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a b s t r a c t

We consider copulas with a given diagonal section and compute the explicit density of the
unique optimal copula which maximizes the entropy. In this sense, this copula is the least
informative among the copulas with a given diagonal section. We give an explicit criterion
on the diagonal section for the existence of the optimal copula and give a closed formula for
its entropy.We also provide examples for some diagonal sections of usual bivariate copulas
and illustrate the differences between these copulas and the associated maximum entropy
copula with the same diagonal section.
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1. Introduction

Dependence of random variables can be described by copula distributions. A copula is the cumulative distribution func-
tion of a randomvectorU = (U1, . . . ,Ud)withUi uniformly distributed on I = [0, 1]. For an exhaustive overviewon copulas,
we refer to Nelsen [16]. The diagonal section δ of a d-dimensional copula C , defined on I as δ(t) = C(t, . . . , t) is the cumu-
lative distribution function of max1≤i≤d Ui. The function δ is non-decreasing, d-Lipschitz, and verifies δ(t) ≤ t for all t ∈ I
with δ(0) = 0 and δ(1) = 1. It was shown that if a function δ satisfies these properties, then there exists a copula with δ as
diagonal section (see Bertino [2] or Fredricks and Nelsen [12] for d = 2 and Cuculescu and Theodorescu [6] for d ≥ 2).

Copulas with a given diagonal section have been studied in different papers, as the diagonal sections are considered in
various fields of application. Beyond the fact that δ is the cumulative distribution function of themaximum of themarginals,
it also characterizes the tail dependence of the copula (see Joe [14, p. 33] and references in Nelsen et al. [18], Durante and
Jaworski [8], Jaworski [13]) as well as the generator for Archimedean copulas (Sungur and Yang [26]). For d = 2, Bertino
in [2] introduces the so-called Bertino copula Bδ given by Bδ(u, v) = u ∧ v − minu∧v≤t≤u∨v(t − δ(t)) for u, v ∈ I . Fredricks
and Nelsen in [12] give the example called diagonal copula defined by Kδ(u, v) = min(u, v, (δ(u) + δ(v))/2) for u, v ∈ I .
In Nelsen et al. [17,18] lower and upper bounds related to the pointwise partial ordering are given for copulas with a given
diagonal section. They showed that if C is a symmetric copula with diagonal section δ, then for every u, v ∈ I , we have:

Bδ(u, v) ≤ C(u, v) ≤ Kδ(u, v).
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Durante et al. [10] provide another construction of copulas for a certain class of diagonal sections, called MT-copulas
named after Mayor and Torrens and defined as Dδ(u, v) = max(0, δ(x ∨ y) − |x − y|). Bivariate copulas with given sub-
diagonal sections δx0 : [0, 1 − x0] → [0, 1 − x0], δx0(t) = C(x0 + t, t) are constructed from copulas with given diagonal
sections in Quesada-Molina et al. [22]. Durante et al. [9,18] introduce the technique of diagonal splicing to create new cop-
ulas with a given diagonal section based on other such copulas. According to [8] for d = 2 and Jaworski [13] for d ≥ 2, there
exists an absolutely continuous copulawith diagonal section δ if and only if the setΣδ = {t ∈ I; δ(t) = t} has zero Lebesgue
measure. de Amo et al. [7] is an extension of [8] for given sub-diagonal sections. Further construction of possibly asymmetric
absolutely continuous bidimensional copulas with a given diagonal section is provided in Erdely and González [11].

Our aim is to find the most uninformative copula with a given diagonal section δ. We choose here to maximize the
relative entropy to the uniform distribution on Id, among the copulas with given diagonal section. This is equivalent to min-
imizing the Kullback–Leibler divergence with respect to the independent copula. The Kullback–Leibler divergence is finite
only for absolutely continuous copulas. The previously introduced bivariate copulas Bδ, Kδ and Dδ are not absolutely contin-
uous, therefore their Kullback–Leibler divergence is infinite. Possible other entropy criteria, such as Rényi, Tsallis, etc. are
considered for example in Pougaza and Mohammad-Djafari [21]. We recall that the entropy of a d-dimensional absolutely
continuous random vector X = (X1, . . . , Xd) can be decomposed as the sum of the entropy of themarginals and the entropy
of the corresponding copula (see Zhao and Lin [27]):

H(X) =

d
i=1

H(Xi) + H(U),

where H(Z) = −

fZ (z) log fZ (z)dz is the entropy of the random variable Z with density fZ , and U = (U1, . . . ,Ud) is

a random vector with Ui uniformly distributed on I , such that U has the same copula as X; namely U is distributed as
F−1
1 (X1), . . . , F−1

d (Xd)

with Fi the cumulative distribution function of Xi. Maximizing the entropy of X with givenmarginals

therefore corresponds to maximizing the entropy of its copula. The maximum relative entropy approach for copulas has an
extensive literature. Existence results for an optimal solution on convex closed subsets of copulas for the total variation dis-
tance can be derived from Csiszár [5]. A general discussion on abstract entropy maximization is given by Borwein et al. [3].
This theory was applied for copulas and a finite number of expectation constraints in Bedford and Wilson [1]. Some appli-
cations for various moment-based constraints include rank correlation (Meeuwissen and Bedford [15], Chu [4], Piantadosi
et al. [20]) and marginal moments (Pasha and Mansoury [19]).

We shall apply the theory developed in [3] to compute the density of the maximum entropy copula with a given di-
agonal section. We show that there exists a copula with diagonal section δ and finite entropy if and only if δ satisfies:
I | log(t − δ(t))|dt < +∞. Notice that this condition is stronger than the condition of Σδ having zero Lebesgue measure

which is required for the existence of an absolutely continuous copula with diagonal section δ. Under this condition, and in
the case of Σδ = {0, 1}, the optimal copula’s density cδ turns out to be of the form, for x = (x1, . . . , xd) ∈ Id:

cδ(x) = b(max(x))


xi≠max(x)

a(xi),

with the notation max(x) = max1≤i≤d xi, see Proposition 2.4. The optimal copula’s density in the general case is given in
Theorem 2.5. Notice that cδ is symmetric: it is invariant under the permutation of the variables. This provides a new family
of absolutely continuous symmetric copulas with given diagonal section enriching previous work on this subject that we
discussed, see [2,8–12,18].We also calculate themaximum entropy copula for diagonal sections that arise fromwell-known
families of bivariate copulas.

The rest of the paper is organized as follows. Section 2 introduces the definitions and notations used later on, and gives
the main theorems of the paper. In Section 3 we study the properties of the feasible solution cδ of the problem for a special
class of diagonal sections with Σδ = {0, 1}. In Section 4, we formulate our problem as an optimization problem with linear
constraints in order to apply the theory established in [3]. Then in Section 5we give the proof for ourmain theorem showing
that cδ is indeed the optimal solution when Σδ = {0, 1}. In Section 6 we extend our results for the general case when Σδ

has zero Lebesgue measure. We give in Section 7 several examples with diagonals of popular bivariate copula families such
as the Gaussian, Gumbel or Farlie–Gumbel–Morgenstern copulas among others. In the Gaussian case, we illustrate how
different the Gaussian copula and the corresponding maximum entropy copula can be, by calculating conditional extreme
event probabilities.

2. Main results

Let d ≥ 2 be fixed.We recall a function C defined on Id, with I = [0, 1], is a d-dimensional copula if there exists a random
vector U = (U1, . . . ,Ud) such that Ui are uniform on I and C(u) = P(U ≤ u) for u ∈ Id, with the convention that x ≤ y for
x = (x1, . . . .xd) and y = (y1, . . . , yd) elements of Rd if and only if xi ≤ yi for all 1 ≤ i ≤ d. We shall say that C is the copula
of U . We refer to [16] for a monograph on copulas. The copula C is said absolutely continuous if the random variable U has
a density, which we shall denote by cC . In this case, we have for all u ∈ Id:

C(u) =


Id
cC (v)1{v≤u} dv.
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When there is no confusion, we shall write c for the density cC associated to the copula C . We denote by C the set of
d-dimensional copulas and by C0 the subset of the d-dimensional absolutely continuous copulas.

The diagonal section δC of a copula C is defined by: δC (t) = C(t, . . . , t). Let us note, for u ∈ Rd,max(u) = max1≤i≤d ui.
Notice that if C is the copula of U , then δC is the cumulative distribution function of max(U) as δC (t) = P(max(U) ≤ t) for
t ∈ I . We denote by D = {δC , C ∈ C} the set of diagonal sections of d-dimensional copulas and by D0 = {δC ; C ∈ C0} the set
of diagonal sections of absolutely continuous copulas. According to [12], a function δ defined on I belongs to D if and only if:
(i) δ is a cumulative function on [0, 1]: δ(0) = 0, δ(1) = 1 and δ is non-decreasing;
(ii) δ(t) ≤ t for t ∈ I and δ is d-Lipschitz: |δ(s) − δ(t)| ≤ d |s − t| for s, t ∈ I .

For δ ∈ D, we shall consider the set Cδ
= {C ∈ C; δC = δ} of copulas with diagonal section δ, and the subset Cδ

0 =

Cδ


C0 of absolutely continuous copulas with section δ. According to [8,13], the set Cδ
0 is non empty if and only if the set

Σδ = {t ∈ I; δ(t) = t} has zero Lebesgue measure.
For a non-negative measurable function f defined on Ik, k ∈ N, we set

Ik(f ) =


Ik
f (x) log(f (x)) dx,

with the convention 0 log(0) = 0. Since copulas are cumulative functions of probability measures, we will consider the
Kullback–Leibler divergence relative to the uniform distribution as a measure of entropy, see [5]:

I(C) =


Id(c) if C ∈ C0,
+∞ if C ∉ C0,

with c the density associated to C when C ∈ C0. Notice that the Shannon-entropy introduced in [25] of the probability mea-
sure P defined on Id with cumulative distribution function C is defined as H(P) = −I(C). Thus minimizing the Kullback–
Leibler divergence I (w.r.t. the uniform distribution) is equivalent to maximizing the Shannon-entropy. It is well known
that the copula Π with density cΠ = 1, which corresponds to (Ui, 0 ≤ i ≤ d) being independent, minimizes I(C) over C.

We shall minimize the Kullback–Leibler divergence I over the set Cδ or equivalently over Cδ
0 of copulas with a given

diagonal section δ ∈ D (in fact for δ ∈ D0 as otherwise Cδ
0 is empty). If C minimizes I on Cδ , it means that C is the least

informative (or the ‘‘most random’’) copula with given diagonal section δ.
For δ ∈ D, let us denote:

J (δ) =


I
|log(t − δ(t))| dt. (1)

Notice that J (δ) ∈ [0, +∞] and it is infinite if δ ∉ D0. Since δ is d-Lipschitz, the derivative δ′ of δ exists a.e. and since δ is
non-decreasing we have a.e. 0 ≤ δ′

≤ d. This implies that I1(δ
′) and I1(d − δ′) are well defined. Let us denote:

G(δ) = I1(δ
′) + I1(d − δ′) − d log(d) − (d − 1). (2)

Since for any function f such that 0 ≤ f ≤ dwe have−1/e ≤ I1(f ) ≤ d log(d), we can give a rough upper bound for |G(δ)|:

sup
δ∈D

|G(δ)| ≤ d + d log(d). (3)

For δ ∈ D0 with Σδ = {0, 1}, we define the function cδ as:

cδ(x) = b(max(x))


xi≠max(x)

a(xi) for a.e. x = (x1, . . . , xd) ∈ Id, (4)

where the functions a and b are given by, for r ∈ I:

a(r) =
d − δ′(r)

d
h(r)−1+1/deF(r) and b(r) =

δ′(r)
d

h(r)−1+1/de−(d−1)F(r), (5)

with h and F defined as:

h(r) = r − δ(r), F(r) =
d − 1
d

 r

1
2

1
h(s)

ds. (6)

Remark 2.1. Notice that we define F in (6) as an integral from 1/2 to r . However, the value 1/2 can be chosen arbitrarily on
(0, 1) as it will not affect the definition of the function cδ in (4).

The following proposition shows that cδ is an absolutely continuous copula whose diagonal section is δ. The proof of this
Proposition can be found in Section 3 and Section A.1 is dedicated to the proof of (7).

Proposition 2.2. Let δ ∈ D0 withΣδ = {0, 1}. The function cδ given by (4) is the density of a symmetric copula Cδ with diagonal
section δ.

Furthermore, we have:

I(Cδ) = (d − 1)J (δ) + G(δ). (7)
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This and (3) readily imply the following remark.

Remark 2.3. Let δ ∈ D0 such that Σδ = {0, 1}. We have I(Cδ) < +∞ if and only if J (δ) < +∞.

We can now state our main result in the simpler case Σδ = {0, 1}. It gives the necessary and sufficient condition for Cδ

to be the unique optimal solution of the minimization problem. The proof is given in Section 5.

Proposition 2.4. Let δ ∈ D0 such that Σδ = {0, 1}.
(a) If J (δ) = +∞ thenminC∈Cδ I(C) = +∞.
(b) If J (δ) < +∞ thenminC∈Cδ I(C) < +∞ and Cδ is the unique copula such that I (Cδ) = minC∈Cδ I(C).

To give the answer in the general case where Σδ has zero Lebesgue measure, which is the necessary and sufficient con-
dition for Cδ

0 ≠ ∅, we need some extra notations. Since δ is continuous, we get that I \ Σδ can be written as the union
of non-empty open disjoint intervals ((αj, βj), j ∈ J), with αj < βj and J at most countable. Notice that δ(αj) = αj and
δ(βj) = βj. For J ≠ ∅ and j ∈ J , we set ∆j = βj − αj and for t ∈ I:

δj(t) =
δ

αj + t∆j


− αj

∆j
· (8)

It is clear that δj satisfies (i) and (ii) and it belongs to D0 as Σδj = {0, 1}. Let cδj be defined by (4) with δ replaced by δj. For
δ ∈ D0 such that Σδ ≠ {0, 1}, we define the function cδ by, for u ∈ Id:

cδ(u) =


j∈J

1
∆j

cδj

u − αj1

∆j


1(αj,βj)d

(u), (9)

with 1 = (1, . . . , 1) ∈ Rd. It is easy to check that cδ is a copula density and that is zero outside [αj, βj]
d for j ∈ J . We state

our main result in the general case whose proof is given in Section 6.

Theorem 2.5. Let δ ∈ D.
(a) If J (δ) = +∞ thenminC∈Cδ I(C) = +∞.
(b) If J (δ) < +∞ then minC∈Cδ I(C) < +∞ and there exists a unique copula Cδ ∈ Cδ such that I (Cδ) = minC∈Cδ I(C).

Furthermore, we have:

I(Cδ) = (d − 1)J (δ) + G(δ);

the copula Cδ is absolutely continuous, symmetric; its density cδ is given by (4) if Σδ = {0, 1} or by (9) if Σδ ≠ {0, 1}.

Remark 2.6. For δ ∈ D, notice the condition J (δ) < +∞ implies that Σδ has zero Lebesgue measure, and therefore, ac-
cording to [8,13], δ ∈ D0. And if δ ∉ D0, then I(C) = +∞ for all C ∈ Cδ . Therefore, we could replace the condition δ ∈ D
by δ ∈ D0 in Theorem 2.5.

3. Proof of Proposition 2.2

We assume that δ ∈ D0 and Σδ = {0, 1}. We give the proof of Proposition 2.2, which states that Cδ , with density cδ given
by (4), is indeed a symmetric copula with diagonal section δ whose entropy is given by (7).

Recall the definition of h, F , a, b and cδ given by (4) to (6). Notice that by construction cδ is non-negative andwell defined
on Id. In order to prove that cδ is the density of a copula, we only have to prove that for all 1 ≤ i ≤ d, r ∈ I:

Id
cδ(u)1{ui≤r} du = r,

or equivalently
Id
cδ(u)1{ui≥r} du = 1 − r.

We define for r ∈ I:

A(r) =

 r

0
a(t) dt. (10)

Elementary computations yield for r ∈ (0, 1):

A(r) = h1/d(r) eF(r). (11)

Notice that F(0) ∈ [−∞, 0] which implies that A(0) = 0. A direct integration gives:

d

I
Ad−1(s)b(s)1{s≥r} ds = 1 − δ(r). (12)
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We also have:

(d − 1)

I
Ad−2(s)b(s)1{s≥r} ds =

(d − 1)
d


I
δ′(s)h−1/d(s)e−F(s)1{s≥r} ds

=

−h1−1/d(s)e−F(s)1

s=r

= h1−1/d(r)e−F(r), (13)

where we used for the last step that h(1) = 0 and F(1) ∈ [0, ∞]. We have:
Id
cδ(u)1{ui≥r} du =


Id
b(max(u))


uj≠max(u)

a(uj)1{ui≥r} du

=


I
Ad−1(s)b(s)1{s≥r} ds + (d − 1)


I
Ad−2(s)b(s)(A(s) − A(r))1{s≥r} ds

= d

I
Ad−1(s)b(s)1{s≥r} ds − (d − 1)A(r)


I
Ad−2(s)b(s)1{s≥r} ds

= 1 − δ(r) − h(r)
= 1 − r,

where in the second equality we separated the integral according to max(u) = ui or not and used (10), then in the fourth
equalitywe used (12) and (13). This implies that cδ is indeed the density of a copula.We denote by Cδ the copulawith density
cδ . We check that δ is the diagonal section of Cδ . Using (12), we get, for r ∈ I:

Id
cδ(u)1{max(u)≤r} du =


Id
b(max(u))


ui≠max(u)

a(ui)1{max(u)≤r} du

= d

I
Ad−1(s)b(s)1{s≤r} ds

= δ(r).

The calculations which show that the entropy of Cδ is given by (7) can be found in Appendix A.1.

4. The minimization problem

Let δ ∈ D0. As a first step we will show, using [3], that the problem of a maximum entropy copula with a given diagonal
section δ has at most a unique optimal solution. To formulate this problem in the framework of [3], we introduce the
continuous linear functional A = (Ai, 1 ≤ i ≤ d + 1) : L1(Id) → L1(I)d+1 defined by, for 1 ≤ i ≤ d, f ∈ L1(Id) and r ∈ I ,

Ai(f )(r) =


Id
f (u)1{ui≤r} du, and Ad+1(f )(r) =


Id
f (u)1{max(u)≤r} du.

We also define bδ
= (bi, 1 ≤ i ≤ d + 1) ∈ L1(I)d+1 with bd+1 = δ and bi = idI for 1 ≤ i ≤ d, with idI the identity map on I .

Notice that the conditions Ai(c) = bi, 1 ≤ i ≤ d, and c ≥ 0 a.e. imply that c is the density of a copula C ∈ C0. If we assume
further that the condition Ad+1(c) = bd+1 holds then the diagonal section of C is δ (thus C ∈ Cδ

0).
Since I is infinite outside Cδ

0 and the density of any copula in C0 belongs to L1(Id), we get that minimizing I over Cδ is
equivalent to the optimization problem (Pδ) given by:

minimize Id(c) subject to


A(c) = bδ,

c ≥ 0 a.e. and c ∈ L1(Id).
(Pδ)

We say that a function f is feasible for (Pδ) if f ∈ L1(Id), f ≥ 0 a.e., A(f ) = bδ and Id(f ) < +∞. Notice that any feasible f
is the density of a copula. We say that f is an optimal solution to (Pδ) if f is feasible and Id(f ) ≤ Id(g) for all g feasible.

Proposition 4.1. Let δ ∈ D. If there exists a feasible c, then there exists a unique optimal solution to (Pδ) and it is symmetric.

Proof. Since A(f ) = bδ implies A1(f )(1) = b1(1) that is

Id f (x) dx = 1, we can directly apply Corollary 2.3 of [3] which

states that if there exists a feasible c , then there exists a unique optimal solution to (Pδ). Since the constraints are symmetric
and the functional Id is also symmetric, we deduce that the unique optimal solution is also symmetric. �

The next proposition gives that the set of zeros of any non-negative solution c of A(c) = bδ contains:

Zδ = {u ∈ Id; δ′(max(u)) = 0 or ∃i such that ui < max(u) and δ′(ui) = d}. (14)

Proposition 4.2. Let δ ∈ D. If c is feasible then c = 0 a.e. on Zδ (that is c1Zδ = 0 a.e.).
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Proof. Recall that 0 ≤ δ′
≤ d. Since c ∈ L1(Id), the condition Ad+1(c) = bd+1, that is for all r ∈ I

Id
c(u)1{max(u)≤r} du =

 r

0
δ′(s) ds,

implies, by the monotone class theorem, that for all measurable subsets H of I , we have:
Id
c(u)1H(max(u)) du =


H

δ′(s) ds.

Since c ≥ 0 a.e., we deduce that a.e. c(u)1{δ′(max(u))=0} = 0.
Next, notice that for all r ∈ I:

Id
c(u)


d

i=1

1{ui<max(u),ui≤r}


du =

d
i=1


Id
c(u)1{ui≤r} du −


Id
c(u)1{ui=max(u),max(u)≤r} du


= dr − δ(r)

=

 r

0


d − δ′(s)


ds.

This implies that a.e. c(u)
d

i=1 1{ui<max(u),δ′(ui)=d}


= 0, that is c(u)1{∃i such that ui<max(u),δ′(ui)=d} = 0. This gives the

result. �

We define µ to be the Lebesgue measure restricted to Z c
δ = Id \ Zδ: µ(du) = 1Zcδ

(u)du. We define, for f ∈ L1(Id, µ):

Iµ(f ) =


Id
f (u) log(f (u)) µ(du).

From Proposition 4.2 we can deduce that if c is feasible then Iµ(c) = Id(c). Let us also define, for 1 ≤ i ≤ d, r ∈ I:

Aµ

i (c)(r) =


Id
c(u)1{ui≤r} µ(du), and Aµ

d+1(c)(r) =


Id
c(u)1{max(u)≤r} µ(du).

The corresponding optimization problem (Pδ
µ) is given by :

minimize Iµ(c) subject to


Aµ(c) = bδ,

c ≥ 0µ-a.e. and c ∈ L1(Id, µ),
(Pδ

µ)

with Aµ
=


Aµ

i , 1 ≤ i ≤ d + 1

. For f ∈ L1(Id, µ), we define:

f µ
=


f on Z c

δ ,
0 on Zδ.

Using Proposition 4.2, we easily get the following corollary.

Corollary 4.3. If c is a solution of (Pδ
µ), then cµ is a solution of (Pδ). If c is a solution of (Pδ), then it is also a solution of (Pδ

µ).

5. Proof of Proposition 2.4

5.1. Form of the optimal solution

Let (Aµ)∗ : L∞(I)d+1
→ L∞(Id, µ) be the adjoint of Aµ. We will use Theorem 2.9 from [3] on abstract entropy mini-

mization, which we recall here, adapted to the context of (Pδ
µ).

Theorem 5.1 (Borwein, Lewis and Nussbaum [3]). Suppose there exists c > 0 µ-a.e. which is feasible for (Pδ
µ). Then there exists

a unique optimal solution, c∗, to (Pδ
µ). Furthermore, we have c∗ > 0 µ-a.e. and there exists a sequence (λn, n ∈ N) of elements

of L∞(I)d+1 such that:
Id
c∗(x)

(Aµ)∗(λn)(x) − log(c∗(x))
 µ(dx) −−−→

n→∞
0. (15)

We first compute (Aµ)∗. For λ = (λi, 1 ≤ i ≤ d + 1) ∈ L∞(I)d+1 and f ∈ L1(Id, µ), we have:
⟨(Aµ)∗(λ), f ⟩ = ⟨λ, Aµ(f )⟩

=

d
i=1


I
λi(r)


Id
f (x)1{xi≤r}dµ(x)dr +


I
λd+1(r)


Id
f (x)1{max(x)≤r}dµ(x)dr

=


Id
f (x)


d

i=1

Λi(xi) + Λd+1(max(x))


dµ(x),
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wherewe used the definition of the adjoint operator for the first equality, Fubini’s theorem for the second, and the following
notation for the third equality:

Λi(xi) =


I
λi(r)1{r≥xi} dr, and Λd+1(t) =


I
λd+1(r)1{r≥t} dr.

Thus, we can set for λ ∈ L∞(I)d+1 and x ∈ Id:

(Aµ)∗(λ)(x) =

d
i=1

Λi(xi) + Λd+1(max(x)). (16)

Now we are ready to prove that the optimal solution c∗ of (Pδ
µ) is the product of measurable univariate functions.

Lemma 5.2. Let δ ∈ D0 such that Σδ = {0, 1}. Suppose that there exists c > 0 µ-a.e.which is feasible for (Pδ
µ). Then

there exist a∗, b∗ non-negative, measurable functions defined on I such that the optimal solution c∗ of (Pδ
µ) is given by, for

u = (u1, . . . , ud) ∈ Id:

c∗(u) = b∗(max(u))


ui≠max(u)

a∗(ui) µ-a.e.

with a∗(s) = 0 if δ′(s) = d and b∗(s) = 0 if δ′(s) = 0.

Proof. According to Theorem5.1, there exists a sequence (λn, n ∈ N) of elements of L∞(I)d+1 such that the optimal solution,
say c∗, satisfies (15). This implies, thanks to (16), that there exist d + 1 sequences (Λn

i , n ∈ N, 1 ≤ i ≤ d + 1) of elements
of L∞(I) such that the following convergence holds in L1(Id, c∗µ):

d
i=1

Λn
i (ui) + Λn

d+1(max(u)) −−−→
n→∞

log(c∗(u)). (17)

Arguing as in Proposition 4.1 and since Z c
δ , the support of µ, is symmetric, we deduce that c∗ is symmetric. Therefore we

shall only consider functions supported on the set △ = {u ∈ Id; ud = max(u)}. The convergence (17) holds in L1(△, c∗µ).
For simplicity, we introduce the functions Γ n

i ∈ L∞(I) defined by Γ n
i = Λn

i for 1 ≤ i ≤ d − 1, and Γ n
d = Λn

d + Λn
d+1. Then

we have in L1(△, c∗µ):

d
i=1

Γ n
i (ui) −−−→

n→∞
log(c∗(u)). (18)

We first assume that there exist Γi, 1 ≤ i ≤ d measurable functions defined on I such that µ-a.e. on △:

d
i=1

Γi(ui) = log(c∗(u)). (19)

The symmetric property of c∗(u) seen in Proposition 4.1 implies we can choose Γi = Γ for 1 ≤ i ≤ d − 1 up to adding a
constant to Γd. Set a∗

= exp(Γ ) and b∗
= exp(Γd) so that µ-a.e. on △:

c∗(u) = b∗(ud)

d−1
i=1

a∗(ui). (20)

Recall µ(du) = 1Zcδ
(u) du. From the definition (14) of Zδ , we deduce that without loss of generality, we can assume that

a∗(ui) = 0 if δ′(ui) = d and b∗(ud) = 0 if δ′(ud) = 0. Use the symmetry of c∗ to conclude.
To complete the proof, we now show that (19) holds for Γ and Γd measurable functions. We introduce the notation

u(−i) = (u1, . . . , ui−1, ui+1, . . . , ud) ∈ Id−1. Let us define the probability measure P(dx) = c∗(x)1△(x)µ(dx)/

△
c∗(y)µ(dy)

on Id. We fix j, 1 ≤ j ≤ d − 1. In order to apply Proposition 2 of [23], which would ensure the existence of the limiting
functions Γi, 1 ≤ i ≤ d, we first check that P is absolutely continuous with respect to P j

1 ⊗ P j
2, where P j

1(du(−j)) =

uj∈I P

(du(−j)duj) and P j
2(duj) =


u(−j)∈Id−1 P(du(−j)duj) are the marginals of P . Notice the following equivalence of measures:

P(du) ∼ 1△(u)
d−1
i=1

1{δ′(ui)≠d}1{δ′(ud)≠0} du. (21)
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Let B ⊂ Id−1 be measurable. We have:

P1(B) = 0 ⇐⇒


Id
1△(u)

d−1
i=1

1{δ′(ui)≠d}1{δ′(ud)≠0}1B(u(−j)) du = 0.

By Fubini’s theorem this last equality is equivalent to:
Id−1

d−1
i=1,i≠j


1{δ′(ui)≠d}1{ui≤ud}


1{δ′(ud)≠0}1B(u(−j))


I
1{0≤uj≤ud}1{δ′(uj)≠d} duj


du(−j) = 0. (22)

Since for ε > 0, δ(ε) < ε < dε, we have

I 1{0≤uj≤s}1{δ′(uj)≠d} duj > 0 for all s ∈ I . Therefore (22) is equivalent to

Id−1

d−1
i=1,i≠j


1{δ′(ui)≠d}1{ui≤ud}


1{δ′(ud)≠0}1B(u(−j)) du(−j) = 0.

This implies that there exists h > 0 a.e. on Id−1 such that

P j
1(du(−j)) = h(u(−j))

d−1
i=1,i≠j


1{δ′(ui)≠d}1{ui≤ud}


1{δ′(ud)≠0}du(−j).

Similarly we have for B′
⊂ I that P j

2(B
′) = 0 if and only if

I
1{δ′(uj)≠d}1B′(uj)


Id−1

d−1
i=1,i≠j


1{δ′(ui)≠d}1{ui≤ud}


1{δ′(ud)≠0} 1{ud≥uj}du(−j)


duj = 0. (23)

Since, for ε > 0, δ(1) − δ(1 − ε) > 1 − (1 − ε) = ε > 0, there exists g > 0 a.e. on I such that P j
2(duj) = g(uj)1{δ′(uj)≠d}duj.

Therefore by (21) we deduce that P is absolutely continuous with respect to P j
1 ⊗P j

2. Then according to Proposition 2 of [23],
(18) implies that there exist measurable functions Φj and Γj defined respectively on Id−1 and I , such that c∗µ-a.e. on △:

log(c∗(u)) = Φj(u(−j)) + Γj(uj).

As µ-a.e. c∗ > 0, this equality holds µ-a.e. on △. Since we have such a representation for every 1 ≤ j ≤ d− 1, we can easily
verify that there exists a measurable function Γd defined on I such that log(c∗(u)) =

d
i=1 Γi(ui) µ-a.e. on △. �

5.2. Calculation of the optimal solution

Now we prove that the optimal solution to (Pδ), if it exists, is indeed cδ .

Proposition 5.3. Let δ ∈ D0 such that Σδ = {0, 1}. If there exists a feasible solution c to (Pδ) such that c > 0 µ-a.e., then the
optimal solution to (Pδ) is cδ given by (4).

Proof. In Lemma 5.2 we have already shown that if an optimal solution exists for (Pδ), then it is of the form c∗(u) =

b∗(max(u))


ui≠max(u) a
∗(ui). Here we will prove that the constraints of (Pδ) uniquely determine the functions a∗ and b∗ up

to a multiplicative constant, giving c∗
= cδ . We set for r ∈ I:

A∗(r) =

 r

0
a∗(s) ds

which take values in [0, +∞]. From Ad+1(c∗) = bδ
d+1, we have for r ∈ I:

δ(r) =


Id
c∗(u)1{max(u)≤r} du

=


Id
b∗(max(u))


ui≠max(u)

a∗(ui)1{max(u)≤r} du

= d

I
(A∗(s))d−1b∗(s)1{s≤r} ds. (24)

Taking the derivative with respect to r gives a.e. on I:

δ′(r) = d(A∗(r))d−1b∗(r). (25)
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This implies that A∗(r) is finite for all r ∈ [0, 1) and thus A∗(0) = 0. Similarly, using that A1(c∗) = bδ
1, we get that for r ∈ I:

1 − r =


Id
c∗(u)1{u1≥r} du

=


Id
b∗(max(u))


ui≠max(u)

a∗(ui)1{u1≥r} du

=


Id

d
i=2


a∗(ui)1{ui≤u1}


b∗(u1)1{u1≥r} du + (d − 1)


Id
a∗(u1)

d
i=3


a∗(ui)1{ui≤u2}


b∗(u2)1{u2≥u1≥r} du

=


I
(A∗(s))d−1b∗(s)1{s≥r} ds + (d − 1)


I
(A∗(s))d−2b∗(s)(A∗(s) − A∗(r))1{s≥r} ds

= d

I
(A∗(s))d−1b∗(s)1{s≥r} ds − (d − 1)A∗(r)


I
(A∗(s))d−2b∗(s)1{s≥r} ds.

Using this and (24) we deduce that for r ∈ I:

h(r) = (d − 1)A∗(r)

I
(A∗(s))d−2b∗(s)1{s≥r} ds. (26)

Since r > δ(r) on (0, 1), we have that A∗ and

I(A

∗(s))d−2b∗(s)1{s≥r} ds are positive on (0, 1). Dividing (25) by (26) gives a.e.
for r ∈ I:

d − 1
d

δ′(r)
h(r)

=
(A∗(r))d−2b∗(r)

I(A
∗(r))d−2b∗(s)1{r≤s≤1} ds

·

We integrate both sides to get for r ∈ I:

d − 1
d


log


h(r)

h(1/2)


−

 r

1/2

1
h(s)

ds


= log
 

I(A
∗(s))d−2b∗(s)1{r≤s≤1} ds

I(A
∗(s))d−2b∗(s)1{1/2≤s≤1} ds


.

Notice that the choice for the lower bound 1/2 of the integral was arbitrary, see Remark 2.1. Taking the exponential yields:

αh(d−1)/d(r)e−F(r)
=


I
(A∗(s))d−2b∗(s)1{r≤s≤1} ds, (27)

for some positive constant α. From (26) and (27), we derive:

A∗(r) =
1

α(d − 1)
h1/d(r)eF(r). (28)

This proves that the function A∗ is uniquely determined up to a multiplicative constant and so is a∗. With the help of (25)
and (28), we can express b∗ as, for r ∈ I:

b∗(r) =
δ′(r)(α(d − 1))d−1

d
e−(d−1)F(r). (29)

The function b∗ is also uniquely determined up to a multiplicative constant. Therefore (25) implies that there is a unique c∗

of the form (20) which solves A(c) = bδ . (Notice however that the functions a∗ and b∗ are defined up to a multiplicative
constant.) Then according to Proposition 2.2 we get that cδ defined by (20) with a and b defined by (5) solves A(c) = bδ ,
implying that c∗ is equal to cδ . �

5.3. Proof of Proposition 2.4

Let δ ∈ D0 such that Σδ = {0, 1}. By construction, we have µ-a.e. cδ > 0. According to Proposition 2.2 and Remark 2.3,
if J (δ) < +∞, the copula density cδ is feasible for (Pδ). Therefore Proposition 5.3 implies that it is the optimal solution as
well. When J (δ) = +∞, we show that there exists no feasible solution to cδ , see the supplementary material can be found
online at http://dx.doi.org/10.1016/j.jmva.2015.01.003.

6. Proof of Theorem 2.5

We first state an elementary lemma, whose proof is left to the reader. For f a function defined on Id and 0 ≤ s < t ≤ 1,
we define f s,t by, for u ∈ Id:

f s,t(u) = (t − s)f (s1 + u(t − s)).

http://dx.doi.org/10.1016/j.jmva.2015.01.003


70 C. Butucea et al. / Journal of Multivariate Analysis 137 (2015) 61–81

Lemma 6.1. If c is the density of a copula C such that δC (s) = s and δC (t) = t for some fixed 0 ≤ s < t ≤ 1, then cs,t is also
the density of a copula, and its diagonal section, δs,t , is given by, for r ∈ I:

δs,t(r) =
δC (s + r(t − s)) − s

t − s
·

According to Remark 2.6, it is enough to consider the case δ ∈ D0, that is Σδ with zero Lebesgue measure. We shall
assume that Σδ ≠ {0, 1}. Since δ is continuous, we get that I \ Σδ can be written as the union of non-empty open disjoint
intervals ((αj, βj), j ∈ J), with αj < βj and J non-empty and at most countable. Set∆j = βj −αj. SinceΣδ is of zero Lebesgue
measure, we have


j∈J ∆j = 1. We define also S =


j∈J [αj, βj]

d

For s ∈ Σδ , notice that any feasible function c of (Pδ) satisfies for all 1 ≤ i ≤ d:
Id
c(u)1{ui<s}1Dc

i
(u) du =


Id
c(u)1{ui<s} du −


Id
c(u)1{max(u)<s} du = s − δ(s) = 0,

where Di = {u ∈ Id such that ∀j ≠ i : uj < s}. This implies that c = 0 a.e. on Id \ S. We set c j = cαj,βj for j ∈ J . We deduce
that if c is feasible for (Pδ), then we have that a.e.:

c(u) =


j∈J

1
∆j

c j

u − αj1

∆j


1(αj,βj)d

(u), (30)

and:

Id(c) =


j∈J

∆j


Id(c j) − log(∆j)

. (31)

Thanks to Lemma 6.1, the condition A(c) = bδ is equivalent to A(c j) = bδj for all j ∈ J . We deduce that the optimal
solution of (Pδ), if it exists, is given by (30), where the functions c j are the optimal solutions of (Pδj) for j ∈ J . Notice that by
constructionΣδj = {0, 1}. Thanks to Proposition 2.4, the optimal solution to (Pδj) exists if and only if we have J (δj) < +∞;
and if it exists it is given by cδj . Therefore, if there exists an optimal solution to (Pδ), then it is cδ given by (9). To conclude,
we have to compute Id(cδ). Recall that x log(x) ≥ −1/e for x > 0. We have:

Id(cδ) = lim
ε↓0


j∈J

∆j


Id(c j) − log(∆j)

1{∆j>ε}

= lim
ε↓0


j∈J

∆j

(d − 1)J (δj) − log(∆j)


1{∆j>ε} +


j∈J

∆jG(δj)

=


j∈J

∆j

(d − 1)J (δj) − log(∆j)


+


j∈J

∆jG(δj),

whereweused themonotone convergence theorem for the first equality, (7) for the second and the fact that G(δ) is uniformly
bounded over D0 and the monotone convergence theorem for the last. Elementary computations yield:

(d − 1)J (δ) =


j∈J

∆j

(d − 1)J (δj) − log(∆j)


and G(δ) =


j∈J

∆jG(δj).

So, we get:

Id(cδ) = (d − 1)J (δ) + G(δ).

Since G(δ) is uniformly bounded over D0, we get that Id(cδ) is finite if and only if J (δ) is finite. To end the proof, recall the
definition of I(Cδ) to conclude that I(Cδ) = (d − 1)J (δ) + G(δ).

7. Examples for d = 2

In this sectionwe compute the density of themaximum entropy copula for various diagonal sections of popular bivariate
copula families. In this Section, u and v will denote elements of I . The density for d = 2 is of the form cδ(u, v) =

a(min(u, v))b(max(u, v)). For (u, v) ∈ △ = {(u, v) ∈ I2, u ≤ v}, the formula reads:

cδ(u, v) =
δ′(u)

2
√
h(u)

2 − δ′(v)

2
√
h(v)

e−(F(v)−F(u)),

with h, F defined in (6). We illustrate these densities by displaying their isodensity lines or contour plots, and their diagonal
cross-section ϕ defined as ϕ(t) = c(t, t), t ∈ I .
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Fig. 1. Piecewise linear diagonal section (Section 7.1). Graph of δ with α = 0.2.

(a) Partition for cδ . (b) Isodensity lines of cδ .

Fig. 2. Piecewise linear diagonal section (Section 7.1). The partition and the isodensity lines of cδ .

7.1. Maximum entropy copula for a piecewise linear diagonal section

Letα ∈ (0, 1/2]. Let us calculate the density of themaximumentropy copula in the case of the following diagonal section:

δ(r) = (r − α)1(α,1−α)(r) + (2r − 1)1[1−α,1](r).

This example was considered for example in [17]. The limiting cases α = 0 and α = 1/2 correspond to the Fréchet–
Hoeffding upper and lower bound copulas, respectively. However for α = 0, Σδ = I , therefore every copula C with this
diagonal section gives I(C) = +∞. (In fact the only copula that has this diagonal section is the Fréchet–Hoeffding upper
bound M defined by M(u, v) = min(u, v), u, v ∈ I .) When α ∈ (0, 1/2], J (δ) < +∞ is satisfied, therefore we can apply
Proposition 2.4 to compute the density of the maximum entropy copula. The graph of δ can be seen in Fig. 1 for α = 0.2.
We compute the functions F , a and b:

F(r) =



1
2
log

 r
α


−

1
4α

+
1
2

if r ∈ [0, α),

r
2α

−
1
4α

if t ∈ [α, 1 − α),

1
2
log


α

1 − r


+

1
4α

−
1
2

if t ∈ [1 − α, 1],

a(r) =
1

√
α
e−

1
4α +

1
2 1[0,α](r) +

1
2
√

α
e

r
2α −

1
4α 1(α,1−α)(r),

and:

b(r) =
1

2
√

α
e−

r
2α +

1
4α 1(α,1−α)(r) +

1
√

α
e−

1
4α +

1
2 1[1−α,1](r).

The density cδ(u, v) consists of six distinct regions on △ as shown in Fig. 2(a) and takes the values:

cδ(u, v) =
1
2α

e
α−v
2α 1{(u,v)∈DII } +

1
4α

e
u−v
2α 1{(u,v)∈DIII } +

1
α
e

2α−1
2α 1{(u,v)∈DIV } +

1
2α

e
u+α−1

2α 1{(u,v)∈DV }. (32)
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Fig. 2(b) shows the isodensity lines of cδ . In the limiting case of α =
1
2 , the diagonal section is given by δ(t) = max(0,

2t − 1),which is the pointwise lower bound for all elements in D. Accordingly, it is the diagonal section of the Fréchet–
Hoeffding lower bound copula W given by W (u, v) = max(0, u + v − 1) for u, v ∈ I . All copulas having this diagonal
section are of the following form:

DC1,C2(u, v) =


W (u, v) if (u, v) ∈ [0, 1/2]2 ∪ [1/2, 1]2,
1
2
C1(2u, 2v − 1) if (u, v) ∈ [0, 1/2] × [1/2, 1],

1
2
C2(2u − 1, 2v) if (u, v) ∈ [1/2, 1] × [0, 1/2],

where C1 and C2 are copula functions. Recall that the independent copula Π with uniform density cΠ = 1 on I2 minimizes
I(C) over C. According to (32), the maximum entropy copula with diagonal section δ is DΠ,Π . This corresponds to choosing
the maximum entropy copulas on [0, 1/2] × [1/2, 1] and [1/2, 1] × [0, 1/2].

7.2. Maximum entropy copula for δ(t) = tα

Let α ∈ (1, 2]. We consider the family of diagonal sections given by δ(t) = tα . This corresponds to the Gumbel family of
copulas and also to the family of Cuadras–Augé copulas. The Gumbel copula with parameter θ ∈ [1, ∞) is an Archimedean
copula defined as, for u, v ∈ I:

CG(u, v) = ϕ−1
θ (ϕθ (u) + ϕθ (v))

with generator function ϕθ (t) = (− log(t))θ . Its diagonal section is given by δG(t) = t2
1
θ

= tα with α = 2
1
θ . The Cuadras–

Augé copula with parameter γ ∈ (0, 1) is defined as, for u, v ∈ I:

CCA(u, v) = min(uv1−γ , u1−γ v).

It is a subclass of the two parameter Marshall–Olkin family of copulas given by:

CM(u, v) = min(u1−γ1v, uv1−γ2).

The diagonal section of CCA is given by δ(t) = t2−γ
= tα with α = 2−γ . While the Gumbel copula is absolutely continuous,

the Cuadras–Augé copula is not, although it has full support. Since J (δ) < +∞, we can apply Proposition 2.4. To give the
density of the maximum entropy copula, we have to calculate F(v) − F(u). Elementary computations yield:

F(v) − F(u) =
1
2

 v

u

ds
s − sα

=
1
2
log

v

u


−

1
2α − 2

log

1 − vα−1

1 − uα−1


.

The density cδ is therefore given by, for (u, v) ∈ △:

cδ(u, v) =
α

4
2 − αuα−1

(1 − uα−1)α/(2α−2)
vα−2(1 − vα−1)(2−α)/(2α−2).

Fig. 3 represents the isodensity lines of the Gumbel and the maximum entropy copula cδ with common parameter α = 2
1
3 ,

which corresponds to θ = 3 for the Gumbel copula. We have also added a graph of the diagonal cross-section of the two
densities. In the limiting case of α = 2, the above formula gives cδ(u, v) = 1, which is the density of the independent copula
Π , which also maximizes the entropy on the entire set of copulas.

7.3. Maximum entropy copula for the Farlie–Gumbel–Morgenstern diagonal section

Let θ ∈ [−1, 1]. The Farlie–Gumbel–Morgenstern family of copulas (FGM copulas for short) is defined as:

C(u, v) = uv + θuv(1 − u)(1 − v).

These copulas are absolutely continuous with densities c(u, v) = 1+ θ(1− 2u)(1− 2v). Its diagonal section δθ is given by:

δ(t) = t2 + θ t2(1 − t)2 = θ t4 − 2θ t3 + (1 + θ)t2.

Since δθ (t) < t on (0, 1) and it verifies J (δ) < +∞, we can apply Proposition 2.4 to calculate the density of the
maximum entropy copula. For F(r), we have:

F(r) =



1
2
log


r

1 − r


+

θ
√
4θ − θ2

arctan


2θr − θ
√
4θ − θ2


if θ ∈ (0, 1],

1
2
log


r

1 − r


if θ = 0,

1
2
log


r

1 − r


−

θ
√

θ2 − 4θ
arctanh


2θr − θ

√
θ2 − 4θ


if θ ∈ [−1, 0).
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(a) Gumbel. (b) cδ . (c) Diagonal cross-section.

Fig. 3. Power function diagonal section (Section 7.2). Isodensity lines and the diagonal cross-section of copulas with diagonal section δ(t) = tα, α = 2
1
3 .

(a) FGM. (b) cδ . (c) Diagonal cross-section.

Fig. 4. FGM diagonal section (Section 7.3). Isodensity lines and the diagonal cross-section of copulas with diagonal section δ(t) = θ t4 − 2θ t3 + (1+ θ)t2 ,
θ = 0.5.

The density cδ is given by, for θ ∈ (0, 1] and (u, v) ∈ △:

cδ(u, v) =


1 − 2θu3

+ 3θu2
+ (1 + θ)u


(1 − u)

√
θu2 − θu + 1


2θv2

+ 3θv + (1 + θ)


√
θv2 − θv + 1

× exp


−
θ

√
4θ − θ2


arctan


2θv − θ

√
4θ − θ2


− arctan


2θu − θ

√
4θ − θ2


.

Fig. 4 illustrates the isodensities of the FGM copula and the maximum entropy copula with the same diagonal section for
θ = 0.5 as well as the diagonal cross-section of their densities.

The case of θ = 0 corresponds once again to the diagonal section δ(t) = t2, and the formula gives the density of the
independent copula Π , accordingly.

7.4. Maximum entropy copula for the Ali–Mikhail–Haq diagonal section

Let θ ∈ [−1, 1]. The Ali–Mikhail–Haq (AMH for short) family of copulas are defined as:

C(u, v) =
uv

1 − θ(1 − u)(1 − v)
·

This is a family of absolutely continuous copulas whose diagonal section is given by:

δ(t) =
t2

1 − θ(1 − t)2
·

Once again, δθ (t) < t on (0, 1) and J (δ) < +∞ is verified, so we can apply Proposition 2.4 to calculate the density of the
maximum entropy copula. For 0 ≤ u ≤ v ≤ 1:

F(v) − F(u) =
1
2


ln
v

u


− ln


1 − v

1 − u


+ ln


θv + 1 − θ

θu + 1 − θ


.

Then cδ is given by, for (u, v) ∈ △:

cδ(u, v) =
1 + θu − 2θ(1 − u) + θ2(1 − u)3

1 − θ(1 − u)2
 3

2


1 − θ(1 − v)2

− 3
2 .
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(a) AMH. (b) cδ . (c) Diagonal cross-section.

Fig. 5. AMH diagonal section (Section 7.4). Isodensity lines and the diagonal cross-section of copulas with diagonal section δ(t) =
t2

1−θ(1−t)2
, θ = 0.5.

(a) AMH. (b) cδ . (c) Diagonal cross-section.

Fig. 6. AMH diagonal section (Section 7.4). Isodensity lines and the diagonal cross-section of copulas with diagonal section δ(t) =
t2

1−θ(1−t)2
, θ = −0.5.

In the case of θ = 0, the AMH copula reduces to the independent copula Π . We illustrate the density of the AMH copula
and the corresponding maximum entropy copula with θ = 0.5 in Fig. 5 and θ = −0.5 in Fig. 6.

7.5. Maximum entropy copula for the Gaussian diagonal section

The Gaussian (normal) copula takes the form:

Cρ(u, v) = Φρ


Φ−1(u), Φ−1(v)


,

with Φρ the joint cumulative distribution function of a two-dimensional normal random variable with standard normal
marginals and correlation parameter ρ ∈ [−1, 1], and Φ−1 the quantile function of the standard normal distribution. The
density cρ of Cρ can be written as:

cρ(u, v) =
ϕρ


Φ−1(u), Φ−1(v)


ϕ(Φ−1(u))ϕ(Φ−1(v))

,

where ϕ and ϕρ stand for respectively the densities of a standard normal distribution and a two-dimensional normal
distribution with correlation parameter ρ, respectively. The diagonal section and its derivative are given by:

δρ(t) = Φρ


Φ−1(t), Φ−1(t)


, δ′

ρ(t) = 2Φ


1 − ρ

1 + ρ
Φ−1(t)


. (33)

Since δρ verifies δρ(t) < t on (0, 1) and J (δρ) < +∞, we can apply Proposition 2.4 to calculate the density of themaximum
entropy copula. We have calculated numerically the density of the maximum entropy copula with diagonal section δρ for
ρ = 0.95, 0.5, −0.5 and −0.95. The comparison between these densities and the densities of the corresponding normal
copula can be seen in Figs. 7–9. In the limiting case when ρ goes up to 1, we observe a similar behaviour of cρ and cδρ , and
we get the limiting diagonal δ(t) = t of the Fréchet–Hoeffding upper bound M given by M(u, v) = min(u, v), which does
not have a density. We observe a very different behaviour of cρ and cδρ in the case of ρ < 0. In the limiting case when ρ
goes down to −1, we get the diagonal δ(t) = max(0, 2t − 1), which we have studied earlier in Section 7.1.
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(a) Normal, ρ = 0.5. (b) cδ, ρ = 0.5. (c) Diagonal cross-section.

(d) Normal, ρ = 0.95. (e) cδ, ρ = 0.95. (f) Diagonal cross-section.

Fig. 7. Gaussian diagonal section (Section 7.5). Isodensity lines and the diagonal cross-section of copulas with diagonal section given by (33), with ρ = 0.5
and ρ = 0.95.

(a) Normal, ρ = −0.5. (b) cδ, ρ = −0.5. (c) Diagonal cross-section.

(d) Normal, ρ = −0.95. (e) cδ, ρ = −0.95. (f) Diagonal cross-section.

Fig. 8. Gaussian diagonal section (Section 7.5). Isodensity lines and thediagonal cross-section of copulaswith diagonal section givenby (33),withρ = −0.5
and ρ = −0.95.
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(a) Normal, ρ = −0.95. (b) Cδ, ρ = −0.95.

Fig. 9. Gaussian diagonal section (Section 7.5). Sample of 500 drawn from the Gaussian copula with ρ = −0.95 and from the corresponding Cδ .

7.6. Comparison of conditional extreme event probabilities in the Gaussian case

We compare the conditional probabilities of extreme values of a pair of random variables (X1, X2) which has bivariate
normal distribution with standard normal marginals and correlation coefficient ρ, with a pair of random variables (Y1, Y2)
whose marginals are also standard normal, but has copula cδ , where δ is the diagonal of the copula of (X1, X2). We compute
the conditional probabilities P(X1 ≥ αt|X2 = t) and P(Y1 ≥ αt|Y2 = t)withα ≥ 1 and consider their asymptotic behaviour
when t goes to infinity. This comparison is motivated by consideration of correlated defaults in mathematical finance, see
Section 10.8 in [24]. (Notice however the parameters of upper tail dependence of the two copulas are the same since they
have the same diagonal.)

Since by construction max(X1, X2) has the same distribution as max(Y1, Y2), and X1, X2, Y1 and Y2 have the same distri-
bution, we deduce that min(X1, X2) has the same distribution as min(Y1, Y2). We deduce that for all t ∈ R:

P(X1 ≥ t|X2 = t) = −
∂tP(min(X1, X2) ≥ t)

ϕ(t)
= −

∂tP(min(Y1, Y2) ≥ t)
ϕ(t)

= P(Y1 ≥ t|Y2 = t).

From now on, we shall consider α > 1. For k ∈ R, we recall the notations h(t) = O(tk) for t large which means that
lim supt→+∞ t−k

|h(t)| < +∞, and f (t) ≪ g(t) for t large which means that f and g are positive for t large and lim supt→∞

f (t)/g(t) = 0. The proof of the next Lemma is given in the Appendix.

Lemma 7.1. Let α > 1 and ρ ∈ (−1, 1). We have for t large:

P(X1 ≥ αt|X2 = t) = κρ,αP(Y1 ≥ αt|Y2 = t)e−∆ρ,α t2/2(1 + O(t−2)), (34)

with:

κρ,α =
α(1 − ρ)

(α − ρ)
and ∆ρ,α =

ρ(α − 1)
1 − ρ2 ((α + 1)ρ − 2) .

We deduce that:
• for ρ > 0 and α > 2/ρ −1 or ρ < 0, we have∆ρ,α > 0 and thus P(X1 ≥ αX2|X2 = t) ≪ P(Y1 ≥ αY2|Y2 = t) for t large,
• for ρ > 0 and 1 < α < 2/ρ − 1, we have ∆ρ,α < 0 and thus P(X1 ≥ αX2|X2 = t) ≫ P(Y1 ≥ αY2|Y2 = t) for t large.

In conclusion, in the positive correlation case, the maximum entropy copula gives more weight to the extremal condi-
tional probabilities for large values of α.

Remark 7.2. Similar computations as in the proof of Lemma 7.1 give that for ρ > 0, ρ ≤ α < 1:

P (αt ≤ X1 ≤ t|X2 = t) = Φ̄


α − ρ
1 − ρ2

t

 
1 + O(t−2)


,

P (αt ≤ Y1 ≤ t|Y2 = t) = Φ̄


α


1 − ρ

1 + ρ
t

 
1 + O(t−2)


,

with Φ̄ = 1−Φ , the survival function of the standard Gaussian distribution. Using (42), we have P (αt ≤ X1 ≤ t|X2 = t) ≫

P(Y1 ≥ αY2|Y2 = t) for t large. This means that the maximum entropy copula gives less weight to the ‘‘non-worse’’ case,
when the first variable takes also large values, but stays less than the second variable.
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Appendix

A.1. Calculation of the entropy of Cδ

In this section, we show that (7) of Proposition 2.2 holds. Let us first introduce some notations. Let ε ∈ (0, 1/2). Since
x log(x) ≥ −1/e for x > 0, we deduce by the monotone convergence theorem that:

I(Cδ) = lim
ε↓0

Iε(Cδ), (35)

with:

Iε(Cδ) =


[ε,1−ε]d

cδ(x) log(cδ(x)) dx.

Using δ(t) ≤ t and that δ is a non-decreasing, d-Lipschitz function, we get that for t ∈ I:
0 ≤ h(t) ≤ min(t, (d − 1)(1 − t)) ≤ (d − 1)min(t, 1 − t). (36)

We set:

w(t) = a(t)e−F(t)
=

d − δ′(t)
d

h−1+1/d(t). (37)

From the symmetric property of cδ , we have that
Iε(Cδ) = J1(ε) + J2(ε) − J3(ε), (38)

with:

J1(ε) = d


[ε,1−ε]d
cδ(x)1{max(x)=xd}


d−1
i=1

log (w(xi))


dx,

J2(ε) = d


[ε,1−ε]d
cδ(x)1{max(x)=xd} log


δ′(xd)

d
h−1+1/d(xd)


dx,

J3(ε) = d


[ε,1−ε]d
cδ(x)1{max(x)=xd}


(d − 1)F(xd) −

d−1
i=1

F(xi)


dx.

We introduce Aε(r) =
 r
ε
a(x) dx. For J1(ε), we have:

J1(ε) = d(d − 1)


[ε,1−ε]d
1{max(x)=xd}b(xd)

d−1
j=1

a(xj) log (w(x1)) dx

= d(d − 1)


[ε,1−ε]


[t,1−ε]

Ad−2
ε (s)b(s) ds


a(t) log (w(t)) dt.

Notice that using (11) and (13), we have:
[t,1−ε]

Ad−2
ε (s)b(s) ds =


[t,1]

Ad−2(s)b(s) ds −


[t,1]


Ad−2(s) − Ad−2

ε (s)

b(s) ds −


[1−ε,1]

Ad−2
ε (s)b(s) ds.

=
h(t)

(d − 1)A(t)
−

 1

t


Ad−2(s) − Ad−2

ε (s)

b(s) ds −


[1−ε,1]

Ad−2
ε (s)b(s) ds.

By Fubini’s theorem, we get:
J1(ε) = J1,1(ε) − J1,2(ε) − J1,3(ε),

with:

J1,1(ε) =


[ε,1−ε]

(d − δ′(t)) log (w(t)) dt

J1,2(ε) = d(d − 1)


[1−ε,1]
Ad−2

ε (s)b(s) ds


[ε,1−ε]

a(t) log (w(t)) dt

J1,3(ε) = d(d − 1)


[ε,1−ε]

 1

t


Ad−2(s) − Ad−2

ε (s)

b(s) ds


a(t) log (w(t)) dt.
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To study J1,2, we first give an upper bound for the term

[1−ε,1] A

d−2
ε (s)a(s)b(s) ds:

[1−ε,1]
Ad−2

ε (s)b(s) ds ≤


[1−ε,1]

Ad−2(s)b(s) ds

=
1

(d − 1)
h1−1/d(1 − ε)e−F(1−ε)

≤ (d − 1)−1/dε1−1/d, (39)

where we used that Aε(s) ≤ A(s) for s > ε for the first inequality, (13) for the first equality, and (36) for the last inequality.
Since t log(t) ≥ −1/e, we have, using (37):

J1,2(ε) ≥ −
d(d − 1)

e


[1−ε,1]

Ad−2
ε (s)b(s) ds


[ε,1−ε]

eF(t) dt

≥ −
d
e
h1−1/d(1 − ε)


[ε,1−ε]

eF(t)−F(1−ε) dt

≥ −
d
e
((d − 1)ε)1−1/d,

where we used (13) for the second inequality, and that F is non-decreasing and (39) for the third inequality. On the other
hand, we have t log(t) ≤ t

1
1−1/d , if t ≥ 0, which gives:

J1,2(ε) ≤ d(d − 1)


[1−ε,1]
Ad−2

ε (s)b(s) ds


[ε,1−ε]

eF(t)


d−δ′(t)

d

 1
1−1/d

h(t)
dt

= dh1−1/d(1 − ε)


[ε,1−ε]

eF(t)−F(1−ε)

h(t)
dt

= dh1−1/d(1 − ε)

1 − eF(ε)−F(1−ε)


≤ d((d − 1)ε)1−1/d,

where we used (39) and t
1

1−1/d ≤ 1 for t ∈ I for the first inequality, and that F is non-decreasing for the last. This proves
that limε→0 J1,2(ε) = 0. For J1,3(ε), we first observe that for s ∈ [ε, 1 − ε] we have Aε(s) ≤ A(s) and thus:


Ad−2(s) − Ad−2

ε (s)


= A(ε)

d−3
i=0

Ai(s)Ad−3−i
ε (s) ≤ (d − 2)A(ε)Ad−3(s). (40)

Using the previous inequality we obtain:

J1,3(ε) = d(d − 1)


[ε,1−ε]

 1

t


Ad−2(s) − Ad−2

ε (s)

b(s) ds


a(t) log (w(t)) dt

≥ −
d(d − 1)

e


[ε,1−ε]

 1

t


Ad−2(s) − Ad−2

ε (s)

b(s) ds


eF(t) dt

≥ −
d(d − 1)(d − 2)A(ε)

e


[ε,1−ε]

 1

t
Ad−3(s)b(s) ds


eF(t) dt

≥ −
d(d − 1)(d − 2)A(ε)

e


[ε,1−ε]

 1
t Ad−2(s)b(s) ds


A(t)

eF(t) dt

= −
d(d − 2)A(ε)

e


[ε,1−ε]

h(t)
A2(t)

eF(t) dt

= −
d(d − 2)h1/d(ε)

e


[ε,1−ε]

h(t)1−2/deF(ε)−F(t) dt

≥ −
d(d − 2)(d − 1)1−1/dε1/d

e
,
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where we used t log(t) ≥ −1/e for the first inequality, (40) for the second, (11) and (13) in the following equality, and (36)
to conclude. For an upper bound, we have after noticing that t log(t) ≤ t2:

J1,3(ε) = d(d − 1)


[ε,1−ε]

 1

t


Ad−2(s) − Ad−2

ε (s)

b(s) ds


a(t) log (w(t)) dt

≤ d(d − 1)


[ε,1−ε]

 1

t


Ad−2(s) − Ad−2

ε (s)

b(s) ds


eF(t)w2(t) dt

≤ d(d − 1)(d − 2)A(ε)


[ε,1−ε]

 1
t Ad−2(s)b(s) ds


A(t)

eF(t)h−2+2/d(t) dt

= d(d − 2)A(ε)


[ε,1−ε]

e−F(t)

h(t)
dt

= d(d − 2)h1/d(ε)(1 − eF(ε)−F(1−ε))

≤ d(d − 2)(d − 1)1/dε1/d,

where we used (40) and 0 ≤ (d − δ′(t))/d ≤ 1 for the second inequality; (11) and (13) in the second equality; and (36) to
conclude. The results on the two bounds show that limε→0 J1,3(ε) = 0. Similarly, for J2(ε), we get:

J2(ε) =


[ε,1−ε]d

1{max(x)=xd}b(xd)
d−1
j=1

a(xj) log


δ′(xd)
d

h−1+1/d(xd)


dx

= d


[ε,1−ε]

Ad−1
ε (t)b(t) log


δ′(t)
d

h−1+1/d(t)


dt

= d


[ε,1−ε]

Ad−1(t)b(t) log


δ′(t)
d

h−1+1/d(t)


dt

− d


[ε,1−ε]


Ad−1(t) − Ad−1

ε (t)

b(t) log


δ′(t)
d

h−1+1/d(t)


dt

= J2,1(ε) − J2,2(ε)

with J2,1(ε) and J2,2(ε) given by, using (12):

J2,1(ε) = d


[ε,1−ε]

Ad−1(t)b(t) log


δ′(t)
d

h−1+1/d(t)


dt

J2,2(ε) = d


[ε,1−ε]


Ad−1(t) − Ad−1

ε (t)

b(t) log


δ′(t)
d

h−1+1/d(t)


dt.

By (12), we have:

J2,1(ε) =


[ε,1−ε]

δ′(t) log


δ′(t)
d

h−1+1/d(t)


dt. (41)

Similarly to J1,3(ε) we can show that limε→0 J2,2(ε) = 0.
Adding up J1(ε) and J2(ε) gives

J1(ε) + J2(ε) = Jε(δ) + J4(ε) − d log(d)(1 − 2ε) − J1,2(ε) − J1,3(ε) − J2,2(ε)

with

Jε(δ) = (d − 1)
 1−ε

ε

|log (h(t))| dt,

J4(ε) =

 1−ε

ε


d − δ′(t)


log


d − δ′(t)


dt +

 1−ε

ε

δ′(t) log

δ′(t)


dt.

Notice that Jε(δ) is non-decreasing in ε > 0 and that:

J (δ) = lim
ε→0

Jε(δ).

Since δ′(t) ∈ [0, d], we deduce that (d − δ′) log(d − δ′) and δ′ log(δ′) are bounded on I from above by d log(d) and from
below by −1/e and therefore integrable on I . This implies :

lim
ε→0

J4(ε) = I1(δ
′) + I1(d − δ′).
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As for J3(ε), we have by integration by parts:

J3(ε) = d


[ε,1−ε]d
1{max(x)=xd}b(xd)

d−1
i=i

a(xi)


(d − 1)F(xd) −

d−1
i=1

F(xi)


dx

= d(d − 1)


[ε,1−ε]

Ad−1
ε (t)b(t)F(t) dt − d(d − 1)


[ε,1−ε]

Ad−2
ε (t)b(t)

 t

ε

a(s)F(s) ds


dt

= d(d − 1)


[ε,1−ε]

Ad−1
ε (t)b(t)F(t) dt − d(d − 1)


[ε,1−ε]

Ad−2
ε (t)b(t)


Aε(t)F(t) −

d − 1
d

 t

ε

Aε(s)
h(s)

ds


dt

= (d − 1)2


[ε,1−ε]

 1−ε

t
Ad−2

ε (s)b(s) ds


Aε(t)
h(t)

dt.

By the monotone convergence theorem, (11) and (13) we have:

lim
ε→0

J3(ε) = (d − 1)2

I

 1

t
Ad−2(s)b(s) ds


A(t)
h(t)

dt = d − 1.

Summing up all the terms and taking the limit ε = 0 give :

I(Cδ) = (d − 1)

I
|log(t − δ(t))| dt + I1(δ

′) + I1(d − δ′) − d log(d) − (d − 1)

= (d − 1)J (δ) + G(δ).

A.2. Proof of Lemma 7.1

Set Φ̄(x) = 1−Φ(x), the survival function of the standardGaussian distribution.We recall thewell knownapproximation
of Φ̄(t) for t > 0:

Φ̄(t) ≤
ϕ(t)
t

and Φ̄(t) =
ϕ(t)
t


1 −

1
t2

+ g(t)


with 0 ≤ g(t) ≤
3
t4

· (42)

We setW = (X1 − ρX2)/

1 − ρ2 so thatW is standard normal and independent of X2. We have:

P(X1 ≥ αt|X2 = t) = P


W ≥

(α − ρ)t
1 − ρ2


= Φ̄


(α − ρ)t
1 − ρ2


Since α ≥ ρ, this gives:

P(X1 ≥ αt|X2 = t) =
1

√
2π t


1 − ρ2

α − ρ
(1 + O(t−2)) exp


−

1
2

(α − ρ)2

(1 − ρ2)
t2


. (43)

For (Y1, Y2), we have using notation from Section 2:

P(Y1 ≥ αt|Y2 = t) =


∞

αt
cδ(Φ(x), Φ(t))ϕ(x) dx =

 1

Φ(αt)
b(s)a(Φ(t)) ds = B(Φ(αt))a(Φ(t)),

with B defined for r ∈ I as B(r) =
 1
r b(s) ds. Using that B(r) = h1/2(r)e−F(r) as well as the formulae (33) for δρ and δ′

ρ ,
elementary computations give:

P(Y1 ≥ αt|Y2 = t) = Φ̄


1 − ρ

1 + ρ
t


e−Γt , (44)

with

Γt =

 αt

t
Φ


1 − ρ

1 + ρ
u


ϕ(u)

Φ̄(u) − Φ̄ρ(u, u)
du and Φ̄ρ(u, v) = P(X1 ≥ u, X2 ≥ v).

Using (42), it is easy to check that Φ̄ρ(u, u) = O(ϕ(u)u−5) for u large, and deduce that:

Γt =
(α2

− 1)t2

2
+ log(α) + O


t−2 .

Using (44) and (42), we get:

P(Y1 ≥ αt|Y2 = t) =
1

√
2π t

1
α


1 + ρ

1 − ρ
(1 + O(t−2)) exp


−

1
2


1 − ρ

1 + ρ
+ α2

− 1

t2


.

Using (43), we obtain (34).
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