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ABSTRACT:
In this paper we focus on the modelling of d-dimensional random vectors with fixed marginals and compo-
nents which verify an ordering constraint almost surely. We aim to calculate the distribution which maximizes
the Shannon-entropy under these constraints. We provide the solution with explicit formulas to the maximum
entropy problem, which has a particular form. Namely, the density of the optimal joint distribution becomes a
product of univariate functions on the support of the random vector.
To exploit the special structure of such distributions, we propose a nonparametric approach to estimate the
density of the joint distribution based on an available sample. We propose an exponential model based on
series of quasi-orthogonal polynomials specially designed to suit this particular structure. We show that by
exploiting the special features of the model, we achieve a fast convergence rate which depends only linearly on
the dimension of our random vector, thus does not suffer from the curse of dimensionality which arises when
dealing with high-dimensional density estimation problems.
We apply the proposed method to an industrial application case involving the estimation of mechanical flaw
dimensions in a component of a power plant, with experimental data available. We compare the results obtained
with the maximum entropy approach to previously considered modelling schemes.

1 INTRODUCTION

In various cases of modelling the propagation of un-
certainty in complex numerical simulation schemes,
the engineer needs to create a probabilistic model for
the joint distribution of a vector of uncertain quan-
tities, that takes into consideration the available sta-
tistical information (or expert judgement). This could
include detailed knowledge of the marginal distribu-
tion of each uncertain quantity, certain aspects of the
dependence structure between the components of the
vector, or it can also be a physical constraint between
these quantities, for example an order relationship.
The construction of a model compatible with all the
information is crucial in order to correctly evaluate
a probabilistic reliability criterion by Monte Carlo
methods.

In this paper we focus on the joint distribution of

ordered random vectors. That is, we consider random
vectors X = (X1, . . . ,Xd) ∈ Rd that verify P(X ∈
S) = 1, with S = {(x1, . . . , xd) ∈ Rd, x1 ≤ · · · ≤ xd}.
We will refer to these vectors as vectors of order
statistics without reference to a parent distribution.
We assume that the one-dimensional marginal dis-
tributions F = (Fi,1 ≤ i ≤ d) are given, where Fi
is the cumulative distribution function of Xi. In an
industrial context, information on the individual be-
haviour of the components of the random vector is
often available, but less attention is given to the mod-
elling of the dependence structure between the com-
ponents. Given the marginals, the joint distribution of
the ordered random vector can be characterized by
its connecting copula, which contains all information
on the dependence structure. Copulas of order statis-
tics derived from an underlying distribution by sorting
its components in ascending order were considered



in (Avérous, Genest, & C Kochar 2005) in the i.i.d.
case and in (Navarro & Spizzichino 2010) with a gen-
eral set-up. (Lebrun & Dutfoy 2014) characterizes the
possible copula functions of ordered random vectors
with given marginals by describing their supports, and
proposes an admissible construction of such a copula
called sub-square copula.

Among the possible joint distributions (if there ex-
ists any), our aim is to find the model which has
minimum information content in addition to our con-
straints. We measure the uncertainty of our joint
model by the Shannon entropy, which has been
widely used in uncertainty and risk measurement in
the literature. Under some mild constraints imposed
on the marginals, we calculate the density f ∗ of the
distribution which maximizes the entropy in Section
2, which admits a product form on its support S, see
Remark 2.1. We use the optimization techniques for
infinite dimensional constraints developed by (Bor-
wein, Lewis, & Nussbaum 1994) to obtain this result.

In the second part of the paper, we propose a non-
parametric exponential series estimator for densities
with product form on S. We propose a model in
which we approximate the logarithm of the density
by series of quasi-orthogonal polynomials specially
designed to suit this particular structure. Approxima-
tion of log-densities by polynomials appear in (Good
1963) as an application of the maximum entropy prin-
ciple, while (Crain 1977) show existence and con-
sistency of the maximum likelihood estimation. We
measure the quality of the density estimator by the
Kullback-Leibler divergence. We show that Kullback-
Leibler divergence of the estimator and the true un-
derlying density converges fast in probability to zero.
Convergence rates in probability for the exponential
series estimator was given in (Barron & Sheu 1991)
for d = 1 and (Wu 2010) for d ≥ 2 without the re-
duced support.

We apply the estimation method to an industrial
case involving the estimation of flaw dimensions in a
passive component in a power plant. The correct mod-
elling of these quantities is quintessential for assess-
ing the failure probability of these components, as the
propagation of such flaws can lead to rupture, damag-
ing the integrity of the component. We compare our
methodology to the previous work of (Remy, Popelin,
& Feng 2012) where a parametric copula approach
was considered. This model does not take into con-
sideration the ordering constraint between the dimen-
sions. We evaluate the failure probability for the com-
ponent with each method and compare the results. We
also include a simulated case study, with data gener-
ated from a maximum entropy distribution of order
statistics to demonstrate the efficiency of the nonpara-
metric approach.

The rest of the paper is organised as follows. In
Section 2, we give the explicit solution to the prob-
lem of maximum entropy distribution of order statis-
tics with given marginals, which has a product form

on S. In Section 3 we introduce the exponential model
for estimating densities of product form on S, and
we show that this estimator converges rapidly to the
true density in Kullback-Leibler divergence. Section
4 contains the definition and some properties of the
basis functions used throughout the estimation pro-
cess. Finally in Section 5, we apply the nonparamet-
ric method with a real dataset (Section 5.4.1) and with
simulated data (Section 5.4.2) to assess its perfor-
mance compared to other approaches.

2 MAXIMUM ENTROPY DISTRIBUTION OF
ORDER STATISTICS WITH GIVEN
MARGINALS

In this section, we give the joint distribution of an or-
dered random vector with fixed marginals which max-
imizes the differential entropyH defined as, for a ran-
dom variable Z with density fZ :

H(Z) = −
∫
fZ(z) log fZ(z)dz,

and H(Z) = −∞ if Z does not have a density. If FZ
denotes the distribution function of Z, we use the con-
vention H(FZ) = H(Z). In an information-theoretic
interpretation, the maximum entropy distribution is
the least informative among the distributions which
verify the constraints. For a d-dimensional random
vector X = (X1, . . . ,Xd) with distribution function
F and copula function CF , the entropy of F can be
decomposed into the sum of the entropy of its one-
dimensional marginals Fi, 1≤ i≤ d, plus the entropy
of CF (see (Zhao & Lin 2011)):

H(F ) =
d∑
i=1

H(Fi) +H(CF ).

In our case, since the marginals F = (Fi,1 ≤ i ≤ d)
are fixed, maximizing the entropy of the joint distri-
bution F of the ordered random vector equivalent to
maximizing the entropy of its copula CF . A similar
problem was considered in (Butucea et al. 2015a)

We give the solution to this problem under the con-
dition that Fi > Fi+1 on the common part of their
supports {t ∈ R; 1 > Fi(t),Fi+1(t) > 0} for 1 ≤ i ≤
d− 1. If

d∑
i=2

∫
R

fi(s)
∣∣log

(
F(i−1)(s)− F(i)(s)

)∣∣ ds < +∞,

and H(Fi) > −∞ for all 1 ≤ i ≤ d, then there is
a unique distribution FF which maximizes the en-
tropy, which has density function fF given by, for



x = (x1, . . . , xd) ∈ Rd:

fF(x) = f1(x1)
d∏
i=2

(
fi(xi)

Fi−1 (xi)− Fi(xi)
×

exp

(
−
∫ xi

xi−1

fi(s)
Fi−1(s)− Fi(s)

ds

))
1S(x),

where fi is the marginal density function of Xi, 1 ≤
i ≤ d. See (Butucea et al. 2015b) for the detailed
proofs.
Remark 2.1. We remark that the density has a product
form on the domain S:

fF(x) =
d∏
i=1

pi(xi)1S(x)

for x = (x1, . . . , xd) ∈ Rd. This is also the unique dis-
tribution of with fixed marginals whose density is a
product of univariate functions on S.

3 ESTIMATION OF FF BY AN EXPONENTIAL
MODEL

In this section, we concentrate on the estimation of
densities with product form on S by a nonparametric
approach given a sample of n independent observa-
tions X1, . . . ,Xn. We restrict ourselves to densities
supported on4 = [0,1]d ∩ S. Such a density, say f 0,
can be written in the form, for x = (x1, . . . , xd) ∈ Rd:

f 0(x) = exp

(
d∑
i=1

`0i (xi)− a0

)
14(x), (1)

with `0i bounded,measurable functions on I for all
1 ≤ i ≤ d, and normalizing constant a0. For r ∈ N∗,
letW 2

r denote the Sobolev space of functions on [0,1],
such that the (r − 1)-th derivative is absolutely con-
tinuous and the L2 norm of the r-th derivative is finite.
Let `0i belong to the Sobolev space W 2

ri
, ri ∈ N with

ri > d for all 1 ≤ i ≤ d. We present an exponential
model specifically designed to estimate such densi-
ties. This exponential model is a multivariate version
of the family considered in (Barron & Sheu 1991) in
a univariate setting. Essentially, we approximate the
functions `0i by a family of polynomials (ϕi,k, k ∈ N),
which are orthonormal for each 1 ≤ i ≤ d with re-
spect to q, the uniform weight function on the support
4: q(x) = 14(x). The estimator takes the form, for
x = (x1, . . . , xd) ∈ 4 :

fθ(x) = exp

(
d∑
i=1

mi∑
k=1

θi,kϕi,k(xi)− ψ(θ)

)
,

with

ψ(θ) = log

(∫
4

exp

(
d∑
i=1

mi∑
k=1

θi,kϕi,k(xi)

)
dx

)
.

(2)

This model is a reduced version of the multidimen-
sional exponential series estimator introduced in (Wu
2010), as we have only kept the univariate terms of
the basis since the logarithm of the target density is
the sum of univariate functions. Furthermore, we have
restricted our model to 4 instead of the hyper-cube
Id, and we have chosen the basis functions ((ϕi,k, k ∈
N),1 ≤ i ≤ d) which are suited for this support. The
choice for the polynomials ((ϕi,k, k ∈ N),1 ≤ i ≤ d)
will be given in Section 4 where we discuss some
of their key properties. In particular, the polynomials
(ϕi,k, k ∈ N) are orthonormal for each 1 ≤ i ≤ d with
respect to q, but for i 6= j, the families (ϕi,k, k ∈ N)
and (ϕj,k, k ∈ N) are not orthogonal with respect to q,
see Lemma 4.3. We estimate the parameters (θi,k; 1 ≤
i ≤ d,1 ≤ k ≤ mi) by solving the maximum likeli-
hood equations:∫
4
ϕi,k(xi)fθ̂(x)dx =

1

n

n∑
j=1

ϕi,k(X
j). (3)

For m = (m1, . . . ,md) basis functions used, we esti-
mate f by f̂m,n = fθ̂. If such θ̂n does not exist, let us
take f̂m,n = d!14.

We measure the quality of the estimation f̂m,n of f 0

by the Kullback-Leibler divergence D(f 0||f̂m,n) de-
fined as:

D(f 0||f̂m,n) =

∫
4
f 0 log

(
f 0

f̂m,n

)
.

Convergence rates for nonparametric density estima-
tors have been given by (Hall 1987) for kernel den-
sity estimators, (Barron & Sheu 1991) and (Wu 2010)
for the exponential series estimators, (Barron et al.
1992) for histogram-based estimators, and (Koo &
Kim 1996) for wavelet-based log-density estimators.

We show that if we take mi = mi(n) members of
the families (ϕi,k, k ∈ N), 1 ≤ i ≤ d, and let mi grow
with n in an appropriate way, then the maximum like-
lihood estimator fθ̂ exists with probability tending to
1, and converges rapidly. The main result is given
by the following Theorem whose proof is detailed in
(Butucea et al. 2015b).

Theorem 3.1. Let f 0 ∈ P(4) be a probability den-
sity with a product form given by (1). Assume the func-
tions `0i belongs to the Sobolev spaceW 2

ri
, ri ∈ N with

ri > d for all 1≤ i≤ d. Let (Xn, n ∈N∗) be i.i.d. ran-
dom variables with density distribution f 0. We con-
sider sequences mi = mi(n)→∞ as n→∞, such
that(

d∑
i=1

mi

)2d( d∑
i=1

m−2rii

)
→ 0, (4)



(∑d
i=1mi

)2d+1

n
→ 0. (5)

The maximum likelihood estimator f̂m,n = fθ̂n , with
θ̂n obtained by solving (3), exists with probability
tending to 1 as n→∞. The Kullback-Leibler distance
D
(
f 0‖f̂m,n

)
of f̂m,n to f 0 converges in probability to

0 with the convergence rate:

D
(
f 0‖f̂m,n

)
= Op

(
d∑
i=1

(
m−2rii +

mi

n

))
. (6)

The proof of this Theorem relies on the classic bias-
variance decomposition of the estimation error.

Remark 3.2. Notice that this is the sum of the same
univariate convergence rates as in (Barron & Sheu
1991). Let us take mi = O(n1/(2ri+1)). Then the con-
ditions (4) and (5) are satisfied, and we obtain that
D
(
f‖f̂m,n

)
=Op(

∑d
i=1 n

−2ri/(2ri+1)). This is further

of the order of n−2min(r)/(2min(r)+1) corresponding to
the least smooth `0i . The obtained convergence rate
is optimal in the minimax sense for one-dimensional
nonparametric density estimation as shown in (Yang
& Barron 1999)

4 ORTHONORMAL SERIES OF
POLYNOMIALS ON4

In this section we precise the choice for the basis
functions ((ϕi,k, k ∈ N),1 ≤ i ≤ d). Essentially, they
are shifted versions of certain Jacobi polynomials. We
first recall the definition and some properties of Jacobi
polynomials, then we define the functions ((ϕi,k, k ∈
N),1 ≤ i ≤ d) and give some of their key properties.
They are easy to implement as the Jacobi polynomials
are readily available in most mathematical computa-
tional platforms.

4.1 Jacobi polynomials

The following results can be found in (Abramowitz
& Stegun 1970) p. 774. The Jacobi polynomials
(P

(α,β)
k , k ∈ N) for α,β ∈ (−1,+∞) are series of

orthogonal polynomials with respect to the measure
wα,β(t)1[−1,1](t)dt, with

wα,β(t) = (1− t)α(1 + t)β for t ∈ [−1,1].

They are given by Rodrigues’ formula, for t ∈ [−1,1],
k ∈ N:

P
(α,β)
k (t) =

(−1)k

2kk!wα,β(t)

dk

dtk
[
wα,β(t)(1− t2)k

]
.

The normalizing constants are given by:∫ 1

−1
P

(α,β)
k (t)P

(α,β)
` (t)wα,β(t)dt = (7)

1{k=`}
2α+β+1

2k + α+ β + 1

Γ(k + α+ 1)Γ(k + β + 1)

Γ(k + α+ β + 1)k!
·

In what follows, we will be interested in Jacobi
polynomials with α = d − i and β = i − 1, which
are orthogonal to the weight function wd−i,i−1(t) =
1[−1,1](t)(1− t)d−i(1 + t)i−1.

4.2 Definition of the basis functions

Based on the Jacobi polynomials, we define a shifted
version, normalized with respect to the measure q and
adapted to the interval I = [0,1].

Definition 4.1. For 1 ≤ i ≤ d, k ∈ N, we define for
t ∈ I:

ϕi,k(t) = ρi,k
√

(d− i)!(i− 1)!P
(d−i,i−1)
k (2t− 1),

with

ρi,k =

√
(2k + d)k!(k + d− 1)!

((k + d− i)!(k + i− 1)!)
. (8)

Let qi, 1 ≤ i ≤ d be the one-dimensional marginals
of the measure q:

qi(t) =
(1− t)d−iti−1

(d− i)!(i− 1)!
1I(t). (9)

According to the following Lemma, the polynomials
(ϕi,k, k ∈ N) form an orthonormal basis of L2(qi) for
all 1 ≤ i ≤ d. The proof is elementary and we leave it
to the Reader.

Lemma 4.2. For 1 ≤ i ≤ d, k, ` ∈ N, we have:∫
I

ϕi,kϕi,` qi = 1{k=`}.

4.3 Mixed scalar products

We give the mixed scalar products of (ϕ[i],k, k ∈ N)
and (ϕ[j],`, ` ∈ N), 1 ≤ i < j ≤ d with respect q.

Lemma 4.3. For 1≤ i < j ≤ d and k, ` ∈N, we have:∫
ϕi,k(xi)ϕj,`(xj)q(x) =

1{k=`}

√
(j − 1)!(d− i)!
(i− 1)!(d− j)!

√
(k + d− j)!(k + i− 1)!

(k + d− i)!(k + j − 1)!
·

We also have
∣∣∫ ϕi,k(xi)ϕj,`(xj)q(x)

∣∣ ≤ 1 for all
k, ` ∈ N.



We refer to (Butucea et al. 2015b) for the proof of
this Lemma. This shows that the family of functions
(ϕi,k,1 ≤ i ≤ d, k ∈ N) is not orthogonal with re-
spect to the Lebesgue measure on4. This result also
allows us to bound the L2(q) norm of the function∑d

i=1

∑mi

k=1 θi,kϕi,k(xi) from either sides by the Eu-
clidean norm of the vector of parameters θ = (θi,k, k ∈
N),1≤ i≤ d) given by ‖θ‖=

∑d
i=1

∑mi

k=1 θ
2
i,k. These

bounds were used to control the bias error of the esti-
mator.

Lemma 4.4. For all θ = (θi,k, k ∈ N),1 ≤ i ≤ d) we
have:

‖θ‖√
d
≤
∫ ( d∑

i=1

mi∑
k=1

θi,kϕi,k(xi)

)2

q(x) ≤
√
d‖θ‖ .

Once again, the proof can be found in (Butucea
et al. 2015b).

5 APPLICATION TO NUCLEAR
ENGINEERING DATA

5.1 Industrial context and the dataset

In this section, we apply the proposed methodology
to estimate the joint distribution of the dimensions
of flaws of a passive component in an EDF electric
power plant. These flaws may lead to a crack under
the severe stress to which the material is exposed, en-
dangering the integrity of the component. The model
predicting the propagation of the flaws requires its
size (given by Length × Depth) as an input param-
eter, therefore the joint modelling of the distribution
of these two quantities is crucial. Since higher values
of the size of the flaws are more penalizing for the oc-
currence of a crack, we prefer a model which is not
only adequate for the dataset, but assigns relatively
great probability to higher values of these dimensions
to obtain a conservative estimation of the failure prob-
ability of the component.

EDF possesses a database of joint measurements
of these quantities which contains n = 198 measure-
ments obtained by supervised experimentations along
with 341 observations registered during regular in-
spections of the components in operation. We will
only consider the database coming from the exper-
imentations as these can be considered statistically
perfect, whereas the inspection data is subject to mea-
surement uncertainty and detection threshold.

Both sets of data suggest that the dimensions verify
the ordering constraint, since for every pair of dimen-
sions we have that the length of the flaw is greater than
the depth. The currently applied modelling schemes
does not take into consideration this aspect of the
dataset. Figure 1 presents the experimentation dataset
after applying a strictly monotone transformation on
both dimensions to obtain values on [0,1].
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Figure 1: Scatter-plot of the transformed data set

5.2 Available modelling schemes

We will compare our approach to the currently ap-
proved modelling scheme as well as a method pro-
posed by the former conference paper (Remy et al.
2012). In what follows, we note by L the random vari-
able of the length of the flaw and by D the random
variable of the depth.

5.2.1 Reference model
The first method used in current statistical studies of
this problem at EDF consists of modelling the joint
distribution of the pair (D,R), where R = D/L is the
random variable of the ratio between the two dimen-
sions. The model takes the assumption that D and R
are independent, and propose the following distribu-
tions for these variables (we omit the parameters of
the distributions for confidentiality reasons):

• FD: Weibull with two parameters,

• FR: Log-normal.

5.2.2 Parametric model
(Remy et al. 2012) propose a parametric copula-based
approach for modelling of the dependence structure
between D and L. Copula theory allows to separate
the modelling of the marginals and the dependence
structure. The joint distribution function F(D,L) of the
pair (D,L) can be expressed by Sklar’s Theorem as:

F(D,L)(d, l) = C(D,L)(FD(d), FL(l)),

where FD,FL are the marginal distribution functions
of D and L, and C(D,L) is the connecting copula con-
taining all information on the dependence. We refer
to (Nelsen 2006) for an overview of copula theory.
In this setting, both dimensions D and L are mod-
elled by Weibull distributions with two parameters.
For the connecting copula C(D,L) the Authors con-
sider multiple parametric families such as Gaussian,
Frank or Gumbel copulas. They estimate, based on
the dataset, the parameters in each family by various



Table 1: Estimated parameters for m = 1,2,3,4.
m θ̂1,k θ̂2,k
1 θ̂1,1 = −0.000307772 θ̂2,1 = −0.0277476
2 θ̂1,1 = −0.523519 θ̂2,1 = 0.295835

θ̂1,2 = −1.06206 θ̂2,2 = −0.814702
3 θ̂1,1 = −0.545568 θ̂2,1 = −0.0445993

θ̂1,2 = −1.10107 θ̂2,2 = −0.603401
θ̂1,3 = −0.00991902 θ̂2,3 = −0.310838

4 θ̂1,1 = −1.82941 θ̂2,1 = 0.759716

θ̂1,2 = −2.73921 θ̂2,2 = −2.43278
θ̂1,3 = −1.1029 θ̂2,3 = 0.626079

θ̂1,4 = −0.631885 θ̂2,4 = −1.03101

methods, and compare the resulting joint distributions
in order to determine the most relevant model. In con-
clusion, the Gumbel copula proved to give the most
satisfactory results according to the graphical crite-
rion of the Kendall plots and the Cramér-von-Mises
goodness-of-fit test .

5.3 Estimation of the nonparametric model

For the nonparametric model, we have first trans-
formed the dataset by using the monotone transfor-
mation T given by, for x ∈ R+ :

T (x) =
cx

cx+ 1
,

with c a constant. This is necessary since the estima-
tion procedure requires a sample distributed on 4.
The impact of the choice of the transformation func-
tion T as well as the constant c on the estimation qual-
ity has not been addressed in this paper. We choose an
equal number of parameters m = m1 = m2 for both
dimensions. We estimate the parameters θ = (θi,k; 1≤
i ≤ 2,1 ≤ k ≤ m) by maximizing the function G
given by:

G(θ) =
2∑
i=1

m∑
k=1

θi,kµ̂i,k − ψ(θ)

with µ̂1,k = (1/n)
∑n

j=1ϕ1,k(D
j), µ̂2,k =

(1/n)
∑n

j=1ϕ2,k(L
j), and ψ(θ) is given by (2).

This is equivalent to solving equation (3). We esti-
mate our model for increasing values of m, using the
result of the previous estimation with fewer param-
eters as described in (Wu 2003). We use the TNC
algorithm of the OpenTURNS library for Python to
numerically maximize G. The estimated parameters
for m = 1,2,3,4 can be found in Table 1.

5.4 Comparison of the competing models

5.4.1 Fitting to the empirical data
Here we compare the three different approaches in
terms of goodness-of-fit to the underlying dataset
and the resulting failure probability. For the reference

Table 2: Log-likelihood and BIC of the competing models with
empirical data.

Model Copula Log-likelihood BIC
Reference - −957.399 1930.663
Parametric Gumbel −927.196 1880.833

Nonparametric MaxEntropy −998.516 2039.338

0.0 0.2 0.4 0.6 0.8 1.0
Depth

0.0

0.2

0.4

0.6

0.8

1.0

Le
n
g
th

Simulated data
Empirical data

Figure 3: Scatter-plot of the two transformed data sets.

and parametric model, we utilize the parameters ob-
tained in the previous studies. For the nonparametric
model, we take m1 = m2 = 4. In Figure 2, the den-
sities obtained from each model can be seen along
with the dataset. One can observe that the support
of the nonparametric model is indeed the half plane
S, whereas the other two models allow the variables
to take values such that L < D. In Table 2 we cal-
culated the log-likelihood of each model along with
the BIC value. According to these values, the para-
metric model seems the most adapted for the sample
followed by the reference model and the nonparamet-
ric model. The results suggest that distribution of the
sample may not belong to the family of maximum en-
tropy distributions of order statistics, and there may
exist a hidden constraint that needs to be taken into
consideration.

5.4.2 Fitting to simulated data
In order to show that effectiveness of the nonparamet-
ric model when the underlying distribution belongs to
the family of maximum entropy distributions of or-
der statistics, we simulate a dataset with 198 entries
from the maximum entropy distribution with the same
Weibull marginals which were used to construct the
parametric model in 5.2.2. Figure 3 shows the differ-
ence between the two sets of data. We re-estimated
all the parameters of the three competing models, and
Table 3 shows the log-likelihood and BIC values for
each model. For the parametric model, we made esti-
mations using the Frank, Gumbel and Normal (Gaus-
sian) family of copulas. The results confirm that if the
underlying distribution belongs to the family of maxi-
mum entropy distributions of order statistics, then the
nonparametric model outperforms the reference and
parametric models.



(a) Reference model (b) Parametric model (Gumbel) (c) Nonparametric model

Figure 2: Isodensities for the competing models with empirical data.

(a) Reference model (b) Parametric model (Normal) (c) Nonparametric model

Figure 4: Isodensities for the competing models with simulated data.

Table 3: Log-likelihood and BIC of the competing models with
simulated data.

Model Copula Log-likelihood BIC
Reference - −1050.075 2116.016
Parametric Frank −1031.315 2089.072
Parametric Gumbel −1030.492 2087.425
Parametric Normal −1021.243 2068.928

Nonparametric MaxEntropy −995.058 2032.423

5.4.3 Failure probability

We use the joint distribution of the pair (D,L) es-
timated in three different ways in 5.4.1 to carry out
a Monte Carlo study to determine the impact of the
modelling on the component failure probability. The
failure probability P f is the probability that one of
the output factors of the fracture mechanics model
stays below a certain threshold. To estimate this prob-
ability, we couple the fracture mechanics model with
the OpenTURNS platform. The fracture mechanics
model takes 15 input variables, we assume that the
pair (L,D) is independent of the rest of the vari-
ables whose values are fixed at an average level for
this study. We evaluate the failure probabilities by
Monte-Carlo simulations with importance sampling
using N = 104 simulations. The simulations provide
the estimators P̂ f

model for the three models. The results
are summarized in Table 4, where we give the esti-
mated failure probabilities relative to the failure prob-

Table 4: Failure probabilities calculated with the competing
models using an importance sampling method with 10−4 sim-
ulations.

Model R̂f
model cmodel

Reference 1 2.09%
Parametric 1.022 1.99%

Nonparametric 0.148 4.14%

ability of the reference model, that is the ratio:

R̂f
model =

P̂ f
model

P̂ f
ref.model

,

and the coefficient of variation cmodel given by:

cmodel =

√
1− P̂ f

model

P̂ f
modelN

.

We observe that the nonparametric model estimates
the failure probability to be much lower than the other
two models. This is due to the fact that a failure usu-
ally occurs when both D and L assume high values.
The Gumbel copula ensures a high positive tail depen-
dence, leading to more frequent common high values,
whereas the nonparametric model, as Figure 2 sug-
gests, gives more probabilistic mass to the upper-left
zones with greater L values but smaller D values.

6 CONCLUSIONS

In this paper we draw attention to the importance of
modelling the dependence structure of random vari-



ables appearing in uncertainty quantification studies.
The modelling should take into consideration all the
available statistical data, but ensure a maximum of
freedom besides this knowledge. We presented the
family of maximum entropy distribution of ordered
random variables as well as a nonparametric estima-
tion procedure to efficiently estimate such distribu-
tions. We examined its statistical performance in an
uncertainty quantification study compared to some
other approaches. We have seen that when the un-
derlying data set comes from a distribution which be-
longs to the family of maximum entropy distributions
of order statistics, the nonparametric density estima-
tion approach proposed in Section 3 performs well.
When applied to the industrial case study, we ob-
serve a decline in the performance of the nonparamet-
ric estimator, suggesting that there are some hidden
constraints in addition to the ordering which was not
taken into consideration by this approach (for exam-
ple the high upper tail dependence). The failure prob-
ability calculations shows that the dependence mod-
elling have a significant impact on the estimation of
failure risks.

In following studies we would like to determine,
via extensive simulation studies, the cases where such
distributions may give more favourable results com-
pared to other approaches. We would like to give a
testing procedure to determine whether the underly-
ing data set comes from a maximum entropy distribu-
tion or there are other hidden constraints which needs
to be taken into consideration. An aggregation method
is also under development to give an adaptive non-
parametric estimator of the maximum entropy distri-
bution which performs as well as the nonparametric
model with an optimal number of parameters chosen
based on the density’s unknown regularity.
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