For a < 0, we set Za = 0.

PROPOSITION 2.3. Let μ be a finite positive measure on R with support
bounded from above [i.e., H(μ) is finite]. Then we have for all s ∈ R, x ≥ 0,

Eψ
x

[
e− ∫

R
Zr−sμ(dr)] = e−xw(s),(10)

where the function w is a measurable locally bounded nonnegative solution of the
equation

w(s) +
∫ +∞
s

ψ(w(r)) dr =
∫
[s,+∞)

μ(dr), s ≤ H(μ) and

(11)
w(s) = 0, s > H(μ).

If ψ ′(0+) > −∞ or if μ({H(μ)}) > 0, then (11) has a unique measurable locally
bounded nonnegative solution.

PROOF OF THEOREM 2.2.
First case. We consider q > 0 such that ψ(q) ≥ 0.
We have 0 ≤ M

ψ,q
a ≤ eqx , thus Mψ,q is bounded. It is clear that Mψ,q is F -

adapted.
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To check that Mψ,q is a martingale, thanks to the Markov property, it is enough
to check that Eψ

x [Mψ,q
a ] = Eψ

x [Mψ,q
0 ] = 1 for all a ≥ 0 and all x ≥ 0. Consider

the measure νq(dr) = qδa(dr) + ψ(q)1[0,a](r) dr , where δa is the Dirac mass at
point a. Notice that H(νq) = a and that νq({H(νq)}) = q > 0. Hence, thanks to
Proposition 2.3, there exists a unique nonnegative solution w of (11) with μ = νq ,

and Eψ
x [Mψ,q

a ] = e−x(w(0)−q). As q1[0,a] also solves (11) with μ = νq , we deduce

that w = q1[0,a] and that Ex[Mψ,q
a ] = 1. Thus, we get that Mψ,q is a bounded

martingale.
Let ν be a nonnegative measure on R with support in [0, a] [i.e., H(ν) ≤ a].

Thanks to Proposition 2.3, we have that Eψ
x [Mψ,q

a e− ∫
R

Zrν(dr)] = e−x(v(0)−q),
where v is the unique nonnegative solution of (11) with μ = ν + νq . As

M
ψ,q
a e− ∫

R
Zrν(dr) ≤ M

ψ,q
a , we deduce that e−x(v(0)−q) = Eψ

x [Mψ,q
a e− ∫

R
Zrν(dr)] ≤

1, that is, v(0) ≥ q . We set u = v − q1[0,a], and we deduce that u is nonnegative
and solves

u(s) +
∫ +∞
s

ψq(u(r)) dr =
∫
[s,+∞)

ν(dr), s ≤ H(ν) and

(12)
u(s) = 0, s > H(ν).

As ψ(q) ≥ 0, we deduce from the convexity of ψ that ψ ′
q(0) = ψ ′(q) ≥ 0. Thanks

to Proposition 2.3, we deduce that u is the unique nonnegative solution of (12) and

that e−xu(0) = E
ψq
x [e− ∫

R
Zrν(dr)]. In particular, we have that for all nonnegative

measure ν on R with support in [0, a],
Eψ

x

[
Mψ,q

a e− ∫
R

Zrν(dr)] = E
ψq
x

[
e− ∫

R
Zrν(dr)].

As e− ∫
R

Zrν(dr) is Fa-measurable, we deduce from the monotone class theorem
that for any nonnegative Fa-measurable random variable W ,

Eψ
x

[
Weqx−qZa−ψ(q)

∫ a
0 Zr dr] = Eψ

x [WMψ,q
a ] = E

ψq
x [W ].(13)

This proves the second part of the theorem.
Second case. We consider q ≥ 0 such that ψ(q) < 0. Let us remark that this

only occurs when ψ is super-critical.
Recall that q0 > q∗ > 0 are such that ψ(q0) = 0 and ψ ′(q∗) = 0. Notice that

ψ ′
q∗(0) = ψ ′(q∗) = 0, that is, ψq∗ is critical. Let W be any nonnegative random

variable Fa-measurable. From the first step, using (13) with q = q0, we get that

Eψ
x [Weq0x−q0Za ] = E

ψq0
x [W ].

Thanks to (13) with ψq∗ instead of ψ and (q0 − q∗) ≥ 0 instead of q , and using
that (ψq∗)q0−q∗ = ψq0 , we deduce that

E
ψq∗
x

[
We(q0−q∗)x−(q0−q∗)Za−ψq∗ (q0−q∗)

∫ a
0 Zr dr ] = E

(ψq∗ )q0−q∗
x [W ] = E

ψq0
x [W ].
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This implies that

Eψ
x [W ] = E

ψq0
x [We−q0xeq0Za ]

= E
ψq∗
x

[
We−q0xeq0Za e(q0−q∗)x−(q0−q∗)Za−ψq∗ (q0−q∗)

∫ a
0 Zr dr ]

= E
ψq∗
x

[
We−q∗x+q∗Za−ψq∗ (q0−q∗)

∫ a
0 Zr dr ].

As ψq∗(q0 − q∗) = ψ(q0) − ψ(q∗) = −ψ(q∗) = ψq∗(−q∗), we finally obtain

Eψ
x [W ] = E

ψq∗
x

[
We−q∗x+q∗Za−ψq∗ (−q∗)

∫ a
0 Zr dr ].(14)

If q < q∗, as (ψq)(q∗−q) = ψq∗ and ψ ′
q(q

∗ − q) = ψ ′(q∗) = 0, we deduce from
(14) with ψ replaced by ψq and q∗ by q∗ − q that

E
ψq
x [W ] = E

ψq∗
x

[
We−(q∗−q)x+(q∗−q)Za−ψq∗ (q−q∗)

∫ a
0 Zr dr].(15)

If q > q∗, formula (13) holds with ψ replaced by ψq∗ and q replaced by q − q∗,
which also yields equation (15).

Using (14), (15) and that ψq∗(−q∗) + ψ(q) = ψq∗(q − q∗), we get that

Eψ
x

[
Weqx−qZa−ψ(q)

∫ a
0 Zr dr]

= E
ψq∗
x

[
We−(q∗−q)x+(q∗−q)Za−(ψq∗ (−q∗)+ψ(q))

∫ a
0 Zr dr ]

(16)
= E

ψq∗
x

[
We−(q∗−q)x+(q∗−q)Za−ψq∗ (q−q∗)

∫ a
0 Zr dr ]

= E
ψq
x [W ].

Since this holds for any nonnegative Fa-measurable random variable W , this
proves (i) and (ii) of the theorem.

Third case. We consider q < 0 and assume that
∫
(1,+∞) 	e|q|	π(d	) < +∞. In

particular, ψq is a conservative branching mechanism, thanks to Remark 2.1.
Let W be any nonnegative Fa-measurable random variable. Using (13) if

ψq(−q) ≥ 0 or (16) if ψq(−q) < 0, with ψ replaced by ψq and q by −q , we
deduce that

E
ψq
x

[
We−qx+qZa−ψq(−q)

∫ a
0 Zr dr ] = Eψ

x [W ].
This implies that

E
ψq
x [W ] = Eψ

x

[
Weqx−qZa+ψq(−q)

∫ a
0 Zr dr ] = Eψ

x

[
Weqx−qZa−ψ(q)

∫ a
0 Zr dr].

Since this holds for any nonnegative Fa-measurable random variable W , this
proves (i) and (ii) of the theorem. �

Finally, we recall some well-known facts on CB. Recall that q0 is the largest
root of ψ(q) = 0, q0 = 0 if ψ is (sub)critical and that q0 > 0 if ψ is super-critical.
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We set

σ =
∫ +∞

0
Za da.(17)

For λ ≥ 0, we set

ψ−1(λ) = sup{r ≥ 0;ψ(r) = λ},(18)

and we call σ the total mass of the CB.

LEMMA 2.4. Assume that ψ is given by (2) with β �= 0 or π �= 0 and is con-
servative.

(i) Then Pψ
x -a.s. Z∞ = lima→+∞ Za exists, Z∞ ∈ {0,+∞},

Pψ
x (Z∞ = 0) = e−xq0,(19)

{Z∞ = 0} = {σ < +∞}, and we have, for λ > 0,

Eψ
x [e−λσ ] = e−xψ−1(λ).(20)

(ii) Let q > 0 such that ψ(q) ≥ 0. Then, the probability measure P
ψq
x is abso-

lutely continuous with respect to Pψ
x with

dP
ψq
x

dPψ
x

= Mψ,q∞ ,

where

Mψ,q∞ = eqx−ψ(q)σ 1{σ<+∞}.(21)

(iii) If ψ is super-critical then, conditionally on {Z∞ = 0}, Z is distributed
as Pψq0 : for any nonnegative random variable measurable w.r.t. σ(Za, a ≥ 0), we
have

Eψ
x [W |Z∞ = 0] = E

ψq0
x [W ].

PROOF. For λ > 0, we set Na = e−λZa+xu(a,λ), where u is the unique non-
negative solution of (6). Thanks to (4) and the Markov property, (Na, a ≥ 0) is a
bounded martingale under Pψ

x . Hence, as a goes to infinity, it converges a.s. and
in L1 to a limit, say N∞. From (6), we get that lima→+∞ u(a,λ) = q0. This im-
plies that Z∞ = lima→+∞ Za exists a.s. in [0,+∞]. Since Eψ

x [N∞] = 1, we get
Eψ

x [e−λZ∞] = e−q0x for all λ > 0. This implies that Pψ
x -a.s. Z∞ ∈ {0,+∞} and

(19).
Clearly, we have {Z∞ = +∞} ⊂ {σ = +∞}. For q > 0 such that ψ(q) ≥ 0,

we get that (M
ψ,q
a , a ≥ 0) is a bounded martingale under Pψ

x . Hence, as a goes to
infinity, it converges a.s. and in L1 to a limit, say M

ψ,q∞ . We deduce that

Eψ
x

[
e−ψ(q)σ 1{Z∞=0}

] = e−qx.(22)
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Letting q decrease to q0, we get that Pψ
x (σ < +∞,Z∞ = 0) = e−q0x = Pψ

x (Z∞ =
0). This implies that Pψ

x a.s. {σ = +∞} ⊂ {Z∞ = +∞}. We thus deduce that Pψ
x

a.s. {Z∞ = +∞} = {σ = +∞}. Notice also that (21) holds.
Notice that (22) readily implies (20). This proves Property (i) of the lemma and

(21).
Property (ii) is then a consequence of Theorem 2.2, Property (ii) and the con-

vergence in L1 of the martingale (M
ψ,q
a , a ≥ 0) towards M

ψ,q∞ .
Property (iii) is a consequence of (ii) with q = q0 and (19). �

3. Lévy continuum random tree. We recall here the construction of the Lévy
continuum random tree (CRT) introduced in [22, 23] and developed later in [16]
for critical or sub-critical branching mechanism. We will emphasize on the height
process and the exploration process which are the key tools to handle this tree. The
results of this section are mainly extracted from [16], except for the next subsection
which is extracted from [21].

3.1. Real trees and their coding by a continuous function. Let us first define
what a real tree is.

DEFINITION 3.1. A metric space (T , d) is a real tree if the following two
properties hold for every v1, v2 ∈ T :

(i) (unique geodesic) There is a unique isometric map fv1,v2 from [0, d(v1, v2)]
into T such that

fv1,v2(0) = v1 and fv1,v2(d(v1, v2)) = v2.

(ii) (no loop) If q is a continuous injective map from [0,1] into T such that
q(0) = v1 and q(1) = v2, we have

q([0,1]) = fv1,v2([0, d(v1, v2)]).
A rooted real tree is a real tree (T , d) with a distinguished vertex v∅ called the
root.

Let (T , d) be a rooted real tree. The range of the mapping fv1,v2 is denoted by
[[v1, v2, ]] (this is the line between v1 and v2 in the tree). In particular, for every
vertex v ∈ T , [[v∅, v]] is the path going from the root to v which we call the
ancestral line of vertex v. More generally, we say that a vertex v is an ancestor of a
vertex v′ if v ∈ [[v∅, v′]]. If v, v′ ∈ T , there is a unique a ∈ T such that [[v∅, v]] ∩
[[v∅, v′]] = [[v∅, a]]. We call a the most recent common ancestor to v and v′. By
definition, the degree of a vertex v ∈ T is the number of connected components
of T \ {v}. A vertex v is called a leaf if it has degree 1. Finally, we set λ the
one-dimensional Hausdorff measure on T .
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FIG. 1. A height process g and its associated real tree.

The coding of a compact real tree by a continuous function is now well known
and is a key tool for defining random real trees (see Figure 1). We consider a
continuous function g : [0,+∞) −→ [0,+∞) with compact support and such that
g(0) = 0. We also assume that g is not identically 0. For every 0 ≤ s ≤ t , we set

mg(s, t) = inf
u∈[s,t]g(u)

and

dg(s, t) = g(s) + g(t) − 2mg(s, t).

We then introduce the equivalence relation s ∼ t if and only if dg(s, t) = 0. Let Tg

be the quotient space [0,+∞)/ ∼. It is easy to check that dg induces a distance on
Tg . Moreover, (Tg, dg) is a compact real tree (see [17], Theorem 2.1). We say that
g is the height process of the tree Tg .

In order to define a random tree, instead of taking a tree-valued random vari-
able (which implies defining a σ -field on the set of real trees), it suffices to take a
continuous stochastic process for g. For instance, when g is a normalized Brown-
ian excursion, the associated real tree is Aldous’s CRT (up to a factor 2) [9]. We
present now how we can define a height process that codes a random real trees
describing the genealogy of a (sub)critical CB with branching mechanism ψ . This
height process is defined via a Lévy process that we first introduce.

3.2. The underlying Lévy process. We assume that ψ given by (2) is (sub)criti-
cal, that is,

α := ψ ′(0) = α̃ −
∫
(1,+∞)

	π(d	) ≥ 0(23)

and that

β > 0 or
∫
(0,1)

	π(d	) = +∞.(24)

We consider a R-valued Lévy process X = (Xt , t ≥ 0) with no negative jumps,
starting from 0 and with Laplace exponent ψ under the probability measure P

ψ :
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for λ ≥ 0 E
ψ [e−λXt ] = etψ(λ). By assumption (24), X is of infinite variation P

ψ -
a.s.

We introduce some processes related to X. Let J = {s ≥ 0;Xs �= Xs−} be the
set of jump times of X. For s ∈ J , we denote by

�s = Xs − Xs−

the size of the jump of X at time s and �s = 0 otherwise. Let I = (It , t ≥ 0) be
the infimum process of X,

It = inf
0≤s≤t

Xs,

and let S = (St , t ≥ 0) be the supremum process,

St = sup
0≤s≤t

Xs.

We will also consider for every 0 ≤ s ≤ t the infimum of X over [s, t],
I s
t = inf

s≤r≤t
Xr .

The point 0 is regular for the Markov process X − I , and −I is the local time of
X − I at 0 (see [12], Chapter VII). Let N

ψ be the associated excursion measure of
the process X−I away from 0. Let σ = inf{t > 0;Xt −It = 0} be the length of the
excursion of X − I under N

ψ [we shall see after Proposition 3.7 that the notation
σ is consistent with (17)]. By assumption (24), we have X0 = I0 = 0 N

ψ -a.e.
Since X is of infinite variation, 0 is also regular for the Markov process S − X.

The local time, L = (Lt , t ≥ 0), of S − X at 0 will be normalized so that

E
ψ [e−λS

L
−1
t ] = e−tψ(λ)/λ,

where L−1
t = inf{s ≥ 0;Ls ≥ t} (see also [12] Theorem VII.4(ii)).

3.3. The height process and the Lévy CRT. For each t ≥ 0, we consider the
reversed process at time t , X̂(t) = (X̂

(t)
s ,0 ≤ s ≤ t) by

X̂(t)
s = Xt − X(t−s)− if 0 ≤ s < t,

and X̂
(t)
t = Xt . The two processes (X̂

(t)
s ,0 ≤ s ≤ t) and (Xs,0 ≤ s ≤ t) have the

same law. Let Ŝ(t) be the supremum process of X̂(t) and L̂(t) be the local time at 0
of Ŝ(t) − X̂(t) with the same normalization as L.

DEFINITION 3.2 ([16], Definition 1.2.1). There exists a lower semi-continu-
ous modification of the process (L̂(t), t ≥ 0). We denote by (Ht , t ≥ 0) this modi-
fication.
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We can also define this process H by approximation: it is a modification of the
process

H 0
t = lim inf

ε→0

1

ε

∫ t

0
1{Xs<Is

t +ε} ds(25)

(see [16], Lemma 1.1.3). In general, H takes its values in [0,+∞], but we have
that, a.s. for every t ≥ 0:

• Hs < +∞ for every s < t such that Xs− ≤ I s
t ;

• Ht < +∞ if �Xt > 0

(see [16], Lemma 1.2.1).
We use this process to define a random real-tree that we call the ψ-Lévy CRT

via the procedure described above. We will see that this CRT does represent the
genealogy of a ψ-CB.

3.4. The exploration process. The height process is not Markov in general.
But it is a very simple function of a measure-valued Markov process, the so-called
exploration process.

If E is a locally compact polish space, let B(E) [resp., B+(E)] be the set of real-
valued measurable (resp., and nonnegative) functions defined on E endowed with
its Borel σ -field, and let M(E) [resp., Mf (E)] be the set of σ -finite (resp., finite)
measures on E, endowed with the topology of vague (resp., weak) convergence.
For any measure μ ∈ M(E) and f ∈ B+(E), we write

〈μ,f 〉 =
∫
E

f (x)μ(dx).

The exploration process ρ = (ρt , t ≥ 0) is a Mf (R+)-valued process defined
as follows: for every f ∈ B+(R+), 〈ρt , f 〉 = ∫

[0,t] dsI
s
t f (Hs) (where dsI

s
t denotes

the Lebesgue–Stieljes integral with respect to the nondecreasing map s �→ I s
t ), or

equivalently

ρt (dr) = ∑
0<s≤t

Xs−<Is
t

(I s
t − Xs−)δHs (dr) + β1[0,Ht ](r) dr.(26)

In particular, the total mass of ρt is 〈ρt ,1〉 = Xt − It .
Recall the definition (9) of H(μ) for a measure μ with compact support and set

by convention H(0) = 0.

PROPOSITION 3.3 ([16], Lemma 1.2.2 and formula (1.12)). Almost surely, for
every t > 0:

• H(ρt ) = Ht ;
• ρt = 0 if and only if Ht = 0;
• if ρt �= 0, then Suppρt = [0,Ht ];
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• ρt = ρt− + �tδHt , where �t = 0 if t /∈ J .

In the definition of the exploration process, as X starts from 0, we have ρ0 = 0
a.s. To state the Markov property of ρ, we must first define the process ρ started at
any initial measure μ ∈ Mf (R+).

For a ∈ [0, 〈μ,1〉], we define the erased measure kaμ by

kaμ([0, r]) = μ([0, r]) ∧ (〈μ,1〉 − a) for r ≥ 0.

If a > 〈μ,1〉, we set kaμ = 0. In other words, the measure kaμ is the measure μ

erased by a mass a backward from H(μ).
For ν,μ ∈ Mf (R+), and μ with compact support, we define the concatenation

[μ,ν] ∈ Mf (R+) of the two measures by

〈[μ,ν], f 〉 = 〈μ,f 〉 + 〈
ν,f

(
H(μ) + ·)〉, f ∈ B+(R+).

Finally, we set for every μ ∈ Mf (R+) and every t > 0, ρ
μ
t = [k−It μ,ρt ]. We

say that (ρ
μ
t , t ≥ 0) is the process ρ started at ρ

μ
0 = μ. Unless there is an ambi-

guity, we shall write ρt for ρ
μ
t . Unless it is stated otherwise, we assume that ρ is

started at 0.

PROPOSITION 3.4 ([16], Proposition 1.2.3). The process (ρt , t ≥ 0) is a càd-
làg strong Markov process in Mf (R+).

REMARK 3.5. From the construction of ρ, we get that a.s. ρt = 0 if and only
if −It ≥ 〈ρ0,1〉 and Xt − It = 0. This implies that 0 is also a regular point for ρ.
Notice that N

ψ is also the excursion measure of the process ρ away from 0, and
that σ , the length of the excursion, is N

ψ -a.e. equal to inf{t > 0;ρt = 0}.

3.5. Notations. We consider the set D of càd-làg processes in Mf (R+), en-
dowed with the Skorohod topology and the Borel σ -field. In what follows, we
denote by ρ = (ρt , t ≥ 0) the canonical process on this set. We still denote by P

ψ

the probability measure on D such that the canonical process is distributed as the
exploration process associated with the branching mechanism ψ , and by N

ψ the
corresponding excursion measure.

3.6. Local time of the height process. The local time of the height process is
defined through the next result.

PROPOSITION 3.6 ([16], Lemma 1.3.2 and Proposition 1.3.3). There exists
a jointly measurable process (La

s , a ≥ 0, s ≥ 0) which is continuous and nonde-
creasing in the variable s such that:

• for every t ≥ 0, limε→0 supa≥0 E
ψ [sups≤t |ε−1 ∫ s

0 1{a<Hr≤a+ε} dr − La
s |] = 0;

• for every t ≥ 0, limε→0 supa≥ε E
ψ [sups≤t |ε−1 ∫ s

0 1{a−ε<Hr≤a} dr − La
s |] = 0;
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• P
ψ -a.s., for every t ≥ 0, L0

t = −It ;
• the occupation time formula holds: for any nonnegative measurable function g

on R+ and any s ≥ 0,
∫ s

0 g(Hr) dr = ∫
(0,+∞) g(a)La

s da.

Let Tx = inf{t ≥ 0; It ≤ −x}. We have the following Ray–Knight theorem
which links the ψ-Lévy CRT with the ψ-CB.

PROPOSITION 3.7 ([16], Theorem 1.4.1). The process (La
Tx

, a ≥ 0) is dis-

tributed under P
ψ as Z under Pψ

x (i.e., is a CB with branching mechanism ψ

starting at x).

Let P
ψ
x be the distribution of (ρt∧Tx , t ≥ 0) under P

ψ . We set Za = La
Tx

under

P
ψ
x and Za = La∞ under N

ψ and (under P
ψ
x or N

ψ )

σ(ρ) =
∫ ∞

0
1{ρt �=0} dt.(27)

The occupation time formula implies that

σ(ρ) =
∫ +∞

0
Za da,(28)

which is consistent with notation (17). When there is no confusion, we shall write
σ for σ(ρ). We call σ(ρ) the total mass of the CRT as it represents the total popu-
lation of the associated CB.

Exponential formula for the Poisson point process of jumps of the inverse sub-
ordinator of −I gives (see also the beginning of Section 3.2.2. [16]) that for λ > 0

N
ψ [1 − e−λσ ] = ψ−1(λ).(29)

We also recall Lemma 1.6 of [1].

LEMMA 3.8. Let θ > 0. The excursion measure N
ψθ is absolutely continuous

w.r.t. N
ψ with density e−ψ(θ)σ : for any nonnegative measurable function F on the

space of excursions, we have

N
ψθ [F(ρ)] = N

ψ [
F(ρ)e−ψ(θ)σ ]

.

We recall the Poisson representation of P
ψ
x based on the excursion measure N

ψ .
Let (α̃i, β̃i)i∈Ĩ

be the excursion intervals of ρ away from 0. For every i ∈ Ĩ , t ≥ 0,
we set

ρ̃
(i)
t = ρ(α̃i+t)∧β̃i

.

We deduce from Lemma 4.2.4 of [16] the following lemma.
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FIG. 2. The measure ρt and the family (hi , Ii )i∈I .

LEMMA 3.9. The point measure
∑

i∈Ĩ
δρ̃(i) (dμ) is under P

ψ
x a Poisson mea-

sure with intensity xN
ψ(dμ).

To better understand the links between the Lévy CRT and the exploration pro-
cess, we can combine the Markov property with the other Poisson decomposition
of [16], Lemma 4.2.4. Informally speaking, the measure ρt is a measure placed on
the ancestral line of the individual labelled t which describes how the sub-trees “on
the right” of t (i.e., containing individuals s ≥ t) are grafted along that ancestral
line. More precisely, if we denote (Ti )i∈I the family of these subtrees and we set
hi the height where the subtree Ti branches from the ancestral line of t , then the
family (hi, Ii)i∈I given ρt is distributed as the atoms of a Poisson measure with
intensity ρt (dh)Nψ [dT ] (see Figure 2).

As the measure N
ψ is an infinite measure, we see that the branching points

along the ancestral line of t are of two types (see [17], Theorem 4.6):

• binary nodes (i.e., vertex of degree 3) which are given by the regular part of ρt ,
• infinite nodes (i.e., vertex of infinite degree) which are given by the atomic part

of ρt .

By the definition of ρt , we see that these infinite nodes are associated with the
jumps of the Lévy process X. If such a node corresponds to a jump time s of X,
we call �Xs the size of the node.

3.7. The dual process and representation formula. We shall need the
Mf (R+)-valued process η = (ηt , t ≥ 0) defined by

ηt (dr) = ∑
0<s≤t

Xs−<Is
t

(Xs − I s
t )δHs (dr) + β1[0,Ht ](r) dr.(30)
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The process η is the dual process of ρ under N
ψ (see Corollary 3.1.6 in [16]). It

represents how the trees “on the left” of t branch along the ancestral line of t .
We recall the Poisson representation of (ρ, η) under N

ψ . Let N (dx d	du) be a
Poisson point measure on [0,+∞)3 with intensity

dx	π(d	)1[0,1](u) du.

For every a > 0, let us denote by M
ψ
a the law of the pair (μa, νa) of measures on

R+ with finite mass defined by the following: for any f ∈ B+(R+)

〈μa,f 〉 =
∫

N (dx d	du)1[0,a](x)u	f (x) + β

∫ a

0
f (x) dx,(31)

〈νa, f 〉 =
∫

N (dx d	du)1[0,a](x)	(1 − u)f (x) + β

∫ a

0
f (x) dx.(32)

REMARK 3.10. In particular μa(dr) + νa(dr) is defined as 1[0,a](r)drWr ,
where W is a subordinator with Laplace exponent ψ ′ − α where α = ψ ′(0) is
defined by (23).

We finally set M
ψ = ∫ +∞

0 dae−αa
M

ψ
a .

PROPOSITION 3.11 ([16], Proposition 3.1.3). For every nonnegative measur-
able function F on Mf (R+)2,

N
ψ

[∫ σ

0
F(ρt , ηt ) dt

]
=

∫
M

ψ(dμdν)F (μ, ν),

where σ = inf{s > 0;ρs = 0} denotes the length of the excursion.

4. Super-critical Lévy continuum random tree. We shall construct a Lévy
CRT with super-critical branching mechanism using a Girsanov formula.

Let ψ̃ be a (sub)critical branching mechanism. The process Z = (Za, a ≥ 0),

where Za = La
Tx

, is a CB with branching mechanism ψ̃ . We have P
ψ̃
x -a.s. Z∞ =

lima→+∞ Za = 0. We shall call x the initial mass of the ψ̃-CRT under P
ψ̃
x . For-

mula (28) readily implies the following Girsanov’s formula: for any nonnegative
measurable function F , and q ≥ 0,

E
ψ̃
x [Mψ̃,q∞ F(ρ)] = E

ψ̃q
x [F(ρ)],(33)

where M
ψ̃,q∞ is given by (21).

We will use a similar formula (with q < 0) to define the exploration process for
a super-critical Lévy CRT with branching mechanism ψ . Because super-critical
branching process may have an infinite mass, we shall cut it at a given level to
construct the corresponding genealogical continuum random tree (see [15] when
π = 0).
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For a ≥ 0, let Ma
f = Mf ([0, a]) be the set of nonnegative measures on [0, a],

and let Da be the set of càd-làg Ma
f -valued process defined on [0,+∞) endowed

with the Skorohod topology. We now define a projection from D to Da . For ρ =
(ρt , t ≥ 0) ∈ D, we consider the time spent below level a up to time t : �ρ,a(t) =∫ t

0 1{H(ρs)≤a} ds and its right continuous inverse

Cρ,a(t) = inf{r ≥ 0;�ρ,a(r) > t} = inf
{
r ≥ 0;

∫ r

0
1{H(ρs)≤a} ds > t

}
,(34)

with the convention that inf ∅ = +∞. We define the projector πa from D to Da by

πa(ρ) = (
ρCρ,a(t), t ≥ 0

)
,(35)

with the convention ρ+∞ = 0. By construction we have the following compatibil-
ity relation: πa ◦ πb = πa for 0 ≤ a ≤ b.

Let ψ be a super-critical branching mechanism which we suppose to be con-
servative, that is, (3) holds. Recall q∗ is the unique (positive) root of ψ ′(q) = 0.
In particular the branching mechanism ψq is critical if q = q∗ and sub-critical if
q > q∗.

We consider the filtration H = (Ha, a ≥ 0) where Ha is the σ -field generated

by the càd-làg process πa(ρ) and the class of P
ψq∗
x negligible sets. Thanks to the

second statement of Proposition 3.6, we get that Z is H-adapted. Furthermore the
proof of Theorem 1.4.1 in [16] yields that Z is a Markov process w.r.t. the filtra-
tion H. In particular the process Mψq∗ ,−q∗

defined by (8) is thanks to Theorem 2.2

a H-martingale under P
ψq∗
x .

Let q ≥ q∗. We define the distribution P
ψ,a
x (resp., N

ψ,a) of the ψ-CRT cut at

level a with initial mass x, as the distribution of πa(ρ) under M
ψq,−q
a dP

ψq
x [resp.,

eqZa+ψ(q)
∫ a

0 Zr dr dN
ψq ]: for any measurable nonnegative function F ,

E
ψ,a
x [F(ρ)] = E

ψq
x [Mψq,−q

a F (πa(ρ))],(36)

N
ψ,a[F(ρ)] = N

ψq
[
eqZa+ψ(q)

∫ a
0 Zr drF (πa(ρ))

]
.(37)

LEMMA 4.1. The distributions P
ψ,a
x and N

ψ,a do not depend on the choice of
q ≥ q∗.

PROOF. Let q > q∗. For any nonnegative measurable function F , we have

E
ψq
x [Mψq,−q

a F (πa(ρ))] = E
ψq
x

[
e−qx+qZa+ψ(q)

∫ a
0 Zs dsF (πa(ρ))

]
.

As ψq = (ψq∗)q−q∗ , we apply Girsanov’s formula (33) and the fact that Mψq∗ ,q−q∗

is a martingale to get

E
ψq
x [Mψq,−q

a F (πa(ρ))]
= E

ψq∗
x

[
M

ψq∗ ,q−q∗
a e−qx+qZa+ψ(q)

∫ a
0 Zs dsF (πa(ρ))

]
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= E
ψq∗
x

[
e(q−q∗)x−(q−q∗)Za−ψq∗ (q−q∗)

∫ a
0 Zs dse−qx+qZa+ψ(q)

∫ a
0 Zs dsF (πa(ρ))

]

= E
ψq∗
x

[
e−q∗x+q∗Za−(ψ(q)−ψ(q∗))

∫ a
0 Zs dseψ(q)

∫ a
0 Zs dsF (πa(ρ))

]

= E
ψq∗
x [Mψq∗ ,−q∗

a F (πa(ρ))].
Excursion theory then gives the result for the excursion measures. �

Let W be the set of D-valued processes endowed with the σ -field generated by
the coordinate applications.

PROPOSITION 4.2. Let (ρa, a ≥ 0) be the canonical process on W . There
exists a probability measure P̄

ψ
x (resp., an excursion measure N̄

ψ ) on W , such
that, for every a ≥ 0, the distribution of ρa under P̄

ψ
x (resp., N̄

ψ ) is P
ψ,a
x (resp.,

N
ψ,a) and such that, for 0 ≤ a ≤ b

πa(ρ
b) = ρa

P̄
ψ
x -a.s. (resp., N̄

ψ -a.e.).(38)

PROOF. To prove the existence of such a projective limit, it is enough to check
the compatibility relation between P

ψ,b
x and P

ψ,a
x for every b ≥ a ≥ 0.

Let 0 ≤ a ≤ b. We get

E
ψ,b
x [F(πa(ρ))] = E

ψq∗
x

[
M

ψq∗ ,−q∗
b F (πa ◦ πb(ρ))

]

= E
ψq∗
x [Mψq∗ ,−q∗

b F (πa(ρ))]
= E

ψq∗
x [Mψq∗ ,−q∗

a F (πa(ρ))]
= E

ψ,a
x [F(ρ)],

where we used the compatibility relation of the projectors for the second equality
and the fact that Mψq∗ ,−q∗

is a H-martingale for the third equality. We deduce that
P

ψ,b
x ◦ πa = P

ψ,a
x .

This compatibility relation implies the existence of a projective limit P̄
ψ
x . The

result is similar for the excursion measure. �

Let us remark that the definitions of P̄
ψ
x and N̄

ψ are also valid for a (sub)critical
branching mechanism ψ , with the convention q∗ = 0. In particular, we get the
following corollary.

COROLLARY 4.3. If ψ is (sub)critical, then the law of the process (πa(ρ),

a ≥ 0) under P
ψ
x (resp., N

ψ ) is P̄
ψ
x (resp., N̄

ψ ).

By construction the local time at level a of ρb for b ≥ a does not depend on
b, we denote by Za its value. Property (ii) of Theorem 2.2 implies that Z = (Za,
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a ≥ 0) is under P̄
ψ
x a CB with branching mechanism ψ . Hence, the probability

measure P̄
ψ
x can be seen as the law of the exploration process that codes the super-

critical CRT associated with ψ .
We get the following direct consequence of Properties (i) and (ii) of Lemma 2.4

and of the theory of excursion measures.

COROLLARY 4.4. Let q > 0 such that ψ(q) ≥ 0. Then, the probability mea-

sure P̄
ψq
x is absolutely continuous with respect to P̄

ψ
x with

dP̄
ψq
x

dP̄
ψ
x

= Mψ,q∞ = eqx−ψ(q)σ 1{σ<+∞}.

The measure N̄
ψq is absolutely continuous with respect to N̄

ψ with

dN̄
ψq

dN̄ψ
= e−ψ(q)σ 1{σ<+∞}.

If the total mass of Z, σ = ∫ +∞
0 Za da, is finite, then ρa is the projection of a

well-defined exploration process.

LEMMA 4.5. On {σ < +∞}, there exists ρ∞ ∈ D such that ρa = πa(ρ∞) for
all a ≥ 0, P̄

ψ
x -a.s. or N̄

ψ -a.e.

PROOF. It is enough to get the result under P̄
ψ
x .

First we assume that ψ is (sub)critical. Proposition 3.6 implies that∫ t
0 1{H(ρs)≤a} ds increases to t as a goes to infinity. Using (34), (35) and the right

continuity of ρ, we deduce that P
ψ
x -a.s. for all t ≥ 0, lima→+∞ πa(ρ)t = ρt .

Thanks to Corollary 4.3, we deduce that P̄
ψ
x -a.s. for all t ≥ 0, ρ∞

t =
lima→+∞ πa(ρ)t exists and that πa(ρ

∞) = ρa .
The case ψ super-critical is then a consequence of Corollary 4.4. �

Without confusion, we shall always write P
ψ instead of P̄

ψ and N
ψ instead of

N̄
ψ and call them the law or the excursion measure of the exploration process of

the CRT, whether ψ is super-critical or (sub)critical. And we shall write ρ for the
projective limit (ρa, a ≥ 0) on W , and make the identification ρ = ρ∞ ∈ D when
the latter exists, that is, when σ defined by (28) is finite.

Recall ψ−1 is given by (18). We now extend formula (29) for general branching
mechanism.

LEMMA 4.6. Let σ be given by (28). We have, for λ ≥ 0,

E
ψ
x [e−λσ ] = exp (−xN

ψ [1 − e−λσ ]) = e−xψ−1(λ).
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PROOF. Let q ≥ q∗. We have

E
ψ
x [e−λ

∫ a
0 Zr dr ] = E

ψq
x [Mψq,−q

a e−λ
∫ a

0 Zr dr ]
= e−qx

E
ψq
x

[
eqZa+(ψ(q)−λ)

∫ a
0 Zr dr ]

= e−qxe−xN
ψq [1−eqZa+(ψ(q)−λ)

∫ a
0 Zr dr ]

= e−qxe−xN
ψq [1−eqZa+ψ(q)

∫ a
0 Zr dr ]

× e−xN
ψq [eqZa+ψ(q)

∫ a
0 Zr dr

(1−e−λ
∫ a
0 Zr dr

)]

= E
ψq
x [Mψq,−q

a ]e−xN
ψ [1−e−λ

∫ a
0 Zr dr ]

= e−xN
ψ [1−e−λ

∫ a
0 Zr dr ],

where we used (36) for the first equality, (8) for the second, Lemma 3.9 for the
third, (37) for the fifth and (1) of Theorem 2.2 for the last. We then let a goes to
infinity to get the first equality of the lemma, and use (20) to get the second. �

5. Pruning. We keep notations from Section 3. Recall that D is the set of
càd-làg Mf (R+)-valued process, and W is the set of D-valued processes. Let
R = (ρθ , θ ≥ 0) be the canonical process on W .

Let ψ be a (sub)critical branching mechanism. The pruning procedure devel-
oped in [6] when π = 0, [1] when β = 0 and in [5] or [25] for the general case,
yields a probability measure on W , P̃

ψ
x , such that R is Markov and the law ρθ

under P̃
ψ
x is P

ψθ
x for all θ ≥ 0. Furthermore ρθ codes for a sub-tree of ρθ ′

if θ ≥ θ ′.
We recall the construction of P̃

ψ
x in Section 5.1.

5.1. Pruning of (sub)critical CRT. The main idea of the pruning procedure of
a tree coded by an exploration ρ is to put marks on a leaf t (or a branch labeled
by t) and more precisely on the measure ρt . There are two types of marks: the first
ones only lay on the nodes of the tree whereas the other ones lay on the skeleton of
the tree; each mark appears at a random time. At time θ , we remove all the vertex
of the initial tree that contains a mark on their lineage. In terms of exploration
processes, we get ρθ by a time change of the process ρ that skips all the times
t representing individuals that received a mark on their lineage by time θ . We
explain more precisely the pruning procedure.

5.1.1. Marks on the nodes. Let (Xt , t ≥ 0) be the Lévy process with branching
mechanism ψ and let ρ be the corresponding exploration process. Recall (�s,

s ∈ J ) denotes the set of the sizes of jumps of X. Conditionally on X, we consider
a family

(Ts, s ∈ J )
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of independent exponential random variables with respective parameter �s. We
define the M(R2+)-valued process M(nod) = (M

(nod)
t , t ≥ 0) by

M
(nod)
t (dr, dv) = ∑

0<s≤t

Xs−<Is
t

δTs (dv)δHs (dr).

For fixed θ ≥ 0, we will consider the M(R+)-valued process M
(nod)
t (dr, [0, θ ])

whose atoms give the marked nodes: each node of infinite degree is marked inde-
pendently from the others with probability 1 − e−θ�s , where �s is the mass (i.e.,
the height of the jump) associated with the node.

REMARK 5.1. Although different from the measure process that defines the
marks on the nodes in [1] [formula (12)], this construction gives the same marks
(see Introduction of [1]).

REMARK 5.2. The time parameter introduced here allows us to construct a
coherent family of marks. Indeed, for θ ′ > θ , the atoms of M

(nod)
t (dr, [0, θ ]) are

still atoms of M
(nod)
t (dr, [0, θ ′]). In other words, there are more and more marked

nodes as θ increases, which allows us to construct a “decreasing” tree-valued pro-
cess in Section 5.1.3.

5.1.2. Marks on the skeleton. Let M(ske) = (M
(ske)
t , t ≥ 0) be a Lévy snake

with lifetime H and spatial motion a Poisson point process with intensity

2β1{u>0} du.

(See [16] for the definition of a Lévy snake and [5] for the extension to a discon-
tinuous height process H ; see also [25].)

In other words, M(ske) is a M(R2+)-valued process such that, conditionally on
the exploration process ρ:

• for every t ≥ 0, M
(ske)
t (dr, du) is a Poisson point measure with intensity

2β1[0,Ht ](r) dr1{u>0} du;
• for every 0 ≤ t ≤ t ′, with Ht,t ′ := infs∈[t,t ′] Hs , then:

– the measures M
(ske)
t (dr, du)1r∈[0,Ht,t ′ ] and M

(ske)
t ′ (dr, du)1r∈[0,Ht,t ′ ] are

equal;
– the random measures M

(ske)
t (dr, du)1r∈[Ht,t ′ ,Ht ] and M

(ske)
t ′ (dr, du) ×

1r∈[Ht,t ′ ,Ht ′ ] are independent.
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5.1.3. Definition of the pruned processes. We define the mark process as

M(mark) = M(nod) + M(ske).(39)

The process ((ρt ,M
(mark)
t ), t ≥ 0) is called the marked exploration process. It is

Markovian (see [25] for its properties). We denote by P̂
ψ
x its law and by N̂

ψ the
corresponding excursion measure.

For every θ > 0 and t > 0, we set

m
(θ)
t = M

(mark)
t ([0,Ht ] × [0, θ ]).

The random variable m
(θ)
t is the number of marks at time θ that lay on the lineage

of the individual labeled by t . We will only consider the individuals without marks
on their lineage. Therefore, we set

A
(θ)
t =

∫ t

0
1{m(θ)

s =0} ds and C
(θ)
t = inf

{
r ≥ 0;A(θ)

r ≥ t
}
,(40)

its right-continuous inverse. Finally, we define ρθ = (ρθ
t , t ≥ 0), M(mark),θ =

(M
(mark),θ
t , t ≥ 0) by

ρθ
t = ρ

C
(θ)
t

,

M
(mark),θ
t ([0, h] × [0, q]) = M

(mark)

C
(θ)
t

([0, h] × (θ, q + θ ]).
We shall use in Section 7 the pruning operator �θ defined on the marked explo-

ration process by

�θ

(
ρ,M(mark)) = (

ρθ ,M(mark),θ )
.(41)

Using the lack of memory of the exponential random variables and of properties
of Poisson point measure, it is easy to get

LEMMA 5.3. The process R = (ρθ , θ ≥ 0) is Markov.

The W -valued process R codes for a decreasing family of CRT, which we shall
call a ψ-family of pruned CRT. A direct application of Theorem 1.1 of [5] gives
the marginal distribution.

PROPOSITION 5.4. The marked exploration process (ρθ ,M(mark),θ ) under
P

ψ
x (resp., N

ψ ) is distributed as (ρ,M(mark)) under P
ψθ
x (resp., N

ψθ ).

We shall now concentrate on the process R. Let P̃
ψ
x be the law of R, and Ñ

ψ be
the corresponding excursion measure.

We deduce the following compatibility relation from the Markov property of R

and Proposition 5.4.
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COROLLARY 5.5. Let θ0 ≥ 0. The law under P̃
ψ
x (resp., Ñ

ψ ) of the process

(ρθ0+θ , θ ≥ 0) is P̃
ψθ0
x (resp., Ñ

ψθ ).

Let us now recall the special Markov property, Theorem 4.2 of [5], stated for
the present context. We fix θ > 0. We want to describe the law of the excursions
of ρ “above” the marks, given the process “under” the marks. More precisely, we
define O as the interior of the set {s ≥ 0,m

(θ)
s = 0} and write O = ⋃

i∈I (αi, βi).
For every i ∈ I , we define the exploration process ρ(i) by: for every f ∈ B+(R+),
t ≥ 0,

〈
ρ

(i)
t , f

〉 =
∫
[Hαi

,+∞)
f (x − Hαi

)ρ(αi+t)∧βi
(dx).

We have the following theorem.

THEOREM 5.6 (Special Markov property). Let θ > 0, and let (Zθ
t , t ≥ 0) be

the CSBP coded by ρθ . The point measure∑
i∈I

δ(Hαi
,ρ(i))(dh, dμ)

under P
ψ
x (or N

ψ ) conditionally given (ρθ
t , t ≥ 0), is a Poisson point measure of

intensity

1[0,+∞)(h)Zθ
h dh

(
2βθN

ψ(dμ) +
∫
(0,+∞)

π(dr)(1 − e−θr )Pψ
r (dμ)

)
.

This theorem describes in fact the joint law of (ρ(θ), ρ(θ ′)) for θ < θ ′ and hence
the transition probabilities of the process R and of the time-reversed process. In
terms of trees, by definition, the tree T (θ ′) is obtained from the tree T (θ) by pruning
it with the pruning operator �θ ′−θ . Conversely, to get the tree T (θ) from the tree
T (θ ′), we pick some individuals of the tree T (θ ′) according to a Poisson point
measure and add at these points either a Lévy tree associated with the branching
mechanism ψθ (first part of the intensity of the Poisson measure), or an infinite
node of size r and trees distributed as P

ψθ
r (second part of the intensity of the

Poisson measure).

5.2. Pruning of super-critical CRT. We now use the same Girsanov techniques
of Section 4 to define a ψ-family of pruned CRT when ψ is super-critical.

Let ψ be a super-critical branching mechanism which we suppose to be con-
servative, that is, (3) holds. Recall q∗ is the unique (positive) root of ψ ′(q) = 0.
In particular the branching mechanism ψq is critical if q = q∗ and sub-critical if
q > q∗.

Let q ≥ q∗. Let R = (ρθ , θ ≥ 0) be the canonical process on W . We set Z =
(La∞(ρ0), a ≥ 0) which is under P̃

ψq
x (dR) a CB with branching mechanism ψq .
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The process Z is also well defined under the excursion measure Ñ
ψq (dR). We

write πa(R) = (πa(ρ
θ ), θ ≥ 0). Notice that given the marks (i.e., given M(nod)

and M(ske)), we have πa(ρ
θ ) = (πa(ρ))θ .

Let a ≥ 0. We define the distribution P̃
ψ,a
x (resp., excursion measure Ñ

ψ,a) of
a ψ-family of pruned CRT cut at level a with initial mass x, as the distribution

of πa(R) under M
ψq,−q
a dP̃

ψq
x [resp., eqZa+ψ(q)

∫ a
0 Zr dr dÑ

ψq ]: for any measurable
nonnegative function F , we have

P̃
ψ,a
x [F(R)] = P̃

ψq
x [Mψq,−q

a F (πa(R))]
and

Ñ
ψ,a[F(ρ)] = Ñ

ψq
[
eqZa+ψ(q)

∫ a
0 Zr drF (πa(ρ))

]
.

Same arguments as for Lemma 4.1 give the following result.

LEMMA 5.7. The distributions P̃
ψ,a
x and Ñ

ψ,a do not depend on the choice of
q ≥ q∗.

As in Section 4 (see Proposition 4.2) the families of measures (P̃
ψ,a
x , x ≥ 0) and

(Ñψ,a, a ≥ 0) fulfill a compatibility relation. Hence there exists a projective limit
(Ra, a ≥ 0) defined on the space of W -valued process such that:

• for every a ≥ 0, Ra is distributed as P̃
ψ,a
x ;

• for every a < b, πa(R
b) = Ra .

We write P̃
ψ
x for the distribution of this projective limit and Ñ

ψ for the correspond-
ing excursion measure.

By construction the local time at level a of πb(ρ
θ ) for b ≥ a does not depend

on b, we denote by Zθ
a its value. Proposition 5.4 and Property (ii) of Theorem 2.2

imply that Zθ = (Zθ
a , a ≥ 0) is under P̃

ψ
x a CB with branching mechanism ψθ

started at x. Following (28), we define σθ = ∫ ∞
0 Zθ

a da. And, when there is no
confusion, we write σ for σ0.

Following Corollaries 4.3, 4.4 and Lemma 4.5, we easily get the following the-
orem.

THEOREM 5.8. Let ψ be a conservative branching mechanism. Let (Ra,

a ≥ 0) be a W -valued process under P̃
ψ
x (resp., Ñ

ψ ).

(1) If ψ is (sub)critical, then (Ra, a ≥ 0) under P̃
ψ
x is distributed as ((πa(ρ

θ ),

θ ≥ 0), a ≥ 0) under P
ψ
x .

(2) Let q > 0 such that ψ(q) ≥ 0. Then, the probability measure P̃
ψq
x is abso-

lutely continuous with respect to P̃
ψ
x with

dP̃
ψq
x

dP̃
ψ
x

= Mψ,q∞ = eqx−ψ(q)σ 1{σ<+∞}.
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The measure Ñ
ψq is absolutely continuous with respect to Ñ

ψ with

dÑ
ψq

dÑψ
= e−ψ(q)σ 1{σ<+∞}.

(3) On {σ < +∞}, there exists R∞ ∈ W such that Ra = πa(R∞) for all a ≥ 0,
P̃

ψ
x -a.s. or Ñ

ψ -a.e.

Without confusion, we shall always write P
ψ instead of P̃

ψ and N
ψ instead

of Ñ
ψ and call them the law or the excursion measure of ψ-pruned family of

exploration processes, whether ψ is super-critical or (sub)critical. The ψ-pruned
family of exploration processes codes for a ψ-pruned family of continuum random
sub-trees.

And we shall write (ρθ , θ ≥ 0) for the projective limit (Ra, a ≥ 0), and identify
it with R∞ ∈ W when the latter exists, that is, when σ defined by (28) is finite.
Notice that if σθ is finite, then the exploration process ρθ codes for a CRT with
finite mass.

5.3. Properties of the branching mechanism. Let ψ be a branching mecha-
nism with parameter (α,β,π). Let �′ be the set of θ ∈ R such that

∫
(1,+∞)

e−θ	π(d	) < +∞.(42)

We set θ∞ = inf�′. Notice that we have either �′ = [θ∞,+∞) or �′ = (θ∞,+∞)

and that θ∞ ≤ 0. Notice that ψθ exists for every θ ∈ �′ and is conservative for
every θ > θ∞. We set � = {θ ∈ �′;ψθ is conservative}. Notice that � ⊂ �′ ⊂
� ∪ {θ∞}.

For instance, we have the following examples of critical branching mecha-
nisms:

(i) quadratic case: ψ(u) = βu2, � = �′ = R;
(ii) stable case: ψ(u) = cuα with α ∈ (1,2), � = �′ = [0,+∞);

(iii) ψ(u) = (u+e−1) log(u+e−1)+e−1: � = �′ = [−e−1,+∞) [Notice that
ψθ∞(u) = u log(u), ψ ′

θ∞(0+) = −∞ and ψθ∞ is conservative.];

(iv) ψ(u) = u − 1 + 1
1+u

is associated with (α̃, β,π) where α̃ = 2/e, β = 0
and π(d	) = e−	1{	>0} d	: � = �′ = (−1,+∞).

For the end of this subsection, we assume that ψ is CRITICAL and that β > 0
or π �= 0. Remark that ψ is a one-to-one function from [0,+∞) onto [0,+∞),
and we denote by ψ−1 its inverse function. For θ < 0 such that θ ∈ �′, we define
θ̄ = ψ−1(ψ(θ)), or, equivalently, θ̄ is the unique positive real number such that

ψ(θ̄) = ψ(θ).(43)
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Since ψ is continuous and strictly convex, if θ∞ ∈ �′, we have

θ̄∞ = lim
θ↓θ∞

θ̄ .(44)

Notice that in this case θ̄∞ is finite. If θ∞ /∈ �′, we define θ̄∞ using (44).

LEMMA 5.9. Let ψ be CRITICAL with parameters (α̃, β,π) such that β > 0
or π �= 0. If θ∞ /∈ �′ then θ̄∞ = +∞.

PROOF. We assume that θ∞ /∈ �′. It is enough to check that limθ↓θ∞ ψ(θ) =
+∞ to get θ̄∞ = +∞.

We first consider the case θ∞ = −∞. Since ψ ′(0) = 0 and ψ is strictly convex,
we get that limθ↓θ∞ ψ(θ) = +∞.

If θ∞ > −∞, then using that (42) does not hold for θ∞ and monotone conver-
gence theorem, we get that limθ↓θ∞ ψ(θ) = +∞. �

6. A tree-valued process. Let ψ be a branching mechanism. We assume
θ∞ < 0. We write Rq = (ργ+q, γ ≥ 0).

We deduce from Corollary 5.5 that the families of measures (Pψθ , θ ∈ �) and
(Nψθ , θ ∈ �) satisfy the following compatibility property: if θ ′ < θ , θ ′ ∈ �, the
process Rθ−θ ′ under P

ψθ ′ (resp., N
ψθ ′ ) is distributed as R0 under P

ψθ (resp., N
ψθ ).

Hence, there exists a projective limit R = (ργ , γ ∈ �) such that, for every
θ ∈ �, the process (ρθ+γ , γ ≥ 0) is distributed as (ργ , γ ≥ 0) under P

ψθ . We de-
note by Pψ the distribution of the projective limit R, and by Nψ the corresponding
excursion measure. We still write Rθ for (ρθ+γ , γ ≥ 0) for all θ ∈ �.

The process R = (ρθ , θ ∈ �) is Markovian, thanks to Lemma 5.3. It codes for
a tree-valued Markov process, which evolves according to a pruning procedure. At
time θ , ρθ has distribution P

ψθ . Recall σθ is the mass of the CRT coded by ρθ . It
is not difficult to check that � = (σθ , θ ∈ �) is a nonincreasing Markov process
taking values in [0,+∞] and we shall consider a version of R such that the process
� is càd-làg. From the continuity of ψ , we deduce that the Laplace transform of
σθ given in Lemma 4.6 is continuous, and thus the process � is continuous in
probability.

See [24] for the distribution of the decreasing rearrangement of the jumps of
(σθ , θ ≥ 0) in the case of stable trees. We deduce from the pruning procedure
that a.s. limθ→+∞ σθ = 0. Notice that by considering the time returned process
(ρ−θ , θ < θ∞), we get a Markovian family of exploration processes coding for a
family of increasing CRTs.

REMARK 6.1. Recall q∗ is the unique root of ψ ′(q) = 0 and that ψq∗ is criti-
cal. Using a shift on θ by q∗, that is replacing ψ by ψq∗ , one sees that it is enough,
when studying R, to assume that ψ is critical.
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LEMMA 6.2. Let ψ be a critical branching mechanism with parameter
(α,β,π). For any θ ∈ �, and any nonnegative measurable function F defined
on the state space of R0, we have

Nψ [
F(Rθ )1{σθ<∞}

] = Nψθ
[
F(R0)1{σ0<∞}

] = Nψ [
F(R0)e

−ψ(θ)σ0
]
.(45)

PROOF. The first equality is just the “compatibility property” stated at the
beginning of this section.

For θ ≥ 0, the second equality is a direct consequence of (ii) from Theorem 5.8.
For θ < 0, let q = θ̄ −θ . Notice that ψθ(q) = ψ(θ̄)−ψ(q) = 0 and (ψθ)q = ψθ̄ .

We deduce from (ii) of Theorem 5.8 that

Nψθ̄ [F(R0)] = Nψθ
[
F(R0)1{σ0<∞}

]
.

Since θ̄ > 0 and ψ(θ) = ψ(θ̄), we get from (2) of Theorem 5.8 that

Nψθ̄ [F(R0)] = Nψ [
F(R0)e

−ψ(θ̄)σ0
] = Nψ [

F(R0)e
−ψ(θ)σ0

]
.

This ends the proof. �

We deduce directly from this lemma the following result on the conditional
distribution of the exploration process knowing the total mass of the CRT.

COROLLARY 6.3. Let ψ be a branching mechanism with parameter (α,β,π)

such that (42) holds. The distribution of (ρθ+γ , γ ≥ 0) conditionally on {σθ = r}
does not depend on θ ∈ �.

From this point forward, we assume that ψ is CRITICAL and that θ∞ < 0. The
first assumption is not restrictive thanks to Remark 6.1.

Notice that ρθ codes for a critical (resp., sub-critical, resp., super-critical) CRT
if θ = 0 (resp., θ > 0, resp., θ < 0). In particular, we have σθ < +∞ a.s. if θ ≥ 0.

We consider the explosion time

A = inf{θ ∈ �,σθ < +∞},
with the convention that inf ∅ = θ∞. In particular, we have A ≤ 0 Pψ

x -a.s. and Nψ -
a.e. Moreover, since the process (σθ , θ ∈ �) is càd-làg, we have, on {A > θ∞},
σθ = +∞ for every θ < A and σθ < +∞ for every θ > A. For the time reversed
process, A is the random time at which the tree gets an infinite mass.

We first give a lemma on the conditional distribution of σ .

LEMMA 6.4. Let q ∈ �, q ≤ θ . We have, for λ ≥ 0,

Nψ [e−λσq |ρθ ] = e−σθψθ (ψ−1
q (λ))

and Nψ [σq < +∞|ρθ ] = e−σθψθ (q̄−q), where q̄ = ψ−1(ψ(q)).
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PROOF. Let λ > 0 and F be a nonnegative measurable function defined on W .
We write Z

q
a for the local time at level a of the exploration process ρq . Using (17),

we have

Nψ [e−λσq F (ρθ )] = lim
a→∞ Nψ [e−λ

∫ a
0 Z

q
r drF (ρθ )].(46)

We set

Ia = Nψ [e−λ
∫ a

0 Z
q
r drF (ρθ )].

Let G(πa(ρ
θ )) = Eψ [F(ρθ )|πa(ρ

θ )]. We have, with θ ′ = θ − q ≥ 0,

Ia = Nψ [e−λ
∫ a

0 Z
q
r drG(πa(ρ

θ ))]
= Nψq [e−λ

∫ a
0 Z0

r drG(πa(ρ
θ ′
))]

= Nψ [
e−qZ0

a−(ψ(q)+λ)
∫ a

0 Z0
r drG(πa(ρ

θ ′
))

]

= Nψ [
e−qZθ ′

a −(ψ(q)+λ)
∫ a

0 Zθ ′
r dr−∫ a

0 Ka
hZθ ′

h dhG(πa(ρ
θ ′
))

]
,

where for the first equality we conditioned with respect to σ(πa(ρ
q)), used Gir-

sanov’s formula for the third equality and Theorem 5.6 for the last equality with

Ka
h = 2βθ ′

N
ψ [

1 − e−qZa−h−(ψ(q)+λ)
∫ a−h

0 Zr dr ]

+
∫
(0,+∞)

π(du)(1 − e−θ ′u)Eψ
u

[
1 − e−qZa−h−(ψ(q)+λ)

∫ a−h
0 Zr dr ].

We set

K̃a
h = 2βθ ′

N
ψ [

e−qZa−h−ψ(q)
∫ a−h

0 Zr dr(1 − e−λ
∫ a−h

0 Zr dr )
]

+
∫
(0,+∞)

π(du)(1 − e−θ ′u)Eψ
u

[
e−qZa−h−ψ(q)

∫ a−h
0 Zr dr (1 − e−λ

∫ a−h
0 Zr dr )

]
.

Using again Theorem 5.6 and Girsanov’s formula, we get

Ia = Nψ [
e−qZ0

a−ψ(q)
∫ a

0 Z0
r dre− ∫ a

0 (K̃a
h+λ)Zθ ′

h dhG(πa(ρ
θ ′
))

]

= Nψq
[
e− ∫ a

0 (K̃a
h+λ)Zθ ′

h dhG(πa(ρ
θ ′
))

]
(47)

= Nψ [
e− ∫ a

0 (K̃a
h+λ)Zθ

h dhG(πa(ρ
θ ))

]

= Nψ [
e− ∫ a

0 (K̃a
h+λ)Zθ

h dhF (ρθ )
]
.

Notice also that, thanks to Girsanov’s formula,

K̃a
h = 2βθ ′

N
ψq [1 − e−λ

∫ a−h
0 Zr dr ]

+
∫
(0,+∞)

π(du)(e−qu − e−θu)E
ψq
u [1 − e−λ

∫ a−h
0 Zr dr ]
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= 2βθ ′Nψ [1 − e−λ
∫ a−h

0 Z
q
r dr ]

+
∫
(0,+∞)

π(du)(e−qu − e−θu)Eψ
u [1 − e−λ

∫ a−h
0 Z

q
r dr ].

Using Lemma 4.6, we get

lim
a→∞ K̃a

h = 2βθ ′Nψ [1 − e−λσq ] +
∫
(0,+∞)

π(du)(e−qu − e−θu)Eψ
u [1 − e−λσq ]

= ψθ(ψ
−1
q (λ)) − ψq(ψ

−1
q (λ))

= ψθ(ψ
−1
q (λ)) − λ.

We deduce from (46) and (47) that

Nψ [e−λσq F (ρθ )] = Nψ [
e−ψθ (ψ−1

q (λ))σθ F (ρθ )
]
.

Letting then λ go down to 0, we deduce, with q̄ = ψ−1(ψ(q)), that

Nψ [
1{σq<+∞}F(ρθ )

] = Nψ [
e−ψθ (q̄−q)σθ F (ρθ )

]
. �

The next theorem gives the distribution of the explosion time A under the mea-
sure Nψ . Recall the definition of θ̄ in (43) and (44).

THEOREM 6.5. We have, for all θ ∈ [θ∞,+∞),

Nψ [A > θ ] = θ̄ − θ(48)

and

Nψ [A = θ∞] =
{

0, if θ∞ /∈ �′,
+∞, if θ∞ ∈ �′.

PROOF. We have for all θ > θ∞
Nψ [A > θ ] = Nψ [σθ = +∞]

= N
ψθ [σ = +∞]

= lim
λ→0

N
ψθ [1 − e−λσ ]

= lim
λ→0

ψ−1
θ (λ)

= ψ−1
θ (0),

where we used (4.6) for the fourth equality. We get, for t > 0,

ψθ(t) = 0 ⇐⇒ ψ(t + θ) = ψ(θ) ⇐⇒ t + θ = θ̄ ,

and thus ψ−1
θ (0) = θ̄ − θ , which gives the first part of the theorem for θ > θ∞.

Making θ decrease to θ∞ gives the result for θ∞.
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For the second part of the theorem, we apply the second assertion of Lemma 6.4
with θ = 0. We have, for every q ≤ 0,

Nψ [σq < +∞|ρ] = e−σψ(q̄−q).

Then we have

Nψ [A = θ∞|ρ] = Nψ [∀q > θ∞, σq < +∞|ρ]
= lim

q→θ∞
Nψ [σq < +∞|ρ]

= lim
q→θ∞

e−σψ(q̄−q)

=
{

0, if θ∞ /∈ �′,
e−σψ(θ̄∞−θ∞), if θ∞ ∈ �′, with ψ(θ̄∞ − θ∞) < +∞,

where the last equality is a consequence of Lemma 5.9. Then integrating with
respect to ρ gives the theorem. �

REMARK 6.6. Since ψ−1 is smooth, we deduce that the mapping q �→ q̄ is
differentiable with

dq̄

dq
= ψ ′(q)

ψ ′(q̄)
.

Thus, when θ∞ /∈ �, we have that the law of A under Nψ has a density with respect
to the Lebesgue measure on R given by

1{r∈(θ∞,0)}
(

1 − ψ ′(r)
ψ ′(r̄)

)
.

THEOREM 6.7. (i) Let θ ∈ (θ∞,0). Under Nψ , conditionally on {A = θ}, we
have for any nonnegative measurable function F

Nψ [F(RA)|A = θ ] = ψ ′(θ̄)Nψ [
F(R0)σ0e−ψ(θ)σ0

]
,(49)

and the law of σA is given by the following: for λ ≥ 0

Nψ [e−λσA |A = θ ] = ψ ′(θ̄)

ψ ′(ψ−1(λ + ψ(θ)))
.

In particular, we have

Nψ [σA < ∞|A = θ ] = 1.

(ii) If θ∞ ∈ �, we have for any nonnegative measurable function F

Nψ [
F(RA)1{A=θ∞}

] = Nψθ̄∞ [F(R0)].(50)

In particular, the law of σA on the event {A = θ∞} is given by

Nψ [
(1 − e−λσA)1{A=θ∞}

] = ψ−1(
λ + ψ(θ∞)

) − θ̄∞.
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PROOF. Let F be a nonnegative measurable function defined on the state
space of R0. Using Lemma 6.4, we get for every θ∞ < q ≤ θ < 0,

Nψ [
F(Rθ )1{A>q}

] = Nψ [
F(Rθ )1{σq=+∞}

]
= Nψ [

F(Rθ )Nψ [σq = +∞|ρθ ]]
= Nψ [

F(Rθ )
(
1 − e−σθψθ (q̄−q))]

= Nψ [
F(Rθ )

(
1 − e−σθ (ψ(θ+q̄−q)−ψ(θ)))].

Thus, we get that the mapping

q �→ Nψ [
F(Rθ )1{A>q}

]
is differentiable if it is finite. As dq̄/dq = ψ ′(q)/ψ ′(q̄), we get

d

dq
Nψ [

F(Rθ )1{A>q}
]

= ψ ′(q̄ − q + θ)

(
dq̄

dq
− 1

)
Nψθ

[
F(R0)σ0e−σ0(ψ(q̄−q+θ)−ψ(θ))]

= ψ ′(q̄ − q + θ)
ψ ′(q) − ψ ′(q̄)

ψ ′(q̄)
Nψθ

[
F(R0)σ0e−σ0(ψ(q̄−q+θ)−ψ(θ))].

Finally, using that σ is right continuous, we have

Nψ [F(RA),A ∈ dθ ]
dθ

= − d

dq

(
Nψ [

F(Rθ )1{A>q}
])

|q=θ

= (
ψ ′(θ̄) − ψ ′(θ)

)
Nψθ

[
F(R0)σ01{σ0<+∞}

]
.

We deduce from Lemma 6.2 that

Nψ [F(RA)|A = θ ] = Nψθ [F(R0)σ01{σ0<+∞}]
Nψθ [σ01{σ0<+∞}] = Nψ [F(R0)σ0e−ψ(θ)σ0]

Nψ [σ0e−ψ(θ)σ0] .

This proves (49) but for the normalizing constant. It also implies that

Nψ [e−λσA |A = θ ] = N
ψθ [σe−λσ ]

Nψθ [σ1{σ<+∞}] .

Notice that ψ−1
θ (r) = ψ−1(r +ψ(θ))− θ for r ≥ 0. We get from Lemma 4.6 that,

for r ≥ 0,

N
ψθ [σe−rσ ] = d

dr
N

ψθ [1 − e−rσ ] = (ψ−1
θ )′(r) = 1

ψ ′(ψ−1(r + ψ(θ)))
.

In particular, we deduce the value of the normalizing constant,

Nψ [
σ0e−ψ(θ)σ0

] = N
ψθ

[
σ1{σ<+∞}

] = 1/ψ ′(θ̄).
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We also get

Nψ [e−λσA |A = θ ] = ψ ′(θ̄)

ψ ′(ψ−1(λ + ψ(θ)))
.

This ends the proof of the first part.
For the second part of the theorem, we consider the case θ∞ ∈ �. Let us first

remark that, since the process (σθ , θ ∈ �) is continuous in probability, we have

{A = θ∞} = {σθ∞ < +∞}.
We then apply Girsanov’s formula (45) twice to get

Nψ [
F(RA)1{A=θ∞}

] = Nψ [
F(Rθ∞)1{σθ∞<+∞}

]
= Nψ [

F(R0)e
−ψ(θ∞)σ0

]

= Nψ [
F(R0)e

−ψ(θ̄∞)σ0
]

= Nψ [
F(Rθ̄∞)1{σθ̄∞<+∞}

]

= Nψθ̄∞ [F(R0)],
where we used for the last equality that σθ̄∞ < +∞ Nψ -a.e. and (45).

For F(R) = 1 − e−λσ , we obtain

Nψ [
(1 − e−λσA)1{A=θ∞}

] = Nψθ̄∞ [1 − e−λσ0]
= ψ−1

θ̄∞
(λ)

= ψ−1(
λ + ψ(θ̄∞)

) − θ̄∞. �

We deduce the next corollary from (49).

COROLLARY 6.8. Let θ∞ < θ < 0. The distribution of RA = (ρA+γ , γ ≥ 0)

conditionally on {σA = r,A = θ} does not depend on θ .

7. Pruning of an infinite tree. We want here to define an infinite tree via
a spinal description of this tree. What we call a spinal description of a tree is a
representation of the tree where a particular branch is considered (the spine) and
the subtrees that are grafted along that branch are then described. The usual, well-
known spinal descriptions of a CRT are Bismut decomposition (see [17]) where the
spine is picked “at random” among all the possible branches, and Williams decom-
position (see [3]) where the spine is chosen to be the highest branch of the tree. We
describe next the Bismut decomposition and show how such a decomposition can
uniquely define a tree. Then we define the infinite tree by such a decomposition.
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7.1. Bismut decomposition of a Lévy tree. Let ψ be a (sub)critical branching
mechanism. Recall the definition of the mark process M(mark) of Section 5.1.3.
For a marked exploration process (ρ,Mmark) recall that η is defined by (30) and
notice that (η(σ−t)−,M

(mark)
σ−t , t ∈ [0, σ ]) is distributed as (ρ,M(mark)) under the

excursion measure thanks to Corollary 3.1.6 in [16] and definition of M(mark).
We recall that the family of pruned exploration processes R = (ρθ , θ ≥ 0) is

constructed from the exploration process ρ (which is equal to ρ0) and the measure-
valued process M(mark).

Let T ≥ 0. We define under N
ψ the processes (ρT →,M(mark),T →) and

(ρ←T ,M(mark),←T ) by the following: for every t ≥ 0,
(
ρT →

t ,M
(mark),T →
t

) = (
ρ(T +t)∧σ ,M

(mark)
(T +t)∧σ

)
,

(
ρ←T

t ,M
(mark),←T
t

) = (
η(T −t)∨0,M

(mark)
(T −t)∨0

)
,

where ρ is the canonical exploration process and η its dual process.
Bismut decomposition describes in terms of Poisson point processes the former

processes when T is “uniformly distributed” on [0, σ ].
First we must extend the definition of the measure M

ψ(dμ,dν) of (31) and (32)
to get the marks into account. Let

N (dx, d	, du) = ∑
i∈I

δ(xi ,	i ,ui)(dx, d	, du)

be a Poisson point measure with intensity

dx	π(d	)1[0,1](u) du.

Conditionally on N , let (Ti, i ∈ I ) be a family of independent exponential random
variables of respective parameter 	i . Finally, let Ñ (dk, db) = ∑

j∈J δ(kj ,bj )(dk,

db) be an independent Poisson point measure on [0,+∞)2 with intensity 2βdk db.
We then define the spine (μa, νa,ma) which are three measures given by

μa(dx) = ∑
i∈I

1[0,a](xi)ui	iδxi
(dx) + 1[0,a](x)βdx,

νa(dx) = ∑
i∈I

1[0,a](xi)(1 − ui)	iδxi
(dx) + 1[0,a](x)βdx,

ma(dx, dq) = ∑
i∈I

1[0,a](xi)δxi
(dx)δTi

(dq) + ∑
j∈J

1[0,a](kj )δkj
(dx)δbj

(dq).

We denote by M̃
ψ
a the law of the triple (μa, νa,ma), and we set M̃

ψ =∫ +∞
0 dae−ψ ′(0)a

M̃
ψ
a .

Let us denote by P
ψ,∗
μ,m the law of the pair (ρ,M(mark)) starting from (μ,m)

where ρ is an exploration process associated with ψ and stopped when it first
reaches 0. It is easy to adapt Lemma 3.4 of [17] to get the following theorem.
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THEOREM 7.1 (Bismut decomposition). For every nonnegative measurable
functionals F and G,

N
ψ

[∫ σ

0
dsF

(
ρs→,M(mark),s→)

G
(
ρ←s,M(mark),←s)]

(51)
=

∫
M̃

ψ(dμ,dν, dm)Eψ,∗
μ,m[F ]Eψ,∗

ν,m[G].

Informally speaking, the latter theorem describes a spinal decomposition of the
tree. We first pick an individual s “uniformly.” The height of that individual is
“distributed” as dae−ψ ′(0)a . Then, conditionally on that height, the measures ρs ,
ηs and ms have law M̃

ψ
a . Eventually, conditionally on those measures, the marked

exploration processes on the right and on the left (reversed in time for that one) of
the individual s are independent and distributed as marked exploration processes
started respectively from (ρs,ms) and (ηs,ms), stopped when they first reach 0.

Let us now state the Poisson representation of the probability measure P
ψ,∗
μ,m.

Let (αi, βi)i∈I be the excursion intervals of the total mass process (〈ρt ,1〉, t ≥ 0)

above its minimum under P
ψ,∗
μ,m. Let (Ui, i ∈ I ) be a family of independent random

variables, independent of ρ and uniformly distributed on [0,1]. For every i ∈ I ,
we set xi = Hαi

. Then we define ui by

ui =
{

ραi
({xi})/μ({xi}), if μ({xi}) > 0,

Ui, if μ({xi}) = 0.

Finally, we define the measure-valued process ρi by the following: for every t ≥ 0
and every f ∈ B+(R+),

〈ρi
t , f 〉 =

∫
(xi ,+∞)

f (x − xi)ρ(αi+t)∧βi
(dx),

and we define the measure valued-process M(mark),i by the following: for every
t ≥ and every f ∈ B+(R2+),

〈
M

(mark),i
t , f

〉 =
∫
(xi ,+∞)×R+

f (x − xi, θ)M
(mark)
(αi+t)∧βi

(dx, dθ).

It is easy to adapt Lemma 4.2.4 from [16] to get the following proposition.

PROPOSITION 7.2. The point measure
∑

i∈I δ(xi ,ui ,ρ
i ,M(mark),i ) is under P

ψ,∗
μ,m

a Poisson point measure with intensity

μ(dx)du1[0,1](u)Nψ (
dρ, dM(mark)).
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7.2. Reconstruction of the exploration process from a spinal decomposition.
Conversely, given the spinal decomposition of Bismut theorem, we reconstruct the
initial exploration process, but we must add the time indices of the excursions at
the node (which in the previous Section are called ui). We shall also add the mark
process [see its definition (39)].

Let μ and ν be two finite measures such that Suppμ = Suppν = [0,H ]
and m a point measure on [0,H ] × R+. Let {(ρi,M(mark),i), i ∈ Jg} and
{(ρi,M(mark),i), i ∈ Jd} be two families of marked exploration processes (see Sec-
tion 5.1.3). Let {(xi, ui), i ∈ Jg ∪Jd} be a family of nonnegative real numbers. The
measures μ and ν must be seen as the measures ρs→

0 and ρ←s
0 of Theorem 7.1, the

xi ’s are the heights of the branching points along the chosen branch, the ρi’s are
the exploration processes that arise from the decomposition of the processes ρs→
and ρ←s above their minimum and the ui’s are additional features that order the
excursions that are attached at the same level. The measure m and the processes
M(mark),i will allow us to reconstruct the mark process.

For every i ∈ Jg ∪ Jd , we set σ i the length of the process ρi . We define

Lg = ∑
i∈Jg

σ i, Ld = ∑
i∈Jd

σ i and L = Lg + Ld .(52)

The variable L represents the total length of the excursion whereas Lg plays the
same role as s in the left-hand side of Theorem 7.1. For every i ∈ Jg , we set

t i = ∑
j∈Jg,xj<xi

σ j + ∑
j∈Jg,xj=xi and uj>ui

σ j ,

and, for every i ∈ Jd , we set

t i = Lg + ∑
j∈Jd,xj>xi

σ j + ∑
j∈Jd,xj=xi and uj>ui

σ j ,

which is the time of the beginning of the excursion ρi .
For every t > 0, we define the measure ρt by

ρt (dx) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi
t−t i

(xi + dx) + μ(dx)1[0,xi )(x) + (uiν({xi}) + μ({xi}))δxi
(dx),

if t < Lg, t
i ≤ t < ti + σ i,

μ, if t = Lg,

ρi
t−t i

(xi + dx) + μ(dx)1[0,xi )(x) + uiμ({xi})δxi
(dx),

if Lg < t < L, t i ≤ t < ti + σ i ,
0, if t ≥ L.

We also define the mark process M(mark)(dx, dv) by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M
(mark),i

t−t i
(xi + dx, dv) + m(dx, dv)1[0,xi ](x),

if t < Lg or Lg < t < L, t i ≤ t < ti + σ i ,
m, if t = Lg ,
0, if t ≥ L.



A CONTINUUM-TREE-VALUED MARKOV PROCESS 1203

We say that the process (ρ,M(mark)) = ((ρt ,M
(mark)
t ), t ≥ 0) is the marked explo-

ration process associated with the family

G = (
μ,ν,m,

(
xi, ui,

(
ρi,M(mark),i), i ∈ Jg

)
,

(53) (
xi, ui,

(
ρi,M(mark),i), i ∈ Jd

))
.

From Bismut decomposition, Theorem 7.1, Proposition 7.2 and the construction
of the mark process, Section 5.1.3, we get the following reconstruction corollary.

COROLLARY 7.3. Let ψ be a (sub)critical branching mechanism. Let (μ, ν,

m) be distributed according to M̃
ψ . Let

∑
i∈Jg

δ(xi ,ui ,ρ
i ,M(mark),i ) and∑

i∈Jd
δ(xi ,ui ,ρ

i ,M(mark),i ) be conditionally on (μ, ν,m) independent Poisson point
measures with respective intensity

μ(dx)1[0,1](u) duN
ψ (

dρ, dM(mark))
and

ν(dx)1[0,1](u) duN
ψ (

dρ, dM(mark)).
Then the marked exploration process associated with the family G given by (53) is
distributed as (ρ,M(mark)) under N

ψ [σd(ρ,M)].
REMARK 7.4. If we start with an exploration process ρ, pick s at random

(conditionally on ρ) on [0, σ ], then the decomposition of ρs→ and ρ←s as excur-
sions above their minimum gives a family G . The exploration process ρ̃ associated
with G given by the previous construction is not ρ. Indeed, each excursion of ρ̃

“on the left” of s is time-reversed with respect to those of ρ. However, the trees
coded by ρ and ρ̃ are the same.

We can also reconstruct the pruned exploration process by pruning G . Let θ > 0.
We define the lowest mark lying on the spine as

ξθ = sup{x;m([0, x] × [0, θ ]) = 0}.(54)

We set μθ = μ1[0,ξθ ), νθ = ν1[0,ξθ ), mθ(dx, dq) = m(dx, θ + dq)1[0,ξθ )(x), for
δ ∈ {g, d} J θ

δ = {i ∈ Jδ;xi < ξθ } and

Gθ = (
μθ, νθ ,mθ ,

(
xi, ui,�θ

(
ρi,M(mark),i), i ∈ J θ

g

)
,

(55) (
xi, ui,�θ

(
ρi,M(mark),i), i ∈ J θ

d

))
,

where the pruning operator �θ is defined in (41).

PROPOSITION 7.5. Under the hypothesis of Corollary 7.3, let (ρθ ,M(mark),θ )

be the marked exploration process associated with the family Gθ given by (55). The
process (ρθ , θ ≥ 0) is distributed as R0 under Nψ [σ0dR].

PROOF. Let us remark that, by construction, (ρθ ,M(mark),θ ) = �θ(ρ,

M(mark)). The proposition now follows from Corollary 7.3. �
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7.3. The infinite tree and its pruning. Let ψ be a critical branching mecha-
nism.

We build a marked continuum random tree associated with the branching mech-
anism ψ using a spine decomposition with an infinite spine. Intuitively, if the CRT
dies in finite time (which corresponds to the case H continuous) this infinite CRT
can be seen as the CRT conditioned to nonextinction.

Let

N (dx, d	, du) = ∑
i∈I

δ(xi ,	i ,ui)(dx, d	, du)

be a Poisson point measure with intensity

dx	π(d	)1[0,1](u) du.

Conditionally on N , let (Ti, i ∈ I ) be a family of independent exponential random
variables of respective parameter 	i . Finally, let Ñ (dk, db) = ∑

j∈J δ(kj ,bj )(dk,

db) be an independent Poisson point measure on [0,+∞)2 with intensity 2βdk db.
We define the following random measures:

μ∗(dx) = ∑
i∈I

ui	iδxi
(dx) + βdx,

ν∗(dx) = ∑
i∈I

(1 − ui)	iδxi
(dx) + βdx,

m∗(dx, dq) = ∑
i∈I

δxi
(dx)δTi

(dq) + ∑
j∈J

δkj
(dx)δbj

(dq).

The measure (μ∗, ν∗,m∗) corresponds to the the measure (μa, νa,ma) of Sec-
tion 7.1 but for an infinite spine. Let

∑
i∈Jg

δ(xi ,ui ,ρ
i ,M(mark),i ) and

∑
i∈Jd

δ(xi ,ui ,ρ
i ,M(mark),i )

be conditionally on (μ∗, ν∗,m∗) independent Poisson point measures with inten-
sity

ν∗(dx)1[0,1](u) duN
ψ (

dρ, dM(mark))

and

μ∗(dx)1[0,1](u) duN
ψ (

dρ, dM(mark)).
We set

G∗ = (
μ∗, ν∗,m∗,

(
xi, ui,

(
ρi,M(mark),i), i ∈ Jg

)
,
(
xi, ui,

(
ρi,M(mark),i), i ∈ Jd

))
,



A CONTINUUM-TREE-VALUED MARKOV PROCESS 1205

which describes the decomposition of an infinite marked tree as marked sub-trees
that are attached along its infinite spine. Let θ > 0. Following the end of Sec-
tion 7.2, we now extend the pruning procedure to this infinite tree by letting G∗

θ be
constructed from G∗ as Gθ given by (55) from G given by (53)

ξ∗
θ = sup{x;m∗([0, x] × [0, θ ]) = 0}, J θ

δ = {i ∈ Jδ;xi < ξ∗
θ }

for δ ∈ {g, d},
μ∗,θ = μ∗1[0,ξ∗

θ ), ν∗,θ = ν∗1[0,ξ∗
θ ),

m∗,θ (dx, dq) = m∗(dx, θ + dq)1[0,ξ∗
θ )(x),

G∗
θ = (

μ∗,θ , ν∗,θ ,m∗,θ ,
(
xi, ui,�θ

(
ρi,M(mark),i), i ∈ J θ

g

)
,

(
xi, ui,�θ

(
ρi,M(mark),i), i ∈ J θ

d

))
.

We have the following lemma.

LEMMA 7.6. Let θ > 0. The probability distribution of the spine (μ∗,θ , ν∗,θ ,

m∗,θ ) is ψ ′(θ)M̃ψθ .

PROOF. As ψ is critical, we deduce from (23) that

ψ ′(θ) = 2βθ +
∫
(0,+∞)

(1 − e−θ	)	π(d	).

We deduce from the theory of marked Poisson point measures that

N θ (dx, d	, du) = ∑
i∈I

1{Ti>θ}δ(xi ,	i ,ui)(dx, d	, du)

is a Poisson point measure with intensity dx	e−θ	π(d	)1[0,1](u) du. Since ξ∗
θ is

independent of N θ , we deduce that, conditionally on ξ∗
θ , (μ∗,θ , ν∗,θ ,m∗,θ ) is dis-

tributed according to M̃
ψθ

ξ∗
θ

. Notice then that ξ∗
θ is the minimum of T1 = inf{xi;Ti ≤

θ, i ∈ I } and T2 = inf{kj ;bj ≤ θ, j ∈ J }, which are two independent exponential
random variables, which are also independent of N θ . The exponential distribution
of T1 has parameter

∫
(0,+∞)(1 − e−θ	)	π(d	), and the exponential distribution

of T2 has parameter 2βθ . Thus ξ∗
θ has an exponential distribution with parameter

ψ ′(θ), which gives the result. �

Let (ρθ,∗,M(mark),θ,∗) be the marked exploration process associated with G∗
θ .

We set R∗
θ = (ρθ+q,∗, q ≥ 0) and denote by Eψ its law. The next proposition tells

us that R∗
θ under Eψ is, up to a normalizing constant, the size biased “distribution”

of Rθ under Nψ .

PROPOSITION 7.7. Let ψ be a critical branching mechanism. For every pos-
itive measurable functional F and every θ > 0, we have

ψ ′(θ)Nψ [σθF (Rθ )] = Eψ [F(R∗
θ )].
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PROOF. Let F be a positive measurable functional. As R is constructed from
(ρ,M(mark)), there exists a positive measurable functional G such that

F(R) = G
(
ρ,M(mark)).

Moreover, there exists another positive functional G̃ such that, for every s ≥ 0,

G
(
ρ,M(mark)) = G̃

((
ρs→,M(mark),s→)

,
(
ρ←s,M(mark),←s)).

Then by Bismut decomposition, we have

ψ ′(θ)Nψ [σθF (Rθ )]
= ψ ′(θ)Nψθ [σF(R)]
= ψ ′(θ)Nψθ

[∫ σ

0
dsG̃

((
ρs→,M(mark),s→)

,
(
ρ←s,M(mark),←s))]

=
∫

ψ ′(θ)M̃ψθ (dμ,dν, dm)Eψθ ,∗
μ,m ⊗ E

ψθ ,∗
ν,m [G̃].

Then we conclude using Lemma 7.6 and the fact that N
ψθ (dρ,M(mark)) is the

distribution of �θ(ρ,M(mark)) under N
ψ(dρ, dM(mark)). �

8. Distribution identity. Let ψ be a critical branching mechanism with pa-
rameter (α,β,π). We assume that θ∞ < 0. Recall R = (Rθ , θ ∈ �) is defined in
Section 6 and R∗

θ in Section 7.3.

THEOREM 8.1. Let θ ∈ (θ∞,0). Conditionally on {A = θ}, RA is distributed
as R∗̄

θ
.

PROOF. Let F be a nonnegative measurable function defined on W . We have,
for θ < 0,

Nψ [F(RA)|A = θ ] = ψ ′(θ̄)Nψ [
F(R0)σ0e−ψ(θ)σ0

]
= ψ ′(θ̄)Nψθ̄ [σ0F(R0)]
= ψ ′(θ̄)Nψ [σθ̄F (Rθ̄ )]
= Eψ [F(R∗̄

θ
)],

where we used (49) for the first equality, Girsanov’s formula (45) (with θ replaced
by θ̄ ) for the second, the invariance of the distribution of R by the shift for the
third and Proposition 7.7 for the last. �

If u ∈ (0, θ̄∞), let ǔ be the unique negative real number such that

¯̌u = u.

We deduce from Theorem 6.5 and Remark 6.6 the following corollary.
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COROLLARY 8.2. Let us suppose that θ∞ /∈ �.
Let U be a positive “random” variable with (nonnegative) “density” w.r.t., the

Lebesgue measure given by (
1 − ψ ′(r)

ψ ′(ř)

)
1{r∈(0,θ̄∞)}.

Assume that U is independent of G∗. Then RA is distributed under Nψ as R∗
U .

This corollary can be viewed as a continuous analog of Proposition 26 of [11].

9. The quadratic case. We consider ψ(λ) = βλ2 for some β > 0. We have
� = �′ = R (see the definition in Section 5.3) and ψθ(λ) = β(λ2 + 2θλ). Recall
θ̄ is defined by (1). So we have θ̄ = |θ |. From Theorem 6.5, we get Nψ [A ≥ θ ] =
θ̄ − θ = 2|θ | for θ < 0 and Nψ [A ≥ θ ] = 0 for θ ≥ 0. Thus under Nψ , the ex-
plosion time A is distributed as 2 times the Lebesgue measure on (−∞,0). We
deduce from Theorem 6.7 the Laplace transform of the total mass of the CRT be-
fore explosion: for λ ≥ 0,

Nψ [e−λσA |A = θ ] =
√

βθ2

√
λ + βθ2

.

In particular the distribution of σA conditionally on {A = θ} is the gamma distri-
bution with parameter (βθ2,1/2).

Very similar computations as those in the proof of Theorem 6.7 yield that for
all s, t ≥ 0, θ < 0, λ, κ ≥ 0

Nψ [e−λσA+s−κσA+s+t |A = θ ]
(56)

=
√

β(|θ | + s)2

√
λ + β(|θ | + s)2

√
βt2 +

√
λ + β(|θ | + s)2

√
κ + (

√
βt2 +

√
λ + β(|θ | + s)2)2

.

We denote by σ ∗
θ the total mass or length (see definition (52) of L) of the pruned

infinite tree G∗
θ . Notice that, thanks to Proposition 7.7, σ ∗

θ has the size biased dis-
tribution of σθ (the total mass of the CRT with branching mechanism ψθ ) under
Nψ . More precisely, we have for any nonnegative measurable function, for θ > 0,

2βθNψ [σθF (σθ+q, q ≥ 0)] = Eψ [F(σ ∗
θ+q, q ≥ 0)].(57)

As the process � = (σθ , θ ∈ R) is Markov, we get that �∗ = (σ ∗
θ , θ ≥ 0) is

Markov. Notice that a.s. σ ∗
0 = +∞. Direct computations or using (56) and Theo-

rem 8.1 yield that for all θ, q, λ, κ ≥ 0

Eψ [e−λσ ∗
θ −κσ ∗

θ+q ] =
√

βθ2

√
λ + βθ2

√
βq2 +

√
λ + βθ2

√
κ + (

√
βq2 +

√
λ + βθ2)2

.
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Let τ = (τθ , θ ≥ 0) be the first passage process of a standard Brownian motion
(Bu,u ≥ 0): τθ = inf{u ≥ 0,Bu ≥ θ}. It is a stable subordinator with index 1/2,
and more precisely with no drift, no killing and Lévy measure (2πx3)−1/2 dx on
(0,∞): for λ ≥ 0, E[e−λτθ ] = e−θ

√
2λ. The distribution of τθ has density

θ√
2πx3

e−θ2/2x1{x>0}.

We get the following result.

PROPOSITION 9.1. We have:

• under Eψ , (2βσ ∗
θ , θ ≥ 0) is distributed as (1/τθ , θ ≥ 0);

• under Nψ , (2βσA+θ , θ ≥ 0) is distributed as (1/(V + τθ ), θ ≥ 0) where V is
independent of τ and its “distribution” has density w.r.t. the Lebesgue measure
given by

√
2/(πv)1{v>0}.

The proof of this result is postponed to the end of this section.
Notice that (45) implies that for θ ≥ 0,

Nψ [
F(σq, q ≥ 0)e−ψ(θ)σ0

] = Nψ [F(σq+θ , q ≥ 0)].
In particular, we deduce from this, (57) and the fact that τ is a process with in-
dependent and stationary increments the following result (notice that the size bias
effect vanish, as we condition by σ0 = 1).

COROLLARY 9.2. Let β = 1/2. Conditionally on σ0 = 1, we have that
(σθ , θ ≥ 0) is under the excursion measure Nψ distributed as (1/(1 + τθ ), θ ≥ 0).

We thus recover a well-known result from Aldous and Pitman [10] on the size
process of a tagged fragment for a self-similar fragmentation (see [14]) with index
1/2, no erosion and binary dislocation measure ν defined on pairs (s1, s2) such
that s1 ≥ s2 ≥ 0 and s1 + s2 = 1 by

ν(s1 ∈ dx) = (
2πx3(1 − x)3)−1/21{x>1/2} dx,

which correspond to the fragmentation of the CRT (see also the end of [6, 13] or
[24]).

PROOF OF PROPOSITION 9.1. Let λ, κ, θ, q be positive. As we did not find
any reference for the computation of

I = E[e−λ/τθ−κ/τθ+q ],
we shall give it here. Using that τ is a subordinator, we have

I = E
[
e−λ/τθ−κ/(τθ+τ ′

q)],
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where τ ′ is an independent copy of τ . We set p = √
2λ + θ2 and J = 2π

p
θ
I . We

get

J = 2π
p

θ

θq

2π

∫
R

2+
e−λ/x−κ/(x+y)−θ2/2x−q2/2y dx dy

(xy)3/2

= pq

∫
R

2+
e−κ/(x+y)−p2/2x−q2/2y dx dy

(xy)3/2

= pq

∫
R

2+
e−κzu/(1+u)−zup2/2−zq2/2 dzdu√

u

= pq

∫
R+

u + 1

u2p2/2 + u(p2/2 + q2/2 + κ) + q2/2

du√
u

= 2γ

∫
R+

u + 1

u2 + u(1 + γ 2 + κ ′) + γ 2

du√
u
,

where we used the change of variable zu = 1/x and z = 1/y for the third equality,
κ ′ = 2κ/p2 and γ = q/p for the last. Let a, b such that a + b = 1 + γ 2 + κ ′ and
ab = γ 2. Notice that

u + 1

u2 + u(1 + γ 2 + κ ′) + γ 2 = a − 1

a − b

1

u + a
+ 1 − b

a − b

1

u + b
.

Then we get

J = 2γ
a − 1

a − b

∫
R+

du√
u(u + a)

+ 2γ
1 − b

a − b

∫
R+

du√
u(u + b)

= 2γ
1

a − b

(
a − 1√

a
+ 1 − b√

b

)∫
R+

du√
u(u + 1)

= 2γ

√
ab + 1√

ab

1√
a + √

b
π

= 2π
γ + 1√

(1 + γ )2 + κ ′
.

Therefore, we obtain

I = θ

p

γ + 1√
(1 + γ )2 + κ ′

= θ√
θ2 + 2λ

q + √
θ2 + 2λ√

2κ + (q + √
θ2 + 2λ)2

.

We deduce that the two processes, (2βσ ∗
θ , θ ≥ 0) and (1/τθ , θ ≥ 0), have the same

two-dimensional marginals. Since they are Markov processes, they have the same
distribution. This proves the first part of the theorem.

Let U be a positive “random” variable whose “distribution” given by 2 times
the Lebesgue measure on (0,+∞) which is independent of τ . The “distribution”
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of V = τU has density w.r.t. the Lebesgue measure given by
√

2/(πv)1{v>0}. The
second part is then a direct consequence of Corollary 8.2. �
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