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Abstract
Bifurcating Markov chains are Markov chains indexed by a full binary tree represent-
ing the evolution of a trait along a population where each individual has two children.
Motivated by the functional estimation of the density of the invariant probability mea-
sure which appears as the asymptotic distribution of the trait, we prove the consistency
and the Gaussian fluctuations for a kernel estimator of this density based on late gen-
erations. In this setting, it is interesting to note that the distinction of the three regimes
on the ergodic rate identified in a previous work (for fluctuations of average over large
generations) disappears. This result is a first step to go beyond the threshold condition
on the ergodic rate given in previous statistical papers on functional estimation.
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Markov chains
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1 Introduction

Bifurcating Markov chains (BMCs) are a class of stochastic processes indexed by
regular binary tree and which satisfy the branching Markov property (see below for
a precise definition). This model represents the evolution of a trait along a popula-
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tion where each individual has two children. The recent study of BMC models was
motivated by the understanding of the cell division mechanism (where the trait of an
individual is given by its growth rate). The first model of BMC, named “symmetric”
bifurcating autoregressive process (BAR), see Sect. 3.2 for more details in a Gaussian
framework, was introduced by Cowan and Staudte [6] in order to analyze cell lineage
data. In [12], Guyon has studied more general asymmetric BMC to prove statistical
evidence of aging in Escherichia Coli. We refer to [3] for more detailed references on
this subject. Recently, several statistical works have been devoted to the estimation of
cell division rates, see Doumic et al. [11], Bitseki et al. [4] and Hoffmann andMarguet
[14]. Moreover, another studies, such as Doumic et al. [10], can be generalized using
the BMC theory (we refer to the conclusion therein).

In this paper, our objective is to study the functional estimation of the density of the
invariant probabilitymeasureμ associatedwith theBMC. For this purpose,we develop
a kernel estimation in the L2(μ) framework under reasonable hypothesis (which are
in particular satisfied by the Gaussian symmetric BAR model from Sect. 3.2). This
approach is in the spirit of the L2(μ) approach developed [2]. In BMCmodel, the evo-
lution of the trait along the genealogy of an individual taken at random is Markovian.
Let us assume it is geometrically ergodic with rate α ∈ (0, 1), with μ is its invariant
measure. In [2], three regimes where identified for the rate of convergence of averages
over large generations according to the ergodic rate of convergence α with respect to
the threshold 1/

√
2. It is interesting, and surprising as well, to note that the distinction

of those three regimes disappears for the rate of convergence when considering the
kernel density estimation of the density of μ, see Theorem 3.5. (In [12], for different
reasons, the distinction of the three regimes disappears also for additive functionals
of the BMC with martingale increments.) However, let us mention that some further
restriction on the admissible bandwidths of the kernel estimator is to be taken into
account in the supercritical regime (i.e., α > 1/

√
2), to be precise see Condition (11)

which is in force for Theorem 3.5. Furthermore, we get that estimations using different
generations provide asymptotically independent fluctuations, see Remark 3.8 (see also
the form of the asymptotic variance in Theorem 4.8 and Remark 4.9 in a more general
framework); this phenomenon already appears in [7]. The convergence of the kernel
estimator in Theorem 3.5 relies on different type of assumptions:

– Geometric ergodic rate α ∈ (0, 1) of convergence for the evolution of the trait
along the genealogy of an individual taken at random, see Assumption 2.3.

– Regularity (density and integrability conditions) for the evolution kernel P and
the initial distribution of the BMC, see Assumptions 3.1, and 3.2. The former is in
the spirit of [2] (see Assumption 4.2 which is a consequence of Assumption 3.1).

– Regularity (isotropic Hölder regularity) of the density of μ with respect to the
Lebesgue measure on S = R

d , see Assumption 3.4 (i).
– Regularity of the kernel function K and on the bandwidth given in Assumption
3.3 and Assumption 3.4 (ii)–(iii).

– A condition on the bandwidth given in Equation (11)which add a further restriction
only in the supercritical regime α > 1/

√
2.

Eventually, we present some simulations on the kernel estimation of the density of
μ.We note that in statistical studies which have been done in [4, 5, 11], the ergodic rate
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of convergence is assumed to be less than 1/2, which is strictly less than the threshold
1/

√
2 for criticality. Moreover, in the latter works, the authors are interested in the

non-asymptotic analysis of the estimators. Now, with the new perspective given by the
present results, see in particular Remark 3.6, we think that the works in [4, 5, 11] can
be extended to the case where the ergodic rate of convergence belongs to (1/2, 1).

The paper is organized as follows. We introduce the BMC model in Sect. 2 as well
as the L2 ergodic assumption.We define the kernel estimator and state the main results
on the estimation of the density of μ, see Theorem 3.5 (consistency and asymptotic
normality), in Sect. 3.1. The proofs of those results rely on a general central limit
theorem, see Theorem 4.8 in Sect. 4. In Sect. 3.2, we illustrate our results by studying
the symmetric BAR, and we provide a numerical study in Sect. 3.3. Sections 4.2 and 5
are dedicated to the proofs of the main results.

2 BifurcatingMarkov Chain (BMC)

We denote by N the set of nonnegative integers and N
∗ = N \ {0}. If (E, E) is a

measurable space, then B(E) (resp. Bb(E), resp. B+(E)) denotes the set of (resp.
bounded, resp. nonnegative) R-valued measurable functions defined on E . For f ∈
B(E), we set ‖ f ‖∞ = sup{| f (x)|, x ∈ E}. For a finite measure λ on (E, E) and
f ∈ B(E) we shall write 〈λ, f 〉 for

∫
f (x) dλ(x) whenever this integral is well

defined, and ‖ f ‖L2(λ) = 〈λ, f 2〉1/2. For n ∈ N
∗, the product space En is endowed

with the product σ -field E⊗n . If (E, d) is a metric space, then E will denote its Borel
σ -field and the set Cb(E) (resp. C+(E)) denotes the set of bounded (resp. nonnegative)
R-valued continuous functions defined on E .

Let (S,S ) be a measurable space. Let Q be a probability kernel on S ×S , that is:
Q(·, A) is measurable for all A ∈ S , and Q(x, ·) is a probability measure on (S,S )

for all x ∈ S. For any f ∈ Bb(S), we set for x ∈ S:

(Q f )(x) =
∫

S
f (y) Q(x, dy). (1)

We define (Q f ), or simply Q f , for f ∈ B(S) as soon as the integral (1) is well defined,
and we have Q f ∈ B(S). For n ∈ N, we denote by Qn the nth iterate of Q defined
by Q0 = I , the identity map on B(S), and Qn+1 f = Qn(Q f ) for f ∈ Bb(S).

Let P be a probability kernel on S × S ⊗2, that is: P(·, A) is measurable for all
A ∈ S ⊗2, and P(x, ·) is a probability measure on (S2,S ⊗2) for all x ∈ S. For any
g ∈ Bb(S3) and h ∈ Bb(S2), we set for x ∈ S:

(Pg)(x) =
∫

S2
g(x, y, z) P(x, dy, dz) and (Ph)(x) =

∫

S2
h(y, z) P(x, dy, dz).

(2)

We define (Pg) (resp. (Ph)), or simply Pg for g ∈ B(S3) (resp. Ph for h ∈ B(S2)),
as soon as the corresponding integral (2) is well defined, and we have that Pg and Ph
belong to B(S).
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We now introduce some notations related to the regular binary tree. We set T0 =
G0 = {∅}, Gk = {0, 1}k and Tk = ⋃

0≤r≤k Gr for k ∈ N
∗, and T = ⋃

r∈NGr . The
set Gk corresponds to the kth generation, Tk to the tree up to the kth generation, and
T the complete binary tree. For i ∈ T, we denote by |i | the generation of i (|i | = k if
and only if i ∈ Gk) and i A = {i j; j ∈ A} for A ⊂ T, where i j is the concatenation
of the two sequences i, j ∈ T, with the convention that ∅i = i∅ = i .

We recall the definition of bifurcating Markov chain from [12].

Definition 2.1 We say a stochastic process indexed by T, X = (Xi , i ∈ T), is a
bifurcatingMarkov chain (BMC)on ameasurable space (S,S )with initial probability
distribution ν on (S,S ) and probability kernel P on S × S ⊗2 if:

– (Initial distribution.) The random variable X∅ is distributed as ν.
– (BranchingMarkov property.) For any sequence (gi , i ∈ T) of functions belonging
to Bb(S3), we have for all k ≥ 0,

E

[ ∏

i∈Gk

gi (Xi , Xi0, Xi1)|σ(X j ; j ∈ Tk)
]

=
∏

i∈Gk

Pgi (Xi ).

Let X = (Xi , i ∈ T) be a BMC on ameasurable space (S,S )with initial probabil-
ity distribution ν and probability kernel P . We define three probability kernels P0, P1
and Q on S × S by:

P0(x, A) = P(x, A × S), P1(x, A) = P(x, S × A) for(x, A) ∈ S × S , and

Q = 1

2
(P0 + P1).

Notice that P0 (resp. P1) is the restriction of the first (resp. second) marginal ofP to S.
Following [12], we introduce an auxiliary Markov chain Y = (Yn, n ∈ N) on (S,S )

with Y0 distributed as X∅ and transition kernelQ. The distribution of Yn corresponds
to the distribution of X I , where I is chosen independently from X and uniformly at
random in generationGn . We shall write Ex when X∅ = x (i.e., the initial distribution
ν is the Dirac mass at x ∈ S).

Remark 2.2 If the Markov chain Y is ergodic and if μ denotes its unique invariant
probability measure, then Guyon proves in [12] that, when S is a metric space, for all
f ∈ Cb(S),

|An|−1
∑

u∈An

f (Xu) −−−→
n→∞ 〈μ, f 〉 in probability, where An ∈ {Gn,Tn}.

One can then see that the study of BMC is strongly related to the knowledge of
μ. However, when it exists, the invariant probability μ is generally not known. The
aim of this article is then to estimate μ and study, under appropriate hypotheses, the
fluctuations of the estimators of μ.

We consider the following ergodic properties of Q, which in particular implies that
μ is indeed the unique invariant probability measure for Q. We refer to [9] Section
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22 for a detailed account on L2(μ)-ergodicity (and in particular Definition 22.2.2 on
exponentially convergent Markov kernel).

Assumption 2.3 (Geometric ergodicity) The Markov kernelQ has an (unique) invari-
ant probability measure μ, and Q is L2(μ) exponentially convergent, that is there
exists α ∈ (0, 1) and M finite such that for all f ∈ L2(μ):

‖Qn f − 〈μ, f 〉‖L2(μ) ≤ Mαn ‖ f ‖L2(μ) for alln ∈ N. (3)

3 Main Result

3.1 Kernel Estimator of the Density�

The purpose of this Section is to study asymptotic normality of kernel estimators for
the density of the stationary measure of a BMC. Assume that S = R

d , with d ≥ 1, and
that the invariantmeasureμ of the transition kernelQ exists is unique and has a density,
still denoted by μ, with respect to the Lebesgue measure. Our aim is to estimate the
density μ from the observation of the population over the nth generation Gn of over
Tn , that is up to generation n. For that purpose, assume we observe Xn = (Xu)u∈An ,
where An ∈ {Gn,Tn} , i.e., we have 2n+1 − 1 (or 2n) random variables with value
in S. We consider an integrable kernel function K ∈ B(S) such that

∫
S K (x) dx = 1

and a sequence of positive bandwidths (hn, n ∈ N) which converges to 0 as n goes
to infinity. Then, we can define the estimation of the density of μ at x ∈ S over
individuals An ∈ {Tn,Gn} with kernel K and bandwidth (hn, n ∈ N) as:

μ̂An (x) = |An|−1h−d/2
n

∑

u∈An

Khn (x − Xu), (4)

where for h > 0 the rescaled kernel function Kh is given for y ∈ S by:

Kh(y) = h−d/2K (h−1 y).

Those statistics are strongly inspired from [16, 18, 19]. For h > 0 and u ∈ T, we set:

Kh�μ(x) = Eμ[Kh(x − Xu)] =
∫

S
Kh(x − y)μ(y) dy.

We have the following bias-variance type decomposition of the estimator μ̂An (x):

μ̂An (x) − μ(x) = Bhn (x) + VAn ,hn (x), (5)

where for h > 0 and A ⊂ T finite:

Bh(x) = h−d/2Kh�μ(x) − μ(x) and VA,h(x)
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= |A|−1h−d/2
∑

u∈A

(
Kh(x − Xu) − Kh�μ(x)

)
.

Our aim is to study the convergence and the asymptotic normality of the estimator
μ̂An (x) of μ(x). This relies on a series of assumption on the model, that is on P , Q
and μ, and on the kernel function K as well as the bandwidth (hn, n ∈ N).

We first state a series of assumption of the density of the kernel P and the initial
distribution ν with respect to the invariant measure.

Assumption 3.1 (Regularity of P and ν0) We assume that:

(i) There exists an invariant probability measure μ of Q and the transition kernel
P has a density, denoted by p, with respect to the measure μ⊗2, that is, for all
x ∈ S:

P(x, dy, dz) = p(x, y, z) μ(dy)μ(dz).

(ii) The following function h defined on S belongs to L2(μ), where:

h(x) =
(∫

S
q(x, y)2 μ(dy)

)1/2

, (6)

with q(x, y) = 2−1
∫

S(p(x, y, z) + p(x, z, y)) μ(dz), the density of Q with
respect to μ.

(iii) There exists k1 ≥ 1 such that hk1 ∈ L6(μ), where for k ∈ N
∗:

hk = Qk−1h.

(iv) There exists k0 ∈ N, such that the probability measure νQk0 has a bounded
density, say ν0, with respect to μ:

νQk0(dy) = ν0(y)μ(dy) and ‖ν0 ‖∞ < +∞.

On the one hand, Conditions (i), (ii) and (iv) can be seen as standard L2 condition
for ergodic Markov chains. On the other hand, even in the simpler symmetric BAR
model presented in Sect. 3.2, it may happen that h has no finite higher moments (which
are used in the proof of the asymptotic normality to check Lindeberg’s condition using
a fourth moment condition, see also Assumption 4.2). This motivated the introduction
of Condition (iii).

Then, we consider the Rd -valued case and assume further integrability condition
on the density of P and Q, and the existence of the density of μ with respect to the
Lebesgue measure.

Assumption 3.2 (Regularity of μ and integrability conditions) Let S = R
d with

d ≥ 1. Assume that Assumption 3.1 (i) holds.
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(i) The invariant measure μ of the transition kernel Q has a density, still denoted
by μ, with respect to the Lebesgue measure.

(ii) The following constants are finite:

C0 = sup
x,y∈Rd

(
μ(x) + q(x, y)μ(y)

)
, (7)

C1 = sup
y,z∈Rd

∫

Rd
dx μ(x)μ(y)μ(z)p(x, y, z), (8)

C2 =
∫

Rd
dx μ(x) sup

z∈Rd

(∫

Rd
dy μ(y)h(y) μ(z)

(
p(x, y, z) + p(x, z, y)

)
)2

.

(9)

Following [17, Theorem 1A] (which we consider in dimension d, see Lemma
6.1 below), we shall consider the following assumptions. For g ∈ B(Rd), we set
‖g ‖p = (

∫
S |g(y)|p dy)1/p. Then, we consider condition of the kernel function.

Assumption 3.3 (Regularity of the kernel function and the bandwidths) Let S = R
d

with d ≥ 1.

(i) The kernel function K ∈ B(Rd) satisfies:

‖ K ‖∞ < +∞, ‖ K ‖1 < +∞, ‖ K ‖2 < +∞,

∫

Rd
K (x) dx

= 1 and lim|x |→+∞ |x |K (x) = 0. (10)

(ii) There exists γ ∈ (0, 1/d) such that the bandwidths (hn, n ∈ N) are defined by
hn = 2−nγ .

The following regularity assumptions onμ, the kernel function K and the bandwidth
sequence (hn, n ∈ N)will be useful to control the bias term in (5).We followTsybakov
[20], chapter 1. For s ∈ R+, let �s� denote its integer part, that is the only integer
n ∈ N such that n ≤ s < n + 1 and set {s} = s − �s� its fractional part.
Assumption 3.4 (Further regularity on the density μ, the kernel function and the
bandwidths) Suppose that there exists an invariant probability measure μ of Q and
that Assumptions3.2 (i) and 3.3 hold. We assume there exists s > 0 such that the
following holds:

(i) The density μ belongs to the (isotropic) Hölder class of order (s, . . . , s) ∈ R
d :

The density μ admits partial derivatives with respect to x j , for all j ∈ {1, . . . d},
up to the order �s� and there exists a finite constant L > 0 such that for all
x = (x1, . . . , xd),∈ R

d , t ∈ R and j ∈ {1, . . . , d}:
∣
∣
∣
∣
∣
∂�s�μ
∂x�s�

j

(x− j , t) − ∂�s�μ
∂x�s�

j

(x)

∣
∣
∣
∣
∣
≤ L|x j − t |{s},
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where (x− j , t) denotes the vector x where we have replaced the j th coordinate
x j by t , with the convention ∂0μ/∂x0j = μ.

(ii) The kernel K is of order (�s�, . . . , �s�) ∈ N
d We have

∫
Rd |x |s K (x) dx < ∞

and
∫
R

xk
j K (x) dx j = 0 for all k ∈ {1, . . . , �s�} and j ∈ {1, . . . , d}.

(iii) Bandwidth controlThebandwidths (hn, n ∈ N) satisfy limn→∞ |Gn| h2s+d
n = 0,

that is γ > 1/(2s + d).

Notice that Assumption 3.4-(i) implies that μ is at least Hölder continuous as s > 0.
The following theorem, which proof is given in Sect. 4.2, provides the consistency

and the asymptotic normality of the estimator μ̂An (x) of μ(x), for x in the set of
continuity of μ.

Theorem 3.5 (Convergence and asymptotic normality of the kernel density estimator)
Let d ≥ 1. Let X be a R

d -valued BMC with kernel P and initial distribution ν, K a
kernel function and (hn, n ∈ N) a bandwidth sequence such that Assumptions 2.3 (on
the geometric ergodicity), 3.1 (on the regularity of P and of ν), Assumptions 3.2 (on
the density of μ andP), Assumptions 3.3 (on the kernel function K and the bandwidths
(hn, n ∈ N)), and Assumptions 3.4 (on the density μ, K and (hn, n ∈ N)) are in force.

Furthermore, if the ergodic rate of convergence α (given in Assumption 2.3) is such
that α > 1/

√
2, then assume that the bandwidth rate γ (given in Assumption 3.3 (ii))

is such that:

2dγ > 2α2. (11)

Then, for x in the set of continuity of μ and An ∈ {Gn,Tn}, we have the following
convergence:

μ̂An (x)
P−−−→

n→∞ μ(x) in probability, (12)

|An|1/2hd/2
n (μ̂An (x) − μ(x))

(d)−−−→
n→∞ G in distribution, (13)

where G is a centered Gaussian real-valued random variable with variance
‖ K ‖22 μ(x).

Remark 3.6 The bandwidth must be a function of the geometric ergodic rate of con-
vergence via the relation 2dγ > 2α2 given in Eq. (11). Notice this condition is
automatically satisfied in the critical and subcritical case (α ≤ 1/

√
2) as γ > 0.

In the supercritical case (α > 1/
√
2), the geometric rate of convergence α could

be interpreted as a regularity parameter for the bandwidth selection problems of the
estimation of μ(x), just like the regularity of the unknown function μ. With this new
perspective, we think that the results in [5] could be extended to α ∈ (1/2, 1) by study-
ing an adaptive procedure with respect to the unknown geometric rate of convergence
α.

Remark 3.7 We stress that the asymptotic variance is the same for An = Gn and
An = Tn . This is a consequence of the structure of the asymptotic variance σ 2 in (28)
and (39), and the fact that limn→∞ |Tn|/|Gn| = 2.
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Remark 3.8 One can prove that the estimators |Gn−	|1/2hd/2
n−	(μ̂Gn−	

(x) − μ(x)) are
asymptotically independent for 	 ∈ {0, . . . , k} for any k ∈ N. This result relies on
the additive structure of the asymptotic variance σ 2 in (28), see also Remark 4.9 or
consider the functions f	,n = f shift	,n given by (37) in the proof of Theorem 3.5.

Now, for the applications (e.g., obtaining confidence interval for μ), it would be
interesting in Theorem 3.5 to replaceμ(x) in the expression of the asymptotic variance
by an estimator. For that purpose,we consider (
n, n ∈ N), a sequence of real numbers
such that
n → 0 as n → +∞.Weconsider the setA∗

n belonging to {Gn,Tn}.Wewill
allow An and A∗

n to be identical. For two numbers a and b, we set a ∨ b = max{a, b}.
Then the following result is a direct consequence of Theorem 3.5.

Corollary 3.9 Under the hypotheses of Theorem 3.5, we have

(‖K‖2
√

μ̂A∗
n
(x) ∨ 
n)−1|An|1/2hd/2

n (μ̂An (x) − μ(x))
(d)−−−→

n→∞ Z in distribution,

where Z is a centered Gaussian real-valued random variable with variance 1.

3.2 Application to the Study of Symmetric BAR

3.2.1 The Model

We consider a particular case from [6] of the real-valued bifurcating autoregressive
process (BAR), see also [2, Section 4]. More precisely, let a ∈ (−1, 1). We consider
the process X = (Xu, u ∈ T) on S = R where for all u ∈ T:

{
Xu0 = aXu + εu0,

Xu1 = aXu + εu1,

with (εu, u ∈ T) an independent sequence of real Gaussian N (0, σ 2) random vari-
ables independent of X∅, with σ > 0. Then the process X = (Xu, u ∈ T) is a BMC
with transition probability P given by:

P(x, dy, dz) = 1

2πσ 2 exp

(

− (y − ax)2 + (z − ax)2

2σ 2

)

dydz = Q(x, dy)Q(x, dz),

where the transition kernel Q of the auxiliary Markov chain is defined by:

Q(x, dy) = 1√
2πσ 2

exp

(

− (y − ax)2

2σ 2

)

dy.

We have Q f (x) = E[ f (ax + σ G)] and more generally:

Qn f (x) = E

[
f
(

an x +
√
1 − a2n σaG

)]
, (14)
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where G is a standard N (0, 1) Gaussian random variable and σa = σ/
√
1 − a2. The

kernel Q admits a unique invariant probability measure μ, which is N (0, σ 2
a ) and

whose density, still denoted by μ, with respect to the Lebesgue measure is given by:

μ(x) =
√
1 − a2

√
2πσ 2

exp

(

− (1 − a2)x2

2σ 2

)

. (15)

The density p (resp. q) of the kernelP (resp.Q) with respect toμ⊗2 (resp.μ) is given
by:

p(x, y, z) = q(x, y)q(x, z) (16)

and

q(x, y) = 1√
1 − a2

exp

(

− (y − ax)2

2σ 2 + (1 − a2)y2

2σ 2

)

= 1√
1 − a2

e−(a2 y2+a2x2−2axy)/2σ 2
.

In particular, we have:

μ(x) q(x, y) = 1√
2πσ 2

exp

(

− (x − ay)2

2σ 2

)

.

3.2.2 Regularity of the Model, and Verification of the Assumptions

We first check that Assumption 2.3 on the geometric ergodicity holds. Since q is sym-
metric, the operator Q (in L2(μ)) is a symmetric integral Hilbert–Schmidt operator.
Furthermore, its eigenvalues are given by σp(Q) = (an, n ∈ N), with their algebraic
multiplicity being one. So Assumption 2.3 holds with α = |a| as a ∈ (−1, 1).

We check Assumption 3.1 on the regularity ofP and ν0. Condition (i) therein holds
thanks to (16). Recall h defined in (6) and σa = σ/

√
1 − a2. It is not difficult to check

that for x ∈ R:

h(x) = (1 − a4)−1/4 exp

(
a2

1 + a2

x2

2σ 2
a

)

, (17)

and thus h ∈ L2(μ) (that is
∫
R2 q(x, y)2 μ(x)μ(y) dxdy < +∞). Thus Condition (ii)

holds.
We now consider Condition (iii), that is hk = Qk−1h belongs to L6(μ) for some

k ≥ 1. We deduce from (14) and (17) that there exists a finite constant Ck such that:

hk(x) = Qk−1h(x) = Ck exp

(
a2k

1 + a2k

x2

2σ 2
a

)

.
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So we deduce that hk belongs to L6(μ) if and only if a2k < 1/5, which is satisfied for
k large enough as a ∈ (−1, 1). Thus, Condition (iii) holds.

Remark 3.10 As we shall see, Assumption 3.1 (iii) (the 6th moment of hk being finite
for some k ∈ N

∗) is used to check (25) and (26) from Assumption 4.2, see Sect. 4. So
one could ask if those two inequalities could hold without Condition (iii). In fact, using
elementary computations, it is possible to check the following. For k1 = 1, (25) holds
for |a| < 3−1/4 and (26) also holds for |a| ≤ 0.724 (but (26) fails for |a| ≥ 0.725).
(Notice that 2−1/2 < 0.724 < 3−1/4.) For k1 = 2, (25) holds for |a| < 3−1/6 and (26)
also holds for |a| ≤ 0.794 (but (26) fails for |a| ≥ 0.795). So we see that checking
(25) and (26) is rather tricky. This motivated the introduction of the stronger Condition
(iii) from Assumption 3.1.
We now comment on Condition (iv) from Assumption 3.1. Notice that νQk is the
probability distribution of ak X∅ + σa

√
1 − a2k G, with G aN (0, 1) random variable

independent of X∅. So Condition (iv) holds in particular if ν has compact support
(with k0 = 1) or if ν has a density with respect to the Lebesgue measure, which we
still denote by ν, such that ‖dν/dμ‖∞ is finite (with k0 = 0). Notice that if ν is the
Gaussian probability distribution ofN (m0, ρ

2
0 ), then Condition (iv) holds if and only

if ρ0 < σa and m0 ∈ R, or ρ0 = σa and m0 = 0.
We now check Assumptions 3.2 on the regularity of μ and on the integrability

conditions on the density of P and Q. Condition (i) holds, see (15) for the density of
μ with respect to the Lebesgue measure. We now check that Condition (ii) holds, that
is the constants C0, C1 and C2 defined in (7), (8) and (9) are finite. The fact that C0 is
finite is clear. Notice that:

C1 = sup
y,z∈Rd

∫

Rd
dx μ(x)μ(y)μ(z)p(x, y, z)

= sup
y,z∈Rd

∫

Rd
dx μ(x)μ(y)μ(z)q(x, y)q(x, z) ≤ C2

0 .

We also have, using Jensen for the second inequality (and the probability measure
μ(y)q(x, y) dy):

C2 = 4
∫

Rd
dx μ(x) sup

z∈Rd

(∫

Rd
dy μ(y)h(y) μ(z)q(x, y)q(x, z)

)2

≤ 4C2
0

∫

Rd
dx μ(x)

(∫

Rd
dy μ(y)h(y) q(x, y)

)2

≤ 4C2
0 ‖h‖2L2(μ)

.

So, we get that the constants C0, C1 and C2 are finite, and thus Condition (ii) holds.
Since the function μ given in (15) is of class C∞ with all its derivative bounded,

we get that the Hölder type Assumption 3.4 (i) holds (for any s > 0).
Many choices of the kernel function, K , and of the bandwidths parameter γ satisfy

Assumptions 3.3 and 3.4 (ii) and (iii). Eventually, as d = 1 and α = |a|, we get that
Equation (11) becomes 2γ > 2a2, which holds a fortiori if 2a2 ≤ 1.
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3.3 Numerical Studies for the Symmetric BARModel

In order to illustrate the central limit theorem for the estimator of the invariant density
μ, we simulate n0 = 500 samples of a symmetric BAR X = (X (a)

u , u ∈ Tn) with
different values of the autoregressive coefficient α = a ∈ (−1, 1). For each sample,
we compute the estimator μ̂An (x) given in (4) and its fluctuation given by

ζn = |An|1/2hd/2
n (μ̂An (x) − μ(x)) (18)

for x ∈ R, the average over An ∈ {Gn,Tn}, the Gaussian kernel

K (x) = 1√
2π

e−x2/2 (19)

and the bandwidth hn = 2−nγ with γ ∈ (0, 1). Next, in order to compare theoretical
and empirical results, we plot in the same graphic, see Figs. 1 and 2:

– The histogram of ζn and the density of the centered Gaussian distribution with
variance μ(x) ‖ K ‖22 = μ(x)(2

√
π)−1 (see Theorem 3.5).

– The empirical cumulative distribution of ζn and the cumulative distribution of the
centered Gaussian distribution with variance μ(x) ‖ K ‖22 = μ(x)(2

√
π)−1.

Since the Gaussian kernel is of order s = 2 and the dimension is d = 1, the bandwidth
exponent γ must satisfy the condition γ > 1/5, so that Assumption 3.4-(iii) holds.
Moreover, in the supercritical case, γ must satisfy the supplementary condition 2γ >

2α2, that is γ > 1 + log(α2)/ log(2), so that (11) holds. In Fig. 1, we take α = 0.5
and α = 0.7 (both of them corresponds to the subcritical case as 2α2 < 1) and
γ = 1/5+ 10−3. The simulations agree with the results from Theorem 3.5. In Fig. 2,
we take α = 0.9 (supercritical case) and consider γ = 0.696 and γ = 1/5+ 10−3. In
the former case (11) is satisfied as γ = 0.696 > 1 + log((0.9)2)/ log(2), and in the
latter case (11) fails. As one can see in the graphics Fig. 2, the estimates agree with
the theory in the former case (γ = 0.696), whereas they are poor in the latter case.

3.4 TheModel of Asymmetric BAR

Now, we study an extension introduced in [12] of the symmetric BAR . We consider
the real-valued Gaussian bifurcating autoregressive process (BAR) X = (Xu, u ∈ T)

where X∅ is arbitrary and for all u ∈ T:

{
Xu0 = a0Xu + b0 + εu0

Xu1 = a1Xu + b1 + εu1,
(20)

with a0, a1 ∈ [−1, 1], b0, b1 ∈ R and ((εu0, εu1), u ∈ T) an independent sequence
of bivariate Gaussian N (0, �) random vectors independent of X∅ with covariance
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(a) (b)

Fig. 1 Histogram and empirical cumulative distribution of ζn given in (18) with x = −1.3, n = 15,
An = Gn and γ = 1/5 + 10−3. We consider the (subcritical) ergodic rate of convergence: α = 0.5 and
α = 0.7 (Color figure online)

(a) (b)

Fig. 2 Histogram and empirical cumulative distribution of ζn given in (18) with x = −1.3, n = 15,
An = Gn and the ergodic rate α = 0.9 (supercritical case).We consider the bandwidth exponent γ = 0.696
(which satisfies (11)) for the two left graphics and γ = 1/5 + 10−3 (which does not satisfy (11)) for the
two right (Color figure online)

matrix, with σ > 0 and ρ ∈ R such that |ρ| < σ 2:

� =
(

σ 2 ρ

ρ σ 2

)

.

Then the process X = (Xu, u ∈ T) is a BMC with transition probability P given by:

P(x, dy, dz) = 1

2π
√

σ 4 − ρ2
exp

(

− σ 2

2(σ 4 − ρ2)
g(x, y, z)

)

dydz,

with

g(x, y, z) = (y − a0x − b0)
2 − 2ρσ−2(y − a0x − b0)(z − a1x − b1)

+(z − a1x − b1)
2.
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The transition kernel Q of the auxiliary Markov chain is defined by:

Q(x, dy) = 1

2
√
2πσ 2

(
e−(y−a0x−b0)2/2σ 2 + e−(y−a1x−b1)2/2σ 2

)
dy.

This process admits an invariant probability measureμwhich is the law of the random
variable Y∞ defined by

Y∞ :=
∞∑

k=1

A1A2 . . . Ak−1Bk, (21)

where Ak = aζk and Bk = bζk + ε′
k , with (ε′

k, k ∈ N
∗) and (ζk, k ∈ N

∗) two inde-
pendent sequences of i.i.d. random variables, independent of X∅. Each ε′

k is centered
Gaussian random variable with variance σ 2 and each ζk has a Bernoulli law with
parameter 1/2, that is P(ζk = 0) = P(ζk = 1) = 1/2. Since the transition Q has a
density with respect to the Lebesgue Measure, it follows that the probability measure
μ also has a density, denoted by μ, with respect to the Lebesgue measure. To our best
knowledge, the analytic expression of this density is unknown. Note, however, that an
approximation of the densityμ has been proposed in [8, 15].We do not have any infor-

mation on the ergodic convergence rate, except that it is bounded by
√

(a2
0 + a2

1)/2
(see, for example, the calculus in [12]). We will estimate the invariant density μ in a
compact set D ⊂ R. For that purpose, we use the estimator μ̂Gn (x), for all x ∈ D,
given in (4), with the Gaussian kernel K defined in (19). Since the ergodicity rate is
unknown, we have to develop a method based on data in order to select the bandwidth.

3.5 Bandwidth Selection by Cross ValidationMethod

To select optimal bandwidth, we choose the bandwidth h which minimizes the mean
integrated squared error

E

[∫
(μ̂Gn (x) − μ(x))2dx

]

= E

[∫
μ̂2
Gn

(x)dx

]

− 2E

[∫
μ̂Gn (x)μ(x)dx

]

+
∫

μ2(x)dx .

Since the last term of the previous equality does not depend on h, it suffices to choose
the bandwidth h which minimizes the function J defined by

J (h) := E

[∫
μ̂2
Gn

(x)dx

]

− 2E

[∫
μ̂Gn (x)μ(x)dx

]

.

Now, J (h) can be approximated by

Ĵ (h) :=
∫

μ̂2
Gn

(x)dx − 2

|Gn|
∑

u∈Gn

μ̂Gn ,[−u](Xu),
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where μ̂Gn ,[−u] is the kernel density estimator of μ computed without the observation
Xu . The motivation for considering the second approximation come fromRemark 2.2.
Let H := {h1, . . . , hm} be a bandwidth grid. H is a subset of (0, 1]. Replacing J by
Ĵ , we get that ĥ defined by

ĥ := arg minh∈H Ĵ (h),

is an approximation of the optimal bandwidth for the estimation of the invariant density
μ. This method is known in the literature as the leave one out cross-validation (see,
for example, [20], Section 1.4). Now, in the numerical studies, instead of μ̂Gn defined
in (4) , we use the estimator μ̃Gn defined by

μ̃Gn (x) = |Gn|−1ĥ−1/2
∑

u∈Gn

Kĥ(x − Xu) ∀x ∈ R.

Remark 3.11 We do not study here the theoretical properties of μ̃Gn . We let this for
future work.

3.6 Numerical Studies for the Asymmetric BARModel

We consider two examples of the model (20):

(case 1) (a0, b0, a1, b1) = (0.5, 0, 0.7, 0), σ = 1 and ρ = 0.
(case 2) (a0, b0, a1, b1) = (1, 0, 0.5, 0), σ = 1 and ρ = 0.

In the second example, we allow the evolution of the new pole to be instable. We have
simulated the invariant distribution using the formula (21). Next, we have plotted in
the same graph the histogram of data from the simulation of the invariant distribution
and, using corollary 3.9, the 90% level confidence band for invariant density on the
interval D = [−4, 4]. For the case (a0, b0, a1, b1) = (0.5, 0, 0.7, 0), σ = 1 and
ρ = 0, we plot in Fig. 3 the confidence band for one sample and ten samples of
the process (Xu, u ∈ G13), simulated using (20). The bandwidths selected, using the
previous cross validation, for the ten samples are

hCV = (0.24, 0.21, 0.25, 0.24, 0.24, 0.23, 0.24, 0.25, 0.24, 0.26).

We do the same thing for the case (a0, b0, a1, b1) = (1, 0, 0.5, 0), σ = 1 and ρ = 0.
The bandwidths selected in this case are

hCV = (0.31, 0.32, 0.33, 0.27, 0.30, 0.32, 0.30, 0.32, 0.29, 0.30).

One can observe that the selected bandwidths in the second case are greater than those
selected in the first case. This is due to the fact that in (case 2), we are certainly in the
supercritical case. Indeed, is this case, the upper bound of the geometric ergodic rate of
convergence is equal to

√
(1 + 0.52)/2 = 0.791. This also certainly explains why the

invariant distribution is more flattened in the second case, while it is more peaked in
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(a) (b)

Fig. 3 Histogram of the invariant distribution (simulated using the formula (21)) and the 90% level confi-
dence band for invariant density for one sample (left) and ten samples (right). In red, the upper bound of
the confidence bands and the lower bound in blue (Color figure online)

(a) (b)

Fig. 4 Histogram of the invariant distribution (simulated using the formula (21)) and the 90% level confi-
dence band for invariant density for one sample (left) and ten samples (right). In red, the upper bound of
the confidence bands and the lower bound in blue (Color figure online)

the first case. (The upper bound of the geometric ergodic rate of convergence is equal
to

√
(0.72 + 0.52)/2 = 0.61.) In Fig. 4, one can observe that the upper and the lower

bounds of the confidence bands overlap for different samples. The cross-validation
method seems to be less efficient in this case, that is when the evolution of one of
the poles is allowed to be instable. Choosing locally the bandwidth would certainly
improve the construction of the confidence bands. This last question will be addressed
in future work, in the same vein as the work done in [5] but considering this time the
geometric ergodic rate of convergence as an unknown regularity parameter.
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4 Seeing theMain Result in a More General Framework

The proof of Theorem 3.5 given in Sect. 4.2 relies on a general central limit result for
additive functionals of BMC presented in the next section.

4.1 A General CLT for Additive Functionals of BMC

In the spirit of [2], we introduce the following series of assumptions in a general
L2(μ) framework, with increasing conditions as the geometric ergodic rate α exceed
the critical threshold of 1/

√
2. In fact, we believe that the general framework presented

in this sectionmay be used also for others nonparametric smoothingmethods for BMC
than the one presented in Sect. 3.1.

Let X = (Xu, u ∈ T) be a BMC on (S,S ) with initial probability distribution ν,
and probability kernel P . Recall Q is the induced Markov kernel. We present some
inequalities in the next remark.

Remark 4.1 By convention, for f , g ∈ B(S), we define the function f ⊗ g ∈ B(S2)

by ( f ⊗ g)(x, y) = f (x)g(y) for x, y ∈ S and introduce the notations:

f ⊗sym g = 1

2
( f ⊗ g + g ⊗ f ) and f ⊗2 = f ⊗ f .

Notice thatP(g⊗sym1) = Q(g) for g ∈ B+(S). For f ∈ B+(S), as f ⊗ f ≤ f 2⊗sym1,
we get:

P( f ⊗2) = P( f ⊗ f ) ≤ P( f 2 ⊗sym 1) = Q
(

f 2
)

. (22)

Assume μ is an invariant probability measure ofQ. By Cauchy–Schwarz we have for
f , g ∈ L2(μ):

|P( f ⊗ g)|2 ≤ P( f 2 ⊗ 1)P(1 ⊗ g2) ≤ 4Q( f 2)Q(g2), (23)

〈μ,P( f ⊗ g)〉 ≤ 2 ‖ f ‖L2(μ) ‖g ‖L2(μ) . (24)

In the spirit of Assumption 2.4 and Remark 2.5 in [2], we consider the following
hypothesis on asymptotic and non-asymptotic distribution of the process.

Assumption 4.2 (L2(μ) regularity for the probability kernel P and density of the
initial distribution)
There exists an invariant probability measure μ of Q and:

(i) There exists k1 ∈ N and a finite constant M such that for all f , g ∈ L2(μ):

‖P(Qk1 f ⊗ Qk1g)‖L2(μ) ≤ M ‖ f ‖L2(μ) ‖g ‖L2(μ), (25)

and for all h ∈ L2(μ), and all m ∈ {0, . . . , k1}:

‖P
(
QmP(Qk1 f ⊗sym Qk1g) ⊗sym Qk1h

)
‖

L2(μ)
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≤ M ‖ f ‖L2(μ) ‖g ‖L2(μ) ‖h ‖L2(μ) . (26)

(ii) item:k0 There exists k0 ∈ N, such that the probability measure νQk0 has a
bounded density, say ν0, with respect to μ:

νQk0(dy) = ν0(y)μ(dy) and ‖ν0 ‖∞ < +∞.

The next family of three assumptions are related to the sequence of functions which
will be considered.

Assumption 4.3 (Regularity of the approximation functions in the subcritical regime)
Let ( f	,n, n ≥ 	 ≥ 0) be a sequence of real-valued measurable functions defined on
S such that:

(i) There exists ρ ∈ (0, 1/2) such that supn≥	≥0 2
−nρ ‖ f	,n‖∞ is finite.

(ii) The constants c2 = supn≥	≥0 ‖ f	,n‖L2(μ) and q2 = supn≥	≥0 ‖Q( f 2	,n)‖1/2∞ are
finite.

(iii) There exists a sequence (δ	,n, n ≥ 	 ≥ 0) of positive numbers such that � =
supn≥	≥0 δ	,n is finite, limn→∞ δ	,n = 0 for all 	 ∈ N, and for all n ≥ 	 ≥ 0:

〈μ, | f	,n |〉 + |〈μ,P( f	,n⊗2)〉| ≤ δ	,n;

and for all g ∈ B+(S):

‖P(| f	,n| ⊗sym Qg)‖L2(μ)
≤ δ	,n ‖g ‖L2(μ) . (27)

(iv) The following limit exists and is finite:

σ 2 = lim
n→∞

n∑

	=0

2−	 ‖ f	,n ‖2L2(μ)
< +∞. (28)

Remark 4.4 We stress that (i) and (ii) of Assumption 4.3 imply the existence of finite
constant C such that for all n ≥ 	 ≥ 0:

〈μ, f 4	,n〉 ≤ ‖ f	,n‖2∞〈μ, f 2	,n〉 ≤ C c22 2
2nρ and 〈μ, f 6	,n〉 ≤ C c22 2

4nρ.

We will use the following notations: for n ∈ N, set fn = ( f	,n, 	 ∈ N) with the
convention that f	,n = 0 if 	 > n; and for k ∈ N

∗:

ck(fn) = sup
	≥0

‖ f	,n ‖Lk (μ) and qk(fn) = sup
	≥0

‖Q( f k
	,n)‖1/k

∞ . (29)

In particular, we have c2 = supn≥0 c2(fn) and q2 = supn≥0 q2(fn).
For the critical case, 2α2 = 1, we shall assume Assumption 4.3 as well as the

following.
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Assumption 4.5 (Regularity of the approximation functions in the critical regime)
Keeping the same notations as in Assumption 4.3, we further assume that:

(v)
lim

n→∞ n
n∑

	=0

2−	/2 δ	,n = 0. (30)

(vi) For all n ≥ 	 ≥ 0:

‖Q(| f	,n|)‖∞ ≤ δ	,n . (31)

For the supercritical case, 2α2 > 1, we shall assume Assumptions 4.3, 4.5 as well
as the following.

Assumption 4.6 (Regularity of the approximation functions in the supercritical
regime)
Keeping the same notations as in Assumption 4.5, we further assume that Assumption
2.3 holds with 2α2 > 1 and that:

sup
0≤	≤n

(2α2)n−	δ2	,n < +∞ and, for all	 ∈ N, lim
n→∞(2α2)n−	δ2	,n = 0. (32)

Notice that condition (32) implies (30) as well as � < +∞ and limn→∞ δ	,n = 0
for all 	 ∈ N (see Assumption 4.3 (iii)) when 2α2 > 1.

Following [2], for a finite set A ⊂ T and a function f ∈ B(S), we set:

MA( f ) =
∑

i∈A
f (Xi ). (33)

We shall be interested in the cases A = Gn (the nth generation) and A = Tn (the tree
up to the nth generation). We shall assume that μ is an invariant probability measure
of Q. In view of Remark 2.2, one is interested in the fluctuations of |Gn|−1 MGn ( f )

around 〈μ, f 〉. So, we will use frequently the following notation:

f̃ = f − 〈μ, f 〉 for f ∈ L1(μ). (34)

Let f = ( f	, 	 ∈ N) be a sequence of elements of L1(μ). We set for n ∈ N:

Nn,∅(f) = |Gn|−1/2
n∑

	=0

MGn−	
( f̃	). (35)

The notation Nn,∅ means that we consider the average from the root ∅ up to the nth
generation.

Remark 4.7 The following two simple cases are frequently used in the literature. Let
f ∈ L1(μ) and consider the sequence f = ( f	, 	 ∈ N). If f0 = f and f	 = 0 for
	 ∈ N

∗, then we get:

Nn,∅(f) = |Gn|−1/2MGn ( f̃ ).
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If f	 = f for 	 ∈ N, then we get, as |Tn| = 2n+1 − 1 and |Gn| = 2n :

Nn,∅(f) = |Gn|−1/2MTn ( f̃ ) =
√
2 − 2−n |Tn|−1/2MTn ( f̃ ).

Thus, we will easily deduce the fluctuations of MTn ( f ) and MGn ( f ) from the asymp-
totics of Nn,∅(f).

The main result of this section is motivated by the decomposition given in (5). It
will allow us to treat the variance term of kernel estimators defined in (4). The proof
is given in Sect. 5 for the subcritical case (α ∈ (0, 1/

√
2)), with α the rate defined

in Assumption 2.3; it follows closely the approach given in [2]. For the critical case
(α = 1/

√
2) and the supercritical case (α ∈ (1/

√
2, 1), the proof is an adaptation of

the subcritical case and it is therefore omitted; the interested reader can find the details
in [1]. Recall Nn,∅(f) defined in (35).

Theorem 4.8 Let X be a BMC with kernel P and initial distribution ν, such that
Assumption 2.3 (on the geometric ergodic rate α ∈ (0, 1)), Assumption 4.2 (on
the regularity of P and of ν) and Assumption 4.3 (on the approximation functions
( f	,n, n ≥ 	 ≥ 0)) are in force.

Furthermore, ifα = 1/
√
2 then assume that Assumption4.5holds; and ifα > 1/

√
2

then assume that Assumption 4.5 and Assumption 4.6 hold. Then, we have the following
convergence in distribution:

Nn,∅(fn)
(d)−−−→

n→∞ G,

where fn = ( f	,n, 	 ∈ N) and the convention that f	,n = 0 for 	 > n, and with G a
centered Gaussian random variable with finite variance σ 2 defined in (28).

Remark 4.9 Assume σ 2
	 = limn→∞ ‖ f	,n ‖2

L2(μ)
exists for all 	 ∈ N; so that

σ 2 defined in (28) is also equal to
∑

	∈N 2−	σ 2
	 . According to the additive form

of the variance σ 2, we deduce that for fixed k ∈ N, the random variables(
|Gn|−1/2MGn−	

( f̃	,n), 	 ∈ {0, . . . , k}
)
converges in distribution, as n goes to infin-

ity toward (G	, 	 ∈ {0, . . . , k})which are independent real-valued Gaussian centered
random variables with variance Var(G	) = 2−	σ 2

	 .

4.2 Proof of Theorem 3.5

We suppose that S = R
d , with d ≥ 1, and that Assumptions 3.1, 3.2 hold. Let K be a

kernel function satisfying Assumption 3.3 (i) and bandwidths (hn, n ∈ N) satisfying
Assumption 3.3 (ii). For x ∈ R

d , we define the sequences of functions ( f x
	 , 	 ∈ N)

given by:

f x
	 (y) = Kh	

(x − y) = h−d/2
	 K

(
x − y

h	

)

fory ∈ R
d .
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We consider the sequences of functions:

fshift = ( f shift	,n , n ≥ 	 ≥ 0), fid = ( f id	,n, n ≥ 	 ≥ 0) and f0 = ( f 0	,n, n ≥ 	 ≥ 0),

(36)

defined by:

f shift	,n = f x
n−	, f id	,n = f x

n and f 0	,n = f x
n 1{	=0}. (37)

Let x be in the set of continuity of μ. Thanks to Bochner’s recall results in Lemma
6.1 of Appendix, we have:

lim
	→∞ ‖ f x

	 ‖2L2(μ)
= lim

	→∞〈μ, ( f x
	 )2〉 = μ(x) ‖ K ‖22 . (38)

The proof of the following lemma is not difficult and left to the reader (see, for example,
[2] for more details).

Lemma 4.10 Under the assumption of Theorem 3.5 and when considering any of the
sequence fshift, f id or f0, the Assumptions 4.2, 4.3, 4.5 and 4.6 hold with σ 2 defined
by (28), respectively, given by:

(σ shift)2 = 2μ(x) ‖ K ‖22, (σ id)2 = 2μ(x) ‖ K ‖22 and (σ 0)2 = μ(x) ‖ K ‖22 .

(39)

The subcritical case and An = Tn . We have the following decomposition:

μ̂Tn (x) − μ(x) =
√|Gn|

|Tn|hd/2
n

Nn,∅(fn) + Bhn (x), (40)

where fn = ( f	,n, 	 ∈ N)with the functions f	,n = f id	,n defined in (37) for n ≥ 	 ≥ 0
and f	,n = 0 otherwise; Nn,∅ is defined in (35) with f replaced by fn ; and the bias
term:

Bhn (x) = 1

|Tn|hd/2
n

n∑

	=0

2n−	〈μ, f	,n〉 − μ(x) = 〈μ, h−d
n K (h−1

n (x − ·))〉 − μ(x).

Since limn→∞ |Gn|hd
n = ∞ as γ < 1, we get that limn→∞ |Gn|1/2/|Tn|hd/2

n = 0.
Thus, as a direct consequence of Theorem 4.8, we get the following convergence in
probability:

lim
n→∞

√|Gn|
|Tn|hd/2

n

Nn,∅(fn) = 0.

Next, it follows from Lemma 6.1 that limn→∞ Bhn (x) = 0. This gives Equation (12)
on the consistency of the estimator.
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Using the value of σ = σ id in (39), thanks to Theorem 4.8 and the decomposition
(40), we see that to get the asymptotic normality of the estimator (13) it suffices to
prove that:

lim
n→∞ |Tn|1/2hd/2

n Bhn (x) = 0. (41)

Using that:

μ(x − hn y) − μ(x) =
d∑

j=1

(μ(x1 − hn y1, . . . , x j − hn y j , x j+1, . . . , xd)

−μ(x1 − hn y1, . . . , x j−1 − hn y j−1, x j , x j+1, . . . , xd)),

the Taylor expansion and Assumption 3.4, we get that, for some finite constant C > 0:

|Tn|1/2hd/2
n Bhn (x) =

√
|Tn|hd

n

∣
∣
∣

∫

Rd
h−d

n K (h−1
n (x − y))μ(y)dy − μ(x)

∣
∣
∣

=
√

|Tn|hd
n

∣
∣
∣

∫

Rd
K (y)(μ(x − hn y) − μ(x)) dy

∣
∣
∣

≤ C
√

|Tn|hd
n

d∑

j=1

∫

Rd
K (y)

(hn|y j |)s

�s�! dy

≤ C
√

|Tn|h2s+d
n .

ThenEq. (41) follows, since limn→∞ |Tn|s2s+d
n = 0. This ends the proof forAn = Tn .

The subcritical case and An = Gn . The proof is similar, using instead the functions
f	,n = f 0	,n defined in (37).
The critical and supercritical cases. The proof follows the same lines, using Theorem
4.8 in the critical and supercritical cases and the decomposition (40).

5 Proof of Theorem 4.8 in the Subcritical Case (2˛2 < 1)

Recall the definition of MA given in (33) and of f̃ = f − 〈μ, f 〉 in (34). We follow
the approach of [2]. In order to study the asymptotics of MGn−	

( f̃ ) as n goes to infinity
and 	 is fixed, it is convenient to consider the contribution of the descendants of the
individual i ∈ Tn−	 for n ≥ 	 ≥ 0:

N 	
n,i ( f ) = |Gn|−1/2MiGn−|i |−	

( f̃ ), (42)

where iGn−|i |−	 = {i j, j ∈ Gn−|i |−	} ⊂ Gn−	. For all k ∈ N such that n ≥ k + 	,
we have:

MGn−	
( f̃ ) = √|Gn|

∑

i∈Gk

N 	
n,i ( f ) = √|Gn| N 	

n,∅( f ).
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Let f = ( f	, 	 ∈ N) be a sequence of elements of L1(μ). We set for n ∈ N and i ∈ Tn :

Nn,i (f) :=
n−|i |∑

	=0

N 	
n,i ( f	) := |Gn|−1/2

n−|i |∑

	=0

MiGn−|i |−	
( f̃	). (43)

We deduce that
∑

i∈Gk
Nn,i (f) = |Gn|−1/2 ∑n−k

	=0 MGn−	
( f̃	). For k = 0, we recover

Eq. (35).
We consider the notations of Theorem 4.8. Recall that fn = ( f	,n, 	 ∈ N) with the

convention that f	,n = 0 for 	 > n. In the following proofs, we will denote by C any
unimportant finite constant which may vary from line to line (in particular C does not
depend on n nor on fn).

Remark 5.1 Recall k0 given in Assumption 4.2 (iii). Recall that from Assumption 4.3
(ii), the sequence fn is bounded in L2(μ). We have

Nn,∅(fn) = N [k0]
n,∅ (fn) + |Gn|−1/2

k0−1∑

	=0

MG	
( f̃n−	,n), (44)

where we set:

N [k0]
n,∅ (fn) = |Gn|−1/2

n−k0∑

	=0

MGn−	
( f̃	,n). (45)

Using the Cauchy–Schwarz inequality, we get

|Gn|−1/2|
k0−1∑

	=0

MG	
( f̃n−	,n)| ≤ Cc2(f)|Gn|−1/2 + |Gn|−1/2

k0−1∑

	=0

MG	
(| fn−	,n|).

(46)

Since the sequence fn is bounded in L2(μ) and since k0 is finite, we have, for all
	 ∈ {0, . . . , k0 − 1}, limn→∞ |Gn|−1/2MG	

(| fn−	,n|) = 0 a.s. and then that (used
(46))

lim
n→∞ |Gn|−1/2|

k0−1∑

	=0

MG	
( f̃n−	)| = 0 a.s.

Therefore, from (44), the study of Nn,∅(fn) is reduced to that of N [k0]
n,∅ (fn) defined in

(45).

Let (pn, n ∈ N) be a non-decreasing sequence of elements of N∗ such that, for all
λ > 0:

pn < n, lim
n→∞ pn/n = 1 and lim

n→∞ n − pn − λ log(n) = +∞. (47)
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In the rest of the paper, when there is no ambiguity, we write p for pn .
Let i, j ∈ T. We write i � j if j ∈ iT. We denote by i ∧ j the most recent common

ancestor of i and j , which is defined as the only u ∈ T such that if v ∈ T and v � i ,
v � j then v � u. We also define the lexicographic order i ≤ j if either i � j or
v0 � i and v1 � j for v = i ∧ j . Let X = (Xi , i ∈ T) be a B MC with kernel P and
initial measure ν. For i ∈ T, we define the σ -field:

Fi = {Xu; u ∈ T such that u ≤ i}.

By construction, the σ -fields (Fi ; i ∈ T) are nested as Fi ⊂ F j for i ≤ j .
Recalling Nn,i (f) defined in (43), we define for n ∈ N, i ∈ Gn−pn and fn the

martingale increments:

�n,i (fn) = Nn,i (fn) − E
[
Nn,i (fn)|Fi

]
and �n(fn) =

∑

i∈Gn−pn

�n,i (fn). (48)

Thanks to (43), we have:

∑

i∈Gn−pn

Nn,i (fn) = |Gn|−1/2
pn∑

	=0

MGn−	
( f̃	,n) = |Gn|−1/2

n∑

k=n−pn

MGk ( f̃n−k,n).

Using the branching Markov property, and (43), we get for i ∈ Gn−pn :

E
[
Nn,i (fn)|Fi

] = E
[
Nn,i (fn)| Xi

] = |Gn|−1/2
pn∑

	=0

EXi

[
MGpn−	

( f̃	,n)
]
.

Assume that n is large enough so that n − pn − 1 ≥ k0. We have:

N [k0]
n,∅ (f) = �n(f) + Rk0

0 (n) + R1(n),

where N [k0]
n,∅ (f) is defined in (45), �n(f) is defined in (48) and:

Rk0
0 (n) = |Gn|−1/2

n−pn−1∑

k=k0

MGk ( f̃n−k) and R1(n) =
∑

i∈Gn−pn

E
[
Nn,i (fn)|Fi

]
.

We have the following result:

Lemma 5.2 Under the assumptions of Theorem 4.8 (2α2 < 1), we have that

lim
n→∞E

[(
N [k0]

n,∅ (fn) − �n(fn)
)2] = 0.
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Proof We deduce from Remark 5.5 in [2] that E

[(
N [k0]

n,∅ (fn) − �n(fn)
)2] ≤ a0,n c22

for a sequence (a0,n, n ∈ N) which converges to 0 and does not depend on the
sequences fn . ��

We consider the bracket of the martingale �n(fn) given by V (n) = ∑
i∈Gn−pn

E
[
�n,i (fn)2|Fi

]
. Using (43) and (48), we write:

V (n) = |Gn|−1
∑

i∈Gn−pn

EXi

⎡

⎣

( pn∑

	=0

MGpn−	
( f̃	,n)

)2
⎤

⎦

−R2(n) = V1(n) + 2V2(n) − R2(n), (49)

with:

V1(n) = |Gn|−1
∑

i∈Gn−pn

pn∑

	=0

EXi

[
MGpn−	

( f̃	,n)2
]
,

V2(n) = |Gn|−1
∑

i∈Gn−pn

∑

0≤	<k≤pn

EXi

[
MGpn−	

( f̃	,n)MGpn−k ( f̃k,n)
]
,

R2(n) =
∑

i∈Gn−pn

E
[
Nn,i (fn)|Xi

]2
,

where Nn,i (f) is defined in (43).

Lemma 5.3 Under the assumptions of Theorem 4.8 (2α2 < 1), we have that R2(n)

converges in probability toward 0.

Proof We deduce from Remark 5.7 in [2] that E[|R2(n)|] ≤ Cc22an for a sequence
(an, n ∈ N) which converges to 0 and does not depend on the sequence fn . ��
Lemma 5.4 Under the assumptions of Theorem 4.8 (2α2 < 1), we have that V2(n)

converges in probability toward 0.

Proof First, we have the following preliminary results. Let f ∈ L2(μ) and recall that
f̃ = f − 〈μ, f 〉. We deduce from 〈μ, f 〉 = 〈μ,Q f 〉 ≤ ‖Q f ‖∞ ≤ ‖Q( f 2)‖1/2∞
that:

‖Q f̃ ‖∞ ≤ 2 ‖Q( f 2)‖1/2∞ and ‖Q( f̃ 2)‖∞ ≤ 4 ‖Q( f 2)‖∞ . (50)

Note that thanks to Assumption 4.3 we have, for all k, 	, r ∈ N, and j > 0:

lim
n→∞ |〈μ, f̃k,nQ j f̃	,n〉| = 0 and lim

n→∞ |〈μ,P
(
Qr f̃k,n ⊗sym Q j f̃	,n

)
〉| = 0.

(51)
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Indeed, we have thanks to Assumption 4.3 (iii):

|〈μ, f̃k,nQ j f̃	,n〉| ≤ ‖Q f̃	,n ‖∞ 〈μ, | f̃k,n |〉 ≤ 4 ‖Q f 2	,n ‖1/2∞ 〈μ, | fk,n |〉 ≤ 4q2 δk,n .

We also have thanks to Assumption 4.3 (iii), for g = Q j−1| f̃	,n| and r = 0:

|〈μ,P
(
Qr f̃k,n ⊗sym Q j f̃	,n

)
〉| ≤ 〈μ,P

(
| f̃k,n| ⊗sym Qg

)
〉

≤ 〈μ,P (
1 ⊗sym Qg

)〉〈μ, | fk,n |〉
+ ‖P(| fk,n| ⊗sym Qg)‖L2(μ)

≤ 2 ‖g ‖L2(μ) δk,n

≤ 2c2 δk,n,

and for r ≥ 1 using (50) and that 〈μ,P(1 ⊗sym h)〉 = 〈μ, h〉 :

|〈μ,P
(
Qr f̃k,n ⊗sym Q j f̃	,n

)
〉| ≤ 〈μ,P (

1 ⊗sym Qg
)〉 ‖Qr f̃k,n ‖∞ ≤ 2 q2 δ	,n .

Then use that for all k ∈ N fixed, we have limn→∞ δk,n = 0 to conclude that (51)
holds.

Using (76), we get:

V2(n) = V5(n) + V6(n), (52)

with

V5(n) = |Gn|−1
∑

i∈Gn−p

∑

0≤	<k≤p

2p−	Qp−k
(

f̃k,nQk−	 f̃	,n
)

(Xi ),

V6(n) = |Gn|−1
∑

i∈Gn−p

∑

0≤	<k<p

p−k−1∑

r=0

2p−	+r Qp−1−(r+k)

(
P

(
Qr f̃k,n ⊗sym Qk−	+r f̃	,n

))
(Xi ).

First, we consider the term V6(n). We have:

V6(n) = |Gn−p|−1MGn−p (H6,n),

with

H6,n =
∑

0≤	<k
r≥0

h(n)
k,	,r 1{r+k<p} and h(n)

k,	,r = 2r−	 Qp−1−(r+k)

(
P

(
Qr f̃k,n ⊗sym Qk−	+r f̃	,n

))
.
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Define

H [n]
6 (fn) =

∑

0≤	<k
r≥0

hk,	,r 1{r+k<p}, (53)

with hk,	,r = 2r−	〈μ,P
(
Qr f̃k,n ⊗sym Qk−	+r f̃	,n

)
〉 = 〈μ, h(n)

k,	,r 〉.
We set A6,n(fn) = H6,n − H [n]

6 (fn) = ∑
0≤	<k

r≥0
(h(n)

k,	,r − hk,	,r ) 1{r+k<p}, so that

from the definition of V6(n), we get that:

V6(n) − H [n]
6 (fn) = |Gn−p|−1 MGn−p (A6,n(fn)).

We now study the second moment of |Gn−p|−1 MGn−p (A6,n(fn)). Using (77), we get
for n − p ≥ k0:

|Gn−p|−2
E

[
MGn−p (A6,n(fn))2

]
≤ C |Gn−p|−1

n−p∑

j=0

2 j ‖Q j (A6,n(fn))‖2L2(μ) .

We deduce that

‖Q j (A6,n(fn))‖L2(μ) ≤
∑

0≤	<k
r≥0

‖Q j h(n)
k,	,r − hk,	,r ‖

L2(μ)
1{r+k<p}

≤ C
∑

0≤	<k
r≥0

2r−	 α p−1−(r+k)+ j

‖P
(
Qr f̃k,n ⊗sym Qk−	+r f̃	,n

)
‖

L2(μ)
1{r+k<p}

≤ Cc22 α j
∑

0≤	<k
r≥k1

2r−	 α p−(r+k)αk−	+2r 1{r+k<p} (54)

+ Cα j
∑

0≤	<k
0≤r≤k1−1

2−	 α p−k (55)

‖P
(
Qr f̃k,n ⊗sym Qk−	+r f̃	,n

)
‖

L2(μ)
1{r+k<p}, (56)

where we used the triangular inequality for the first inequality; (3) for the second; (25)
for r ≥ k1 and (3) again for the third. The term (55) can be bounded from above using
(50) and

‖P(Qr f̃k,n ⊗sym Qk−	+r f̃	,n)‖L2(μ)
≤ ‖Q f̃	,n ‖∞ ‖P(Qr f̃k,n ⊗sym 1)‖L2(μ)

≤ 2q2 c2 ask > 	,
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and thus (54) and (55) imply that

‖Q j (A6,n(fn))‖L2(μ) ≤ Cc2(c2 + q2) α j
∑

0≤	<k
r≥0

2r−	 α p−(r+k)αk−	+2r 1{r+k<p}

≤ Cc2(c2 + q2) α j , (57)

where we used that
∑

0≤	<k, r≥0 2
r−	αk−	+2r is finite for the last inequality. As

∑∞
j=0(2α

2) j is finite, we deduce that:

E

[(
V6(n) − H [n]

6 (fn)
)2] = |Gn−p|−2

E

[
MGn−p (A6,n(fn))

2
]

≤ Cc22(c2 + q2)
2 2−(n−p). (58)

We now consider the term V5(n) defined just after (52):

V5(n) = |Gn−p|−1MGn−p (H5,n),

with

H5,n =
∑

0≤	<k

h(n)
k,	 1{k≤p} and h(n)

k,	 = 2−	 Qp−k
(

f̃k,nQk−	 f̃	,n
)

.

We consider the constant

H [n]
5 (fn) =

∑

0≤	<k

hk,	1{k≤p} with hk,	 = 2−	〈μ, f̃k,nQk−	 f̃	,n〉. (59)

We set A5,n(fn) = H5,n − H [n]
5 (fn) = ∑

0≤	<k(h
(n)
k,	 − hk,	) 1{k≤p}, so that from the

definition of V5(n), we get that:

V5(n) − H [n]
5 (fn) = |Gn−p|−1 MGn−p (A5,n(fn)).

We now study the second moment of |Gn−p|−1 MGn−p (A5,n(fn)). Using (77), we get
for n − p ≥ k0:

|Gn−p|−2
E

[
MGn−p (A5,n(fn))2

]
≤ C |Gn−p|−1

n−p∑

j=0

2 j ‖Q j (A5,n(fn))‖2L2(μ) .

We also have that:

‖Q j (A5,n(fn))‖L2(μ) ≤
∑

0≤	<k

‖Q j h(n)
k,	 − hk,	 ‖

L2(μ)
1{k≤p}
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≤ C
∑

0≤	<k

2−	 α p−k+ j ‖ f̃k,nQk−	 f̃	,n ‖L2(μ) 1{k≤p}, (60)

where we used the triangular inequality for the first inequality and (3) for the
last. The term (60) can be bounded from above using ‖ f̃k,nQk−	 f̃	,n ‖L2(μ) ≤
‖ f̃k,n ‖L2(μ) ‖Qk−	 f̃	,n ‖∞ ≤ c2 q2 as k > 	. This implies that

‖Q j (A5,n(fn))‖L2(μ) ≤ Cc2q2 α j .

As
∑∞

j=0(2α
2) j is finite, we deduce that:

E

[(
V5(n) − H [n]

5 (fn)
)2] = |Gn−p|−2

E

[
MGn−p (A5,n(fn))2

]
≤ C c2q2 2

−(n−p).

(61)

We deduce from (58) and (61), as V2(n) = V5(n) + V6(n) (see (52)), that:

E

[(
V2(n) − H [n]

2 (fn)
)2] ≤ C

(
c42 + c22 q

2
2

)
2−(n−p), with H [n]

2 (fn)

= H [n]
6 (fn) + H [n]

5 (fn). (62)

Since according to (ii) in Assumption 4.3 c2 and q2 are finite, we deduce that
limn→∞ V2(n) − H [n]

2 (fn) = 0 in probability.

We now check that limn→∞ H [n]
2 (fn) = 0. Using (53) and (59), we get that:

|H [n]
2 (fn)| ≤

∑

k>	≥0

2−	|〈μ, f̃k,nQk−	 f̃	,n〉|

+
∑

k>	≥0
r≥0

2r−	|〈μ,P
(
Qr f̃k,n ⊗sym Qk−	+r f̃	,n

)
〉|.

Recall the definition of � in Assumption 4.3 (iii). Thanks to (3) and (24) we have:

|〈μ, f̃k,nQk−	 f̃	,n〉| ≤ c22 αk−	,

|〈μ,P
(
Qr f̃k,n ⊗sym Qk−	+r f̃	,n

)
〉| ≤ C c22 αk−	+2r . (63)

Since
∑

0≤	<k 2
−	αk−	 + ∑

0≤	<k
r≥0

2r−	αk−	+2r is finite, we deduce from (53), (59),

(51) and dominated convergence that limn→∞ H [n]
2 (fn) = 0. This implies that

limn→∞ V2(n) = 0 in probability. ��
Recall V1(n) defined after (49). We have the following result.

Lemma 5.5 Under the assumptions of Theorem 4.8 (2α2 < 1), we have that V1(n)

converges in probability toward σ 2 defined by (28).
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Proof Using (75), we get:

V1(n) = V3(n) + V4(n), (64)

with

V3(n) = |Gn|−1
∑

i∈Gn−p

p∑

	=0

2p−	 Qp−	( f̃ 2	,n)(Xi ),

V4(n) = |Gn|−1
∑

i∈Gn−p

p−1∑

	=0

p−	−1∑

k=0

2p−	+k Qp−1−(	+k)
(
P

(
Qk f̃	,n⊗2

))
(Xi ).

We first consider the term V4(n). We have:

V4(n) = |Gn−p|−1MGn−p (H4,n),

with:

H4,n =
∑

	≥0, k≥0

h(n)
	,k 1{	+k<p} and h(n)

	,k = 2k−	 Qp−1−(	+k)
(
P

(
Qk f̃	,n⊗2

))
.

Define the constant

H [n]
4 (fn) =

∑

	≥0, k≥0

h	,k 1{	+k<p} with h	,k = 2k−	 〈μ,P
(
Qk f̃	,n⊗2

)
〉. (65)

We set A4,n(fn) = H4,n − H [n]
4 (fn) = ∑

	≥0, k≥0(h
(n)
	,k − h	,k) 1{	+k<p}, so that

from the definition of V4(n), we get that:

V4(n) − H [n]
4 (fn) = |Gn−p|−1 MGn−p (A4,n(fn)).

We now study the second moment of |Gn−p|−1 MGn−p (A4,n(fn)). Using (77), we get
for n − p ≥ k0:

|Gn−p|−2
E

[
MGn−p (A4,n(fn))2

]
≤ C |Gn−p|−1

n−p∑

j=0

2 j ‖Q j (A4,n(fn))‖2L2(μ) .

Using (22) and (50), we obtain that for all 0 ≤ k < k1, ‖P(Qk f̃	,n⊗2)‖L2(μ) ≤
‖Q f̃ 2	,n‖L2(μ) ≤ 4q22. We deduce that:

‖Q j (A4,n(fn))‖L2(μ) ≤
∑

	≥0, k≥0

‖Q j h(n)
	,k − h	,k ‖

L2(μ)
1{	+k<p}
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≤ C
∑

	≥0, k≥0

2k−	 α p−1−(	+k)+ j ‖P
(
Qk f̃	,n⊗2

)
‖

L2(μ)
1{	+k<p}

≤ C c22 α j
∑

	≥0, k≥k1

2k−	 α p−(	+k)α2k 1{	+k<p}

+ C α j
∑

	≥0
0≤k<k1

2k−	 α p−(	+k) ‖P
(
Qk f̃	,n⊗2

)
‖

L2(μ)
1{	<p}

≤ C (c22 + 4q22) α j ,

where we used the triangular inequality for the first inequality;(3) for the second; (25)
for k ≥ k1 and (3) again for the third; (22) and (50) for the last. As

∑∞
j=0(2α

2) j is
finite, we deduce that:

E

[(
V4(n) − H [n]

4 (fn)
)2] = |Gn−p|−2

E

[
MGn−p (A4,n(fn))2

]
≤ C (c22 + q22) 2

−(n−p).

(66)

We now consider the term V3(n) defined just after (64):

V3(n) = |Gn−p|−1MGn−p (H3,n),

with

H3,n =
∑

	≥0

h(n)
	 1{	≤p} and h(n)

	 = 2−	 Qp−	
(

f̃ 2	,n

)
.

We consider the constant

H [n]
3 (fn) =

∑

	≥0

h	 1{	≤p} with h	 = 2−	〈μ, f̃ 2	,n〉 = 〈μ, h(n)
	 〉. (67)

We set A3,n(fn) = H3,n − H [n]
3 (fn) = ∑

	≥0(h
(n)
	 − h	) 1{	≤p}, so that from the

definition of V3(n), we get that:

V3(n) − H [n]
3 (fn) = |Gn−p|−1 MGn−p (A3,n(fn)). (68)

We now study the second moment of |Gn−p|−1 MGn−p (A3,n(fn)). Using (77), we get
for n − p ≥ k0:

|Gn−p|−2
E

[
MGn−p (A3,n(fn))2

]
≤ C |Gn−p|−1

n−p∑

j=0

2 j ‖Q j (A3,n(fn))‖2L2(μ) .

(69)
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Recall ck(fn) and qk(fn) defined in (29). We have that

‖Q j (A3,n(fn))‖L2(μ) ≤
∑

	≥0

‖Q j h(n)
	 − h	 ‖L2(μ)

1{	≤p}

≤ C
∑

	≥0

2−	 ‖Q j+p−	 g̃ ‖L2(μ) 1{	≤p} with g = f̃ 2	,n

= 2−p ‖ g̃ ‖L2(μ) 1{ j=0} +
p∑

	=0

2−	 ‖Q j+p−	−1Qg̃ ‖L2(μ) 1{ j+p−	>0}

≤ C c24(fn) 2−p1{ j=0} + C
∑

	≥0

2−	 α j+p−	 ‖Qg̃ ‖L2(μ)

≤ C c24(fn) 2−p1{ j=0} + C q2
2 (fn) α j , (70)

where we used the triangular inequality for the first inequality; (3) for the third and
(50) for the last inequality. As

∑∞
j=0(2α

2) j is finite, we deduce that:

E

[(
V3(n) − H [n]

3 (fn)
)2] = |Gn−p|−2

E

[
MGn−p (A3,n(fn))2

]

≤ C c44(fn) 2−n + C q4
2 (fn) 2−(n−p). (71)

As V1 = V4 + V3, we deduce from (66) and (71) that:

E

[(
V1(n) − H [n]

1 (fn)
)2] ≤ C

(
(c42(fn) + q4

2 (fn)) 2−(n−p) + c44(fn) 2
−n

)
,

with H [n]
1 (fn) = H [n]

3 (fn) + H [n]
4 (fn). Since c44(fn) ≤ c22(fn) c2∞(fn) ≤ Cρ c22(fn) 22nρ

with ρ ∈ (0, 1/2) and some finite constant Cρ according to (i) in Assumption 4.3, and
since limn→∞ p/n = 1 so that 2−n(1−2ρ) ≤ 2−(n−p) (at least for n large enough), we
deduce from (ii) in Assumption 4.3 that:

E

[(
V1(n) − H [n]

1 (fn)
)2] ≤ C

(
c42 + q42 + Cρc

2
2

)
2−(n−p) (72)

and thus limn→∞ V1(n) − H [n]
1 (fn) = 0 in probability.

We check that limn→∞ H [n]
1 (fn) = σ 2. Recall (see (67) and (65)) that:

H [n]
3 (fn) =

∑

	≥0

2−	〈μ, f̃ 2	,n〉 1{	≤p} and |H [n]
4 (fn)|

≤
∑

	≥0, k≥0

2k−	 |〈μ,P
(
Qk f̃	,n⊗2

)
〉|.

Thanks to (22) and (3), we have:

|〈μ,P
(
Qk f̃	,n⊗2

)
〉| ≤ ‖Qk f̃	,n ‖2L2(μ) ≤ C α2k ‖ f	,n ‖2L2(μ)

≤ C α2k c22.
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Using Assumption 4.3 (iii), we get that

|〈μ,P( f̃	,n⊗2)〉| ≤ |〈μ,P( f	,n⊗2)〉| + 〈μ, f	,n〉2 ≤ (1 + �)δ	,n . (73)

We deduce from (51) (for k ≥ 1) and the previous upper-bound (for k = 0) and
dominated convergence that limn→∞ H [n]

4 (fn) = 0.

Wenowprove that limn→∞ H [n]
3 (fn) = σ 2.Wedefineσ 2

n = ∑n
	=0 2

−	 ‖ f	,n ‖2
L2(μ)

,

so that by Assumption 4.3 (iv), limn→∞ σ 2
n = σ 2. We have:

|H [n]
3 (fn) − σ 2

n | ≤
n∑

	=p+1

2−	〈μ, f 2	,n〉 +
p∑

	=0

2−	〈μ, f	,n〉2 ≤ c222
−p + �

p∑

	=0

2−	δ	,n .

Then use dominated convergence to deduce that limn→∞ |H [n]
3 (fn) − σ 2

n | = 0. This
implies that limn→∞ V1(n) = σ 2 in probability. ��

Using (49), we have the following result as a direct consequence of Lemmas 5.3,
5.4 and 5.5. Recall V (n) defined in (49).

Lemma 5.6 Under the assumptions of Theorem 4.8 (2α2 < 1), we have that V (n)

converges in probability toward σ 2 defined by (28).

We now check the Lindeberg’s condition using a fourth moment condition. Recall-
ing �n,i (fn) defined in (48), we set

R3(n) =
∑

i∈Gn−pn

E

[
�n,i (fn)4

]
. (74)

Lemma 5.7 Under the assumptions of Theorem4.8 (2α2 < 1), we get limn→∞ R3(n) =
0.

The proof of Lemma 5.7 is omitted since it uses the same arguments as in Lemmas
5.4, 5.5 and the same sort of techniques as were used in the proof of Lemma 5.11 in
[2].

We can now use Theorem 3.2 and Corollary 3.1, p. 58, and the Remark p. 59 from
[13] to deduce from Lemmas 5.6 and 5.7 that �n(fn) converges in distribution toward
a Gaussian real-valued random variable with deterministic variance σ 2 defined by
(28). Using Remark 5.1 and Lemma 5.2, we then deduce Theorem 4.8.
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Appendix

In this section, we recall the following result due to Bochner (see [17, Theorem 1A]
which can be easily extended to any dimension d ≥ 1).

Lemma 6.1 Let (hn, n ∈ N) be a sequence of positive numbers converging to
0 as n goes to infinity. Let g : R

d → R be a measurable function such that∫
Rd |g(x)|dx < +∞. Let f : R

d → R be a measurable function such that
‖ f ‖∞ < +∞,

∫
Rd | f (y)| dy < +∞ and lim|x |→+∞ |x | f (x) = 0. Define

gn(x) = h−d
n

∫

Rd
f (h−1

n (x − y))g(y)dy.

Then, we have at every point x of continuity of g,

lim
n→+∞ gn(x) = g(x)

∫

R

f (y)dy.

We also recall useful results on BMC which are recalled in [2].

Lemma 6.2 Let f , g ∈ B(S), x ∈ S and n ≥ m ≥ 0. Assuming that all the quantities
below are well defined, we have:

Ex
[
MGn ( f )

] = |Gn |Qn f (x) = 2n Qn f (x),

Ex
[
MGn ( f )2

] = 2n Qn( f 2)(x) +
n−1∑

k=0

2n+k Qn−k−1
(
P

(
Qk f ⊗ Qk f

))
(x),

(75)

Ex
[
MGn ( f )MGm (g)

] = 2nQm (
gQn−m f

)
(x)

+
m−1∑

k=0

2n+k Qm−k−1
(
P

(
Qk g ⊗sym Qn−m+k f

))
(x). (76)

Lemma 6.3 Let X be a BMC with kernel P and initial distribution ν such that (iii)
from Assumption 4.2 (with k0 ∈ N) is in force. There exists a finite constant C, such
that for all f ∈ B+(S) all n ≥ k0, we have:

|Gn|−1
E[MGn ( f )] ≤ C ‖ f ‖L1(μ) and |Gn|−1

E

[
MGn ( f )2

]

≤ C
n∑

k=0

2k ‖Qk f ‖2L2(μ) . (77)
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