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Abstract

We consider the genealogical tree of a stationary continuous state branching process with immigration.
or a sub-critical stable branching mechanism, we consider the genealogical tree of the extant population
t some fixed time and prove that, up to a deterministic time-change, it is distributed as a continuous-
ime Galton–Watson process with immigration. We obtain similar results for a critical stable branching

echanism when only looking at immigrants arriving in some fixed time-interval. For a general sub-
ritical branching mechanism, we consider the number of individuals that give descendants in the extant
opulation. The associated processes (forward or backward in time) are pure-death or pure-birth Markov
rocesses, for which we compute the transition rates.
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1. Introduction

1.1. State of the art

Inference of the genealogical tree of some given population (or of a sample of extant
ndividuals) is a central question in evolutionary biology (see for instance [25]) and, to perform
his task by the usual maximum likelihood method, the distribution of this genealogical tree

ust be known.
The most popular model in this context is the Wright–Fisher model where the genealogical

ree of a sample of extant individuals is given by the Kingman coalescent [31]. One major
eature of this model is to consider a constant size population although many extensions have
een proposed to take into account population size change (see e.g. [23]). Other models have
lso been considered where the distribution of the genealogical tree or a sample of the current
opulation can be explicitly described: linear birth–death process [37], continuous time Galton–
atson trees [24,28], Brownian tree [3] see also [2], splitting trees [34]. Some recent results on

he coalescent process associated with some branching process by time-reversal can be found
n [20,29,44].

We consider here continuous state branching processes with immigration so that the total
opulation size is stationary. More precisely, let ψ be a branching mechanism of the form

ψ(λ) = αλ+ βλ2
+

∫
(0,+∞)

(
e−λr

− 1 + λr
)
π (dr ), λ ≥ 0, (1)

here α = ψ ′(0) ∈ R, β ≥ 0 and π is a σ -finite measure on (0,+∞) such that

(0,+∞)(r ∧ r2)π (dr ) < +∞. We will mainly assume that ψ is sub-critical, that is α > 0,
nd that ψ satisfies the following conditions:∫

+∞ dλ
ψ(λ)

< +∞ (Grey condition) and
∫

∞

1
r log(r )π (dr ) < ∞. (2)

he Grey condition implies in particular that β > 0 or
∫

(0,1) rπ (dr ) = +∞; it also implies
hat the corresponding branching process dies out in finite time. The latter condition is the
o-called ‘L log L’-condition, which, in our setting, is equivalent to the ‘L log L’-condition
n the marginal distribution of the corresponding branching process, see [14, Lemma 3.7 and
roposition 3.8]; it also implies that the corresponding branching process renormalized by its
xpectation is a positive closed martingale.

A continuous state branching process (CB process for short) is a positive real valued Markov
rocess (Yt , t ≥ 0) that satisfies the following branching property: the process Y starting from

Y0 = x + x ′ is distributed as Y (1)
+ Y (2) where Y (1) and Y (2) are independent copies of Y

tarting respectively from Y (1)
0 = x and Y (2)

0 = x ′. The distribution of the process Y is then
niquely determined by its branching mechanism, see Section 2.1. As we only consider critical
r sub-critical branching mechanisms together with Grey condition (2), the population becomes
.s. extinct in finite time. We denote by c(t) the “probability” of non-extinction at time t > 0
nder the canonical measure (see Section 2.1) which is defined by:∫

+∞

c(t)

dλ
ψ(λ)

= t, t > 0.

he extinction probability is then given by Px (Yt = 0) = e−xc(t) > 0 for all t > 0, where Px

denotes the distribution of the CB starting from x ≥ 0 at time 0. The second condition in (2)
310
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insures that limt→+∞ eαt Yt exist Px -a.s. and that the following limit is well defined:

κ = lim
t→+∞

c(t)eαt
∈ (0,+∞), (3)

here according to Lemma 1 in [32], κ satisfies c−1(κ) =
∫ κ

0

(
1
αλ

−
1

ψ(λ)

)
dλ.

One way to avoid this extinction is to add an immigration characterized by a function φ
efined on R+ which describes the intensity of the immigration and the size of the immigrant
opulation, see for example [36] and references therein:

φ(λ) = β ′λ+

∫
(0,+∞)

(
1 − e−λr) rπ ′(dr ), λ ≥ 0, (4)

here β ′
≥ 0 and π ′ is a σ -finite measure on (0,+∞) such that

∫
(0,+∞)(1 ∧ r )π ′(dr ) < +∞.

e shall mainly consider the immigration (which, when the Grey condition holds, appears
hen conditioning the initial CB process on non-extinction, see [14,33]) given by β ′

= 2β and
′
= π :

φ(λ) = ψ ′(λ) − α = 2βλ+

∫
(0,+∞)

(
1 − e−λr) rπ (dr ). (5)

e can then consider a CB process with immigration (CBI process for short) indexed by R,
Y = (Yt , t ∈ R), whose one-dimensional distributions are the same in time. Some properties of
his process have been investigated in [14]. By convention, the stationary case will correspond
o a sub-critical branching mechanism ψ and the corresponding immigration φ given by (5).

e shall denote by ū the Laplace transform of Yt , see (16), which is given by:

ū(λ) =
καe−αc−1(λ)

ψ(λ)
, λ > 0. (6)

The description of the genealogy of CB processes is done using Lévy trees (see [17]), and
of CBI processes as a real tree with an infinite spine on which some Lévy trees are grafted.
As the population size in our CBI processes is stationary, we can look at the extant population
at any fixed time, say t = 0 in all the paper. We want to describe the distribution of the
genealogical tree of this extant population. A complete description of this genealogy is already
done in [2] for a quadratic branching mechanism ψ(λ) = αλ+βλ2 together with the description
of the genealogical tree of a sample of the extant population. We focus in this paper on general
branching mechanisms.

1.2. Main results

For a general sub-critical branching mechanism ψ , the description of the genealogy of the
extant population, in the stationary case, can be seen as a birth process (forward in time)
and a death process (backward in time) coming from infinity. Let 1 + M0

t be the number
of descendants of the extant population forward in time at time t ∈ (−∞, 0). Notice that a.s.
limt→−∞ M0

t = 0. The ancestral process (M0
t , t < 0) describes in some sense the genealogy

of the extant population at time 0. Asymptotics of M0
t as t increases to 0 are given in [14]

(see also references therein for related results on coalescent processes). Recall that for a birth
and death Markov process, its distribution is completely characterized by its birth and death
rates, that is infinitesimal generator, see [13, Section 1.1]. We have the following result, see
Propositions 5.2 and 5.4.
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Theorem 1.1. Assume ψ given by (1) is sub-critical (i.e. α > 0) and satisfies conditions (2)
nd φ is given by (5).

(i) The forward in time process (M0
t , t < 0) is a càd-làg inhomogeneous pure birth Markov

process starting from 0 at time −∞ with birth rate given by for m > n ≥ 0 and t > 0:

qb
n,m(−t) =

(m + 1)
(m + 1 − n)!

c(t)m−n
⏐⏐ψ (m−n+1)(c(t)

)⏐⏐ .
(ii) The backward in time process (M0

(−t)−, t > 0) is a càd-làg inhomogeneous pure death
Markov process starting from +∞ at time 0, with death rate given by for n > m ≥ 0
and t > 0:

qd
n,m(t) =

(
n + 1

m

) ⏐⏐ū(m)
(
c(t)

)⏐⏐⏐⏐ū(n)
(
c(t)

)⏐⏐ ⏐⏐ψ (n−m+1)(c(t)
)⏐⏐ .

We now consider a stable branching mechanism:

ψ(λ) = αλ+ γ λb (7)

ith α > 0, γ > 0 and b ∈ (1, 2]. The case b = 2 corresponds to π = 0 in (1), and the
ase b ∈ (1, 2) corresponds to β = 0 and π (dr ) equal (up to a multiplicative constant) to
−b−1 dr . See Remark 5.5 for an explicit computation of the birth rate for 1 < b < 2. See

also Remark 5.1 for an explicit computation of the birth and death rates in the quadratic case
b = 2, which already appears in Proposition 3.2 and 3.3 in [10].

We now present a deterministic time change for which the genealogy of the extant population
(forward in time) in the stationary case is a time homogeneous Galton–Watson process with
immigration. The time change relies on the non-extinction “probability” c(t) of the associated

B process under the canonical measure which is given (see Example 3.1 p. 62 in [35] where
¯t corresponds to c(t) in our setting) for t > 0 by:

c(t) =

(
α

γ
(
e(b−1)αt − 1

)) 1
b−1

. (8)

e consider the time change T (t) = −R−1(t) where:

R(t) = log

(
ψ̃(c(t))

ψ̃(0)

)
with ψ̃(λ) =

ψ(λ)
λ

= α + γ λb−1 (9)

nd we consider the process M̃ = (M̃t = M0
T (t), t > 0). The main result of the paper is the

following theorem.

Theorem 1.2. Assume ψ is given by (7) (with α > 0 and b ∈ (1, 2]) and φ by (5). The
time-changed ancestral process M̃ is distributed as a continuous-time Galton–Watson process
with immigration.

The characteristics of the Galton–Watson process with immigration (length of the branches,
immigration rate, offspring distribution, immigration size) are precised in Theorem 4.1. This
process may also be viewed as a sized-biased continuous-time Galton–Watson process, see
Remark 4.2.

As a corollary of this theorem, we study the sizes of the families of the extant population
ranked according to their immigration time. The vector of the sizes of these families in
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the stable case is distributed as the jumps of a time-changed subordinator which yields a
Poisson–Kingman distribution (see Remark 4.11). In the quadratic case (see Corollary 4.12) this
corresponds to a Poisson–Dirichlet distribution. The computations of Proposition 4.14 prove
that for b ∈ (1, 2), the distribution of the sizes of these families is not a Poisson–Dirichlet
distribution since a sized-biased sample of the vector of sizes is not Beta-distributed (except
maybe for one very particular case).

In the stable critical case ψ(λ) = λb with b ∈ (1, 2], the previous results do not make sense
since the total population size is always infinite and the ancestral process is trivially infinite at
all times. To get a finite extant population, we restrict our attention to the extant individuals
whose initial immigrant arrived after some fixed time −T . Theorem 1.2 remains valid in this
setting with a different change of time, see Theorem 6.1.

If the Grey condition is not satisfied, it is always possible to define the genealogy of a
CBI process whose immigration mechanism is given by φ in (5), see Corollary 3.3 in [14].
However, the ancestral process is again trivially infinite at all time. This is for example the
case for the Neveu’s branching mechanism ψ(λ) = λ log(λ) which appears as the natural limit
of the stable branching mechanism ψ(λ) = λb when b goes down to 1. There is a natural link
between the CB with Neveu’s branching mechanism and the Bolthausen–Sznitman coalescent,
see [9]. Inspired by this result, the following result, see Proposition 5.6, gives that looking
backward the genealogical tree in the stationary stable case, one recovers, as b decreases to 1,
the Bolthausen–Sznitman coalescent. Let T > 0 and n ≥ 1. Conditionally on the number of
ancestors at time −T of the extant population being n, that is on {M0

−T = n − 1}, we label
them from 1 to n uniformly at random. Define a continuous time process (Π T,[n](t), t ≥ T )
taking values in the partitions of [n] = {1, 2, . . . , n}, where Π T,[n](t) is the partition of [n]
such that i and j are in the same block if and only if the i th and j th individuals at level −T
have the same ancestor at level −t .

Theorem 1.3. Assume ψ is given by (7) (with α > 0 and b ∈ (1, 2]) and φ by (5). The
law of (Π T,[n](T eγ t ), t ≥ 0) conditionally on {M0

−T = n − 1}, converges in the sense of finite
dimensional distribution to a Bolthausen–Sznitman coalescent as b decreases to 1.

1.3. Organization of the paper

Sections 2 and 3 are respectively devoted to recall known results on CB process and their
genealogy using real trees, and on CBI process and the definition of the number of descendants
of the extant population M = (M0

t , t < 0). For the stable sub-critical setting, we present in
Section 4 the proof of Theorem 4.1 (and thus of Theorem 1.2) and the study of the sizes of the
families of the extant population ranked according to their immigration time. We compute the
birth and death rates of the process M (Theorem 1.1) in Section 5 and apply these expressions
in Section 5.3 to prove the convergence of the ancestral process as b goes down to 1 towards
the Bolthausen–Sznitman coalescent (Theorem 1.3). We provide some results in Section 6 for
the critical stable branching mechanism.

2. Notations

Concerning probability measures and expectations, we shall use P and E for usual real
random variables or processes, P and E for Lévy trees or Lévy forest, and P̄ and Ē for the
corresponding stationary cases which involve immigration.
313
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The process Y usually refers to a CB or CBI process (under P) and Z usually refers to a
B (under P) or a CBI (under P̄) built on a Lévy tree or a Lévy forest.

We write N = {0, 1, . . .} for the set of integers and N∗
= {1, 2, . . .}. for the set of positive

integers. We denote by δa the Dirac mass at a.

2.1. Continuous state branching processes

We refer to [11,22,36] for a presentation and general results on CB processes. We recall
that a CB process with branching mechanism ψ (denoted CB(ψ)) is a càd-làg non-negative
real-valued Markov process Y = (Yt , t ≥ 0) whose transition kernels are characterized, for
every s, t, λ ≥ 0, by

E
[
e−λYs+t

⏐⏐⏐ Ys

]
= e−u(t,λ) Ys , (10)

where (u(λ, t); t ≥ 0, λ ≥ 0) is the unique non-negative solution of the integral equation

u(λ, t) +

∫ t

0
ψ
(
u(λ, s)

)
ds = λ, (11)

or equivalently the unique non-negative solution of the integral equation∫ λ

u(λ,t)

dr
ψ(r )

= t. (12)

hen the Grey condition holds (see (2)), we define the finite function c on (0,+∞) by:

c(t) = u(+∞, t) = lim
λ→+∞

u(λ, t). (13)

ne can see from (12) that c satisfies∫
∞

c(t)

dr
ψ(r )

= t, t > 0.

Let Pr denote the distribution of the CB process Y starting from r ≥ 0 at time 0 (that is
onditionally on {Y0 = r}) and Er the corresponding expectation operator. We denote by N the

canonical (infinite but σ -finite) measure of the CB process Y on the Skorohod space D(R+) of
real-valued càd-làg function defined on R+ := [0,+∞); so that if

∑
i∈I δYi is a Poisson point

easure on D(R+) with intensity rN(dY ), with r ∈ R+, then the process (Ỹt , t ≥ 0) defined
y

Ỹt =

∑
i∈I

Y i
t

s distributed as Y under Pr , see [35, Theorem 8.24] in the more general framework of measure-
alued branching processes. (Notice the set of indices I is countable.) In particular, we have
or λ, t ≥ 0:

N
[
1 − e−λYt

]
= lim

r→0

1
r

Er
[
1 − e−λYt

]
= u(λ, t).

When the Grey condition holds, the function c(t) satisfies for t > 0:

c(t) = N[Yt > 0], u(c(t), s) = c(t + s) and c′(t) = −ψ(c(t)).
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2.2. Continuous branching process with immigration

We define the stationary CBI processes with branching mechanism ψ and immigration φ,
iven respectively by (1) and (4), as follows. Let

∑
i∈I δ(hi ,Yi ) be a Poisson point measure on

R × D(R+) with intensity

ν0(dh, dY ) = dh
(
β ′N(dY ) +

∫
(0,+∞)

Pr (dY )π ′(dr )
)
, (14)

nd define, with the convention that Y i
s = 0 for s < 0, the process (Yt , t ∈ R) by:

Yt =

∑
i∈I

Y i
t−hi

.

sing the master formula for Poisson point measure, we get that for λ ≥ 0 and t ∈ R:

E
[
e−λYt

]
= exp

(
−

∫
+∞

0
φ(u(λ, r )) dr

)
,

where u is still the function given by (12). Notice that (11) implies that∫ t

0
φ(u(λ, s)) ds =

∫ λ

u(λ,t)

φ(r )
ψ(r )

dr, λ > 0, t > 0.

hich further yields∫
+∞

0
φ(u(λ, r ))dr =

∫ λ

0

φ(r )
ψ(r )

dr, λ > 0.

herefor, if for some (and hence for all) λ > 0, we have:∫ λ

0

φ(r )
ψ(r )

dr < +∞, (15)

hen we get that Y0 is a.s. finite. Following [35, Section 9.5], we then obtain that (Yt , t ≥ 0) is
cád-lág Markov process started at Y0 whose transition kernels are characterized, for s, t ∈ R,
≥ 0, by:

E
[
e−λYs+t

⏐⏐⏐ Ys

]
= exp

(
−u(λ, t)Ys −

∫ t

0
φ
(
u(λ, r )

)
dr
)
.

he so called CBI process started at r ∈ R with branching mechanism ψ and immigration
echanism φ is defined as (Y ′

t +
∑

i∈I Y i
t−ti 1{ti>0}, t ≥ 0), where (Y ′

t , t ≥ 0) is a CB with
ranching mechanism ψ started from r at time 0 independent of the Poisson point measure

i∈I δ(hi ,Yi ). We refer to [30] for more results on CBI processes. Notice that at this stage no
ypothesis is required on ψ and φ. Now, provided that Y0 is a.s. finite, we get that (Yt , t ≥ 0)
s a CBI started at (its stationary measure) Y0.

By translation invariance of the Lebesgue measure dt , we deduce that if (15) holds, then the
rocesses (Yt+t0 , t ≥ 0), for t0 ∈ R have all the same distribution. This gives that (Yt , t ∈ R) is a
0,+∞)-valued stationary cád-lág Markov process; and we call it the stationary CBI processes
ith branching mechanism ψ and immigration φ.
When considering a sub-critical branching mechanism ψ satisfying (2) and the particular

mmigration mechanism φ given by (5), according to [14, Corollary 3.13] and the definition
f ū(λ) given in (6), we get that for λ > 0:∫

+∞

φ(u(λ, r )) dr = − log(ū(λ)) < +∞,

0
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and the process (Yt , t ≥ 0) conditioned on {Y0 = r} with r > 0, can be viewed as the
B process with branching mechanism ψ started at r and conditioned on non-extinction; this
bservation motivates the particular choice for this immigration mechanism. In this particular
ase, we have for every λ ≥ 0 and t ∈ R,

E
[
e−λYt

]
= ū(λ). (16)

2.3. Real trees and Lévy trees

We refer to [15,18] for general results on real trees and to [16] for Lévy trees. We recall
hat a metric space (t, d) is a real tree if the following two properties hold for every u, v ∈ t.

(i) There is a unique isometric map fu,v from [0, d(u, u)] into t such that

fu,v(0) = u and fu,v
(
d(u, v)

)
= v.

(ii) If ϕ is a continuous injective map from [0, 1] into t such that ϕ(0) = u and ϕ(1) = v,
then the range of ϕ is also the range of fu,v .

The range of the map fu,v is denoted [[u, v]]. It is the unique continuous path that links u to v
in the tree. In order to simplify the notations, we often omit the distance d in the notation and
say that t is a real tree.

A rooted real tree is a real tree (t, d) with a distinguished vertex ∂ called the root. Two real
trees (resp. rooted real trees) t1 and t2 are called equivalent if there is an isometry (resp. a
root-preserving isometry) that maps t1 onto t2. We set T the set of all equivalence classes of
rooted compact real trees. We endow the set T with the pointed Gromov–Hausdorff distance
(see [18]) and the associated Borel σ -field. The set T is then Polish.

Let t ∈ T be a rooted tree. We define a partial order ≺ (called the genealogical order) on t
by:

u ≺ v ⇐⇒ u ∈ [[∂, v]] \ {v}

and we say in this case that u is an ancestor of v. The height of a vertex u ∈ t is defined by

H (u) = d(∂, u),

and we denote by H (t) = sup{d(∂, u), u ∈ t} the height of the tree t. Let a > 0. The truncation
of t at level a is the tree Tra(t) = {u ∈ t, H (u) ≤ a}, and the population of the tree t at level

is the sub-set

Zt(a) = {u ∈ t, H (u) = a}. (17)

We denote by (t(i),∗, i ∈ I ) the connected components of the open set t \ Tra(t). For every
∈ I , there exists a unique point ∂i ∈ Zt(a) such that ∂i ∈ [[∂, u]] for every u ∈ t(i),∗. We then

set t(i)
= t(i),∗

∪ {∂i } so that t(i) is a compact rooted real tree with root ∂i and we consider the
point measure on Zt(a) × T:

N t
a =

∑
i∈I

δ(∂i ,t(i)).

We now recall the definition of the excursion measure associated with a ψ-Lévy tree
from [16], which is critical or sub-critical (α ≥ 0) and satisfies the Grey condition (first
condition in (2)). Let ψ be a branching mechanism defined by (1). Then, there exists a measure
N on T such that:
316
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(i) Existence of a local time. For every a ≥ 0 and for N(dT )-a.e. T ∈ T, there exists a
finite measure ℓa on T such that

(a) ℓ0
= 0 and, for every a > 0, ℓa is supported on ZT (a).

(b) For every a > 0, {ℓa
̸= 0} = {H (T ) > a}, N(dT )-a.e.

(c) For every a > 0, we have N(dT )-a.e. for every bounded continuous function ϕ on
T ,

⟨ℓa, ϕ⟩ = lim
ε→0+

1
c(ε)

∫
N T

a (du dT ′)ϕ(u)1{H (T ′)≥ε}

= lim
ε→0+

1
c(ε)

∫
N T

a−ε(du dT ′)ϕ(u)1{H (T ′)≥ε}.

(ii) Branching property. For every a > 0, the conditional distribution of the point measure
N T

a (du dT ′), under the probability measure N(dT | H (T ) > a) and given Tra(T ), is
that of a Poisson point measure on ZT (a) × T with intensity ℓa(du)N(dT ′).

(iii) Regularity of the local time process. We can choose a modification of the process
(ℓa, a ≥ 0) in such a way that the mapping a ↦−→ ℓa is N(dT )-a.e. càd-làg for the
weak topology on finite measures on T .

(iv) Link with CB processes. Under N(dT ), the process (⟨ℓa, 1⟩, a ≥ 0) is distributed as a
CB(ψ) process under N.

If necessary, we shall write ℓa(T ) for ℓa in order to stress the dependence in the Lévy tree T .
e define the population size process as Z = (Za, a ≥ 0), where the “size” of the population

t level a is given by:

Za = ⟨ℓa(T ), 1⟩. (18)

e recall that under N, the process Z is distributed as Y under the canonical measure N. Let
s mention that the super-critical case, which we do not study here, could have been handled
sing a Girsanov transformation, as in [1].

.4. Forests

efinition 2.1 (Forest and Leveled Forest). A forest is a family f = (ti )i∈I , at most countable,
f elements of T. A leveled forest is a family f̄ = (hi , ti )i∈I , at most countable, of elements of
× T. We denote by F (resp. F̄) the set of (resp. leveled) forests.

If f̄ = (hi , ti )i∈I is a leveled forest, denoting by di the distance in the tree ti and ∂i the root
f ti , we can associate with it a tree (t(f̄), d̄) by

t(f̄) = R ⊔

(⨆
i∈I

t∗i

)
here ⊔ denotes the disjoint union of sets, t∗i = ti \ {∂i }, and, for every u, v ∈ t(f̄),

d̄(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|u − v| if u, v ∈ R,
di (u, v) if u, v ∈ t∗i ,
|u − hi | + di (∂i , v) if u ∈ R and v ∈ t∗i ,
di (∂i , u) + |hi − h j | + d j (∂ j , v) if u ∈ t∗i , v ∈ t∗j with i ̸= j.
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Remark 2.2. It is easy to check that t(f̄) is indeed a real tree. It is neither rooted nor compact,
nd can be seen as a tree with a two-sided infinite spine (the set R).

emark 2.3. If f = (hi , ti )i∈I and (hi , t̃i )i∈I are two families of real numbers and real trees
such that, for every i ∈ I , the trees ti and t̃i are equivalent, then the trees constructed by the
above procedure are also equivalent, so the construction is valid for families of elements of
R × T.

We extend the notion of ancestor in the tree t(f̄) by

u ≺ v ⇐⇒

⎧⎪⎨⎪⎩
u < v if u, v ∈ R,
u ≤ hi if u ∈ R and v ∈ t∗i ,
u ≺i v if u, v ∈ t∗i ,

where ≺i denotes the genealogical order in the tree ti . We also extend the notion of height of
a vertex u ∈ t(f) by

H (u) =

{
u if u ∈ R,
hi + Hi (u) if u ∈ t∗i ,

where Hi denotes the height of a vertex in the tree ti .

Definition 2.4 (Ancestral Tree). Let f̄ be a leveled forest and let t̄ = t(f̄) be its associated tree.
For every a ∈ R, we define Zt̄(a) the population at height a, by (17) with t replaced by t̄ and
the ancestral tree At̄(a) of the population at level a by

At̄(a) = Zt̄(a) ∪ Anc(Zt̄(a)),

where Anc(Zt̄(a)) = ∪v∈Zt̄(a){u ∈ t̄, u ≺ v} is the set of all the ancestors in t̄ of the vertices
of Zt̄(a).

When there is no confusion we write A for At̄.

3. The stationary Lévy tree

3.1. Random forests, CB and CBI processes

Let ψ be a branching mechanism defined by (1) which is critical or sub-critical (α ≥ 0)
and satisfies the Grey condition (first condition in (2)). For r > 0, we denote by Pr (df) the
probability distribution on F of the random forest F = (Ti )i∈I given by the atoms of a Poisson
point measure on T with intensity rN(dt). Under Pr , the family (ℓa(Ti ))i∈I of the corresponding
local times at level a ≥ 0 is well defined, and we define the local time at level a of the forest

by

ℓa(F) =

∑
i∈I

ℓa(Ti ). (19)

et the size-population process Z = (Za, a ≥ 0) be defined (under Pr ) by (18) with the local
ime ℓa(T ) replaced by ℓa(F). By property (iv) of the Lévy tree excursion measure, and the
efinition of the probability measure Pr , we get that under Pr , the process Z is a CB started
t time 0 from r .

If f = (ti )i∈I is a forest and h ∈ R, the pair (h, f) can be viewed as the leveled forest
h, t ) . Eventually, a family of leveled forests (f̄ ) can be viewed as a leveled forest since
i i∈I i i∈I
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a countable disjoint union of countable sets remains countable. Conversely a tree is a forest,
thus the measure N(dt) on T can be viewed as a measure N(df) on F.

We denote by P̄(d f̄) the probability distribution on F̄ of the random leveled forest F̄ =

(hi ,Fi )i∈I given by the atoms of a Poisson point measure on R × F with intensity

ν(dh, df) = dh
(
βN[df] +

∫
+∞

0
π (dr )Pr (df)

)
, (20)

nd let T̄ = t(F̄) be the random tree associated with this leveled forest. The random tree T̄
nder P̄ can be viewed as stationary version of the Lévy tree with branching mechanism ψ

onditioned on non-extinction, see [14], Section 3. We call the random tree T̄ the stationary
évy tree.

For every i ∈ I , the local time measure ℓa(Fi ) at level a of the leveled forest (hi ,Fi ) is
a.s. well-defined by (19). We then define, for every a ∈ R, the local time measure at level a
for the tree T̄ by

ℓa(T̄ ) =

∑
i∈I

ℓa−hi (Fi )1{hi ≤a}. (21)

By standard property of Poisson point measures, we have the following result, where Z =

(Za, a ∈ R) is defined (under P̄) by (18) with the local time ℓa(T ) replaced by ℓa(T̄ ).

Proposition 3.1. Assume that (2) holds. Under P̄, the process Z is a stationary CBI process
with branching mechanism ψ and immigration mechanism φ given by (5).

Proof. First, (2) implies (15), according to [14, Proposition 3.8]. Since Z under N is distributed
as Y under N, we deduce that the push-forward of the measure ν(dh, df) defined in (20) by
the function (h, f) ↦→ (h, ℓ(f)), where ℓ(f) = (ℓa(f), a ≥ 0), is the measure ν0(dh, dY ) defined
in (20). Then use results recalled in Section 2.2, to deduce that under P̄, the process Z is a
stationary CBI process with branching mechanism ψ and immigration mechanism φ. □

3.2. Branching points of the ancestral tree

Recall T̄ is defined under P̄ in the previous section. For t ∈ R, we write A(t) the ancestral
tree AT̄ (t) of the population at level t defined by Definition 2.4. Notice that P̄-a.s. A(t) has

nly a finite number of vertices at any level s < t and we set for s < t :

M t
s = Card {u ∈ AT̄ (t), H (u) = s} − 1. (22)

he number M t
s is exactly the number of individuals of the tree T̄ at level s that have

escendants at level t , the immortal (or two-sided infinite) spine being excluded (which explains
he -1 in the definition of M t

s ).
Under P̄, since the intensity ν(dh, df) is invariant by translation in h, we get that the

istribution of the ancestral tree A(t) does not depend on t ∈ R. Therefore, we can fix the
evel at which the current population is considered, say t = 0, and look at the ancestral process
M0

= (M0
s , s < 0) which is a pure-birth process starting at time s = −∞ from 0.

We define the jumping times of the process M0 inductively by setting

τ0 = sup{t > 0, M0
−t ̸= 0} (23)

nd for n ≥ 1,
0 0
τn = sup{t < τn−1, M
−t ̸= M(−t)−}, (24)
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Fig. 1. The ancestral tree of the extant population at time t = 0 and the first jumping times (time t = 0 corresponds
to the top horizontal line).

and we define the size of the nth jump of the process M0, n ≥ 0, by

ξn = M0
−τn

− M0
−(τn )− = M0

−τn
− M0

−τn−1
. (25)

In the sequel, we will distinguish between the jumps that are due to a new immigration (i.e. a
ranching point on the infinite spine) and those coming from a reproduction of an individual
f the ancestral tree. For that purpose, recall that the tree is constructed from a random leveled
orest (hi , Ti )i∈I (see Fig. 1).

We then define for every n ≥ 1,

τ I
n = − inf{hi > −τn−1, H (Ti ) ≥ −hi } and (26)

τ B
n = − inf{t > −τn−1, M0

t ̸= M0
t− and t ̸= hi ∀i ∈ I }, (27)

o that

τn = τ I
n ∨ τ B

n . (28)

hanks to Theorem 2.7.1 of [17], we have, for every r ∈ [0, 1], every t > u > 0 and every
n ∈ N∗,

Ē[r ξ1
⏐⏐ τ0 = t, ξ0 = n, τ B

1 = u, τ I
1 < u] = gt (t − u, r ), (29)

here

gt (s, r ) = r
ψ ′(c(t − s)) − γψ (c(t − s), (1 − r )c(t − s))

ψ ′(c(t − s)) − γψ (c(t − s), 0)
, (30)

ith

∀a, b ≥ 0, γψ (a, b) =

{
ψ(a)−ψ(b)

a−b if a ̸= b,
ψ ′(a) if a = b.

On the other hand, by standard properties of Poisson point measures (see also Proposition 5.2
in [14]), we have:

Ē[r ξ1
⏐⏐ τ0 = t, ξ0 = n, τ I

1 = u, τ B
1 < u] = 1 −

φ((1 − r )c(u))
φ(c(u))

· (31)
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4. Properties of the ancestral process in the sub-critical stable case

In this section, the branching mechanism ψ , the immigration mechanism φ, and the function
ψ̃ are given by (7), (5) and (9), that is, for λ ≥ 0:

ψ(λ) = αλ+ γ λb, φ(λ) = bγ λb−1, ψ̃(λ) = α + γ λb−1, (32)

with α > 0, γ > 0 and b ∈ (1, 2]. We recall1 the extinction probability c(t) defined by (13)
and given by (8), and elucidate the Laplace transform of the CBI ū as well as the constant κ
defined in (3) and (6):

c(t) =

(
α

γ
(
e(b−1)αt − 1

)) 1
b−1

, ū(λ) =

(
1 +

γ

α
λb−1

)−
b

b−1 and κ =

(
α

γ

) 1
b−1

.

(33)

he expression of the function gt (s, r ) of (30) does not depend on s and t . We have for
∈ [0, 1]:

gt (s, r ) = gB(r ) with gB(r ) =
br − 1 + (1 − r )b

b − 1
· (34)

We also define the generating function gI by, for r ∈ [0, 1]:

gI (r ) =
(b − 1)

b
g′

B(r ) = 1 − (1 − r )b−1. (35)

.1. Distribution of the time-changed ancestral process

We make precise the time change given in (9): for t > 0

R(t) = log

(
ψ̃(c(t))

ψ̃(0)

)
= log

(
e(b−1)αt

e(b−1)αt − 1

)
.

The function R is continuous and strictly decreasing; we also have that limt→0 R(t) = +∞ and
imt→+∞ R(t) = 0. Thus the function R is one-to-one from (0,+∞) to (0,+∞). We consider
he time-changed ancestral process M̃ = (M̃t , t ≥ 0) defined by M̃0 = 0, and for t > 0:

M̃t = M0
T (t) with T (t) = −R−1(t).

The next theorem, whose proof is given in Section 4.2, is the main result of this section. It
states that the ancestral process is a continuous-time Galton–Watson process with immigration
(GWI process).

Theorem 4.1. Consider the sub-critical stable branching mechanism with immigration (32).
The time-changed ancestral process M̃ is distributed under P̄ as a GWI process, X = (X t , t ≥

0), with:

(i) X0 = 0 a.s.;
(ii) the branching rate of X is 1;

(iii) the offspring distribution has generating function gB defined in (34);

1 According to Example 3.1 p. 62 in [35] (where vt (λ) corresponds to u(λ, t) in our setting), we also have
u(λ, t) = e−αtλ

[
1 + γ α−1 (1 − e−α(b−1)t )λb−1]−1/(b−1).
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(iv) the immigration rate is b
b−1 ;

(v) the number of immigrants has generating function gI defined in (35).

Recall that the distribution of the process X is characterized by the Markov property and its
infinitesimal transition probabilities. Let us denote by p = (pn, n ≥ 0) (resp. q = (qn, n ≥ 0))
the distribution on N associated with the generating function gB (resp. gI ).

We compute the infinitesimal generator of X at time t . First, since p0 = gB(0) = 0, we
have, for every t ≥ 0, h > 0 and every 0 ≤ k < n,

P(X t+h = k|X t = n) = 0.

Furthermore, by Eq. (35), we have, for every n ≥ 1,

npn =
b

b − 1
qn−1.

Therefore, as h → 0+, we have for every 0 ≤ n < k,

P(X t+h = k|X t = n) =

(
npk−n+1 +

b
b − 1

qk−n

)
h + o(h) = (k + 1)pk−n+1h + o(h).

ventually, since p1 = g′

B(0) = 0, we have, for every n ≥ 0, as h → 0+,

P(X t+h = n|X t = n) = 1 −

+∞∑
k=n+1

(k + 1)pk−n+1h + o(h) = 1 −

(
b

b − 1
+ n

)
h + o(h).

To sum up, we have the following transition rates for the GWI process X as h → 0+,

P(X t+h = k|X t = n) =

⎧⎪⎨⎪⎩
(k + 1)pk−n+1h + o(h) if k ≥ n + 1,
1 −

( b
b−1 + n

)
h + o(h) if k = n,

o(h) otherwise.
(36)

aking the limit of h−1(P(X t+h = k|X t = n) − 1{k=n}), as h goes down to 0, gives the
nfinitesimal generator of X at time t . In particular, if (τ ′

n, n ≥ 0) is the sequence of jumping
imes of X (with τ ′

0 = 0), we have for r ∈ [0, 1], n, k ≥ 0,

E
[
r

X
τ ′n+1

−X
τ ′n
⏐⏐ Xτ ′

n = k
]

= g[k](r ), (37)

here for r ∈ [0, 1],

g[k](r ) =
k

k(b − 1) + b

(
br − 1 + (1 − r )b)

+
b

k(b − 1) + b

(
1 − (1 − r )b−1)

=
k(b − 1)

k(b − 1) + b
gB(r ) +

b
k(b − 1) + b

gI (r ). (38)

emark 4.2. Let χ = (χt , t ≥ 0) be a continuous-time Galton–Watson process (GW process)
ith branching rate 1, offspring distribution p and starting at χ0 = 1. Recall that the size-biased
ersion of χ is the process χ̂ = (χ̂t , t ≥ 0) such that for every T > 0 and every bounded
easurable functional ϕ, we have:

E
[
ϕ(χ̂t , t ∈ [0, T ])

]
=

1
E[χT ]

E [χT ϕ(χt , t ∈ [0, T ])] . (39)

hen, the GWI process X of Theorem 4.1 is distributed as χ̂ − 1.
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Indeed, the process χ̂ is a Markov process as a Doob h-transform of a Markov process
the process (χt/E[χt ], t ≥ 0) is a martingale). Its transition rates are given by the following
omputations. For every t ≥ 0, ε > 0 and every integer 1 ≤ n < k, we have:

1
ε

P(χ̂t+ε = k|χ̂t = n) =
1
ε

E[1{χ̂t+ε=k, χ̂t =n}]
E[1{χ̂t =n}]

=
1
ε

E[χt+ε1{χt+ε=k, χt =n}]
E[χt 1{χt =n}]

E[χt ]
E[χt+ε]

=
1
ε

k
n

P(χt+ε = k|χt = n)
E[χt ]

E[χt+ε]
·

We deduce that for 0 ≤ n < k:

lim
ε→0+

1
ε

P(χ̂t+ε − 1 = k|χ̂t − 1 = n) =
k + 1
n + 1

(n + 1)pk−n+1.

ccording to the transition rates given in (36), we deduce that X is distributed as χ̂ − 1.

The following result is an application of Theorem 4.1. Recall κ defined in (33) and Z in
roposition 3.1.

orollary 4.3. Let X be the GWI process defined in Theorem 4.1. Then there exists a random
ariable W distributed as κZ0 under P̄, such that

lim
t→∞

e−
t

b−1 X t
a.s.
= W. (40)

roof. It is known from Corollary 6.5 in [14] that a.s. lims↓0
M−s
c(s) = Z0. Using the expressions

f R and c, we have:

c
(
R−1(t)

)
=

(
α

γ
(et

− 1)
) 1

b−1
, (41)

nd thus limt→∞ e−
t

b−1 c(R−1(t)) = κ . Then (40) follows readily from Theorem 4.1. □

Remark 4.4. If a GW process or a GWI process has finite offspring mean and finite
immigration mean, then limits such as (40) are well-known, see for example Section 3.7 in [5].
However, as the immigration mean if infinite since g′

I (1−) = +∞, we deduce that in our setting
[X t ] = ∞. We have not found results such as (40) in the literature.

emark 4.5. According to (16) and (33), one can check that

E[e−λW ] =
(
1 + λb−1)− b

b−1 = E[e−λb−1G], (42)

here G has the Γ ( b
b−1 , 1) distribution. For b = 2, one get that W is Γ (2, 1). For b ∈ (1, 2),

according to Proposition 1.5 in [8], using notations from Propositions 4.2 and 4.3 in [27], we
get that W is distributed as χb−1,b and thus has a generalized positive Linnik distribution with
parameter (b − 1, b) see the first paragraph of Section 2.3 in [27] and the references therein.
Remark 2.2 and (2.25) in [27] give that W has intensity fb−1,b on (0,+∞), where for a ∈ (0, 1),
b > 0 and z > 0:

fa,b(z) =
1
∫

∞ e−zy sin(πbFa(y))
b dy, (43)
π 0 [y2a + 2ya cos(aπ ) + 1] 2a
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with

Fa(y) = 1 −
1
πa

cot−1
(

cot(πa) +
ya

sin(πa)

)
.

e also give another representation of the density of W using the fact that in our case
= a + 1 = b. Indeed, according to (4.7), Proposition 4.3 (iii) in [27] we have that:

fa,a+1(z) = −z f ′

a,1(z) (44)

sing the representation of fa,1 from Proposition 2.8 and (2.22):

fa,1(z) =

∫
∞

0

ez/y

y
∆a,1(y) dy with ∆a,1(y) =

1
π

sin(π (1 − Fa(y)))

[y2a + 2ya cos(aπ ) + 1]
1
2a

·

emark 4.6. Let χ be the GW process introduced in Remark 4.2. Recall from [5] Formula
(4) p. 108 that E[χt ] = e

t
b−1 . Let W ′

= limt→+∞ e−
t

b−1χt . By [27] Proposition 4.1 and
roposition 4.3 (iii), the distribution of W ′ has density − f ′

b−1,1. Then, Eq. (44) readily implies
that the distribution of W is the size-biased distribution of W ′ i.e., for every bounded continuous
unction ϕ, we have:

E[ϕ(W )] = E[W ′ϕ(W ′)]. (45)

Another way of getting this identity is to use the relationship between the processes X and
. For every bounded continuous function ϕ, we have:

E
[
ϕ(e−

t
b−1 X t )

]
= E

[
χt

E[χt ]
ϕ(e−

t
b−1 (χt − 1))

]
.

Moreover, the expression of fb−1,1 implies that the variable W ′ admits every moment of order
θ < b. Then the martingale (χt/E[χt ], t ≥ 0) is uniformly integrable (see [4] for this result for
a discrete time GW process) and taking the limit in the previous equation gives (45).

4.2. Proof of Theorem 4.1

We first prove two intermediate lemmas, the first one on the Markov property for the
ancestral process M0 and the second one on the distribution of the jumping times of M̃ . Recall
the notations of Section 3.2 for the jumping times (τn, n ≥ 0) and the jumping sizes (ξn, n ≥ 0)
of the ancestral process M0, see (23), (24) and (25).

Lemma 4.7. We set (Gn, n ≥ 0) the filtration generated by the process ((M0
−τn
, τn), n ≥ 0).

Under P̄, for every n > 0, conditionally given Gn−1, the random variables ξn and τn are
ndependent. Moreover, the conditional distribution of the random variable ξn given Gn−1 has
enerating function g[M0

−τn−1
], with g[·] defined in (38).

roof. According to Remark 5.6 in [14], we have for t > 0:

Ē[r ξ0
⏐⏐ τ0 = t] = 1 − (1 − r )b−1

= gI (r ). (46)

hus ξ0 and τ0 are independent. Then by the branching property, it suffices to study the case

= 1. Let us first compute the conditional distribution of τ1.
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Recall that τ1 = τ I
1 ∨ τ B

1 . By standard properties of Poisson point measures, we have

P̄(τ I
1 < u|τ0 = t,M−τ0 = n) = exp

{
−

∫ t

u
ds
∫

(0,+∞)
rπ (dr )Pr (H (T ) > s)

}
= exp

{
−

∫ t

u
ds
∫

(0,+∞)
rπ (dr )

(
1 − e−rN[H (T )>s])}

= exp
{
−

∫ t

u
ds φ(c(s))

}
= exp

{
−b

∫ t

u

α ds
e(b−1)αs − 1

}
=

(
eαt c(t)
eαuc(u)

)b

. (47)

oreover, by Theorem 2.7.1 of [17], we have, using ψ̃(λ) = ψ(λ)/λ:

P̄(τ B
1 < u|τ0 = t,M−τ0 = n) =

(
ψ̃(c(t))

ψ̃(c(u))

)n

. (48)

ecall that −c′(u) = ψ(c(u)) = αc(u) + γ c(u)b. We deduce the conditional distribution of τ1:

P̄(τ1 ∈ du|τ0 = t,M−τ0 = n)

= P̄(τ B
1 ∈ du, τ I

1 < u|τ0 = t,M−τ0 = n) + P̄(τ I
1 ∈ du, τ B

1 < u|τ0 = t,M−τ0 = n)

= P̄(τ B
1 ∈ du|τ0 = t,M−τ0 = n)P̄(τ I

1 < u|τ0 = t,M−τ0 = n)

+P̄(τ I
1 ∈ du|τ0 = t,M−τ0 = n)P̄(τ B

1 < u|τ0 = t,M−τ0 = n)

=

(
eαt c(t)
eαuc(u)

)b (
α + γ c(t)b−1

α + γ c(u)b−1

)n [ nγ (b − 1)(−c′(u))c(u)b−2

α + γ c(u)b−1 + b
(

−α +
(−c′(u))

c(u)

)]
du

=

(
eαt c(t)
eαuc(u)

)b (
α + γ c(t)b−1

α + γ c(u)b−1

)n [
nγ (b − 1)c(u)b−1

+ bγ c(u)b−1
]

du

=

(
eαt c(t)
eαuc(u)

)b (
α + γ c(t)b−1

α + γ c(u)b−1

)n

γ (nb + b − n)c(u)b−1du.

We deduce that:

P̄(τ B
1 ∈ du, τ I

1 < u|τ1 ∈ du, τ0 = t,M−τ0 = n) =
n(b − 1)

nb + b − n
,

P̄(τ I
1 ∈ du, τ B

1 < u|τ1 ∈ du, τ0 = t,M−τ0 = n) =
b

nb + b − n
·

sing formulas (29), (31), (34), the expression of φ, and the definition (38) of g[n], we get that

Ē[r ξ1 |τ0 = t, ξ0 = n, τ1 = u] = gt (t − u, r )
n(b − 1)

nb + b − n

+

(
1 −

φ((1 − r )c(u))
φ(c(u))

)
b

nb + b − n

= gB(r )
n(b − 1)

nb + b − n
+ gI (r )

b
nb + b − n

= g[n](r ).
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Since the latter expression does not depend on u, this proves the conditional independence
etween ξ1 and τ1. Moreover, we indeed recover the expression of (37) for the conditional

generating function of ξ1. □

Remark 4.8. Lemma 4.7 implies in particular the independence between the first jumping
time τ0 and the states of M0, i.e. the sequence (M0

−τn
, n ≥ 0).

We denote, for every n ≥ 0, the scaled jumping time τ̃n = R(τn) and the corresponding
ime intervals ∆n = τ̃n − τ̃n−1 with the convention τ̃−1 = 0. The following lemma gives the

distribution of the time intervals given the states of the process M̃ .

Lemma 4.9. Conditionally given (M̃τ̃n , n ≥ 0), the random variables (∆n, n ≥ 0) are
independent with for all u ≥ 0 and n ≥ 0:

P̄
(
∆n > u

⏐⏐ (M̃τ̃k , k ≥ 0)
)

= exp
(

−

(
M̃τ̃n +

b
b − 1

)
u
)
. (49)

roof. Let us first compute the distribution of τ̃0 = ∆0. For every u ≥ 0, we have:

P̄
(
τ̃0 > u

⏐⏐ (M̃τ̃k , k ≥ 0)
)

= P̄
(

R(τ0) > u
⏐⏐ (M0

−τk
, k ≥ 0)

)
= P̄

(
τ0 < R−1(u)

)
,

using the independence between τ0 and the states of M0, see Remark 4.8, and that R is
on-increasing.

By the branching property, for every r > 0, conditionally on Z−r , the random variable M0
−r

s distributed under P̄ according to a Poisson distribution with parameter c(r )Z−r . We get:

P̄
(
τ0 < r

)
= P̄(M0

−r = 0) = Ē
[
e−c(r )Z−r

]
.

ote that Z is a CBI, so that (16) holds (with Y distributed as Z ). Thus, using (33) as well as
41), we deduce that:

P̄
(
τ̃0 > u

)
= ū

(
c
(
R−1(u)

))
= e−

bu
b−1 ,

hich is the sought after expression since M̃0 = 0.
Let us now compute the distribution of ∆1 = τ̃1 − τ̃0. First, using that τn = τ I

n ∨ τ B
n (see

28)) and Eqs. (47) and (48), we have

P̄
(
τ̃1 > u

⏐⏐ τ̃0 = t, M̃τ̃0 = k
)

= P̄
(
τ1 < R−1(u)

⏐⏐ τ0 = R−1(t), M0
−τ0

= k
)

= P̄
(
τ I

1 < R−1(u)
⏐⏐ τ0 = R−1(t), M0

−τ0
= k

)
× P̄

(
τ B

1 < R−1(u)
⏐⏐ τ0 = R−1(t), M0

−τ0
= k

)
=

eαbR−1(t)c
(
R−1(t)

)b
eαbR−1(u)c

(
R−1(u)

)b ψ̃
(

c
(
R−1(t)

))k

ψ̃
(

c
(
R−1(u)

))k ·

sing the expressions of R and (41), we have

ψ̃
(

c
(
R−1(t)

))
= αet and eαR−1(t)

=

(
et

et − 1

) 1
b−1

.

his and (41) again give:

P̄
(
∆1 > u

⏐⏐ τ̃0 = t, M̃τ̃ = k
)

= P̄
(
τ̃1 > u + t

⏐⏐ τ̃0 = t, M̃τ̃ = k
)

= e−

(
k+

b
b−1

)
u
.
0 0
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By an easy induction, Lemma 4.7 implies that, conditionally given G0, the random variable
1 is independent of the states (M̃τ̃k , k ≥ 1). Therefore, we get

P̄
(
∆1 > u

⏐⏐ τ̃0 = t, (M̃τ̃n , n ≥ 0)
)

= e−

(
M̃τ̃0

+
b

b−1

)
u
.

The proof then follows by induction and by the Markov property. □

roof of Theorem 4.1. Lemmas 4.7 and 4.9 imply the Markov property for the process M̃ ,
emma 4.9 gives the transition rates and Lemma 4.7 gives the distribution of the jumps. This
nd (36), (37) and (38) give the result. □

.3. Distribution of the sizes of the families of the current population

Recall the forest F̄ = (hi ,Fi )i∈I from Section 3.1 and the process Z from Proposition 3.1.
Let us denote by

I0 = {i ∈ I, hi < 0 and ℓ−hi (Fi ) ̸= 0}

the immigrants that have descendants at time 0. We order the set I0 by the date of arrival of
the immigrant: I0 = {ik, k ≥ 0} with −τ0 = hi0 < hi1 < hi2 < · · · < 0. For every k ≥ 0, we
set ζk the size of the population at time 0 generated by the kth immigrant, that is:

ζk = ⟨ℓ
−hik (Fik ), 1⟩.

Notice that
∑

+∞

k=0 ζk = Z0.
Let {σt : t ≥ 0} be a (b − 1)-stable subordinator: E[e−xσt ] = e−t xb−1

. Recall κ defined in
(33).

Proposition 4.10. Consider the sub-critical stable branching mechanism with immigration
(32). The random point measure

∑
i∈N δκζi (dx) is a Poisson point measure on [0,∞) with

intensity g(x) dx where for x > 0:

g(x) =
b
x

E
[
e−(x/σ1)

b−1
]
. (50)

e also have that for all λ ≥ 0:∫
∞

0
(1 − e−λx ) g(x) dx =

b
b − 1

log
(
1 + λb−1)

= − log (ū(κλ)) . (51)

Proof. Recall the GWI process X from Theorem 4.1 and the random variable W from (40)
in Corollary 4.3. Let {0 = T0 < T1 < T2 < · · · } be the immigration times of X which forms a
Poisson process with rate b/(b−1). Recall gB and gI defined in (34) and (35). Let {X i , i ≥ 0}

be a sequence of independent continuous time Galton–Watson processes with branching rate
1 such that the offspring law has generating function gB and the law of X i

0 has generating
function gI . For i ≥ 0, we set Wi

a.s.
= limt→∞ e−

t
b−1 X i

t so that {Wi : i ≥ 0} are independent
andom variables with the same distribution. By Theorem 3 on Page 116 of [5], we get that
or x ≥ 0, E[e−xWi ] = gI (ϕ(x)), where ϕ is a one-to-one map form [0,∞) to (0, 1] such that

for x ∈ (0, 1]:

ϕ−1(x) = (1 − x) exp
{∫ x (g′

B(1) − 1
+

1
)

dr
}
.

1 gB(r ) − r 1 − r
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We get that for x ∈ (0, 1]:

ϕ−1(x) = (1 − x) exp
{∫ 1−x

0

ub−2

1 − ub−1 du
}

=

(
(1 − x)b−1

1 − (1 − x)b−1

)1/(b−1)

.

This gives that for x ≥ 0:

ϕ(x) = 1 −

(
xb−1

1 + xb−1

)1/(b−1)

.

We then deduce that:

E[e−xWi ] = gI (ϕ(x)) = 1 − (1 − ϕ(x))b−1
=

1
1 + xb−1 · (52)

Let {(σ i
s , s ≥ 0), i ∈ N} be a sequence of independent (b − 1)-stable subordinators and

E i , i ∈ N} be a sequence of independent exponentially distributed random variables with
arameter 1. Then it is easy to see from (52) that

(Wi , i ∈ N) d
= (σ i

E i , i ∈ N) d
=

(
(E i )

1
b−1 σ i

1, i ∈ N
)
,

here the last equality follows from scale invariant property of stable subordinator. Thus we
ave: (

e−
Ti

(b−1) Wi , i ∈ N
)

d
=

(
e−

Ti
(b−1) (E i )

1
b−1 σ i

1, i ∈ N
)
. (53)

On the other hand, notice that
∑

i δTi (dt)δE i (dx) is a Poisson random measure on [0,∞)2

with intensity b
b−1 dt e−x dx . Thus

∑
i δ{e−Ti E i }(ds) is a Poisson random measure on [0,∞) with

ntensity b
b−1 s−1e−sds. Indeed, for any bounded positive measurable function f on [0,∞), one

has

E
[

e−
∑

i f (e−Ti Ei
)
]

= exp
{
−

∫
∞

0

∫
∞

0
(1 − e− f (e−t x))

b
b − 1

dt e−x dx
}

= exp
{
−

∫
∞

0

∫
∞

0
(1 − e− f (s))

b
b − 1

dtet e−set
ds
}

= exp
{
−

∫
∞

0
(1 − e− f (s))

b
b − 1

s−1e−sds
}
,

here the last equality follows from
∫

∞

0 et−set
dt =

∫
∞

1 e−st dt = s−1e−s . Hence, we deduce
hat

F(ds dx) :=

∑
i

δ
{e−Ti E i }(ds)δσ i

1
(dx)

s a Poisson point measure on [0,∞)2 with intensity b
b−1 s−1e−sds P(σ1 ∈ dx). Define

G(ds) =

∑
i

δ
{e

−
Ti

b−1 (E i )
1

b−1 σ i
1}

(ds).

e shall prove that G is a Poisson point measure on [0,∞) with intensity g(s)ds. We only
eed to identify the intensity measure. For any positive measurable function f on [0,∞), we
328
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have:

log E
[

exp
{
−

∫
∞

0
f (s)G(ds)

}]
= log E

[
exp

{
−

∫
[0,∞)2

f (s1/(b−1)x) F(dsdx)
}]

= −

∫
[0,∞)2

(
1 − e− f (s1/(b−1)x)

) b
b − 1

e−s ds
s

P(σ1 ∈ dx)

= −

∫
[0,∞)2

(
1 − e− f (t)) b

t
e−(t/x)b−1

dt P(σ1 ∈ dx)

= −

∫
[0,∞)

(1 − e− f (t))g(t) dt.

hen the desired result follows. We now prove the last part of the proposition. We have:∫
[0,∞)

(1 − e−λt ) g(t) dt =
b

b − 1

∫
∞

0
s−1e−sds

∫
∞

0
P(σ1 ∈ dx)(1 − e−λs1/(b−1)x )

=
b

b − 1

∫
∞

0
ds s−1e−s

(
1 − e−sλb−1

)
=

b
b − 1

log
(
1 + λb−1) .

To conclude, thanks to (53), we only need to prove that

(κζi , i ∈ N) d
=

(
e−

Ti
(b−1) Wi , i ∈ N

)
. (54)

ince for t ≥ 0, we have X t =
∑

Ti ≤t X i
t−Ti

, we deduce from Fatou lemma that:

W ≥

∑
i≥0

e−Ti /(b−1)Wi . (55)

e deduce from (53) that a.s.:(
k∑

i=0

e−
Ti

b−1 Wi , k ∈ N

)
d
=

(
k∑

i=0

e−
Ti

b−1 (E i )
1

b−1 σ i
1, k ∈ N

)
d
=
(
σSk , k ∈ N

)
,

here Sk =
∑k

i=0 e−Ti E i . Notice that (Sk, k ≥ 0) is independent of (σs, s ≥ 0). Let N (dr, ds)
e a Poisson point measure on R+ × R∗

+
with intensity s−1e−s drds. We define for all t ≥ 0

t =
∫
R+×R∗

+

s1{r≤t} N (dr, ds). Notice that (Γt , t ≥ 0) is a Gamma subordinator with Lévy
measure s−1e−s ds. Since

∑
i δ{e−Ti E i }(ds) is a Poisson point measure on [0,∞) with intensity

b
b−1 s−1e−s ds, we get that {e−Ti E i , i ∈ N} are the jump sizes of

(
Γt , t ∈ [0, b

b−1 ]
)
. We deduce

that S∞, and thus
∑

i≥0 e−
Ti

b−1 Wi , are distributed as Γ b
b−1

, and then are Γ
( b

b−1 , 1
)
-distributed.

Thanks to Remark 4.5, we deduce that
∑

i≥0 e−
Ti

b−1 Wi and W have the same distribution. Then
e deduce from (55) that a.s.:

W =

∑
i≥0

e−Ti /(b−1)Wi .

Then, Theorem 4.1 and Corollary 4.3 imply that (54) holds. □

emark 4.11. From the proof of Proposition 4.10, we get that {κζi , i ∈ N} are the jump
izes of {σ , 0 ≤ t ≤

b
}, where

(
Γ , t ∈ [0, b ]

)
is a Gamma subordinator with Lévy
Γt b−1 t b−1
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measure s−1e−s ds independent of {σt : t ≥ 0}, which is a (b − 1)-stable subordinator
(E[e−xσt ] = e−t xb−1

). This induces a Poisson–Kingman partition; see [40].

The distribution of (ζk, k ≥ 0) is related to the Poisson–Dirichlet distribution in the quadratic
case. Recall that Z0 =

∑
k∈N ζk .

Corollary 4.12. Consider the sub-critical quadratic branching mechanism with immigration
(7) with b = 2. Let (ζ(k), k ∈ N) be the decreasing order statistics of (ζk, k ∈ N). Then, the
andom sequence

(
ζ(k)/Z0, k ∈ N

)
has a Poisson–Dirichlet distribution with parameter 2.

roof. When b = 2, we have σ (t) = t . Then {κζk, k ∈ N} are jump sizes of {Γt : 0 ≤ t ≤ 2}.
he result follows from Proposition 5 in [41], see also [31]. □

emark 4.13. Assume that ψ(λ) = αλ+γ λ2. According to (53) and Theorem 2.21 in [19], we
ave the following so-called GEM representation: the sequence (ζk/Z0, k ∈ N) is distributed
s

(U0, (1 − U0)U1, . . . , (1 − U0) · · · (1 − Uk−1)Uk, . . .) , (56)

here {Ui , i ≥ 0} are independent random variable with the same Beta-(1, 2) distribution; see
19] and references therein. Moreover, Corollary 4.12 and Theorem 2.7 in [19] give that the
ize-biased permutation of

(
ζ(k)/Z0, k ∈ N

)
also has the same law as the family of age-ordered

n (56).

When b ∈ (1, 2), it does not seem possible to get a result similar to Corollary 4.12 or
emark 4.13, see Remark 4.16.

We consider the size-biased sample V of (ζk/Z0, k ∈ N) under P̄. Let K be a N-valued
random variable such that, conditionally on (ζk/Z0, k ∈ N), K is equal to k with probability
ζk/Z0. Then, V is distributed as ζK /Z0 under P̄:

P(V ∈ dx) =

∑
k≥0

x P̄(ζk/Z0 ∈ dx).

We shall also consider the size-biased sample ζ ∗ of (ζk, k ∈ N), which is distributed as ζK .
Recall function g from (50) and that fb−1,b defined in (43) is the density of κZ0. Then with

Proposition 4.10 and Remark 4.11 in hand, Theorem 2.1 of [38] implies that the distribution
of V and κζ ∗ has densities given by:

fV (x) = x
∫

∞

0
tg(xt) fb−1,b((1 − x)t) dt for x ∈ (0, 1),

and

fκζ∗ (x) = xg(x)
∫

∞

x
fb−1,b(t − x)

dt
t

for x > 0.

ee also (25) and (19) in Section 3 of [40]. In the following proposition we characterize the
aw of ζ ∗ via its Laplace transform and compute the moments of V . Recall ū from (33). We
et:

G = −
ū′

ū
·
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Proposition 4.14. Consider the sub-critical stable branching mechanism with immigration
32). We have for λ ≥ 0,

E[e−λζ∗

] =

∫
∞

0
G(λ+ µ)ū(µ) dµ, (57)

nd for n ≥ 1:

E[V n] =

∫
∞

0
vn(t) dt with vn(t) = (−1)n tn

n!
G(n)(t)ū(t). (58)

roof. First, by property of Poisson point measure and (51), we get:

Ē

[
+∞∑
i=0

ζi e−λζi −µZ0

]
= ∂λ

(
∂ρ Ē

[
e−ρ

∑
+∞

i=0 e−λζi −µZ0
])

|ρ=0

= − exp
{
−

∫
∞

0
(1 − e−µx )κg(κx) dx

}
∂λ

∫
∞

0
e−(µ+λ)xκg(κx) dx

= exp
{
−

∫
∞

0
(1 − e−µx )κg(κx) dx

}∫
∞

0
xe−(µ+λ)xκg(κx) dx

= ū(µ)G(λ+ µ).

hen (57) follows from

E[e−λζ∗

] = Ē

[
+∞∑
i=0

ζi

Z0
e−λζi

]
=

∫
∞

0
dµ Ē

[
+∞∑
i=0

ζi e−λζi −µZ0

]
.

ext, observe that for n ≥ 1,

Ē

[
+∞∑
i=0

ζ n
i e−µZ0

]
= (−1)n−1

(
∂n−1
λ Ē

[
+∞∑
i=0

ζi e−λζi −µZ0

])
|λ=0

= (−1)n−1G(n−1)(µ)ū(µ).

e deduce that:

E[V n] = Ē

[
+∞∑
i=0

(
ζi

Z0

)n+1
]

=

∫
(0,+∞)n

dt1 . . . dtn 1{0<t1<t2···<tn}

∫
∞

tn
(−1)nG(n)(t)ū(t) dt

=

∫
∞

0
(−1)n tn

n!
G(n)(t) ū(t) dt.

his finishes the proof. □

emark 4.15. The moment of V in (58) can be computed explicitly. Set η = b − 1 and
= γ /α. Recall from (33) that ū(t) = (1 + atη)−( 1

η+1). As G(n−1)(t) is a linear combination
f functions tkη−n(1 + atη)−k for k ∈ {1, . . . , n}, one gets that for n ≥ 1:

lim
t→0+

tnG(n−1)(t) ū(t) = lim
t→+∞

tnG(n−1)(t) ū(t) = 0.

ecall vn defined in (58), so that for n ≥ 0 and k ≥ 0:

vn(t)
= (−1)n tn G(n)(t)

·

(1 + atη)k n! (1 + atη)k+1+1/η
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Then, for n ≥ 1 and k ≥ 0, by integration by parts, we have∫
∞

0

vn(t)
(1 + atη)k

dt (59)

=

(
1 −

η(k + 1) + 1
n

)∫
∞

0

vn−1(t)
(1 + atη)k

dt +
η(k + 1) + 1

n

∫
∞

0

vn−1(t)
(1 + atη)k+1 dt,

and ∫
∞

0

v0(t)
(1 + atη)k

dt =

∫
∞

0

(−ū′(t))
(1 + atη)k

dt =

∫
∞

0

a(1 +
1
η
)ηtη−1

(1 + atη)k+2+
1
η

dt =
η + 1

η(k + 1) + 1
·

he previous recursion formula gives the value of
∫

∞

0 vn(t)(1 + atη)−k dt for all n ≥ 0 and
≥ 0. Using (59) with k = 0, we get:

E[V n] =

(
1 −

(η + 1)
n

)∫
∞

0
vn−1(t) dt +

η + 1
n

∫
∞

0

vn−1(t)
1 + atη

dt. (60)

In particular, one has:

E[V ] = −η + (η + 1)
η + 1

2η + 1
=

−η2
+ η + 1

2η + 1
,

E[V 2] = (1 −
η + 1

2
)E[X ] −

η(η + 1)2

2η + 1
+

(η + 1)2(2η + 1)
2(3η + 1)

=
η4

− 7η3
+ η2

+ 7η + 2
2(2η + 1)(3η + 1)

,

E[V 3] =
23η5

− 80η4
− 30η3

+ 74η2
+ 43η + 6

6(2η + 1)(3η + 1)(4η + 1)
·

Remark 4.16. Based on the moment formulas above, one can check that V is not Beta-
distributed if b < 2 (except maybe for one particular value of η (η ≃ 0.428) where the three

rst moments of V coincide with those of a Beta distribution). If b = 2, then according to
emark 4.13, V is Beta(1,2)-distributed.

. Birth and death rates of the ancestral process

In this section, we assume that ψ and φ are defined as (1) and (5), respectively. We assume
hat Conditions (2) hold. Recall the function ū defined in (6) and (16) which is the Laplace
ransform of Z0 under P̄. Similar to the arguments on page 1330 in [10], see also Proposition
.12 in [14], we have for r ≥ s > 0 and x, y ∈ [0, 1]:

Ē[x M0
−r yM0

−s ] = ū(λ0)eα(r−s)
ψ
(

u
(
c(s)(1 − y), r − s

))
ψ
(
c(s)(1 − y)

) , (61)

ith

λ0 = λ0(x, y) = c(r )(1 − x) + xu
(
c(s)(1 − y), r − s

)
. (62)

We first summarize the results of the next two sections concerning the quadratic case, see
lso [10].
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Remark 5.1. In the quadratic case, ψ(λ) = αλ+ γ λ2, we have:

c(t) =
α

γ (eαt − 1)
and ū(λ) =

(
1 +

γ

α
λ
)−2

.

e get thanks to (61) and (62) (taking r = s = t and x = y) that for t > 0 and x ∈ [0, 1]:

Ē
[
x M0

−t

]
= ū(c(t)(1 − x)) =

(
eαt

− 1
eαt − x

)2

.

We get that for n ≥ 0:

P̄(M0
−t = n) = (n + 1)e−αtn (1 − e−αt)2

.

For the death rate, we deduce from (63) that for n ≥ 1: qd
n,m(t) = 0 if n − 2 ≥ m ≥ 0 and if

= n − 1

qd
n,n−1(t) = n(α + γ c(t)).

or the birth rate, we deduce from (79) that for n ≥ 0: qb
n,m(−t) = 0 if m ≥ n + 2 and if

= n + 1

qb
n,n+1(−t) = (n + 2)γ c(t).

.1. Death process

Recall the ancestral process M0
= (M0

t , t < 0) defined in Section 3.2. Notice that the
ranching property gives that the ancestral process is a Markov process. We first study the
eath rate of the time reversed ancestral process M̂0

= (M0
−t , t > 0). Notice that M̂0 is a

arkov process as the time reversal of a Markov process. Recall that for a birth and death
arkov process, its distribution is completely characterized by its birth and death rates, that is

ts infinitesimal generator, see [13, Section 1.1].

roposition 5.2. Let ψ and φ be defined by (1) and (5) such that conditions (2) hold. The
rocess M̂0 is a càd-làg death process starting at time 0 from +∞ and with death rate given
or n > m ≥ 0 and t > 0 by:

qd
n,m(t) = lim

ε→0+

1
ε
P̄
(
M0

−(t+ε) = m|M0
−t = n

)
=

(
n + 1

m

) ⏐⏐ū(m)
(
c(t)

)⏐⏐⏐⏐ū(n)
(
c(t)

)⏐⏐ ⏐⏐ψ (n−m+1)(c(t)
)⏐⏐ .
(63)

There is no closed formula for the stable case unless it is quadratic. However, the next
emma gives an explicit asymptotic for the birth rate when the stable index b goes down to 1.

emma 5.3. Consider the sub-critical stable branching mechanism with immigration (32),
hat is ψ(λ) = αλ+ γ λb with α > 0 and b ∈ (1, 2]. Then we have for n > m ≥ 0 and t > 0:

lim
b→1+

qd
n,m(t) =

n + 1
(n + 1 − m)(n − m)

1
γ t

·

Proof. Recall that in the stable case (see (33)):

ū(λ) =

(
1 +

γ

α
λb−1

)−
b

b−1
, c(t) =

(
α(

(b−1)αt
)) 1

b−1

.

γ e − 1
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One can check that ū(n)(λ), for n ≥ 1, has the form:

ū(n)(λ) =

n∑
k=1

Cb,k,n

(γ
α

)k (
1 +

γ

α
λb−1

)−
b

b−1 −k
λ−(2−b)k−(n−k),

where Cb,k,n are constants depending only on b, k and n and such that (−1)nCb,k,n ≥ 0. On
the other hand, writing λ−b as (λb−1)−

b
b−1 , one sees that, with the same constants Cb,k,n:(

α

γ

) b
b−1 (

λ−b)(n)
=

((γ
α
λb−1

)−
b

b−1
)(n)

=

n∑
k=1

Cb,k,n

(γ
α

)k (γ
α
λb−1

)−
b

b−1 −k
λ−(2−b)k−(n−k).

Note that:(
1 +

γ

α
c(t)b−1

)−
b

b−1
=

(γ
α

c(t)b−1
)−

b
b−1 e−αbt .

ince the constants Cb,k,n have all the same sign for given n, we deduce that for n ≥ 1, as
→ 1+:

ū(n)(c(t)) ∼

(
α

γ

) b
b−1

(λ−b)(n)
|λ=c(t) e−αbt

= (−b)(−b − 1) · · · (−b − n + 1)c(t)−b−n
(
α

γ

) b
b−1

e−αbt

∼ (−1)nn! c(t)−b−n
(
α

γ

) b
b−1

e−αbt .

e deduce that:

lim
b→1+

qd
n,m(t) = lim

b→1+

(
n + 1

m

) ⏐⏐ū(m)
(
c(t)

)⏐⏐⏐⏐ū(n)
(
c(t)

)⏐⏐ ⏐⏐ψ (n−m+1)(c(t)
)⏐⏐

= lim
b→1+

(
n + 1

m

)
m!

n!
c(t)n−m

⏐⏐b(b − 1) · · · (b − n + m)c(t)b−n+m−1
⏐⏐

= lim
b→1+

(
n + 1

m

)
(n − 1 − m)!m!

n!
(b − 1)c(t)b−1

=
n + 1

(n + 1 − m)(n − m)
1
γ t

· □

Proof of Proposition 5.2. The proof is divided in three steps.

Step 1: Preliminary computations.
We set for λ,µ ∈ [0, 1] and t, ε > 0:

gt,ε(µ) = eαε
ψ
(

u
(
c(t)(1 − µ), ε

))
ψ
(
c(t)(1 − µ)

) ,

λ∗

t,ε = λ∗

t,ε(λ,µ) = c(t + ε)(1 − λ) + λu
(
c(t)(1 − µ), ε

)
,

f d
t,ε(λ,µ) = ū(λ∗

t,ε)gt,ε(µ),

f (µ) = ū
(
c(t)(1 − µ)

)
.
0
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Thanks to (61) and (62), we deduce that:

f d
t,ε(λ,µ) = Ē

[
λ

M0
−(t+ε)µM0

−t

]
and f0(µ) = f d(1, µ) = Ē

[
µM0

−t

]
. (64)

We get for n > m ≥ 0:

qd
n,m(t) = lim

ε→0+

1
ε

P̄(M0
−(t+ε) = m,M0

−t = n)

P̄(M0
−t = n)

= lim
ε→0+

1
ε

∂n
µ∂

m
λ f d

t,ε(0, 0)

m! f (n)
0 (0)

· (65)

First notice that for n ≥ 1:

f (n)
0 (0) = (−1)n ū(n)(c(t)) c(t)n. (66)

We now study ∂n
µ∂

m
λ f d

t,ε(0, 0). We set:

It,ε(µ) = ∂λ λ
∗

t,ε(λ,µ) = u
(
c(t)(1 − µ), ε

)
− c(t + ε).

otice that gt,ε(µ) and It,ε(µ) are independent of λ. We deduce that for m ≥ 0:

∂m
λ f d

t,ε(λ,µ) = ū(m)(λ∗

t,ε)It,ε(µ)m gt,ε(µ). (67)

e also note that for k ≥ 1,

I (k)
t,ε (µ) = (−1)kc(t)k ∂k

λu
(
c(t)(1 − µ), ε

)
and ∂k

µ λ
∗

t,ε(λ,µ) = λ I (k)
t,ε (µ). (68)

e deduce that for k ≥ 1:

∂k
µ λ

∗

t,ε(0, 0) = 0 and ∂k
µ ū
(
λ∗

t,ε(λ,µ)
)
|(λ,µ)=(0,0) = 0. (69)

e end this first step by a remark. We deduce from

∂λu(λ, t) =
ψ(u(λ, t))
ψ(λ)

(70)

see (12)), Eq. (11) and elementary computations that:

∂k
λ u(λ, ε) =

{
1 + o(1) if k = 1,
−ψ (k)(λ) ε + o(ε) if k ≥ 2,

(71)

as ε goes down to 0, where o(1) means a quantity which goes down to 0 with ε.

Step 2: Study of ∂n
µ (I m

t,ε)(0).
We now study the value of ∂n

µ (I m
t,ε)(0) for n ≥ 0 and m ≥ 0 and (n,m) ̸= (0, 0). The case

n > m = 0 is trivial as ∂n
µ (I m

t,ε)(0) = 0. We have for all m > n ≥ 0:

It,ε(0) = 0 and thus ∂n
µ (I m

t,ε)(0) = 0. (72)

For the case m = 1, we deduce from (68) and (71) that for n ≥ 1:

I (n)
t,ε (0) =

{
−c(t) + o(1) if n = 1,
(−1)n+1c(t)n ψ (n)

(
c(t)

)
ε + o(ε) if n ≥ 2.

(73)

or n = m, Faa di Bruno’s formula, It,ε(0) = 0 (see (72)) and (73) give that:

∂m
µ (I m

t,ε)(0) = m!(−1)mc(t)m
+ o(1). (74)

e shall prove by induction over m ≥ 1 that for all n > m ≥ 1:

∂n
µ (I m

t,ε)(0) =

(
n

)
m!(−1)n+1c(t)n ψ (n−m+1)(c(t)

)
ε + o(ε). (75)
m − 1
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Thanks to (73), we get that (75) holds for m = 1 and all n > m. Let us assume that (75) holds
or m − 1 (and all n > m − 1), and let us prove it holds for m (and all n > m). We have for
> m:

∂n
µ (I m

t,ε)(0) =

n∑
k=0

(
n
k

)
I (k)
t,ε (0) ∂n−k

µ (I m−1
t,ε )(0)

= nI (1)
t,ε (0) ∂n−1

µ (I m−1
t,ε )(0) +

(
n

m − 1

)
I (n−m+1)
t,ε (0) ∂m−1

µ (I m−1
t,ε )(0) + O(ε2)

=

[
n(m − 1)!

(
n − 1
m − 2

)
+ (m − 1)!

(
n

m − 1

)]
(−1)n+1c(t)n ψ (n−m+1)(c(t)

)
ε

+ o(ε)

=

(
n

m − 1

)
m!(−1)n+1c(t)n ψ (n−m+1)(c(t)

)
ε + o(ε),

here, for the second equality we used that It,ε(0) = 0 (see (72)) for the term k = 0, then
n−k
µ (I m−1

t,ε )(0) = 0 (see (72)) for the terms k > n − m + 1, and then I (k)
t,ε (0) ∂n−k

µ (I m−1
t,ε )(0) =

O(ε2) (see (73) and the induction hypothesis) for n −m +1 > k ≥ 2; and for the third equality
73) (for k = 1 and k = n − m + 1), the induction hypothesis and (74). Thus (75) holds for
ll n > m ≥ 1.

tep 3: Computation of qd
n,m(t).

If we derive (67) n times with respect to µ and evaluate the derivative at (0, 0), we get for
> m ≥ 0:

∂n
µ∂

m
λ f d

t,ε(0, 0) = ū(m)(c(t + ε)
)
∂n
µ (I m

t,ε gt,ε)(0) (76)

= ū(m)(c(t + ε)
) n∑

k=m

(
n
k

)
g(n−k)

t,ε (0) ∂k
µ (I m

t,ε)(0),

here for the first equality we used that all the terms in Leibniz’ formula are 0 except one
hanks to (69), and for the second Leibniz’ formula again with (72).

Since gt,ε(µ) = eαε∂λu
(
c(t)(1 − µ), ε

)
, see (70), we deduce from (71) that, for k ≥ 1:

g(k)
t,ε (0) = (−1)k+1c(t)k ψ (k+1)(c(t)

)
ε + o(ε). (77)

his and (73) imply that for n − 1 > m ≥ 0:
n−1∑

k=m+1

(
n
k

)
g(n−k)

t,ε (0) ∂k
µ (I m

t,ε)(0) = O(ε2) = o(ε).

Then, we deduce from (76) and (75) that for t > 0 and n > m ≥ 0 (with the convention
hat

( n
m−1

)
= 0 if m = 0):

∂n
µ∂

m
λ f d

t,ε(0, 0) = ū(m)(c(t + ε)
) [(n

m

)
∂m
µ (I m

t,ε)(0) g(n−m)
t,ε (0) + ∂n

µ (I m
t,ε)(0) gt,ε(0)

]
+ o(ε)

= ū(m)(c(t)
) [(n

m

)
+

(
n

m − 1

)]
m!(−1)n+1c(t)n ψ (n−m+1)(c(t)

)
ε + o(ε)

=

(
n + 1

m

)
ū(m)(c(t)

)
m!(−1)n+1c(t)n ψ (n−m+1)(c(t)

)
ε + o(ε). (78)
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Notice that o(ε) in the last equality is uniform on t ∈ [a, b] far any given 0 < a < b < +∞.
We then deduce from the latter equality, (65) and (66) that for n > m ≥ 0:

qd
n,m(t) = −

(
n + 1

m

)
ū(m)

(
c(t)

)
ψ (n−m+1)

(
c(t)

)
ū(n)

(
c(t)

) ·

his finishes the proof. □

.2. Birth process

Recall that the ancestral process M0
= (M0

t , t < 0) defined in Section 3.2 is a Markov
rocess thanks to the branching property.

roposition 5.4. Let ψ and φ be defined by (1) and (5) such that Conditions (2) hold. The
rocess M0 is a càd-làg birth process starting at time −∞ from 0 and with birth rate given
or n > m ≥ 0 and t > 0 by:

qb
n,m(−t) = lim

ε→0+

1
ε
P̄
(
M0

−(t−ε) = m|M0
−t = n

)
=

(m + 1)
(m + 1 − n)!

c(t)m−n
⏐⏐ψ (m−n+1)(c(t)

)⏐⏐ .
(79)

Concerning the birth rate, it is possible to have an explicit formula in the stable case.

emark 5.5. Consider the sub-critical stable branching mechanism with immigration (32).
sing (33), we deduce that for m > n ≥ 0 and t > 0:

qb
n,m(−t) =

(m + 1)
(m − n + 1)!

|b(b − 1) · · · (b − m + n)|
α

e(b−1)αt − 1
·

roof of Proposition 5.4. We keep notations from the proof of Proposition 5.2 for f d
t,ε and

f0. We set for λ,µ ∈ [0, 1] and t > ε > 0 f b
t,ε(λ,µ) = f d

t−ε,ε(µ, λ) for λ,µ ∈ [0, 1] and
> ε > 0. Thanks to (64), we have that:

f b
t,ε(λ,µ) = f d

t−ε,ε(µ, λ) = Ē
[
λM0

−t+εµM0
−t

]
.

ecall f0 defined in (64) and its derivative given by (66). We get for m > n ≥ 0:

qb
n,m(−t) = lim

ε→0+

1
ε

P̄(M0
−t+ε = m,M0

−t = n)

P̄(M0
−t = n)

= lim
ε→0+

1
ε

∂n
µ∂

m
λ f b

t,ε(0, 0)

m! f (n)
0 (0)

· (80)

Since ∂n
µ∂

m
λ f b

t,ε(0, 0) = ∂m
µ ∂

n
λ f d

t−ε,ε(0, 0), using the continuity in ε of the function c, we
educe from (78), and the fact that o(ε) in (78) is uniform in t on any closed interval of
0,+∞), that for m > n ≥ 0 and t > ε > 0:

∂n
µ∂

m
λ f b

t,ε(0, 0) =

(
m + 1

n

)
ū(n)(c(t − ε)

)
n!(−1)m+1c(t − ε)m ψ (m−n+1)(c(t − ε)

)
ε + o(ε)

=

(
m + 1

n

)
ū(n)(c(t)

)
n!(−1)m+1c(t)m ψ (m−n+1)(c(t)

)
ε + o(ε).

We then deduce from the latter equality, (80) and (66) that for n > m ≥ 0:

qb
n,m(−t) = (−1)m−n+1 m + 1

(m + 1 − n)!
c(t)m−n ψ (m−n+1)(c(t)

)
.

his finishes the proof. □
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5.3. Bolthausen-Sznitman coalescent as limit of the ancestral process

The Bolthausen–Sznitman coalescent, (Π (t), t ≥ 0), is a continuous-time Markov chain
taking values in the set of partitions of N∗. It can be easily defined by considering its restriction
Π [n]

= (Π [n](t), t ≥ 0) to the set [n] := {1, 2, . . . , n}, for n ≥ 1. Denote by Pn the set of
partitions of [n]. Then, the process Π [n] is a continuous-time Pn-valued Markov chain whose
transition rates are as follows: if #Π [n](t) = k, then any m of the present blocks coalesce at
rate

(m − 2)!(k − m)!
(k − 1)!

, 2 ≤ m ≤ k ≤ n,

where #Π [n](t) denotes the number of blocks of Π [n](t). The Bolthausen–Sznitman coalescent
as first introduced in [12]. It is also a member of the class of coalescents with multiple

ollisions introduced in [39] and [42]. We refer to the survey [6] for further results on coalescent
rocesses.

Other constructions of the Bolthausen–Sznitman appear in the literature. See [9] using the
enealogy of a continuous state branching process (the corresponding branching mechanism
orresponds in some sense to the limit in (7) as b goes down to 1), [21] using a uniform
runing of the branches of a random recursive tree, and [43] using limit of ancestral processes
btained from super-critical Galton–Watson processes; see also references therein for other
elated results.

Let us consider the ancestral tree A(0) from Definition 2.4 associated with the stable Lévy
orest under P̄ (that is for the stationary regime). Let T > 0. Conditionally on {M0

−T = n − 1},
hat is the number of individuals of A(0) at level −T is n, we label all the n individuals from

to n uniformly at random. Define a continuous time Pn-valued process (Π T,[n](t), t ≥ T ),
here Π T,[n](t) is the partition of [n] such that i and j are in the same block if and only if

he i th and j th individuals at level −T have the same ancestor at level −t of the ancestral tree
(0). By construction, as limt→+∞ M0

−t = 0, we have that a.s. limt→+∞ Π T,[n](t) = [n].

roposition 5.6. Consider the sub-critical stable branching mechanism with immigration
32). The law of (Π T,[n](T eγ t ), t ≥ 0), under P̄(· |M0

−T = n − 1), converges in the sense of
nite dimensional distribution to a Bolthausen–Sznitman coalescent Π [n], as b decreases to 1.

roof. Let (χt , t ≥ 0) be the GW process introduced in Remark 4.2 with branching rate 1
nd offspring distribution with generating function gB defined in (34). It is well-known that,
onditioned on {χT = n}, (χt , 0 ≤ t ≤ T ) is an in-homogeneous Markov process. But, by
emark 4.2 and Theorem 1.1, we get that the process (χt , 0 ≤ t ≤ T ) conditionally on
χT = n} is distributed as the process (M̃t + 1, 0 ≤ t ≤ T ) conditionally on {M̃T + 1 = n}.
hus, the latter is a Markov process. Similar arguments on the genealogical tree imply that the
rocess (Π T,[n](T eγ t ), t ≥ 0) is Markov (but inhomogeneous in time).

According to [26, Theorem 4.1], it is sufficient to prove that the transition rates of the process
Π T,[n](T eγ t ), t ≥ 0) converge to those of the process Π [n], as b → 1+. We also notice that

(#Π T,[n](T eγ t ) − 1, t ≥ 0) = (M0
−T eγ t , t ≥ 0)

nd that the generations do not overlap. Thus if #Π T,[n](T eγ t ) = k, then any m of the present
locks coalesce at rate

T γ eγ t( k ) qd
k−1,k−m(T eγ t )
m
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where the death rates qd
n,m(t) = limε→0+ ε

−1P̄(M0
−(t+ε) = m|M0

−t = n) are computed in
ection 5.1 for general branching mechanism. Using Lemma 5.3, we deduce that for 2 ≤

≤ k ≤ n:

lim
b→1+

T γ eγ t( k
m

) qd
k−1,k−m(T eγ t ) =

(m − 2)!(k − m)!
(k − 1)!

·

his proves the result. □

. Critical stable case

In this section only, we shall consider the critical stable case with branching mechanism ψ

nd immigration φ given by:

ψ(λ) = γ λb and φ(λ) = bγ λb−1, (81)

ith γ > 0 and b ∈ (1, 2]. We also have (see Example 3.1 p. 62 in [35]) for λ ≥ 0 and t > 0:

u(λ, t) =
λ(

1 + γ (b − 1)λb−1t
)1/(b−1) and c(t) = (γ (b − 1)t)−

1
b−1 . (82)

In this setting, both M0
−t and Z0 are infinite. For this reason, we only consider the families

igrating to the system after some time −T .
Let T > 0. Recall π is the Lévy measure in (1), N is the corresponding excursion measure

n T of the Lévy tree, and Pr (d f̄) is the probability distribution on F of the random forest
= (Ti )i∈I given by the atoms of a Poisson point measure on T with intensity rN(dt).

imilarly to Section 3.1, we consider under P̄ a random leveled forest F̄ (T )
= (hi ,Fi )i∈I (T )

given by the atoms of a Poisson point measure on [−T,+∞] × F with intensity

ν(dh, df) = 1[−T,+∞)(h) dh
(
β1N[df] +

∫
+∞

0
π (dr )Pr (df)

)
,

nd let T̄ (T )
= t(F̄ (T )) be the random tree associated with this leveled forest. Set for a > −T :

ℓa(T̄ (T )) =

∑
i∈I (T )

ℓa−hi (Fi )1{hi ≤a} and Z (T )
a = ⟨ℓa(T̄ (T )), 1⟩.

Thanks to the properties of Poisson point measures, we have, for λ ≥ 0, t ∈ [−T,+∞):

Ē
[
e−λZ (T )

t

]
= exp

{
−

∫ t

−T
γ b u(λ, t − s)b−1ds

}
= exp

{
−

∫ t

−T

γ bλb−1

1 + γ (b − 1)λb−1(t − s)
ds
}

=
(
1 + γ (b − 1)λb−1(t + T )

)− b
b−1 . (83)

e write A(T )(0) for the genealogical tree AT̄ (T ) (0) of the extant population. We define the
ancestral process M (T )

= (M (T )
t , t ∈ (−T, 0)), where 1 + M (T )

t is the number of ancestors of
the extant population living at time t by:

M (T )
t = Card {u ∈ A(T )(0), H (u) = t} − 1.

Theorem 6.1. Consider the critical stable branching mechanism with immigration (81). Then
the time-changed ancestral process (M (T )

−T e−t , t ≥ 0) is distributed under P̄ as the GWI process
(X , t ≥ 0) from Theorem 4.1.
t
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s
w
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W

A
a
T

i

P
T

Remark 6.2. In Proposition 19 in [7], it is shown that a reduced tree of a critical stable
tree, after a deterministic time change, is a continuous-time Galton–Watson tree with birth rate
1 and offspring distribution given by gB(r ). We get here a similar result with an additional
immigration mechanism.

Proof. We only give an outline of the proof as we follow the ideas of the proof of Theorem 4.1.
In the critical case the function c is given by (82) and the function gt of (30) is still given by
formula (34). Similarly to (23), (24), we define the jumping times {τ (T )

n , n ≥ 0} and jumpings
izes {ξ (T )

n , n ≥ 0} of the ancestral process M (T ). We also define τ (T,B)
n and τ (T,I )

n as in (26)
ith obvious change. Note that in this setting, τ (T )

0 is the immigration time of the first family
fter −T which survives up to time 0. So, we have for t ∈ (0, T ):

P̄
(
τ

(T )
0 < t

)
= exp

{
−

∫
−t

−T
ds
∫

(0,+∞)
rπ (dr )Pr (H (T ) > s)

}
=

(
t
T

)b/(b−1)

.

Recall gI defined in (35). We also have, see (46), that for t ∈ (0, T ) and r ∈ (0, 1):

P̄
[
r ξ

(T )
0
⏐⏐ τ (T )

0 = t
]

= gI (r ).

Following the proof of Lemma 4.9, we get for T > t > u > 0:

P̄
(
τ

(T,I )
1 < u

⏐⏐ τ (T )
0 = t,M (T )

−τ
(T )
0

= k
)

=

(u
t

) b
b−1

,

P̄
(
τ

(T,B)
1 < u

⏐⏐ τ (T )
0 = t,M (T )

−τ
(T )
0

= k
)

=

(u
t

)k
.

This further implies that

P̄
(
τ

(T )
1 < u

⏐⏐ τ (T )
0 = t,M (T )

−τ
(T )
0

= k
)

=

(u
t

)k+
b

b−1
.

e deduce that for u > t > 0:

P̄
(
τ

(T )
1 < T e−u

⏐⏐ τ (T )
0 = T e−t ,M (T )

−τ
(T )
0

= n
)

= e−

(
n+

b
b−1

)
(u−t)

.

rguing as in the proof of Lemma 4.7, we obtain that given τ (T )
0 and ξ (T )

0 = n, τ (T )
1 and ξ (T )

1
re independent and the conditional generating function of ξ (T )

1 is given by g[n] defined in (38).
he end of the proof is then similar. □

The following proposition, whose proof is left to the reader, is parallel to Corollary 6.5
n [14].

roposition 6.3. Consider the critical stable branching mechanism with immigration (81).
hen, we have:

lim
t→0+

M (T )
−t

c(t)
a.s.
= Z (T )

0

We order the set {i ∈ I (T ), hi < 0 and ℓ−hi (Fi ) ̸= 0} of the immigrants that have
descendants at time 0, by the date of arrival of the immigrant: I (T )

0 = {ik, k ≥ 0} with
−τ

(T )
0 = hi0 < hi1 < hi2 < · · · < 0. For every k ≥ 0, we set ζ (T )

k the size of the
(T ) −kik
population at time 0 generated by the kth immigrant, that is ζk = ⟨ℓ (Fik ), 1⟩. Notice
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that
∑

+∞

k=0 ζ
(T )
k = Z (T )

0 . With Theorem 6.1 and Proposition 6.3 in hand, the next two results
follow by the same arguments as Proposition 4.10 and Corollary 4.12, respectively.

Proposition 6.4. Consider the critical stable branching mechanism with immigration (81). The
andom point measure

∑
k∈N δc(T )ζ (T )

k
(dx) is a Poisson point measure on [0,∞) with intensity

g(x) dx, with g defined by (50).

roof. Recall W from Corollary 4.3. According to (83) and (42), we deduce that c(T )Z (T )
0

nd W have the same distribution. Recall X i and Wi from the proof of Proposition 4.10.
rguing as in the proof of Proposition 4.10, see the proof of (54), and using Theorem 6.1

nd Proposition 6.3, we get that:(
c(T )ζ (T )

i , i ∈ N
)

d
=

(
e−

Ti
(b−1) Wi : i ∈ N

)
.

Then, follow the proof of Proposition 4.10 to conclude. □

Using Proposition 6.4, we obtain directly the following results, which is the analogue to
Corollary 4.12.

Corollary 6.5. Consider the critical quadratic branching mechanism with immigration (81)
with b = 2. Let (ζ (T )

(k) , k ∈ N) be the decreasing order statistics of (ζ (T )
k , k ∈ N). Then, the

random sequence
(
ζ

(T )
(k) /Z (T )

0 , k ∈ N
)

has a Poisson–Dirichlet distribution with parameter 2.

One can also consider the critical CBI associated as the limit of the sub-critical CBI when
α in (1) goes down to 0. For the stable case, consider the birth rates qb

n,m(−t) defined in
emark 5.5 for ψ(λ) = αλ+ γ λb with b ∈ (1, 2], γ > 0 and α > 0. Letting α goes down to

0, wet get limα→0 qb
n,m(−t) = qb,0

n,m(−t) with:

qb,0
n,m(−t) =

⎧⎪⎨⎪⎩
(m+1)|b(b−2)···(b−m+n)|

(m−n+1)!
1
t for b ∈ (1, 2) and m > n,

n+2
t for b = 2 and m = n + 1,

0 for b = 2 and m > n + 1.
(84)

Then, Theorem 6.1 and (36) imply the following proposition that shows that both construc-
ions for the critical case coincide.

roposition 6.6. Assume ψ(λ) = γ λb with b ∈ (1, 2]. Then, the ancestral process
M (T )

t , −T ≤ t < 0) is a Markov chain with birth rate qb,0
n,m(−t) given by (84) for m > n ≥ 0

nd t > 0.
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