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Bifurcating Markov chains (BMC) are Markov chains indexed by a full
binary tree representing the evolution of a trait along a population where each
individual has two children. We provide a central limit theorem for general
additive functionals of BMC, and prove the existence of three regimes. This
corresponds to a competition between the reproducing rate (each individual
has two children) and the ergodicity rate for the evolution of the trait. This
is in contrast with the work of Guyon (Ann. Appl. Probab. 17 (2007) 1538–
1569), where the considered additive functionals are sums of martingale in-
crements, and only one regime appears. Our result can be seen as a discrete
time version, but with general trait evolution, of results in the time contin-
uous setting of branching particle system from Adamczak and Miłoś (Elec-
tron. J. Probab. 20 (2015) 42), where the evolution of the trait is given by an
Ornstein–Uhlenbeck process.

1. Introduction. Bifurcating Markov chains are a class of stochastic processes indexed
by a regular binary tree and which satisfy the branching Markov property (see below for a
precise definition). This model represents the evolution of a trait along a population where
each individual has two children. To the best of our knowledge, the term bifurcating Markov
chain (BMC) appears for the first time in the work of Basawa and Zhou [4]. But, it was
Guyon who, in [16], highlighted and developed a theory of asymmetric bifurcating Markov
chains. Since the works of Guyon, BMC theory has been enriched from a probabilistic and
statistical point of view and several extensions and models using BMC have been studied; we
can cite the works (see also the references therein) of Bercu, de Saporta and Gégout-Petit [5],
Delmas and Marsalle [13], Bitseki, Djellout and Guillin [8], Bitseki, Hoffmann and Olivier
[9], Doumic, Hoffmann, Krell and Robert [15], Bitseki and Olivier [10, 21] and Hoffmann
and Marguet [18].

The recent study of BMC models was motivated by the understanding of the cell divi-
sion mechanism (where the trait of an individual is given by its growth rate). The first model
of BMC, named “symmetric” bifurcating auto-regressive process (BAR) was introduced by
Cowan and Staudte [12] in order to analyze cell lineage data. Since the works of Cowan and
Staudte, many extensions of their model were studied in Markovian and non-Markovian set-
tings (see, e.g., [21] and references therein). In particular, in [16], Guyon has studied “asym-
metric” BAR in order to prove statistical evidence of aging in Escherichia Coli, giving a new
approach to the problem studied in [24]. Let us also note that BMC have been used recently
in several statistical works to study the estimator of the cell division rate [9, 15, 18]. More-
over, other studies, such as [14], can be generalized using the BMC theory (we refer to the
conclusion therein).

In this paper, our objective is to establish a central limit theorem for additive functionals
of BMC. With respect to this objective, notice that asymptotic results for BMC have been
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studied in [16] (law of large numbers and central limit theorem) and in [8] (moderate de-
viations principle and strong law of large numbers). See [13] for the law of large numbers
and central limit theorem for BMC on a Galton–Watson tree. Notice also that recently, limit
theorems, in particular law of large numbers, have been studied for branching Markov pro-
cess, see [19] and [11], and that large values of parameters in stable BAR process allows to
exhibit two regimes, see [3]. However, the central limit theorems which appear in [5, 13, 16]
are written for additive functionals using increments of martingale, which implies in partic-
ular that the functions considered depend on the traits of the mother and its two daughters.
The study of the case where the functions depend only on the trait of a single individual has
not yet been treated for BMC (in this case it is not useful to solve the Poisson equation and
to write additive functional as sums of martingale increments as the error term on the last
generation is not negligible in general). For such functions, the central limit theorems have
been studied recently for branching Markov processes and for superprocesses [1, 20, 22, 23,
25]. Our results can be seen as a discrete version of those given in the previous works, but
with general ergodic hypothesis on the evolution of the trait. Unlike the results given in [5,
13, 16], we observe three regimes (subcritical, critical and super-critical), which correspond
to a competition between the reproducing rate (here a mother has two daughters) and the
ergodicity rate for the evolution of the trait along a lineage taken uniformly at random. This
phenomenon already appears in the works of Athreya [2]. For BMC models, we stress that
the three regimes already appear for moderate deviations and deviation inequalities in [6–8].

We follow the approach of [13, 16] and consider ergodic theorem with respect to the point-
wise convergence. However, unlike the latter papers, we provide a different normalization for
the fluctuations according to the regime being critical, subcritical and super-critical, see re-
spectively Corollaries 3.3, 3.6 and 3.13. See also Remark 3.7 on the possibility of the limit to
be degenerated in the critical case and the discussion with [22] on branching Markov process
in continuous time. We shall be explicit in a forthcoming paper, regarding how the present
results allow to recover the one regime result from [16] for additive functionals given by a
sum of martingale increments.

The paper is organized as follows. We introduce the BMC model in Section 2.1 and con-
sider the sets of assumptions in the spirit of [16] in Section 2.2. The main results are presented
in Section 3: see Section 3.1 for results in the subcritical case, with technical proofs in Sec-
tion 4; see Section 3.2 for results in the critical case, with technical proofs in Section 5; and
see Section 3.3 for results in the super-critical case, with technical proofs in Section 6. The
proof relies essentially on explicit second moments computations and precise upper bounds
of fourth moments for BMC, which are recalled in Section 7.

2. Models and assumptions.

2.1. Bifurcating Markov chain: The model. We denote by N the set of nonnegative inte-
gers and N

∗ =N\{0}. If (E,E) is a measurable space, then B(E) (resp. Bb(E), resp. B+(E))
denotes the set of (resp. bounded, resp. nonnegative) R-valued measurable functions defined
on E. For f ∈ B(E), we set ‖f ‖∞ = sup{|f (x)|, x ∈ E}. For a finite measure λ on (E,E)

and f ∈ B(E) we shall write 〈λ,f 〉 for
∫

f (x)dλ(x) whenever this integral is well defined.
For n ∈ N

∗, the product space En is endowed with the product σ -field E⊗n. If (E,d) is a
metric space, then E will denote its Borel σ -field and the set Cb(E) (resp. C+(E)) denotes the
set of bounded (resp. nonnegative) R-valued continuous functions defined on E.

Let (S,S ) be a measurable space. Let Q be a probability kernel on S ×S , that is, Q(·,A)

is measurable for all A ∈ S , and Q(x, ·) is a probability measure on (S,S ) for all x ∈ S.
For any f ∈ Bb(S), we set, for x ∈ S,

(1) (Qf )(x) =
∫
S
f (y)Q(x,dy).
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We define (Qf ), or simply Qf , for f ∈ B(S) as soon as the integral (1) is well defined, and
we have Qf ∈ B(S). For n ∈ N, we denote by Qn the nth iterate of Q defined by Q0 = Id ,
the identity map on B(S), and Qn+1f = Qn(Qf ) for f ∈ Bb(S).

Let P be a probability kernel on S ×S ⊗2, that is, P(·,A) is measurable for all A ∈ S ⊗2,
and P(x, ·) is a probability measure on (S2,S ⊗2) for all x ∈ S. For any g ∈ Bb(S

3) and
h ∈ Bb(S

2), we set for x ∈ S,

(2) (Pg)(x) =
∫
S2

g(x, y, z)P (x,dy,dz) and (Ph)(x) =
∫
S2

h(y, z)P (x,dy,dz).

We define (Pg) (resp. (Ph)), or simply Pg for g ∈ B(S3) (resp. Ph for h ∈ B(S2)), as soon
as the corresponding integral (2) is well defined, and we have that Pg and Ph belong to B(S).

We now introduce some notation related to the regular binary tree. We set T0 = G0 = {∅},
Gk = {0,1}k and Tk = ⋃

0≤r≤k Gr for k ∈ N
∗, and T = ⋃

r∈NGr . The set Gk corresponds to
the kth generation, Tk to the tree up to the kth generation, and T the complete binary tree. For
i ∈ T, we denote by |i| the generation of i (|i| = k if and only if i ∈ Gk) and iA = {ij ; j ∈ A}
for A ⊂ T, where ij is the concatenation of the two sequences i, j ∈ T, with the convention
that ∅i = i∅= i.

We recall the definition of a bifurcating Markov chain from [16].

DEFINITION 2.1. We say a stochastic process indexed by T, X = (Xi, i ∈ T), is a bifur-
cating Markov chain (BMC) on a measurable space (S,S ) with initial probability distribu-
tion ν on (S,S ) and probability kernel P on S × S ⊗2 if:

– (Initial distribution.) The random variable X∅ is distributed as ν.
– (Branching Markov property.) For a sequence (gi, i ∈ T) of functions belonging to Bb(S

3),
we have for all k ≥ 0,

E

[ ∏
i∈Gk

gi(Xi,Xi0,Xi1)
∣∣∣σ(Xj ; j ∈ Tk)

]
= ∏

i∈Gk

Pgi(Xi).

Let X = (Xi, i ∈ T) be a BMC on a measurable space (S,S ) with initial probability
distribution ν and probability kernel P . We define three probability kernels P0, P1 and Q on
S × S by

P0(x,A) = P(x,A × S), P1(x,A) = P(x, S × A) for (x,A) ∈ S × S and

Q = 1

2
(P0 + P1).

Notice that P0 (resp. P1) is the restriction of the first (resp. second) marginal of P to S. Fol-
lowing [16], we introduce an auxiliary Markov chain Y = (Yn, n ∈ N) on (S,S ) with Y0
distributed as X∅ and transition kernel Q. The distribution of Yn corresponds to the distribu-
tion of XI , where I is chosen independently from X and uniformly at random in generation
Gn. We shall write Ex when X∅ = x (i.e., the initial distribution ν is the Dirac mass at x ∈ S),
and simply write E otherwise (thus not stressing the dependence in ν in general).

We end this section with a useful notation. By convention, for f,g ∈ B(S), we define the
function f ⊗g ∈ B(S2) by (f ⊗g)(x, y) = f (x)g(y) for x, y ∈ S and introduce the notation

f ⊗sym g = 1

2
(f ⊗ g + g ⊗ f ) and f ⊗2 = f ⊗ f.

Notice that P(g ⊗sym 1) = Q(g) for g ∈ B+(S).
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2.2. Assumptions. For a set F ⊂ B(S) of R-valued functions, we write F 2 = {f 2;f ∈
F }, F ⊗F = {f0 ⊗f1;f0, f1 ∈ F } and P(F) = {Pf ;f ∈ F } whenever a kernel P acts on F .
Following [16], we state a structural assumption on the set of functions we shall consider.

ASSUMPTION 2.2. Let F ⊂ B(S) be a set of R-valued functions such that:

(i) F is a vector subspace which contains the constants;
(ii) F 2 ⊂ F ;

(iii) F ⊂ L1(ν);
(iv) F ⊗ F ⊂ L1(P(x, ·)) for all x ∈ S, and P(F ⊗ F) ⊂ F .

The condition (iv) implies that P0(F ) ⊂ F , P1(F ) ⊂ F as well as Q(F ) ⊂ F . Notice that
if f ∈ F , then even if |f | does not belong to F , using conditions (i) and (ii), we get, with
g = (1 + f 2)/2, that |f | ≤ g and g ∈ F . Typically, when (S, d) is a metric space, the set
F can be the set Cb(S) of bounded real-valued functions, or the set of smooth real-valued
functions such that all derivatives have at most polynomials growth.

Following [16], we also consider the following ergodic properties for Q.

ASSUMPTION 2.3. There exists a probability measure μ on (S,S ) such that F ⊂ L1(μ)

and for all f ∈ F , we have the pointwise convergence limn→∞Qnf = 〈μ,f 〉 and there exists
g ∈ F with

(3)
∣∣Qn(f )

∣∣ ≤ g for all n ∈ N.

We consider also the following geometrical ergodicity.

ASSUMPTION 2.4. There exists a probability measure μ on (S,S ) such that F ⊂
L1(μ), and α ∈ (0,1) such that for all f ∈ F there exists g ∈ F such that

(4)
∣∣Qnf − 〈μ,f 〉∣∣ ≤ αng for all n ∈ N.

A sequence f = (f�, � ∈ N) of elements of F satisfies uniformly (3) and (4) if there is
g ∈ F such that

(5)
∣∣Qn(f�)

∣∣ ≤ g and
∣∣Qnf� − 〈μ,f�〉

∣∣ ≤ αng for all n, � ∈ N.

This implies in particular that |f�| ≤ g and |〈μ,f�〉| ≤ 〈μ,g〉. Notice that (5) trivially holds
if f takes finitely distinct values (i.e., the subset {f�;� ∈ N} of F is finite) each satisfying (3)
and (4).

EXAMPLE 2.5. Let (S, d) be a metric space, S its Borel σ -field and Y a Markov chain
uniformly geometrically ergodic that is, there exists α ∈ (0,1) and a finite constant C such
that for all x ∈ S:

(6)
∥∥Qn(x, ·) − μ

∥∥
TV ≤ Cαn,

where, for a signed finite measure π on (S,S ), its total variation norm is defined by
‖π‖TV = supf ∈B(S),‖f ‖∞≤1 |〈π,f 〉|. Then, taking for F the set of R-valued continuous
bounded function Cb(S), we get that properties (i)–(iii) from Assumption 2.2 and Assump-
tion 2.4 hold. In particular, equation (6) implies that (4) holds with g = C‖f ‖∞.

We consider the stronger ergodic property based on a second spectral gap.
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ASSUMPTION 2.6. There exists a probability measure μ on (S,S ) such that F ⊂
L1(μ), and α ∈ (0,1), a finite nonempty set J of indices, distinct complex eigenvalues
{αj , j ∈ J } of the operator Q with |αj | = α, nonzero complex projectors {Rj , j ∈ J } defined
on CF , the C-vector space spanned by F , such that Rj ◦Rj ′ = Rj ′ ◦Rj = 0 for all j �= j ′
(so that

∑
j∈J Rj is also a projector defined on CF ) and a positive sequence (βn, n ∈ N)

converging to 0, such that for all f ∈ F there exists g ∈ F and, with θj = αj/α:

(7)
∣∣∣∣Qn(f ) − 〈μ,f 〉 − αn

∑
j∈J

θn
j Rj (f )

∣∣∣∣ ≤ βnα
ng for all n ∈N.

Without loss of generality, we shall assume that the sequence (βn, n ∈ N) in Assump-
tion 2.6 is nonincreasing and bounded from above by 1.

REMARK 2.7. In [16], only the structural Assumption 2.2 and the ergodic Assump-
tion 2.3 were assumed. If F contains a set A of bounded functions which is separating (i.e.,
two probability measures which coincide on A are equal), then Assumptions 2.2 and 2.3 im-
ply in particular that μ is the only invariant measure of Q. Notice that the geometric ergodic-
ity Assumption 2.4 implies Assumption 2.3, and that Assumption 2.6 implies Assumption 2.4
(with the same α but possibly different function g).

EXAMPLE 2.8. We consider the real-valued Gaussian symmetric bifurcating autoregres-
sive process (BAR) X = (Xu,u ∈ T) where, for all u ∈ T\{∅},

Xu = aXv + εu,

where v is the parent of u, that is, u = v0 or u = v1, a ∈ (−1,1) and (εv, v ∈ T) are indepen-
dent Gaussian random variables N (0, σ 2) with σ > 0. We obtain:

P(x,dy,dz) =Q(x,dy)Q(x,dz) with Qf (x) = E
[
f (ax + σG)

]
,

where G is a standard N (0,1) Gaussian random variable. More generally we have Qnf (x) =
E[f (anx+√

1 − a2nσaG)], where σa = σ(1−a2)−1/2. The kernel Q admits a unique invari-
ant probability measure μ, which is Gaussian N (0, σ 2

a ). The operator Q (on L2(μ)) is a sym-
metric integral Hilbert–Schmidt operator whose eigenvalues are given by σp(Q) = (an, n ∈
N), their algebraic multiplicity is one and the corresponding eigenfunctions (ḡn(x), n ∈ N)

are defined for n ∈ N by ḡn(x) = gn(σ
−1
a x), where gn is the Hermite polynomial of degree

n. In particular, we have ḡ0 = 1 and ḡ1(x) = σ−1
a x. Let R be the orthogonal projection on

the vector space generated by ḡ1, that is, Rf = 〈μ,f ḡ1〉ḡ1 or equivalently, for x ∈ R,

(8) Rf (x) = σ−1
a xE

[
Gf (σaG)

]
.

Consider F the set of functions f ∈ C2(R) such that f , f ′ and f ′′ have at most polynomial
growth. Assume that the probability distribution ν has all its moments, which is equivalent to
say that F ⊂ L1(ν). Then the set F satisfies Assumption 2.2. We also have that F ⊂ L1(μ).
Then, it is not difficult to check directly that Assumption 2.6 also holds with J = {j0}, αj0 =
α = |a|, βn = |a|n and Rj0 = R (and also Assumptions 2.3 and 2.4 hold).

2.3. Notation for average of different functions over different generations. Let X =
(Xu,u ∈ T) be a BMC on (S,S ) with initial probability distribution ν, and probability ker-
nel P . Recall Q is the induced Markov kernel. We assume that μ is an invariant probability
measure of Q.

For a finite set A ⊂ T and a function f ∈ B(S), we set

MA(f ) = ∑
i∈A

f (Xi).
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We shall be interested in the cases A = Gn (the nth generation) and A = Tn (the tree up
to the nth generation). We recall from [16], Theorem 11 and Corollary 15, that under As-
sumptions 2.2 and 2.3 (resp. and also Assumption 2.4), we have for f ∈ F the following
convergence in L2(μ) (resp. a.s.):

(9) lim
n→∞|Gn|−1MGn

(f ) = 〈μ,f 〉 and lim
n→∞|Tn|−1MTn

(f ) = 〈μ,f 〉.
We shall now consider the corresponding fluctuations. We will use frequently the following

notation:

(10) f̃ = f − 〈μ,f 〉 for f ∈ L1(μ).

In order to study the asymptotics of MGn−�
(f̃ ), we shall consider the contribution of the

descendants of the individual i ∈ Tn−� for n ≥ � ≥ 0,

(11) N�
n,i(f ) = |Gn|−1/2MiGn−|i|−�

(f̃ ),

where iGn−|i|−� = {ij, j ∈ Gn−|i|−�} ⊂Gn−�. For all k ∈ N such that n ≥ k + �, we have,

MGn−�
(f̃ ) = |Gn|1/2

∑
i∈Gk

N�
n,i(f ) = |Gn|1/2N�

n,∅(f ).

Let f= (f�, � ∈ N) be a sequence of elements of L1(μ). We set for n ∈ N and i ∈ Tn,

(12) Nn,i(f) =
n−|i|∑
�=0

N�
n,i(f�) = |Gn|−1/2

n−|i|∑
�=0

MiGn−|i|−�
(f̃�).

In Nn,i , we consider the contribution of the descendants of i up to generation n. We deduce
that

∑
i∈Gk

Nn,i(f) = |Gn|−1/2 ∑n−k
�=0 MGn−�

(f̃�) which gives for k = 0:

(13) Nn,∅(f) = |Gn|−1/2
n∑

�=0

MGn−�
(f̃�).

In Nn,∅, we consider the contribution of all the individuals from generation 0 up to genera-
tion n. We shall prove the convergence in law of Nn,∅(f) in the following sections.

REMARK 2.9. We shall consider in particular the following two simple cases. Let f ∈
L1(μ) and consider the sequence f = (f�, � ∈ N). If f0 = f and f� = 0 for � ∈ N

∗, we shall
write

(14) f0 = (f,0, . . .),

and we get

Nn,∅(f0) = |Gn|−1/2MGn
(f̃ ).

If f� = f for � ∈ N, then we shall write

(15) f = (f, f, . . .),

and we get, as |Tn| = 2n+1 − 1 and |Gn| = 2n:

Nn,∅(f) = |Gn|−1/2MTn
(f̃ ) = √

2 − 2−n|Tn|−1/2MTn
(f̃ ).

Thus, we will easily deduce the fluctuations of MTn
(f ) and MGn

(f ) from the asymptotics of
Nn,∅(f).



CLT FOR BIFURCATING MARKOV CHAINS UNDER POINTWISE CONDITIONS 3823

To study the asymptotics of Nn,∅(f), it is convenient to write, for n ≥ k ≥ 1,

(16) Nn,∅(f) = |Gn|−1/2
k−1∑
r=0

MGr
(f̃n−r ) + ∑

i∈Gk

Nn,i(f).

For f defined in (15), this becomes

(17) Nn,∅(f) = |Gn|−1/2MTn
(f̃ ) = |Gn|−1/2MTk−1(f̃ ) + ∑

i∈Gk

Nn,i(f).

In the proofs, we will denote by C any unimportant finite constant which may vary from
line to line (in particular C does not depend on n ∈ N nor on the considered sequence of
functions f= (f�, � ∈ N)).

3. Main results.

3.1. The subcritical case: 2α2 < 1. We shall consider, when well defined, for a sequence
f= (f�, � ∈N) of measurable real-valued functions defined on S, the quantities

(18) �sub(f) = �sub
1 (f) + 2�sub

2 (f),

where

�sub
1 (f) = ∑

�≥0

2−�〈μ, f̃ 2
�

〉 + ∑
�≥0,k≥0

2k−�〈μ,P
((
Qkf̃�

)⊗2)〉
,(19)

�sub
2 (f) = ∑

0≤�<k<∞
2−�〈μ, f̃kQk−�f̃�

〉

+ ∑
0≤�<k<∞

r≥0

2r−�〈μ,P
(
Qr f̃k ⊗sym Qk−�+r f̃�

)〉
.

(20)

We have the following result whose proof is given in Section 4.

THEOREM 3.1. Let X be a BMC with kernel P and initial distribution ν such that As-
sumptions 2.2 and 2.4 are in force with α ∈ (0,1/

√
2). We have the following convergence

in distribution for all sequences f = (f�, � ∈ N) of elements of F satisfying Assumptions 2.4
uniformly, that is, (5) for some g ∈ F :

Nn,∅(f)
(d)−−−→

n→∞ G,

where G is a centered Gaussian random variable with variance �sub(f) given by (18), which
is well defined and finite.

The convergence in distribution of Nn,∅(f) allows to recover the convergence in distribu-
tion of the average over different successive generations |Gn|−1/2(MGn

(f̃0), . . . ,MGn−k
(f̃k)).

Notice the limit is a Gaussian random vector (G1, . . . ,Gk). A priori the random variables
G1, . . . ,Gk are not independent because of the interaction coming from (20). In contrast,
it was proved in [13], that the average over different successive generations of martingale
increments converges to Gaussian independent random variables.

REMARK 3.2. For f ∈ B(S), when it is well defined, we set

(21) �sub
G

(f ) = 〈
μ, f̃ 2〉 + ∑

k≥0

2k 〈μ,P
(
Qkf̃ ⊗2)〉

and �sub
T

(f ) = �sub
G

(f ) + 2�sub
T,2(f ),
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where

�sub
T,2(f ) = ∑

k≥1

〈
μ, f̃Qkf̃

〉 + ∑
k≥1
r≥0

2r 〈μ,P
(
Qr f̃ ⊗sym Qr+kf̃

)〉
.

For f0 defined in (14), we have �sub(f0) = �sub
G

(f ). For f defined in (15), we have
�sub(f) = 2�sub

T
(f ).

As a direct consequence of Remarks 3.2 and 2.9, and the more general Theorem 3.1, we
get the following result.

COROLLARY 3.3. Let X be a BMC with kernel P and initial distribution ν such that
Assumptions 2.2 and 2.4 are in force with α ∈ (0,1/

√
2). Let f ∈ F . Then, we have the

following convergence in distribution:

|Gn|−1/2MGn
(f̃ )

(d)−−−→
n→∞ G1 and |Tn|−1/2MTn

(f̃ )
(d)−−−→

n→∞ G2,

where G1 and G2 are centered Gaussian random variables with respective variances �sub
G

(f )

and �sub
T

(f ) given in (21), which are well defined and finite.

PROOF OF COROLLARY 3.3. Take f0, defined in (14), to deduce from Theorem 3.1 the
convergence in distribution of |Gn|−1/2MGn

(f̃ ) = Nn,∅(f0). Next, take f, defined in (15), in
Theorem 3.1 and use (17) and as well as limn→∞ |Gn|/|Tn| = 1/2, to get the convergence in
distribution for |Tn|−1/2MTn

(f̃ ) = (|Gn|/|Tn|)1/2Nn,∅(f). �

3.2. The critical case 2α2 = 1. In the critical case α = 1/
√

2, we shall denote by Rj

the projector on the eigenspace associated to the eigenvalue αj with αj = θjα, |θj | = 1 and
for j in the finite set of indices J . Since Q is a real operator, we get that if αj is a nonreal
eigenvalue, so is αj . We shall denote by Rj the projector associated to αj . Recall that the
sequence (βn, n ∈ N) in Assumption 2.6 can (and will) be chosen nonincreasing and bounded
from above by 1. For all measurable real-valued function f defined on S, we set, when this
is well defined,

(22) f̂ = f̃ − ∑
j∈J

Rj (f ) with f̃ = f − 〈μ,f 〉.

We shall consider, when well defined, for a sequence f = (f�, � ∈ N) of measurable real-
valued functions defined on S, the quantities

(23) �crit(f) = �crit
1 (f) + 2�crit

2 (f),

where

�crit
1 (f) = ∑

k≥0

2−k 〈μ,Pf ∗
k,k

〉 = ∑
k≥0

2−k
∑
j∈J

〈
μ,P

(
Rj (fk) ⊗sym Rj (fk)

)〉
,(24)

�crit
2 (f) = ∑

0≤�<k

2−(k+�)/2〈μ,Pf ∗
k,�

〉
,(25)

with, for k, � ∈ N,

(26) f ∗
k,� = ∑

j∈J

θ�−k
j Rj (fk) ⊗sym Rj (f�).
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Notice that f ∗
k,� = f ∗

�,k and that f ∗
k,� is real-valued as θ�−k

j Rj (fk) ⊗Rj (f�) = θ�−k
j ′ ×

Rj ′(fk) ⊗Rj ′(f�) for j ′ such that αj ′ = αj and thus Rj ′ = Rj .
We shall consider sequences f = (f�, � ∈ N) of elements of F which satisfy Assump-

tion 2.6 uniformly, that is, such that there exists g ∈ F with

(27)
∣∣Qn(f�)

∣∣ ≤ g,
∣∣Qn(f̃�)

∣∣ ≤ αng and
∣∣Qn(f̂�)

∣∣ ≤ βnα
ng for all n, � ∈ N.

We deduce that there exists a finite constant cJ depending only on {αj , j ∈ J } such that for
all � ∈ N, n ∈ N, j0 ∈ J ,

(28)

|f�| ≤ g, |f̃�| ≤ g,
∣∣〈μ,f�〉

∣∣ ≤ 〈μ,g〉,∣∣∣∣∑
j∈J

θn
j Rj (f�)

∣∣∣∣ ≤ 2g and
∣∣Rj0(f�)

∣∣ ≤ cJ g,

where for the last inequality, we used that the Vandermonde matrix (θn
j ; j ∈ J,n ∈

{0, . . . , |J | − 1}) is invertible. Notice that (27) holds in particular if (7) holds for all f ∈ F

and f = (fn, n ∈ N) takes finitely distinct values in F (i.e., the set {f�;� ∈ N} ⊂ F is finite).
The proof of the following result is given in Section 5.

THEOREM 3.4. Let X be a BMC with kernel P and initial distribution ν. Assume that
Assumptions 2.2 and 2.6 hold with α = 1/

√
2. We have the following convergence in distribu-

tion for all sequences f = (f�, � ∈ N) of elements of F satisfying Assumptions 2.6 uniformly,
that is, (27) for some g ∈ F :

n−1/2Nn,∅(f)
(d)−−−→

n→∞ G,

where G is a Gaussian real-valued random variable with variance �crit(f) given by (23),
which is well defined and finite.

REMARK 3.5. For f ∈ B(S), when it is well defined, we set

(29) �crit
G

(f ) = ∑
j∈J

〈
μ,P

(
Rj (f ) ⊗sym Rj (f )

)〉
and �crit

T
(f ) = �crit

G
(f ) + 2�crit

T,2(f ),

where

�crit
T,2(f ) = ∑

j∈J

1√
2θj − 1

〈
μ,P

(
Rj (f ) ⊗sym Rj (f )

)〉
.

For f0 defined in (14), we have �crit(f0) = �crit
G

(f ). For f defined in (15), we have
�crit(f) = 2�crit

T
(f ).

As a direct consequence of Remarks 3.5 and 2.9, and the more general Theorem 3.4, we
get the following result. The proof which mimics the proof of Corollary 3.3 is left to the
reader.

COROLLARY 3.6. Let X be a BMC with kernel P and initial distribution ν such that
Assumptions 2.2 and 2.6 are in force with α = 1/

√
2. Let f ∈ F . Then, we have the following

convergence in distribution:
(
n|Gn|)−1/2

MGn
(f̃ )

(d)−−−→
n→∞ G1 and

(
n|Tn|)−1/2

MTn
(f̃ )

(d)−−−→
n→∞ G2,

where G1 and G2 are centered Gaussian real-valued random variables with respective vari-
ance �crit

G
(f ) and �crit

T
(f ) given in (29), which are well defined and finite.
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REMARK 3.7. We comment on the limit in Corollary 3.6 to be 0.

1. We stress that the variances �crit
T

(f ) and �crit
G

(f ) can take the value 0. This is the case
in particular if the projection of f on the eigenspace corresponding to the eigenvalues αj

equal 0: Rj (f ) = 0 for all j ∈ J .
2. In the symmetric BAR model developed in Example 2.8 where J is reduced to a sin-

gleton and the projector is given by (8), we deduce that if a = α = 1/
√

2 then �crit
G

(f ) =
�crit

T
(f ) = 0 if E[Gf (σaG)] = 0, where G is a standard N (0,1) Gaussian random variable.

This is in particular the case if f is even. In fact, one should consider the first integer, say n0,
such that 〈f, ḡn〉 �= 0, where ḡn are the eigenfunctions given in Example 2.8, to identify the
good normalization for the fluctuations.

3. We refer to the work of Ren, Song and Zhang [22] in the setting of a branching Markov
process in continuous time for a detailed study of the good normalizations in the three regimes
such that the fluctuations have a nontrivial limit. Let us stress that their results rely on a strong
hypothesis on the transition kernel for the trait. In our setting this would amount to assume
that the kernel Q defines a compact operator on L2, which would give the existence of a
complete spectral decomposition of the kernel Q. (The Gaussian symmetric BAR model
developed in Example 2.8 satisfies in particular this assumption.) This latter assumption is of
course stronger than the ergodic Assumption 2.6.

3.3. The super-critical case 2α2 > 1. We consider the super-critical case α ∈ (1/
√

2,1).
We shall assume that Assumption 2.6 holds. Recall (7) with the eigenvalues {αj = θjα, j ∈
J } of Q, with modulus equal to α (i.e., |θj | = 1) and the projector Rj on the eigenspace
associated to eigenvalue αj . Recall that the sequence (βn, n ∈ N) in Assumption 2.6 can (and
will) be chosen nonincreasing and bounded from above by 1.

We shall consider the filtration H = (Hn, n ∈N) defined by Hn = σ(Xi, i ∈ Tn). The next
lemma, whose the proof is given in Section 6.1, exhibits martingales related to the projector
Rj .

LEMMA 3.8. Let X be a BMC with kernel P and initial distribution ν. Assume that
Assumptions 2.2 and 2.6 hold with α ∈ (1/

√
2,1) in (7). Then, for all j ∈ J and f ∈ F , the

sequence Mj(f ) = (Mn,j (f ), n ∈ N), with

Mn,j (f ) = (2αj )
−nMGn

(
Rj (f )

)
,

is a H-martingale which converges a.s. and in L2 to a random variable, say M∞,j (f ).

Now, we state the main result of this section, whose proof is given in Section 6.2. Recall
that θj = αj/α and |θj | = 1 and M∞,j is defined in Lemma 3.8.

THEOREM 3.9. Let X be a BMC with kernel P and initial distribution ν. Assume that
Assumptions 2.2 and 2.6 hold with α ∈ (1/

√
2,1) in (7). We have the following convergence

in probability for all sequences f = (f�, � ∈ N) of elements of F satisfying Assumptions 2.6
uniformly, that is, (27) holds for some g ∈ F :(

2α2)−n/2
Nn,∅(f) − ∑

�∈N
(2α)−�

∑
j∈J

θn−�
j M∞,j (f�)

P−−−→
n→∞ 0.

REMARK 3.10. We stress that if for all � ∈ N, the orthogonal projection of f� on the
eigenspaces corresponding to the eigenvalues 1 and αj , j ∈ J , equal 0, then M∞,j (f�) = 0
for all j ∈ J and in this case, we have(

2α2)−n/2
Nn,∅(f)

P−−−→
n→∞ 0.
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As a direct consequence of Theorem 3.9 and Remark 2.9, we deduce the following results.

COROLLARY 3.11. Under the assumptions of Theorem 3.9, we have for all f ∈ F ,

(2α)−nMTn
(f̃ ) − ∑

j∈J

θn
j

(
1 − (2αθj )

−1)−1
M∞,j (f )

P−−−→
n→∞ 0

(2α)−nMGn
(f̃ ) − ∑

j∈J

θn
j M∞,j (f )

P−−−→
n→∞ 0.

PROOF. We first take f, defined in (15), and next f0, defined in (15), in Theorem 3.9, and
then use (13). �

We directly deduce the following two corollaries.

COROLLARY 3.12. Under the hypothesis of Theorem 3.9, if α is the only eigenvalue of
Q with modulus equal to α (and thus J is reduced to a singleton), then we have

(
2α2)−n/2

Nn,∅(f)
P−−−→

n→∞
∑
�∈N

(2α)−�M∞(f�),

where, for f ∈ F , M∞(f ) = limn→∞(2α)−nMGn
(R(f )), and R is the projection on the

eigenspace associated to the eigenvalue α.

The next Corollary is a direct consequence of Corollary 3.12.

COROLLARY 3.13. Let X be a BMC with kernel P and initial distribution ν. Assume
that Assumptions 2.2 and 2.6 hold with α ∈ (1/

√
2,1) in (7). Assume α is the only eigenvalue

of Q with modulus equal to α (and thus J is reduced to a singleton), then we have for f ∈ F ,

(2α)−nMGn
(f̃ )

P−−−→
n→∞ M∞(f ) and (2α)−nMTn

(f̃ )
P−−−→

n→∞
2α

2α − 1
M∞(f ),

where M∞(f ) is a random variable defined in Corollary 3.12.

4. Proof of Theorem 3.1. We first give some common notation to the proof of Theo-
rems 3.1 and 3.4. Let i, j ∈ T. We write i � j if j ∈ iT. We denote by i ∧ j the most recent
common ancestor of i and j , which is defined as the only u ∈ T such that if v ∈ T and v � i,
v � j then v � u. We also define the lexicographic order i ≤ j if either i � j or v0 � i and
v1 � j for v = i ∧ j . Let X = (Xi, i ∈ T) be a BMC with kernel P and initial measure ν. For
i ∈ T, we define the σ -field:

Fi = {Xu;u ∈ T such that u ≤ i}.
By construction, the σ -fields (Fi; i ∈ T) are nested as Fi ⊂ Fj for i ≤ j .

Let (pn,n ∈ N) be a nondecreasing sequence of elements of N∗ such that, for all λ > 0,

(30) pn < n, lim
n→∞pn/n = 1 and lim

n→∞n − pn − λ log(n) = +∞.

We define for n ∈ N, i ∈ Gn−pn and f ∈ FN the martingale increments

(31) �n,i(f) = Nn,i(f) −E
[
Nn,i(f)|Fi

]
and �n(f) = ∑

i∈Gn−pn

�n,i(f).
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Thanks to (12), we have

∑
i∈Gn−pn

Nn,i(f) = |Gn|−1/2
pn∑
�=0

MGn−�
(f̃�) = |Gn|−1/2

n∑
k=n−pn

MGk
(f̃n−k).

Using the branching Markov property, and (12), we get for i ∈Gn−pn ,

E
[
Nn,i(f)|Fi

] = E
[
Nn,i(f)|Xi

] = |Gn|−1/2
pn∑
�=0

EXi

[
MGpn−�

(f̃�)
]
.

We deduce from (16) with k = n − pn that

(32) Nn,∅(f) = �n(f) + R0(n) + R1(n),

with

(33) R0(n) = |Gn|−1/2
n−pn−1∑

k=0

MGk
(f̃n−k) and R1(n) = ∑

i∈Gn−pn

E
[
Nn,i(f)|Fi

]
.

We now go on to the proof of Theorem 3.1. We have the following elementary lemma.

LEMMA 4.1. Under the assumptions of Theorem 3.1, we have the following convergence:

lim
n→∞E

[
R0(n)2] = 0.

PROOF. For all k ≥ 1 and x ∈ S, we have

Ex

[
MGk

(f̃n−k)
2] ≤ 2kg1(x) +

k−1∑
�=0

2k+�α2�Qk−�−1(
P(g2 ⊗ g2)

)
(x)

≤ 2kg1(x) + 2k
k−1∑
�=0

(
2α2)�

g3(x)

≤ 2kg4(x),

with g1, g2, g3, g4 ∈ F and where we used (73), (5) twice and (3) twice (with f and g re-
placed by 2(g2 + 〈μ,g〉2) and g1, and with f and g replaced by g and g2) for the first
inequality, (3) (with f and g replaced by P(g2 ⊗ g2) and g3) for the second, and that
2α2 < 1 and g4 = g1 + (1 − 2α2)−1g3 for the last. As g4 ∈ F ⊂ L1(ν), this implies that
E[MGk

(f̃n−k)
2] ≤ c22k for some finite constant c which does not depend on n or k. We can

take c large enough, so that this upper bound holds also for k = 0 and all n ∈ N, thanks to
(5). We deduce from (33) that:

(34)

(
E

[
R0(n)2])1/2 ≤ |Gn|−1/2

n−pn−1∑
k=0

(
E

[
MGk

(f̃n−k)
2])1/2

≤ c2−n/2
n−pn−1∑

k=0

2k/2 ≤ 3c2−pn/2.

Use that limn→∞ pn = ∞ to conclude. �

We have the following lemma.
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LEMMA 4.2. Under the assumptions of Theorem 3.1, we have the following convergence:

lim
n→∞E

[
R1(n)2] = 0.

PROOF. We set for pn ≥ � ≥ 0,

(35) R1(�, n) = ∑
i∈Gn−pn

E
[
N�

n,i(f�)|Fi

]
,

so that, thanks to (12), R1(n) = ∑pn

�=0 R1(�, n). We have for i ∈ Gn−pn ,

|Gn|1/2
E

[
N�

n,i(f�)|Fi

] = E
[
MiGpn−�

(f̃�)|Xi

]
= EXi

[
MGpn−�

(f̃�)
] = |Gpn−�|Qpn−�f̃�(Xi),

where we used definition (11) of N�
n,i for the first equality, the Markov property of X for the

second and (72) for the third. We deduce that

R1(�, n) = |Gn|−1/2|Gpn−�|MGn−pn

(
Qpn−�f̃�

)
.

Using (73), we get

Ex

[
R1(�, n)2] = |Gn|−1|Gpn−�|2Ex

[(
MGn−pn

(
Qpn−�f̃�

))2]
= |Gn|−1|Gpn−�|22n−pnQn−pn

((
Qpn−�f̃�

)2)
(x)

+ |Gn|−1|Gpn−�|2
n−pn−1∑

k=0

2n−pn+kQn−pn−k−1(
P

(
Qk+pn−�f̃�⊗2))

(x).

We deduce that

(36)

Ex

[
R1(�, n)2] ≤ α2(pn−�)2pn−2�Qn−pn

(
g2)

(x)

+ 2pn−2�
n−pn−1∑

k=0

α2(k+pn−�)2kQn−pn−k−1(
P(g ⊗ g)

)

≤ α2(pn−�)2pn−2�

(
g1(x) +

n−pn−1∑
k=0

(
2α2)k

g2(x)

)

≤ (
2α2)pn(2α)−2�g3(x),

with g1, g2, g3 ∈ F and where we used (5) for the first inequality, (3) twice (with f and g

replaced by g2 and g1 and by P(g ⊗ g) and g2) for the second, and that 2α2 < 1 for the last.
Since g3 ∈ F ⊂ L1(ν), this gives that E[R1(�, n)2] ≤ (2α2)pn(2α)−2�〈ν, g3〉. We deduce that

E
[
R1(n)2]1/2 ≤

pn∑
�=0

E
[
R1(�, n)2]1/2 ≤ a1,n〈ν, g3〉1/2,

with the sequence (a1,n, n ∈N) defined by

a1,n = (
2α2)pn/2

pn∑
�=0

(2α)−�.

Notice the sequence (a1,n, n ∈ N) converges to 0 since limn→∞ pn = ∞, 2α2 < 1 and

pn∑
�=0

(2α)−� ≤

⎧⎪⎪⎨
⎪⎪⎩

2α/(2α − 1) if 2α > 1,

pn + 1 if 2α = 1,

(2α)−pn/(1 − 2α) if 2α < 1.

We conclude that limn→∞E[R1(n)2] = 0. �
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We now study the bracket of �n:

(37) V (n) = ∑
i∈Gn−pn

E
[
�n,i(f)

2|Fi

]
.

Using (12) and (31), we write

(38) V (n) = |Gn|−1
∑

i∈Gn−pn

EXi

[( pn∑
�=0

MGpn−�
(f̃�)

)2]
−R2(n) = V1(n)+2V2(n)−R2(n),

with

V1(n) = |Gn|−1
∑

i∈Gn−pn

pn∑
�=0

EXi

[
MGpn−�

(f̃�)
2]

,

V2(n) = |Gn|−1
∑

i∈Gn−pn

∑
0≤�<k≤pn

EXi

[
MGpn−�

(f̃�)MGpn−k
(f̃k)

]
,

R2(n) = ∑
i∈Gn−pn

(
E

[
Nn,i(f)|Xi

])2
.

LEMMA 4.3. Under the assumptions of Theorem 3.1, we have the following convergence:

lim
n→∞E

[
R2(n)

] = 0.

PROOF. Recall pn defined in (30). We define the sequence (a2,n, n ∈ N) for n ∈N by

a2,n = 2−pn

( pn∑
�=0

(2α)�

)2

.

Notice that the sequence (a2,n, n ∈N) converges to 0 since limn→∞ pn = ∞, 2α2 < 1 and

pn∑
�=0

(2α)� ≤

⎧⎪⎪⎨
⎪⎪⎩

(2α)pn+1/(2α − 1) if 2α > 1,

pn + 1 if 2α = 1,

1/(1 − 2α) if 2α < 1.

We now compute Ex[R2(n)]:

(39)

Ex

[
R2(n)

] = |Gn|−1
∑

i∈Gn−pn

Ex

[(
Ex

[ pn∑
�=0

MiGpn−�
(f̃�)

∣∣∣∣Xi

])2]

= |Gn|−1
∑

i∈Gn−pn

Ex

[( pn∑
�=0

EXi

[
MGpn−�

(f̃�)
])2]

= |Gn|−1|Gn−pn |Qn−pn

(( pn∑
�=0

|Gpn−�|Qpn−�f̃�

)2)
(x)

≤ 2−pn

( pn∑
�=0

(2α)pn−�

)2

Qn−pn
(
g2)

(x)

≤ a2,ng1(x),

with g1 ∈ F and where we used the definition of Nn,i(f) for the first equality, the Markov
property of X for the second, (72) for the third, (5) for the first inequality, and (3) (with f
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and g replaced by g2 and g1) for the last. We conclude that limn→∞E[R2(n)] = 0, using that
〈ν, g1〉 if finite as g1 ∈ F ⊂ L1(ν). �

We have the following technical lemma.

LEMMA 4.4. Under the assumptions of Theorem 3.1, we have that �sub
2 (f) defined in

(20) is well defined and finite, and that a.s. limn→∞ V2(n) = �sub
2 (f) < +∞.

PROOF. Using (74), we get

(40) V2(n) = V5(n) + V6(n),

with

V5(n) = |Gn|−1
∑

i∈Gn−pn

∑
0≤�<k≤pn

2pn−�Qpn−k(f̃kQk−�f̃�

)
(Xi),

V6(n) = |Gn|−1
∑

i∈Gn−pn

∑
0≤�<k<pn

pn−k−1∑
r=0

2pn−�+r

×Qpn−1−(r+k)(P(
Qr f̃k ⊗sym Qk−�+r f̃�

))
(Xi).

We consider the term V6(n). We have

(41) V6(n) = |Gn−pn |−1MGn−pn
(H6,n),

with

H6,n = ∑
0≤�<k<∞

r≥0

h
(n)
k,�,r1{r+k<pn} and

h
(n)
k,�,r = 2r−�Qpn−1−(r+k)(P(

Qr f̃k ⊗sym Qk−�+r f̃�

))
.

Using (4) and since P(Qr (F ) ⊗Qk−�+r (F )) ⊂ F and limn→∞ pn = +∞, we have that

lim
n→∞h

(n)
k,�,r = hk,�,r ,

where the constant hk,�,r is equal to 2r−�〈μ,P(Qr f̃k ⊗sym Qk−�+r f̃�)〉. Using (4), we also
have that ∣∣h(n)

k,�,r

∣∣ ≤ 2r−�αk−�+2rQpn−1−(r+k)(P(g ⊗ g)
)

≤ 2r−�αk−�+2rg∗,
with g∗ ∈ F (which does not depend on n, r , k and �) and where we used (5) for the first
inequality and (3) (with f and g replaced by P(g ⊗ g) and g∗). Taking the limit, we also
deduce that

|hk,�,r | ≤ 2r−�αk−�+2rg∗.
Define the constant

H6(f) = ∑
0≤�<k<∞

r≥0

hk,�,r = ∑
0≤�<k<∞

r≥0

2r−�〈μ,P
(
Qr f̃k ⊗sym Qk−�+r f̃�

)〉

which is finite as

(42)
∑

0≤�<k<∞,r≥0

2r−�αk−�+2r = 2α

(1 − α)(1 − 2α2)
< +∞.
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Using (4) (with f and g replaced by P(Qr f̃k ⊗sym Qk−�+r f̃�) and gk,�,r ), we deduce that∣∣h(n)
k,�,r − hk,�,r

∣∣ ≤ 2r−�αpn−1−(r+k)gk,�,r .

Set r0 ∈ N
∗ and gr0 = ∑

0≤�<k<∞;r≥0;k∨r≤r0
gk,�,r . Notice that gr0 belongs to F and is non-

negative. Furthermore, we have∣∣H6,n − H6(f)
∣∣ ≤ ∑

0≤�<k<∞
r≥0

k∨r≤r0

2r−�αpn−1−(r+k)gr0 + ∑
0≤�<k<∞

r≥0
r∨k>r0

(∣∣h(n)
k,�,r

∣∣1{r+k<pn} + |hk,�,r |)

≤ (r0 + 1)22r0+1αpn−1−2r0gr0 + γ1(r0)g∗,
with

γ1(r0) = ∑
0≤�<k<∞

r≥0
r∨k>r0

2r−�αk−�+2r .

Using (9) with n replaced by n − pn and f replaced by g∗ and gr0 , and that limn→∞ αpn = 0
as well as limn→∞ n − pn = ∞, we deduce that

lim sup
n→∞

|Gn−pn |−1MGn−pn

(∣∣H6,n − H6(f)
∣∣) ≤ γ1(r0)〈μ,g∗〉.

Thanks to (42), we get by dominated convergence that limr0→∞ γ1(r0) = 0. This implies that

lim
n→∞|Gn−pn |−1MGn−pn

(∣∣H6,n − H6(f)
∣∣) = 0.

Since |Gn−pn |−1MGn−pn
(·) is a probability measure, we deduce from (41) that a.s.

lim
n→∞V6(n) = lim

n→∞|Gn−pn |−1MGn−pn
(H6,n)

= H6(f) = ∑
0≤�<k<∞

r≥0

2r−�〈μ,P
(
Qr f̃k ⊗sym Qk−�+r f̃�

)〉
.

Similarly, we get that a.s. limn→∞ V5(n) = H5(f), with the finite constant H5(f) defined by

H5(f) = ∑
0≤�<k<∞

2−�〈μ, f̃kQk−�f̃�

〉
.

Notice that �sub
2 (f) = H5(f) + H6(f) is finite thanks to (5) and (42). This finishes the proof.

�

Using similar arguments as in the proof of Lemma 4.4, we get the following result.

LEMMA 4.5. Under the assumptions of Theorem 3.1, we have that �sub
1 (f) in (19) is well

defined and finite, and that a.s. limn→∞ V1(n) = �sub
1 (f).

PROOF. Using (73), we get

(43) V1(n) = V3(n) + V4(n),

with

V3(n) = |Gn|−1
∑

i∈Gn−pn

pn∑
�=0

2pn−�Qpn−�(f̃ 2
�

)
(Xi),

V4(n) = |Gn|−1
∑

i∈Gn−pn

pn−1∑
�=0

pn−�−1∑
k=0

2pn−�+kQpn−1−(�+k)(P(
Qkf̃�⊗2))

(Xi).
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We consider the term V4(n). We have

(44) V4(n) = |Gn−pn |−1MGn−pn
(H4,n),

with

(45) H4,n = ∑
�≥0,k≥0

h
(n)
�,k1{�+k<pn} and h

(n)
�,k = 2k−�Qpn−1−(�+k)(P(

Qkf̃�⊗2))
.

Using (4), we have that

lim
n→∞h

(n)
�,k = h�,k,

where the constant h�,k is equal to 2k−�〈μ,P(Qkf̃�⊗2)〉. We also have that∣∣h(n)
�,k

∣∣ ≤ 2k−�α2kQpn−1−(�+k)(P(g ⊗ g)
)

≤ 2k−�α2kg∗,

with g∗ ∈ F (which does not depend on n, � and k) and where we used (5) for the first
inequality and (3) (with f and g replaced by P(g ⊗ g) and g∗). Taking the limit, we also
deduce that

|h�,k| ≤ 2k−�α2kg∗.

Define the constant

H4(f) = ∑
�≥0,k≥0

h�,k,

which is finite a.s.

(46)
∑

�≥0,k≥0

2k−�α2k = 2/
(
1 − 2α2)

< +∞.

Using (4) (with f and g replaced by P(Qkf̃�⊗2) and g�,k), we deduce that∣∣h(n)
�,k − h�,k

∣∣ ≤ 2k−�αpn−1−(�+k)g�,k.

Set r0 ∈N and gr0 = ∑
�∨k≤r0

g�,k . Notice that gr0 belongs to F . Furthermore, we have
∣∣H4,n − H4(f)

∣∣ ≤ ∑
�∨k≤r0

2k−�αpn−1−(�+k)gr0 + ∑
�∨k>r0

(∣∣h(n)
�,k

∣∣1{�+k≤pn−1} + |h�,k|)

≤ (r0 + 1)22r0αpn−1−2r0gr0 + γ2(r0)g∗,

with γ2(r0) = 2
∑

�∨k>r0
2k−�α2k . Using (9) with n replaced by n − pn and f replaced by g∗

and gr0 , and that limn→∞ α
p
n = 0 as well as limn→∞ n − pn = ∞, we deduce that

lim sup
n→∞

|Gn−pn |−1MGn−pn

(∣∣H4,n − H4(f)
∣∣) ≤ γ2(r0)〈μ,g∗〉.

Thanks to (46), we get by dominated convergence that limr0→∞ γ2(r0) = 0. We deduce that

lim
n→∞|Gn−pn |−1MGn−pn

(∣∣H4,n − H4(f)
∣∣) = 0.

Since |Gn−pn |−1MGn−pn
(·) is a probability measure, we deduce from (44) that a.s.

lim
n→∞V4(n) = lim

n→∞|Gn−pn |−1MGn−pn
(H4,n) = H4(f) = ∑

�≥0,k≥0

2k−�〈μ,P
(
Qkf̃�⊗2)〉

.
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Similarly, we get that a.s. limn→∞ V3(n) = H3(f) with the finite constant H3(f) defined by

H3(f) = ∑
�≥0

2−�〈μ, f̃ 2
�

〉
.

Notice that �sub
1 (f) = H3(f) + H4(f) is finite thanks to (5) and (46). This finishes the proof.

�

The next lemma is a direct consequence of (38) and Lemmas 4.3, 4.4 and 4.5.

LEMMA 4.6. Under the assumptions of Theorem 3.1, we have the following convergence
in probability limn→∞ V (n) = �sub(f), where, with �sub

1 (f) and �sub
2 (f) defined by (19) and

(20):

�sub(f) = �sub(f) = �sub
1 (f) + 2�sub

2 (f).

We now check the Lindeberg condition using a fourth moment condition. We set

(47) R3(n) = ∑
i∈Gn−pn

E
[
�n,i(f)

4]
.

LEMMA 4.7. Under the assumptions of Theorem 3.1, we have that limn→∞ R3(n) = 0.

PROOF. We have

R3(n) ≤ 16
∑

i∈Gn−pn

E
[
Nn,i(f)

4]

≤ 16(pn + 1)3
pn∑
�=0

∑
i∈Gn−pn

E
[
N�

n,i(f̃�)
4]

,

where we used that (
∑r

k=0 ak)
4 ≤ (r + 1)3 ∑r

k=0 a4
k for the two inequalities (resp. with r = 1

and r = pn) and also the Jensen inequality and (31) for the first and (12) for the last. Using
(11), we get

E
[
N�

n,i(f̃�)
4] = |Gn|−2

E
[
hn,�(Xi)

]
with hn,�(x) = Ex

[
MGpn−�

(f̃�)
4]

.

Thanks to the fourth moment bound given in Lemma 7.2, the uniform bounds from (5) and the
structural assumption 2.2, it is easy to get there exists g1 ∈ F such that for all n ≥ pn ≥ � ≥ 0,

(48) |hn,�| ≤ 22(pn−�)g1.

We deduce that

R3(n) ≤ 16n3
pn∑
�=0

∑
i∈Gn−pn

|Gn|−222(pn−�)
E

[
g1(Xi)

]

≤ 16n32−2(n−pn)
E

[
MGn−pn

(g1)
]

≤ 16n32−(n−pn)〈ν,Qn−png1
〉
,

where we used (72) for the third inequality. Since g1 belongs to F , we deduce from (3) that
Qn−png1 ≤ g2 for some g2 ∈ F and all n ≥ pn ≥ 0. This gives that

R3(n) ≤ 16n32−(n−pn)〈ν, g2〉.
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This ends the proof as limn→∞ pn = ∞ and limn→∞ n − pn − λ log(n) = +∞ for all
λ > 0. �

We can now use Theorem 3.2 and Corollary 3.1, page 58, and the remark, page 59, from
[17] to deduce from Lemmas 4.6 and 4.7 that �n(f) converges in distribution towards a Gaus-
sian real-valued random variable with deterministic variance �sub(f) given by (18). Using
(32) and Lemmas 4.1 and 4.2, we then deduce Theorem 3.1.

5. Proof of Theorem 3.4. We keep notation from Section 4. Let (pn,n ∈ N) be an in-
creasing sequence of elements of N such that (30) holds. Recall the definitions of �n(f) and
Nn,∅(f) from (31) and (32), as well as R0(n) and R1(n) from (33). We have the following
elementary lemma.

LEMMA 5.1. Under the assumptions of Theorem 3.4, we have the following convergence:

lim
n→∞n−1

E
[
R0(n)2] = 0.

PROOF. Following the proof of Lemma 4.1, and using that 2α2 = 1 so that∑k−1
�=0(2α2)� = k, we get there exists some finite constant c depending on f such that

E[MGk
(f̃n−k)

2] ≤ c2(k + 1)2k for all k ≥ 0. This implies that

E
[
R0(n)2]1/2 ≤ |Gn|−1/2

n−pn−1∑
k=0

E
[
MGk

(f̃n−k)
2]1/2

≤ c2−n/2
n−pn−1∑

k=0

√
k + 12k/2 ≤ Cc

√
n2−pn/2.

Then use that limn→∞ pn/n = 1 to conclude. �

We have the following lemma.

LEMMA 5.2. Under the assumptions of Theorem 3.4, we have the following convergence:

lim
n→∞n−1

E
[
R1(n)2] = 0.

PROOF. Following the proof of Lemma 4.2 with the same notation, and using that
2α2 = 1 so that

∑n−pn−1
k=0 (2α2)k = n − pn in (36), we get that there exists g3 ∈ F such that

E[R1(�, n)2] ≤ (n − pn + 1)(2α)−2�〈ν, g3〉, where R1(�, n) is defined in (35). As 2α = √
2

and R1(n) = ∑pn

�=0 R1(�, n), we deduce that

(
E

[
R1(n)2])1/2 ≤

pn∑
�=0

(
E

[
R1(�, n)2])1/2 ≤ 4

√
n − pn + 1〈ν, g3〉1/2.

Use that limn→∞ pn/n = 1 to conclude. �

Recall �n(f) defined in (31), and its bracket defined by V (n) = ∑
i∈Gn−pn

E[�n,i(f)
2|Fi]

defined in (37). Recall, see (38), that V (n) = V1(n) + 2V2(n) − R2(n). We study the conver-
gence of each term of the latter right-hand side.

LEMMA 5.3. Under the assumptions of Theorem 3.4, we have the following convergence:

lim
n→∞n−1/2

E
[
R2(n)

] = 0.
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PROOF. Following the proof of Lemma 4.3 with the same notation and using that 2α2 =
1 so that

∑pn

�=0(2α)� ≤ C2pn/2 in (39), we get that E[R2(n)] ≤ C〈ν, g1〉, with g1 ∈ F . This
gives the result. �

Recall f ∗
k,� defined in (26). For k, �, r ∈ N, we will consider the C-valued functions on S2,

(49) fk,�,r =
(∑

j∈J

θr
jRj (fk)

)
⊗sym

(∑
j∈J

θr+k−�
j Rj (f�)

)
and f ◦

k,�,r = fk,�,r − f ∗
k,�.

LEMMA 5.4. Under the assumptions of Theorem 3.4, we have that a.s.

lim
n→∞n−1V2(n) = �crit

2 (f)

with �crit
2 (f) defined by (25) which is well defined and finite.

PROOF. We keep the decomposition (40) of V2(n) = V5(n) + V6(n) given in the proof
of Lemma 4.4. We first consider the term V6(n) given in (41) by

(50) V6(n) = |Gn−pn |−1MGn−pn
(H6,n),

with

H6,n = ∑
0≤�<k≤pn

r≥0

h
(n)
k,�,r1{r+k<pn} and

h
(n)
k,�,r = 2r−�Qpn−1−(r+k)(P(

Qr f̃k ⊗sym Qk−�+r f̃�

))
.

We set

H̄6,n = ∑
0≤�<k≤pn;r≥0

h̄
(n)
k,�,r1{r+k<pn}

where for 0 ≤ � < k ≤ pn and 0 ≤ r < pn − k,

h̄
(n)
k,�,r = 2r−�αk−�+2rQpn−1−(r+k)(Pfk,�,r ) = 2−(k+�)/2Qpn−1−(r+k)(Pfk,�,r ),

where we used that 2α2 = 1. We have∣∣h(n)
k,�,r − h̄

(n)
k,�,r

∣∣ ≤ 2r−�Qpn−1−(r+k)(P(∣∣Qr f̃k ⊗sym Qk−�+r f̃� − αk−�+2rfk,�,r

∣∣))
≤ C2r−�βrα

k−�+2rQpn−1−(r+k)(P(g ⊗ g)
)

≤ Cβr2−(k+�)/2g∗
1 ,

where we wrote (with r ′ and f replaced by r and fk and by k − � + r and f�) that

Qr ′
f̃ =Qr ′

f̂ + αr ′ ∑
j∈J

θr ′
j Rj (f )

and used (27), (28) and that (βn, n ∈ N) is nondecreasing for the second inequality and used
(3) (with f and g replaced by P(g ⊗ g) and g∗

1 ) for the last. We deduce that

|H6,n − H̄6,n| ≤
∑

0≤�<k≤pn,r≥0

∣∣h(n)
k,�,r − h̄

(n)
k,�,r

∣∣1{r+k<pn} ≤ C

(
n∑

r=0

βr

)
g∗

1 .

As limn→∞ βn = 0, we get that limn→∞ n−1 ∑n
r=0 βr = 0. We deduce from (9) that a.s.

(51) lim
n→∞n−1|Gn−pn |−1MGn−pn

(|H6,n − H̄6,n|) = 0.
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We set H
[n]
6 = ∑

0≤�<k≤pn;r≥0 hk,�,r1{r+k<pn} with for 0 ≤ � < k ≤ pn and 0 ≤ r < pn −
k,

hk,�,r = 2−(k+�)/2〈μ,Pfk,�,r〉 = 〈
μ, h̄

(n)
k,�,r

〉
.

Notice that∣∣h̄(n)
k,�,r − hk,�,r

∣∣
≤ 2−(k+�)/2

∑
j,j ′∈J

∣∣Qpn−1−(r+k)(P(Rjfk ⊗sym Rj ′f�)
) − 〈

μ,P(Rjfk ⊗sym Rj ′f�)
〉∣∣

≤ 2−(k+�)/2αpn−1−(r+k)
∑

j,j ′∈J

gk,�,j,j ′

= 2−(k+�)/2αpn−1−(r+k)gk,�,

where we used (4) (with f and g replaced by P(Rjfk ⊗sym Rj ′f�) and gk,�,j,j ′) for the
second inequality and gk,� = ∑

j,j ′∈J gk,�,j,j ′ for the equality. We have that gk,� belongs
to F . Since |Pfk,�,r | ≤ P|fk,�,r | ≤ 4P(g ⊗ g), thanks to the fourth inequality in (28), we
deduce from (3) (with f and g replaced by 4P(g ⊗ g) and g∗

2 ) that for all 0 ≤ � < k and
0 ≤ r < pn − k, ∣∣h̄(n)

k,�,r

∣∣ ≤ 2−(k+�)/2g∗
2 and |hk,�,r | ≤ 2−(k+�)/2〈

μ,g∗
2
〉
.

Set r0 ∈ N and gr0 = ∑
0≤�<k≤r0

gk,�. Notice that gr0 belongs to F and is nonnegative. Fur-
thermore, we have for n large enough so that pn > 2r0,

∣∣H̄6,n − H
[n]
6

∣∣ ≤ ∑
0≤�<k≤pn

r≥0

∣∣h̄(n)
k,�,r − hk,�,r

∣∣1{r+k<pn}

≤ ∑
0≤�<k≤r0

pn−k−1∑
r=0

2−(k+�)/2αpn−1−(r+k)gr0

+ ∑
0≤�<k≤pn

k>r0

pn−k−1∑
r=0

(∣∣h̄(n)
k,�,r

∣∣ + |hk,�,r |)1{r+k<pn}

≤ Cgr0 + ∑
0≤�<k≤pn,k>r0

(pn − k)2−(k+�)/2(
g∗

2 + 〈
μ,g∗

2
〉)

≤ Cgr0 + Cn2−r0/2(
g∗

2 + 〈
μ,g∗

2
〉)
.

We deduce that

lim sup
n→∞

n−1|Gn−pn |−1MGn−pn

(∣∣H̄6,n − H
[n]
6

∣∣) ≤ C2−r0/2〈
μ,g∗

2
〉
.

Since r0 can be arbitrary large, we get that

(52) lim
n→∞n−1|Gn−pn |−1MGn−pn

(∣∣H̄6,n − H
[n]
6

∣∣) = 0.

We set for k, � ∈N,

h∗
k,� = 2−(k+�)/2〈

μ,P
(
f ∗

k,�

)〉
.
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Using the last inequality in (28) and the definition (26) of f ∗
k,�, we deduce there exists a finite

constant c independent of n such that, for all k, � ∈ N, |h∗
k,�| ≤ c2−(k+�)/2. This implies that

H ∗
0 = ∑

0≤�<k(k + 1)|h∗
k,�| is finite and (see (25)) the sum

H ∗
6 (f) = ∑

0≤�<k<∞
h∗

k,� = �crit
2 (f)

is well defined and finite. We write

hk,�,r = h∗
k,� + h◦

k,�,r ,

with

h◦
k,�,r = 2−(k+�)/2〈

μ,Pf ◦
k,�,r

〉
,

where we recall that f ◦
k,�,r = fk,�,r − f ∗

k,�, and

(53) H
[n]
6 = H

[n],∗
6 + H

[n],◦
6

with

H
[n],∗
6 = ∑

0≤�<k≤pn

(pn − k)h∗
k,� and H

[n],◦
6 = ∑

0≤�<k≤pn;r≥0

h◦
k,�,r1{r+k<pn}.

Recall limn→∞ pn/n = 1. We have∣∣n−1H
[n],∗
6 − H ∗

6 (f)
∣∣ ≤ ∣∣n−1pn − 1

∣∣∣∣H ∗
6 (f)

∣∣ + n−1H ∗
0 + ∑

0≤�<k<∞
k>pn

∣∣h∗
k,�

∣∣,

so that limn→∞ |n−1H
[n],∗
6 − H ∗

6 (f)| = 0 and thus

(54) lim
n→∞n−1H

[n],∗
6 = H ∗

6 (f).

We now prove that n−1H
[n],◦
6 converges towards 0. We have

(55) f ◦
k,�,r = ∑

j,j ′∈J,θj θj ′ �=1

(θj ′θj )
rθk−�

j ′ Rjfk ⊗sym Rj ′f�.

This gives

∣∣H [n],◦
6

∣∣ =
∣∣∣∣ ∑
0≤�<k≤pn,r≥0

2−(k+�)/2〈
μ,Pf ◦

k,�,r

〉
1{r+k<pn}

∣∣∣∣

≤ ∑
0≤�<k≤pn

2−(k+�)/2
∑

j,j ′∈J,θj θj ′ �=1

∣∣〈μ,P(Rjfk ⊗sym Rj ′f�)
〉∣∣∣∣∣∣∣

pn−k−1∑
r=0

(θj ′θj )
r

∣∣∣∣∣
≤ c,

with c = c2
J 〈μ,P(g ⊗ g)〉∑

0≤�<k≤pn
2−(k+�)/2 ∑

j,j ′∈J,θj θj ′ �=1 |1 − θj ′θj |−1, and where we
used (55) for the first inequality, the last inequality of (28) for the second. Since J is finite,
we deduce that c is finite. This gives that limn→∞ n−1H

[n],◦
6 = 0. Recall that H

[n]
6 and H ∗

6 (f)

are complex numbers (i.e., constant functions). Use (53) and (54) to get that

lim
n→∞n−1H

[n]
6 = H ∗

6 (f)

so that, as |Gn−pn |−1MGn−pn
(·) is a probability measure, a.s.

(56) lim
n→∞n−1|Gn−pn |−1MGn−pn

(
H

[n]
6

) = H ∗
6 (f).
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In conclusion, use (51), (52), (56) and the definition (50) of V6(n) to deduce that a.s.

lim
n→∞n−1V6(n) = H ∗

6 (f) = ∑
0≤�<k<∞

2−(k+�)/2〈μ,Pf ∗
k,�

〉 = �crit
2 (f),

where f ∗
k,� is defined in (26) and �crit

2 (f) in (25). Recall that

V5(n) = |Gn|−1
∑

i∈Gn−pn

∑
0≤�<k≤pn

2pn−�Qpn−k(f̃kQk−�f̃�

)
(Xi) = |Gn−pn |−1MGn−pn

(�n),

where

�n = ∑
0≤�<k≤pn

2−�Qpn−k(f̃kQk−�f̃�

)
.

We have

|�n| ≤
∑

0≤�<k≤pn

2−�αk−�Qpn−k(g2) ≤ ∑
0≤�<k≤pn

2−(k+�)/2g1 ≤ Cg1,

where we used (4) for the first inequality and (3) (with f and g replaced by g2 and g1) in the
second. Then, use (9) to conclude that a.s.

lim
n→∞n−1V5(n) = 0.

This ends the proof of the lemma. �

Using similar arguments as in the proof of Lemma 5.4, we get the following result.

LEMMA 5.5. Under the assumptions of Theorem 3.4, we have that a.s.

lim
n→∞n−1V1(n) = �crit

1 (f)

with �crit
1 (f) defined by (24) which is well defined and finite.

PROOF. We recall V1(n) = V3(n) + V4(n), see (43) and thereafter for the definition of
V3(n) and V4(n). We first consider the term V3(n). Recall that V3(n) = |Gn−p|MGn−pn

(�n)

with �n = ∑pn

�=0 2−�Qpn−�(f̃ 2
� ). We have f̃ 2

� ≤ g2 and Qpn−�(g2) ≤ g1 for some g1 ∈ F

and thus |�n| ≤ 2g1. We therefore deduce that a.s. limn→∞ n−1V3(n) = 0.
We consider the term V4(n) = |Gn−pn |−1MGn−pn

(H4,n) (see (44)) with H4,n given by (45),

H4,n = ∑
�≥0,k≥0

h
(n)
�,k1{�+k<pn} and h

(n)
�,k = 2k−�Qpn−1−(�+k)(P(

Qkf̃�⊗2))
.

Recall f�,�,k defined in (49). We set H̄4,n = ∑
�≥0,k≥0 h̄

(n)
�,k1{�+k<pn} with

h̄
(n)
�,k = 2k−�α2kQpn−1−(�+k)(Pf�,�,k) = 2−�Qpn−1−(�+k)(Pf�,�,k),

where we used that 2α2 = 1. We have∣∣h(n)
�,k − h̄

(n)
�,k

∣∣ ≤ 2k−�Qpn−1−(�+k)(P(∣∣Qkf̃� ⊗Qkf̃� − α2kf�,�,k

∣∣))
≤ C2k−�βkα

2kQpn−1−(�+k)(P(g ⊗ g)
)

≤ βk2−�g∗
1 ,
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with g∗
1 ∈ F , where we used (27), with the representation Qkf̃� = Qkf̂�+αk ∑

j∈J θk
j Rj (f�),

(28) for the second inequality and (3) for the last. We deduce that

|H4,n − H̄4,n| ≤
∑

�≥0,k≥0

∣∣h(n)
�,k − h̄

(n)
�,k

∣∣1{�+k<pn} ≤ 2

(
n∑

k=0

βk

)
g∗

1 .

As limn→∞ βn = 0, we get that limn→∞ n−1 ∑n
k=0 βk = 0. We deduce from (9) that a.s.

(57) lim
n→∞n−1|Gn−pn |−1MGn−pn

(|H4,n − H̄4,n|) = 0.

We set H
[n]
4 = ∑

�≥0,k≥0 h�,k1{�+k<pn} with

h�,k = 2−�〈μ,Pf�,�,k〉.
Notice that∣∣h̄(n)

�,k − h�,k

∣∣ ≤ 2−�
∑

j,j ′∈J

∣∣Qpn−1−(�+k)(P(Rjf� ⊗sym Rj ′f�)
) − 〈

μ,P(Rjf� ⊗sym Rj ′f�)
〉∣∣

≤ 2−�αpn−1−(�+k)
∑

j,j ′∈J

g�,j,j ′

= 2−�αpn−1−(�+k)g�,

where we used (4) (with f and g replaced by P(Rjf� ⊗ Rj ′f�) and g�,j,j ′) for the second
inequality and g� = ∑

j,j ′∈J g�,j,j ′ for the equality. We have that g� belongs to F . Since
|Pf�,�,k| ≤ P|f�,�,k| ≤ 4P(g ⊗ g), thanks to the fourth inequality in (28), we deduce from
(3) (with f and g replaced by 4P(g ⊗ g) and g∗

2 ) that∣∣h̄(n)
�,k

∣∣ ≤ 2−�g∗
2 and |h�,k| ≤ 2−�〈μ,g∗

2
〉
.

Set r0 ∈ N and gr0 = ∑
0≤�≤r0

g�. Notice that gr0 belongs to F and is nonnegative. Further-
more, we have for n large enough so that pn > 2r0,∣∣H̄4,n − H

[n]
4

∣∣ ≤ ∑
�≥0,k≥0

∣∣h̄(n)
�,k − h�,k

∣∣1{�+k<pn}

≤ ∑
0≤�≤r0,k≥0

2−�αpn−1−(�+k)gr01{�+k<pn}

+ ∑
�>r0,k≥0

(∣∣h̄(n)
�,k

∣∣ + |h�,k|)1{�+k<pn}

≤ Cgr0 + ∑
�>r0

(pn − �)2−�(g∗
2 + 〈

μ,g∗
2
〉)

1{�<pn}

≤ Cgr0 + n2−r0
(
g∗

2 + 〈
μ,g∗

2
〉)
.

We deduce that

lim sup
n→∞

n−1|Gn−pn |−1MGn−pn

(∣∣H̄4,n − H
[n]
4

∣∣) ≤ 21−r0
〈
μ,g∗

2
〉
.

Since r0 can be arbitrary large, we get that a.s.

(58) lim
n→∞n−1|Gn−pn |−1MGn−pn

(∣∣H̄4,n − H
[n]
4

∣∣) = 0.

Now we study the limit of H
[n]
4 . We set for k, � ∈ N,

h∗
� = 2−�〈μ,Pf ∗

�,�

〉
.
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Using the last inequality in (28) and the definition (26) of f ∗
�,�, we deduce that there exists a

finite constant c independent of n (but depending on f) such that, for all � ∈ N, |h∗
� | ≤ c2−�.

This implies that H ∗
0 = ∑

�≥0(� + 1)|h∗
� | is finite and the sum

H ∗
4 (f) = ∑

�≥0

h∗
�

is well defined and finite. We write

h�,k = h∗
� + h◦

�,k,

with h◦
�,k = 2−�〈μ,Pf ◦

�,�,k〉, where f ◦
�,�,k = f�,�,k − f ∗

�,� is defined in (49), and

H
[n]
4 = H

[n],∗
4 + H

[n],◦
4 ,

with H
[n],∗
4 = ∑

�≥0(pn − �)h∗
� and H

[n],◦
4 = ∑

�≥0,k≥0 h◦
�,k1{�+k<pn}. We have∣∣n−1H

[n],∗
4 − H ∗

4 (f)
∣∣ ≤ ∣∣n−1pn − 1

∣∣H ∗
4 (f) + n−1H ∗

0 + ∑
�>pn

∣∣h∗
�

∣∣,
so that limn→∞ |n−1H

[n],∗
4 − H ∗

4 (f)| = 0 and thus

(59) lim
n→∞n−1H

[n],∗
4 = H ∗

4 (f).

We now prove that n−1H
[n],◦
4 converges towards 0. We have

(60) f ◦
�,�,k = ∑

j,j ′∈J,θj θj ′ �=1

(θj ′θj )
kRj ′f� ⊗sym Rjf�.

This gives
∣∣H [n],◦

4

∣∣ =
∣∣∣∣ ∑
�≥0,k≥0

2−�〈μ,Pf ◦
�,�,k

〉
1{�+k<pn}

∣∣∣∣

≤ ∑
�≥0

2−�
∑

j,j ′∈J,θj θj ′ �=1

∣∣〈μ,P(Rj ′f� ⊗Rjf�)
〉∣∣∣∣∣∣∣

pn−�−1∑
k=0

(θj ′θj )
k

∣∣∣∣∣
≤ c,

with c = c2
J 〈μ,P(g⊗g)〉∑

�≥0 2−� ∑
j,j ′∈J,θj θj ′ �=1 |1 − θj ′θj |−1, and where we used (60) for

the first inequality, the last inequality of (28) for the second. Since J is finite, we deduce that
c is finite. This gives that limn→∞ n−1H

[n],◦
4 = 0. Recall that H

[n]
4 and H ∗

4 (f) are constant
complex numbers. Use (59) to get that

lim
n→∞n−1H

[n]
4 = H ∗

4 (f)

so that, as |Gn−pn |−1MGn−pn
(·) is a probability measure, a.s.

(61) lim
n→∞n−1|Gn−pn |−1MGn−pn

(
H

[n]
4

) = H ∗
4 (f).

In conclusion, use (57), (58), (61) and the definition (44) of V4(n) to deduce that a.s.

lim
n→∞n−1V4(n) = H ∗

4 (f) = ∑
�≥0

2−�〈μ,Pf ∗
�,�

〉 = �crit
1 (f),

where f ∗
�,� is defined in (26) and �crit

1 (f) in (24). �

The proof of the next lemma is a direct consequence of (38) and Lemmas 5.3, 5.5 and 5.4.
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LEMMA 5.6. Under the assumptions of Theorem 3.4, we have the following convergence
in probability:

lim
n→∞n−1V (n) = �crit

1 (f) + 2�crit
2 (f),

where �crit
1 (f) and �crit

2 (f), defined by (24) and (25), are well defined and finite.

We now check the Lindeberg condition. Recall R3(n) defined in (47).

LEMMA 5.7. Under the assumptions of Theorem 3.4, we have that limn→∞ n−2R3(n) =
0.

PROOF. Keeping the notation of Lemma 4.7, using Lemma 7.2 (with the main contribu-
tion coming from ψ8,n and ψ9,n therein), we get (compare with (48)) that for n ≥ pn ≥ � ≥ 0,

|hn,�| ≤ (pn − �)222(pn−�)g1,

with hn,�(x) = Ex[MGpn−�
(f̃�)

4] and g1 ∈ F . Following the proof of Lemma 4.7, we get that

n−2R3(n) ≤ 16n32−(n−pn)〈ν, g2〉.
This ends the proof as limn→∞ pn = ∞ and limn→∞ n−pn −λ log(pn) = +∞ for all λ > 0.

�

The proof of Theorem 3.4 mimics then the proof of Theorem 3.1.

6. Proof of Lemma 3.8 and of Theorem 3.9.

6.1. Proof of Lemma 3.8. Let f ∈ F and j ∈ J . Use that Rj (F ) ⊂ CF to deduce that
E[|Mn,j (f )|2] is finite. We have, for n ∈ N

∗,

E
[
Mn,j (f )|Hn−1

] = (2αj )
−n

∑
i∈Gn−1

E
[
Rjf (Xi0) +Rj f (Xi1)|Hn−1

]

= (2αj )
−n

∑
i∈Gn−1

2QRjf (Xi)

= (2αj )
−(n−1)

∑
i∈Gn−1

Rjf (Xi)

= Mn−1,j (f ),

where the second equality follows from branching Markov property. This gives that Mj(f )

is a H-martingale. We also have, writing fj for Rj (f ),

E
[∣∣Mn,j (f )

∣∣2] = (2α)−2n
E

[
MGn

(fj )MGn
(f j )

]
= (

2α2)−n〈
ν,Qn(|fj |2)〉

+ (2α)−2n
n−1∑
k=0

2n+k 〈ν,Qn−k−1P
(
Qkfj ⊗sym Qkf j

)〉

= (
2α2)−n〈

ν,Qn(|fj |2)〉
(62)

+ (
2α2)−n

n−1∑
k=0

(
2α2)k 〈

ν,Qn−k−1P(fj ⊗sym f j )
〉
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≤ (
2α2)−n〈ν, g1〉 + (

2α2)−n
n−1∑
k=0

(
2α2)k〈ν, g2〉

≤ 〈ν, g3〉,
where we used the definition of Mn,j for the first equality, (74) with m = n for the sec-
ond equality, the fact that fj (resp. f j ) is an eigenfunction associated to the eigenvalue αj

(resp. αj ) for the third equality, (3) twice (with f and g replaced by |fj |2 and g1 and by
P(fj ⊗sym f j ) and g2) for the first inequality and 2α2 > 1 as well as g3 = g1 +g2/(2α2 −1)

for the last inequality. Since g3 belongs to F and does not depend on n, this implies that
supn∈N E[|Mn,j (f )|2] < +∞. Thus the martingale Mj(f ) converges a.s. and in L2 towards
a limit.

6.2. Proof of Theorem 3.9. Recall the sequence (βn, n ∈ N) defined in Assumption 2.6
and the σ -field Hn = σ {Xu,u ∈ Tn}. Let (p̂n, n ∈ N) be a sequence of integers such that p̂n

is even and (for n ≥ 3),

(63)
5n

6
< p̂n < n, lim

n→∞(n − p̂n) = ∞ and lim
n→∞α−(n−p̂n)βp̂n/2 = 0.

Notice such sequences exist. We deduce from (16) that

(64) Nn,∅(f) = R0(n) + R4(n) + Tn(f),

with notation from (32) and (33),

R0(n) = |Gn|−1/2
n−p̂n−1∑

k=0

MGk
(f̃n−k),

Tn(f) = R1(n) = ∑
i∈Gn−p̂n

E
[
Nn,i(f)|Hn−p̂n

]
,

R4(n) = �n = ∑
i∈Gn−p̂n

(
Nn,i(f) −E

[
Nn,i(f)|Hn−p̂n

])
.

Furthermore, using the branching Markov property, we get for all i ∈ Gn−p̂n
,

(65) E
[
Nn,i(f)|Hn−p̂n

] = E
[
Nn,i(f)|Xi

]
.

We have the following elementary lemma.

LEMMA 6.1. Under the assumptions of Theorem 3.9, we have the following convergence:

lim
n→∞

(
2α2)−n

E
[
R0(n)2] = 0.

PROOF. We follow the proof of Lemma 4.1. As 2α2 > 1, we get that E[MGk
(f̃n−k)

2] ≤
2k(2α2)k〈ν, g〉 for some g ∈ F and all n ≥ k ≥ 0. This implies, see (34), that for some con-
stant C which does not depend on n or p̂n,

E
[
R0(n)2]1/2 ≤ C2−p̂n/2(

2α2)(n−p̂n)/2
.

It follows from the previous inequality that (2α2)−n
E[R0(n)2] ≤ C(2α)−2p̂n . Then use 2α >

1 and limn→∞ p̂n = ∞ to conclude. �

Next, we have the following lemma.
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LEMMA 6.2. Under the assumptions of Theorem 3.9, we have the following convergence:

lim
n→∞

(
2α2)−n

E
[
R4(n)2] = 0.

PROOF. First we have

(66)

E
[
R4(n)2] = E

[( ∑
i∈Gn−p̂n

(
Nn,i(f) −E

[
Nn,i(f)|Xi

]))2]

= E

[ ∑
i∈Gn−p̂n

E
[(

Nn,i(f) −E
[
Nn,i(f)|Xi

])2|Hn−p̂n

]]

≤ E

[ ∑
i∈Gn−p̂n

E
[
Nn,i(f)

2|Xi

]]
,

where we used (65) for the first equality and the branching Markov chain property for the
second and the last inequality. Note that for all i ∈ Gn−p̂n

we have

E
[
E

[
Nn,i(f)

2|Xi

]] = |Gn|−1
E

[( p̂n∑
�=0

MiGp̂n−k
(f̃�)

)2

|Xi

]

≤ |Gn|−1

( p̂n∑
�=0

EXi

[
MGp̂n−�

(f̃�)
2]1/2

)2

,

where we used the definition of Nn,i(f) for the equality and the Minkowski’s inequality for
the last inequality. We have

EXi

[
MGp̂n−�

(f̃�)
2] = 2p̂n−�Qp̂n−�(f̃ 2

�

)
(Xi)

+
p̂n−�−1∑

k=0

2p̂n−�+kQp̂n−�−k−1(
P

(
Qkf̃� ⊗Qkf̃�

))
(Xi)

≤ 2p̂n−�g2(Xi) +
p̂n−�−1∑

k=0

2p̂n−�+kα2kQp̂n−�−k−1(
P(g1 ⊗ g1)

)
(Xi)

≤ 2p̂n−�g2(Xi) +
p̂n−�−1∑

k=0

2p̂n−�(2α2)k
g3(Xi)

≤ (2α)2(p̂n−�)g4(Xi),

where we used (73) for the first equality, (ii) of Assumption 2.2 and (5) for the first inequality,
(3) and (iv) of Assumption 2.2 for the second, and 2α2 > 1 for the last. The latter inequality
implies that, with g5 equal to g4 up to a finite multiplicative constant,

(67) E
[
Nn,i(f)

2|Xi

]] ≤ |Gn|−1

( p̂n∑
�=0

(2α)(p̂n−�)

)2

g4(Xi) = 2−n(2α)2p̂ng5(Xi).

Using (66), (67) and (72) as well as Assumption 2.3 with g6 ∈ F , we get(
2α2)−n

E
[
R4(n)2] ≤ (

2α2)−n2n−p̂n2−n(2α)2p̂n
〈
ν,Qng5

〉 ≤ (
2α2)−(n−p̂n)〈ν, g6〉.

We then conclude using that 2α2 > 1 and limn→∞(n − p̂n) = ∞. �
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Now, we study the third term of the right-hand side of (64). First, note that

Tn(f) = ∑
i∈Gn−p̂n

E
[
Nn,i(f)|Xi

]

= ∑
i∈Gn−p̂n

|Gn|−1/2
p̂n∑
�=0

EXi

[
MGp̂n−�

(f̃�)
]

= |Gn|−1/2
∑

i∈Gn−p̂n

p̂n∑
�=0

2p̂n−�Qp̂n−�(f̃�)(Xi),

where we used (65) for the first equality, the definition (12) of Nn(f) for the second equality
and (72) for the last equality. Next, projecting in the eigenspace associated to the eigenvalue
αj , we get

Tn(f) = T (1)
n (f) + T (2)

n (f),

where, with f̂ = f − 〈μ,f 〉 − ∑
j∈J Rj (f ) defined in (22),

T (1)
n (f) = |Gn|−1/2

∑
i∈Gn−p̂n

p̂n∑
�=0

2p̂n−�(Qp̂n−�(f̂�)
)
(Xi),

T (2)
n (f) = |Gn|−1/2

∑
i∈Gn−p̂n

p̂n∑
�=0

2p̂n−�αp̂n−�
∑
j∈J

θ
p̂n−�
j Rj (f�)(Xi).

We have the following lemma.

LEMMA 6.3. Under the assumptions of Theorem 3.9, we have the following convergence:

lim
n→∞

(
2α2)−n/2

E
[∣∣T (1)

n (f)
∣∣] = 0.

PROOF. We have

(
2α2)−n/2

E
[∣∣T (1)

n (f)
∣∣] ≤ (2α)−n

E

[ ∑
i∈Gn−p̂n

p̂n∑
�=0

2p̂n−�
∣∣Qp̂n−�(f̂�)(Xi)

∣∣]

≤ (2α)−n
E

[ ∑
i∈Gn−p̂n

p̂n∑
�=0

2p̂n−�αp̂n−�βp̂n−�g(Xi)

]

=
p̂n∑
�=0

2−�α−(n−p̂n+�)βp̂n−�

〈
ν,Qn−p̂ng

〉
,

where we used the definition of T
(1)
n (f) for the first inequality, (27) for the second and (72)

for the equality. Using (3) and the property (iii), we get that there is a finite positive constant
C independent of n and p̂n such that 〈ν,Qn−p̂ng〉 < C. We have

p̂n/2∑
�=0

2−�α−(n−p̂n+�)βp̂n−� ≤ α−(n−p̂n)βp̂n/2

p̂n/2∑
�=0

(2α)−�.
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Using the third condition in (63) and that 2α > 1, we deduce the right-hand side converges to
0 as n goes to infinity. Without loss of generality, we can assume that the sequence (βn, n ∈
N

∗) is bounded by 1. Since α > 1/
√

2, we also have

p̂n∑
�=p̂n/2

2−�α−(n−p̂n+�)βp̂n−� ≤ (1 − 2α)−12−p̂n/2α−n+p̂n/2 ≤ (1 − 2α)−12n/2−3p̂n/4.

Using that n/2 − 3p̂n/4 < −n/8, thanks to the first condition in (63), we deduce the right-
hand side converges to 0 as n goes to infinity. Thus, we get that

lim
n→∞

(
2α2)−n/2

E
[∣∣T (1)

n (f)
∣∣] = 0. �

Now, we deal with the term T
(2)
n (f) in the following result. Recall M∞,j defined in

Lemma 3.8.

LEMMA 6.4. Under the assumptions of Theorem 3.9, we have the following convergence:(
2α2)−n/2

T (2)
n (f) − ∑

�∈N
(2α)−�

∑
j∈J

θn−�
j M∞,j (f�)

P−−−→
n→∞ 0.

PROOF. By definition of T 2
n (f), we have

T 2
n (f) = 2−n/2

p̂n∑
�=0

(2α)n−�
∑
j∈J

θn−�
j Mn,j (f�)

and thus

(68)

(
2α2)−n/2

T (2)
n (f) − ∑

�∈N
(2α)−�

∑
j∈J

θn−�
j M∞,j (f�)

=
p̂n∑
�=0

(2α)−�
∑
j∈J

θn−�
j

(
Mn,j (f�) − M∞,j (f�)

)

−
∞∑

�=p̂n+1

(2α)−�
∑
j∈J

θn−�
j M∞,j (f�).

Using that |θj | = 1, we get

E

[∣∣∣∣∣
p̂n∑
�=0

(2α)−�
∑
j∈J

θ
n+p̂n−�
j

(
Mn,j (f�) − M∞,j (f�)

)∣∣∣∣∣
]

≤
p̂n∑
�=0

(2α)−�
∑
j∈J

E
[∣∣Mn,j (f�) − M∞,j (f�)

∣∣].
Now, using (5), a close inspection of the proof of Lemma 3.8, see (62), reveals to us that there
exists a finite constant C (depending on f) such that for all j ∈ J , we have

sup
�∈N

sup
n∈N

E
[∣∣Mn,j (f�)

∣∣2] ≤ C.

The L2(ν) convergence in Lemma 3.8 yields that

(69) sup
�∈N

E
[∣∣M∞,j (f�)

∣∣2] ≤ C and sup
�∈N

sup
n∈N

∑
j∈J

E
[∣∣Mn,j (f�) − M∞,j (f�)

∣∣] < 2|J |√C.
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Since Lemma 3.8 implies that limn→∞E[|Mn,j (f�)−M∞,j (f�)|] = 0, we deduce, as 2α > 1
by the dominated convergence theorem that

(70) lim
n→+∞E

[∣∣∣∣∣
p̂n∑
�=0

(2α)−�
∑
j∈J

θ
n+p̂n−�
j

(
Mn,j (f�) − M∞,j (f�)

)∣∣∣∣∣
]

= 0.

On the other hand, we have

(71)

E

[∣∣∣∣∣
∞∑

�=p̂n+1

(2α)−�
∑
j∈J

θn−�
j M∞,j (f�)

∣∣∣∣∣
]

≤
∞∑

�=p̂n+1

(2α)−�
∑
j∈J

E
[∣∣M∞,j (f�)

∣∣]

≤ |J |√C

∞∑
�=p̂n+1

(2α)−�,

where we used |θj | = 1 for the first inequality and the Cauchy–Schwarz inequality and (69)
for the second inequality. Finally, from (68), (70) and (71) (with limn→∞

∑∞
�=p̂n+1(2α)−� =

0), we get the result of the lemma. �

7. Moments formula for BMC. Let X = (Xi, i ∈ T) be a BMC on (S,S ) with prob-
ability kernel P . Recall that |Gn| = 2n and MGn

(f ) = ∑
i∈Gn

f (Xi). We also recall that
2Q(x,A) = P(x,A×S)+P(x, S ×A) for A ∈ S . We use the convention that

∑
∅ = 0. We

recall the following well-known and easy to establish many-to-one formulas for BMC.

LEMMA 7.1. Let f,g ∈ B(S), x ∈ S and n ≥ m ≥ 0. Assuming that all the quantities
below are well defined, we have

Ex

[
MGn

(f )
] = |Gn|Qnf (x) = 2nQnf (x),(72)

Ex

[
MGn

(f )2] = 2nQn(
f 2)

(x) +
n−1∑
k=0

2n+kQn−k−1(
P

(
Qkf ⊗Qkf

))
(x),(73)

Ex

[
MGn

(f )MGm
(g)

] = 2nQm(
gQn−mf

)
(x)

+
m−1∑
k=0

2n+kQm−k−1(
P

(
Qkg ⊗sym Qn−m+kf

))
(x).

(74)

We also give an upper bound of Ex[MGn
(f )4], which is a direct consequence of the argu-

ments given in the proof of Theorem 2.1 in [8]. Recall that g⊗2 = g ⊗ g.

LEMMA 7.2. There exists a finite constant C such that for all f ∈ B(S), n ∈ N and ν a
probability measure on S, assuming that all the quantities below are well defined, there exist
functions ψj,n for 1 ≤ j ≤ 9 such that

Eν

[
MGn

(f )4] =
9∑

j=1

〈ν,ψj,n〉,

and, with hk = Qk−1(f ) and (notice that either |ψj | or |〈ν,ψj 〉| is bounded), writing νg =
〈ν, g〉,

|ψ1,n| ≤ C2nQn(
f 4)

,

|νψ2,n| ≤ C22n
n−1∑
k=0

2−k
∣∣νQkP

(
Qn−k−1(

f 3) ⊗sym hn−k

)∣∣,
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|ψ3,n| ≤ C22n
n−1∑
k=0

2−kQkP
(
Qn−k−1(

f 2)⊗2)
,

|ψ4,n| ≤ C24nP
(∣∣P(

hn−1⊗2)⊗2∣∣),
|ψ5,n| ≤ C24n

n−1∑
k=2

k−1∑
r=0

2−2k−rQrP
(
Qk−r−1∣∣P(

hn−k⊗2)∣∣⊗2)
,

|ψ6,n| ≤ C23n
n−1∑
k=1

k−1∑
r=0

2−k−rQr
∣∣P(

Qk−r−1P
(
hn−k⊗2) ⊗sym Qn−r−1(

f 2))∣∣,

|νψ7,n| ≤ C23n
n−1∑
k=1

k−1∑
r=0

2−k−r
∣∣νQrP

(
Qk−r−1P

(
hn−k ⊗sym Qn−k−1(

f 2)) ⊗sym hn−r

)∣∣,

|ψ8,n| ≤ C24n
n−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−k−r−j

×QjP
(∣∣Qr−j−1P

(
hn−r⊗2)∣∣ ⊗sym

∣∣Qk−j−1P
(
hn−k⊗2)∣∣),

|ψ9,n| ≤ C24n
n−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−k−r−j

×Qj
∣∣P(

Qr−j−1P
(
hn−r ⊗sym Qk−r−1P

(
hn−k⊗2)) ⊗sym hn−j

)∣∣.
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