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Abstract We give an explicit construction of the increasing tree-valued process intro-
duced by Abraham and Delmas using a random point process of trees and a grafting
procedure. This random point process will be used in companion papers to study
record processes on Lévy trees. We use the Poissonian structure of the jumps of the
increasing tree-valued process to describe its behavior at the first time the tree grows
higher than a given height, using a spinal decomposition of the tree, similar to the
classical Bismut and Williams decompositions. We also give the joint distribution of
this exit time and the ascension time which corresponds to the first infinite jump of
the tree-valued process.
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1 Introduction

Lévy trees arise as a natural generalization to the continuum trees defined by Aldous
[8]. They are located at the intersection of several important fields: combinatorics of
large discrete trees, Lévy processes and branching processes. Consider a branching
mechanism ψ , that is a function of the form

ψ(λ) = αλ+ βλ2 +
∫

(0,+∞)

(
e−λx − 1 + λx1{x<1}

)
�(dx) (1)

with α ∈ R, β ≥ 0,� a σ -finite measure on (0,∞) such that
∫
(0,+∞)

(1 ∧ x2) �(dx)
< +∞. In the (sub)critical case ψ ′(0) ≥ 0, Le Gall and Le Jan [25] defined a
continuum tree structure, which can be described by a tree T , for the genealogy of a
population whose total size is given by a continuous-state branching process (CSBP)
with branching mechanism ψ . We will consider the distribution P

ψ
r (dT ) of this Lévy

tree when the CSBP starts at mass r > 0, or its excursion measure N
ψ [dT ], when the

CSBP is distributed under its canonical measure. The ψ-Lévy tree possesses several
striking features as pointed out in the work of Duquesne and Le Gall [13,14]. For
instance, the branching nodes can only be of degree 3 (binary branching) if β > 0 or
of infinite degree if � �= 0. Furthermore, there exists a “mass” measure mT on the
leaves of T , whose total mass corresponds to the total population size σ = mT (T ) of
the CSBP. We will also consider the extinction time of the CSBP which corresponds
to the height Hmax(T ) of the tree T . The results can be extended to the super-critical
case, using a Girsanov transformation given by Abraham and Delmas [2].

In [2], a decreasing continuum tree-valued process is defined using the so-called
pruning procedure of Lévy trees introduced in Abraham, Delmas and Voisin [7]. By
marking a ψ-Lévy tree with two different kinds of marks (the first ones lying on the
skeleton of the tree, the other ones on the nodes of infinite degree), one can prune
the tree by throwing away all the points having a mark on their ancestral line, that is,
the branch connecting them to the root. The main result of [7] is that the remaining
tree is still a Lévy tree, with branching mechanism related to ψ . The idea of [2] is to
consider a particular pruning with an intensity depending on a parameter θ , so that the
corresponding branching mechanism ψθ is ψ shifted by θ :

ψθ(λ) = ψ(θ + λ)− ψ(θ).

Letting θ vary enables to define a decreasing tree-valued Markov process (Tθ , θ ∈
	ψ), with 	ψ ⊂ R the set of θ for which ψθ is well-defined, and such that Tθ is
distributed according to N

ψθ . If we write σθ = mTθ (Tθ ) for the total mass of Tθ , then
the process (σθ , θ ∈ 	ψ) is a pure-jump process. The case � = 0 was studied by
Aldous and Pitman [9]. The time-reversed tree-valued process is also a Markov process
which defines a growing tree process. Let us mention that the same kind of ideas have
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Exit times for an increasing Lévy tree-valued process 359

been used by Aldous and Pitman [10] and by Abraham et al. [5] in the framework of
Galton–Watson trees to define growing discrete tree-valued Markov processes.

In the discrete framework of [5], it is possible to define the infinitesimal transition
rates of the growing tree process. In [19], Evans and Winter define another continuum
tree-valued process using a prune and re-graft procedure. This process is reversible with
respect to the law of Aldous’s continuum random tree and its infinitesimal transitions
are described using the theory of Dirichlet forms.

In this paper, we describe the infinitesimal behavior of the growing continuum tree-
valued process, which is (Tθ , θ ∈ 	ψ) seen backwards in time. The Special Markov
Property in [7] describes only two-dimensional distributions and hence the transition
probabilities but, since the space of real trees is not locally compact, we cannot use
the theory of infinitesimal generators to describe its infinitesimal transitions. Dirichlet
forms cannot be used either since the process is not symmetric (it is increasing).
However, it is a pure-jump process and our first main result shows that the infinitesimal
transitions of the process can be described using a random point process of trees which
are grafted one by one on the leaves of the growing tree. More precisely, let {θ j , j ∈ J }
be the set of jumping times of the mass process (σθ , θ ∈ 	ψ). Then, informally, at
time θ j , a tree T j distributed according to Nψθ j [T ∈ ·], with:

Nψθ [T ∈ ·] = 2βN
ψθ [T ∈ ·] +

∫

(0,+∞)

�(dr)re−θr
P
ψθ
r (T ∈ ·),

is grafted at x j , a leaf of Tθ j chosen at random (according to the mass measure mTθ j ).
We also prove that the random point measure

N =
∑
j∈J

δ(x j ,T j ,θ j )

has predictable compensator

mTθ (dx)Nψθ [dT ] 1	ψ (θ) dθ

with respect to the backwards in time natural filtration of the process (Corollary 3.4).
The precise statement requires the introduction of the set of locally compact

weighted real trees endowed with a Gromov–Hausdorff–Prokhorov distance. There-
fore, we will assume that Lévy trees are locally compact, which corresponds to the
Grey condition:

∫ +∞ du
ψ(u) < ∞. In the (sub)critical case this implies that the corre-

sponding height process of the Lévy tree is continuous and that the tree is compact.
However, the tree-valued process is defined in [7] without this assumption and we con-
jecture that the jump representation of the tree-valued Markov process holds without
this assumption.

The representation using the random point measure allows to describe the ascension
time or explosion time (when it is defined)

A = inf
{
θ ∈ 	ψ, σθ < ∞}
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as inf{θ j , mT j
(T j ) < ∞}, being the first time (backwards in time) at which a

tree with infinite mass is grafted. This representation is also used in Abraham and
Delmas [3,4] respectively on the asymptotics of the records on discrete subtrees of the
continuum random tree and on the study of the record process on general Lévy trees.

This structure, somewhat similar to the Poissonian structure of the jumps of a Lévy
process (although in our case the structure is neither homogeneous nor independent),
allows us to study the time of first passage of the growing tree-valued process above
a given height:

Ah = sup
{
θ ∈ 	ψ, Hmax(Tθ ) > h

}
.

We give the joint distribution of the ascension time and the exit time (A, Ah), see
Proposition 4.3. In particular, Ah goes to A as h goes to infinity: for h very large, with
high probability the process up to A will not have crossed height h, so that the first
jump to cross height h will correspond to the grafting time of the first infinite tree,
which happens at ascension time A.

We also give in Theorem 4.6 the joint distribution of (TAh−, TAh ) the tree just
after and just before the jumping time Ah . And we give a spinal decomposition of
TAh along the ancestral branch of the leaf on which the overshooting tree is grafted,
which is similar to the classical Bismut decomposition of Lévy trees. Conditionally on
this ancestral branch, the overshooting tree is then distributed as a regular Lévy tree,
conditioned on being high enough to perform the overshooting. This generalizes results
in [2] about the ascension time of the tree-valued process. Note that this approach could
easily be generalized to study spatial exit times of growing families of super-Brownian
motions.

All the results of this paper are stated in terms of real trees and not in terms
of the height process or the exploration process that encode the tree as in [7].
For this purpose, we define in Sect. 2.1 the state space of rooted real trees with a
mass measure (here called weighted trees or w-trees) endowed with the so-called
Gromov–Hausdorff–Prokhorov metric defined by Abraham, Delmas and Hoscheit
[6] which is a slight generalization of the Gromov–Hausdorff metric on the space
of metric spaces, and also a generalization of the Gromov–Prokhorov topology
of [20] on the space of compact metric spaces endowed with a probability mea-
sure.

The paper is organized as follows. In Sect. 2, we introduce all the material for
our study: the state space of weighted real trees and the metric on it, see Sect. 2.1;
the definition of sub(critical) Lévy trees via the height process; the extension of the
definition to super-critical Lévy trees; the pruning procedure of Lévy trees. In Sect. 3,
we recall the definition of the growing tree-valued process by the pruning proce-
dure as in [7] in the setting of real trees and give another construction using the
grafting of trees given by random point processes. We prove in Theorem 3.2 that
the two definitions agree and then give in Corollary 3.4 the random point measure
description. Section 4 is devoted to the application of this construction on the dis-
tribution of the tree at the times it overshoots a given height and just before, see
Theorem 4.6.
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2 The pruning of Lévy trees

2.1 Real trees

The first definitions of continuum random trees go back to Aldous [8]. Later, Evans,
Pitman and Winter [18] used the framework of real trees, previously applied in the
context of geometric group theory, to describe continuum trees. We refer to [17,24]
for a general presentation of random real trees. Informally, real trees are metric spaces
without loops, locally isometric to the real line.

More precisely, a metric space (T, d) is a real tree (or R-tree) if the following
properties are satisfied:

(1) For every s, t ∈ T , there is a unique isometric map fs,t from [0, d(s, t)] to T
such that fs,t (0) = s and fs,t (d(s, t)) = t .

(2) For every s, t ∈ T , if q is a continuous injective map from [0, 1] to T such that
q(0) = s and q(1) = t , then q([0, 1]) = fs,t ([0, d(s, t)]).

We say that a real tree is rooted if there is a distinguished vertex ∅, which will be
called the root of T . Such a real tree is noted (T, d,∅). If s, t ∈ T , we will note �s, t�
the range of the isometric map fs,t described above. We will also note �s, t� for the
set �s, t�\{t}. We give some vocabulary on real trees, which will be used constantly
when dealing with Lévy trees. Let T be a real tree. If x ∈ T , we will call degree of
x , and note n(x), the number of connected components of the set T \{x}. In a general
tree, this number can be infinite, and this will actually be the case with Lévy trees.
The set of leaves is defined as

Lf(T ) = {x ∈ T \{∅}, n(x) = 1}.

If n(x) ≥ 3, we say that x is a branching point. The set of branching points will be
noted Br(T ). Among those, there is the set of infinite branching points, defined by

Br∞(T ) = {x ∈ Br(T ), n(x) = ∞}.

Finally, the skeleton of a real tree, noted Sk(T ), is the set of points in the tree that
aren’t leaves. It should be noted, following Evans, Pitman and Winter [18], that the
trace of the Borel σ -field of T on Sk(T ) is generated by the sets �s, s′�, s, s′ ∈ Sk(T ).
Hence, it is possible to define a σ -finite Borel measure �T on T , such that

�T (Lf(T )) = 0 and �T (�s, s′�) = d(s, s′).

This measure will be called length measure on T . If x, y are two points in a rooted real
tree (T, d,∅), then there is a unique point z ∈ T , called the Most Recent Common
Ancestor (MRCA) of x and y such that �∅, x� ∩ �∅, y� = �∅, z�. This vocabulary is
an illustration of the genealogical vision of real trees, in which the root is seen as the
ancestor of the population represented by the tree. Similarly, if x ∈ T , we will call
height of x , and note by Hx the distance d(∅, x) to the root. The function x �→ Hx is
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continuous on T , and we define the height of T by

Hmax(T ) = sup
x∈T

Hx .

2.2 Gromov–Prokhorov metric

2.2.1 Rooted weighted metric spaces

This section is inspired by [15], but for the fact that we include measures on the trees,
in the spirit of [27]. The detailed proofs of the results stated here can be found in [6].

Let (X, d X ) be a Polish metric space. For A, B ∈ B(X), we set

d X
H (A, B) = inf

{
ε > 0, A ⊂ Bε and B ⊂ Aε

}
,

the Hausdorff distance between A and B, where Aε = {x ∈ X, inf y∈A d X (x, y) < ε}
is the ε-halo set of A. If X is compact, then the space of compact subsets of X , endowed
with the Hausdorff distance, is compact, see Theorem 7.3.8 in [12].

We will use the notation M f (X) for the space of all finite Borel measures on X .
If μ, ν ∈ M f (X), we set:

d X
P (μ, ν) = inf

{
ε > 0, μ(A) ≤ ν(Aε)+ ε and ν(A) ≤ μ(Aε)

+ε for all closed set A},

the Prokhorov distance betweenμ and ν. It is well known that (M f (X), d X
P ) is a Polish

metric space, and that the topology generated by d X
P is exactly the topology of weak

convergence (convergence against continuous bounded functionals). If � : X → X ′
is a Borel map between two Polish metric spaces and if μ is a Borel measure on X ,
we will note �∗μ the image measure on X ′ defined by �∗μ(A) = μ(�−1(A)), for
any Borel set A ⊂ X . Recall that a Borel measure is boundedly finite if the measure
of any bounded Borel set is finite.

Definition 2.1 • A rooted weighted metric space X = (X, d X ,∅X , μX ) is a metric
space (X, d X ) with a distinguished element ∅

X ∈ X and a boundedly finite Borel
measure μX .

• Two rooted weighted metric spacesX =(X, d X ,∅X , μX ) andX ′ =(X ′, d X ′
,∅X ′

,

μX ′
) are said to be GHP-isometric if there exists an isometric bijection � : X →

X ′ such that �(∅X ) = ∅
X ′

and �∗μX = μX ′
.

Notice that if (X, d X ) is compact, then a boundedly finite measure on X is finite
and belongs to M f (X). We will now use a procedure due to Gromov [21] to compare
any two compact rooted weighted metric spaces, even if they are not subspaces of the
same Polish metric space.
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2.2.2 Gromov–Hausdorff–Prokhorov distance for compact metric spaces

Let X = (X, d,∅, μ) and X ′ = (X ′, d ′,∅′, μ′) be two compact rooted weighted
metric spaces, and define

dc
GHP(X ,X ′) = inf

�,�′,Z

(
d Z

H (�(X),�
′(X ′))+ d Z (�(∅),�′(∅′))

+d Z
P (�∗μ,�′∗μ′)

)
, (2)

where the infimum is taken over all isometric embeddings � : X ↪→ Z and �′ :
X ′ ↪→ Z into some common Polish metric space (Z , d Z ).

Note that equation (2) does not actually define a metric, as dc
GHP(X ,X ′) = 0

if X and X ′ are GHP-isometric. Therefore, we will consider K, the set of GHP-
isometry classes of compact rooted weighted metric space and identify a compact
rooted weighted metric space with its class in K. Then the function dc

GHP(·, ·) is finite
on K

2.

Theorem 2.2 The function dc
GHP(·, ·) defines a metric on K and the space (K, dc

GHP)

is a Polish metric space.

We will call dc
GHP the Gromov–Hausdorff–Prokhorov metric.

2.2.3 Gromov–Hausdorff–Prokhorov distance

However, the definition of the Gromov–Hausdorff–Prokhorov metric on compact met-
ric spaces is not yet general enough, as we want to deal with unbounded trees with
σ -finite measures. To consider such an extension, we will consider complete and
locally compact length spaces. We recall that a metric space (X, d) is a length space
if for every x, y ∈ X , we have

d(x, y) = inf L(γ ),

where the infimum is taken over all rectifiable curves γ : [0, 1] → X such that
γ (0) = x and γ (1) = y, and where L(γ ) is the length of the rectifiable curve γ .

Definition 2.3 Let L be the set of GHP-isometry classes of rooted weighted complete
and locally compact length spaces and identify a rooted weighted complete and locally
compact length spaces with its class in L.

If X = (X, d,∅, μ) ∈ L, then for r ≥ 0 we will consider its restriction to the ball
of radius r centered at ∅, X (r) = (X (r), d(r),∅, μ(r)), where

X (r) = {x ∈ X, d(∅, x) ≤ r},

the metric d(r) is the restriction of d to X (r), and the measure μ(r)(dx) =
1X (r) (x) μ(dx) is the restriction of μ to X (r). Recall that the Hopf–Rinow theorem
(Theorem 2.5.28 in [12]) implies that if (X, d) is a complete and locally compact
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length space, then every closed bounded subset of X is compact. In particular, if X
belongs to L, then X (r) belongs to K for all r ≥ 0.

We state a regularity lemma of dc
GHP with respect to the restriction operation.

Lemma 2.4 Let X and Y belong to L. Then the function defined on R+ by

r �→ dc
GHP

(
X (r),Y(r)

)

is càdlàg.

This implies that the following function is well defined on L
2:

dGHP(X ,Y) =
∞∫

0

e−r
(

1 ∧ dc
GHP

(
X (r),Y(r)

))
dr.

Theorem 2.5 The function dGHP defines a metric on L and the space (L, dGHP) is a
Polish metric space.

The next result implies that dc
GHP and dGHP define the same topology on K ∩ L.

Theorem 2.6 Let (Xn, n ∈ N) and X be elements of K ∩ L. Then the sequence
(Xn, n ∈ N) converges to X in (K, dc

GHP) if and only if it converges to X in (L, dGHP).

Remark 2.7 At this point, we should clarify the connection between the Gromov–
Hausdorff–Prokhorov metric dGHP we introduced here and various other metrics in
the literature. First of all, a very similar approach was used by Miermont [27] to define
a metric on the space of compact metric spaces, carrying a probability measure. On this
space, the topologies generated by Miermont’s metric and by dc

GHP coincide. As for
the Gromov–Prokhorov metric introduced by Greven, Pfaffelhuber and Winter [20], it
is in general neither weaker nor stronger than the dGHP metric. Indeed, the Gromov–
Prokhorov metric does not take into account the geometrical features of the spaces into
consideration (by design, it ignores sets of zero measure) which are however seen by
the dGHP metric. For an enlightening discussion of the differences between all these
points of view, see Chapter 27 of [28].

2.2.4 The space of w-trees

Note that real trees are always length spaces and that complete real trees are the only
complete connected spaces that satisfy the so-called four-point condition:

∀x1, x2, x3, x4 ∈ X, d(x1, x2)+ d(x3, x4)

≤ (d(x1, x3)+ d(x2, x4)) ∨ (d(x1, x4)+ d(x2, x3)). (3)

Definition 2.8 We denote by T be the set of (GHP-isometry classes of) complete
locally compact rooted real trees endowed with a locally finite Borel measure, in short
w-trees.
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We deduce the following corollary from Theorem 2.5 and the four-point condition
characterization of real trees.

Corollary 2.9 The set T is a closed subset of L and (T, dGHP) is a Polish metric
space.

Height erasing. We define the restriction operators on the space of w-trees. Let a ≥ 0.
If (T, d,∅,m) is a w-tree, define

πa(T ) = {x ∈ T, d(∅, x) ≤ a} (4)

and let (πa(T ), dπa(T ),∅,mπa(T )) be the w-tree constituted of the points of T having
height lower than a, where dπa(T ) and mπa(T ) are the restrictions of d and m to πa(T ).
When there is no confusion, we will also write πa(T ) for (πa(T ), dπa(T ),∅,mπa(T )).
We will also write T (a) = {x ∈ T, d(∅, x) = a} for the level set at height a. We
say that a w-tree T is bounded if πa(T ) = T for some finite a. Notice that a tree T is
bounded if and only if Hmax(T ) is finite.

Grafting procedure. We will define in this section a procedure by which we add (graft)
w-trees on an existing w-tree. More precisely, let T ∈ T and let ((Ti , xi ), i ∈ I ) be a
finite or countable family of elements of T × T . We define the real tree obtained by
grafting the trees Ti on T at point xi . We set T̃ = T � (⊔

i∈I Ti\{∅Ti }) where the
symbol � means that we choose for the sets T and (Ti )i∈I representatives of isometry
classes in T which are disjoint subsets of some common set and that we perform the
disjoint union of all these sets. We set ∅

T̃ = ∅
T. The set T̃ is endowed with the

following metric dT̃ : if s, t ∈ T̃ ,

dT̃ (s, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dT (s, t) if s, t ∈ T,

dT (s, xi )+ dTi
(
∅

Ti , t
)

if s ∈ T, t ∈ Ti\{∅Ti },
dTi (s, t) if s, t ∈ Ti\{∅Ti },
dT (xi , x j )+ dTj

(
∅

Tj , s
)

if i �= j and s ∈ Tj\{∅Tj },
+dTi

(
∅

Ti , t
)

t ∈ Ti\{∅Ti }.

We define the mass measure on T̃ by

mT̃ = mT +
∑
i∈I

1Ti \{∅Ti }m
Ti + mTi

(
{∅Ti }

)
δxi ,

where δx is the Dirac mass at point x . It is clear that the metric space (T̃ , dT̃ ,∅T̃ ) is
still a rooted complete real tree. However, it is not always true that T̃ remains locally
compact (it still remains a length space anyway), or, for that matter, that mT̃ defines
a locally finite measure (on T̃ ). So, we will have to check that (T̃ , dT̃ ,∅T̃ ,mT̃ ) is a
w-tree in the particular cases we will consider.
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We will use the following notation:

(
T̃ , dT̃ ,∅T̃ ,mT̃

)
= T �i∈I (Ti , xi ) (5)

and write T̃ instead of (T̃ , dT̃ ,∅T̃ ,mT̃ ) when there is no confusion.

Real trees coded by functions. Lévy trees are natural generalizations of Aldous’s
Brownian tree, where the underlying process coding for the tree (reflected Brownian
motion in Aldous’s case) is replaced by a certain functional of a Lévy process, the
height process. Le Gall and Le Jan [25] and Duquesne and Le Gall [14] showed how to
generate random real trees using the excursions of a Lévy process above its minimum.
We will briefly recall this construction, in order to introduce the pruning procedure on
Lévy trees. Let us first work in a deterministic setting.

Let f be a continuous non-negative function defined on [0,+∞), with compact
support, such that f (0) = 0. We set:

σ f = sup {t, f (t) > 0},

with the convention sup ∅ = 0. Let d f be the non-negative function defined by

d f (s, t) = f (s)+ f (t)− 2 inf
u∈[s∧t,s∨t] f (u).

It can be easily checked that d f is a semi-metric on [0, σ f ]. One can define the
equivalence relation associated to d f by s ∼ t if and only if d f (s, t) = 0. Moreover,
when we consider the quotient space

T f =
[
0, σ f

]
/∼

and, noting again d f the induced metric on T f and rooting T f at ∅
f , the equivalence

class of 0, it can be checked that the space (T f , d f ,∅ f ) is a compact rooted real tree.
We denote by p f the canonical projection from [0, σ f ] onto T f , which is extended
by p f (t) = ∅

f for t ≥ σ f . Note that p f is continuous. We define m f , the mass
measure on T f as the image measure by p f of the Lebesgue measure on [0, σ f ]. We
consider the (compact) w-tree (T f , d f ,∅ f ,m f ), which we will note T f .

It should be noticed that, if x ∈ T f is an equivalence class, the common value of
f on all the points in this equivalence class is exactly d f (∅, x) = Hx . Note also that,
in this setting, Hmax(T f ) = ‖ f ‖∞ where ‖ f ‖∞ stands for the uniform norm of f .

We have the following elementary result (see Lemma 2.3 of [14] when dealing with
the Gromov–Hausdorff metric instead of the Gromov–Hausdorff–Prokhorov metric).

Proposition 2.10 Let f, g be two compactly supported, non-negative continuous func-
tions such that f (0) = g(0) = 0. Then:

dc
GHP(T

f , T g) ≤ 6‖ f − g‖∞ +
∣∣∣σ f − σ g

∣∣∣ . (6)
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Proof The Gromov–Hausdorff distance can be evaluated using correspondences, see
[12], section 7.3. A correspondence between two metric spaces (E1, d1) and (E2, d2)

is a subset R of E1 × E2 such that for δ ∈ {1, 2} the projection of R on Eδ is onto:
{xδ, (x1, x2) ∈ R} = Eδ . The distortion of R is defined by:

dis(R) = sup {|d1(x1, x2)− d2(y1, y2)|, (x1, y1) ∈ R, (x2, y2) ∈ R}.

Let Z = E1 � E2 be the disjoint union of E1 and E2 and consider the function d Z

defined on Z2 by d Z = dδ on E2
δ for δ ∈ {1, 2} and for x1 ∈ E1, x2 ∈ E2:

d Z (x1, x2) = inf

{
d1(x1, y1)+ 1

2
dis(R)+ d2(y2, x2), (y1, y2) ∈ R

}
.

Then if dis(R) > 0, the function d Z is a metric on Z such that

d Z
H (E1, E2) ≤ 1

2
dis(R).

Let f, g be compactly supported, non-negative continuous functions with f (0) =
g(0) = 0. Following [14], we consider the following correspondence between T f

and T g:

R =
{
(x f , xg), x f = p f (t) and xg = pg(t) for some t ≥ 0

}
,

and we have dis(R) ≤ 4‖ f − g‖∞ according to the proof of Lemma 2.3 in [14].
Notice (∅ f ,∅g) ∈ R. Thus, with the notation above and E1 = T f , E2 = T g , we
get:

d Z
H (T

f , T g) ≤ 2‖ f − g‖∞ and d Z (∅ f ,∅g) ≤ 2‖ f − g‖∞.

Then, we consider the Prokhorov distance between m f and mg . Let A f be a Borel
set of T f . We set I = {t ∈ [0, σ f ], p f (t) ∈ A}. By definition of m f , we have
m f (A f ) = Leb(I ). We set Ag = pg(I ∩ [0, σ g]) so that mg(Ag) = Leb(I ∩
[0, σ g]) ≥ Leb(I )− |σ f − σ g|. By construction, we also have that for any xg ∈ Ag ,
there exists t ∈ I such that pg(t) = xg and such that d Z (xg, x f ) = dis(R)/2, with
x f = p f (t) ∈ A f . This implies that Ag ⊂ (A f )r for any r > dis(R)/2. We deduce
that:

m f
(

A f
)

≤ mg (Ag) +
∣∣∣σ f − σ g

∣∣∣ ≤ mg
(
(A f )r

)
+
∣∣∣σ f − σ g

∣∣∣ .

The same is true with f and g replaced by g and f . We deduce that:

d Z
P

(
m f ,mg

)
≤ 1

2
dis(R)+

∣∣∣σ f − σ g
∣∣∣ ≤ 2‖ f − g‖∞ +

∣∣∣σ f − σ g
∣∣∣ .
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We get:

d Z
H

(
T f , T g

)
+ d Z

(
∅

f ,∅g
)

+ d Z
P

(
m f ,mg

)
≤ 6‖ f − g‖∞ +

∣∣∣σ f − σ g
∣∣∣ .

This gives the result. ��
Remark 2.11 We could define the correspondence for more general functions f : lower
semi-continuous functions that satisfy the intermediate values property (see [13]). In
that case, the associated real tree is not even locally compact (hence not necessarily
proper). But the measurability of the mapping f �→ T f is not clear in this general
setting; this is why we only consider continuous functions f here and thus will assume
the Grey condition (see next section) for Lévy trees.

2.3 Branching mechanisms

Let � be a σ -finite measure on (0,+∞) such that we have
∫
(1 ∧ x2)�(dx) < ∞.

We set:

�θ(dr) = e−θr �(dr). (7)

Let 	′ be the set of θ ∈ R such that
∫
(1,+∞)

�θ (dr) < +∞. If � = 0, then 	′ = R.
We also set θ∞ = inf 	′. It is obvious that [0,+∞) ⊂ 	′, θ∞ ≤ 0 and either
	′ = [θ∞,+∞) or 	′ = (θ∞,+∞).

Let α ∈ R and β ≥ 0. We consider the branching mechanism ψ associated with
(α, β,�):

ψ(λ) = αλ+ βλ2 +
∫

(0,+∞)

(e−λr − 1 + λr1{r<1})�(dr), λ ∈ 	′. (8)

Note that the function ψ is smooth and convex over (θ∞,+∞). We say that ψ is
conservative if for all ε > 0:

∫

(0,ε]

du

|ψ(u)| = +∞.

This condition will be equivalent to the non-explosion in finite time of continuous-
state branching processes associated with ψ (see below). A sufficient condition for
ψ to be conservative is to have ψ ′(0+) > −∞, which is actually equivalent to∫
(1,∞)

r�(dr) < ∞. If X is a Lévy process with Laplace exponent ψ , we can always
write

E[Xt ] = −tψ ′(0),

so that the condition ψ ′(0+) > −∞ is equivalent to the existence of first moments
for X . Under this assumption, the branching mechanism can be rewritten under a
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simpler form. However, we point out that there exists several interesting branching
mechanisms satisfying ψ ′(0+) = −∞ and yet are conservative (such as Neveu’s
branching mechanismψ(u) = u log u). Hence, we will not automatically assume that
ψ ′(0+) > −∞, but we will always make the following, slightly weaker, assumption.

Assumption 1 The functionψ is conservative and we have β > 0 or
∫
(0,1) ��(d�) =

+∞.

The branching mechanism is said to be sub-critical (resp. critical, super-critical) if
ψ ′(0+) > 0 (resp. ψ ′(0+) = 0, ψ ′(0+) < 0). We say that ψ is (sub)critical if it is
critical or sub-critical.

We introduce the following branching mechanisms ψθ for θ ∈ 	′:

ψθ(λ) = ψ(λ+ θ)− ψ(θ), λ+ θ ∈ 	′. (9)

Let 	ψ be the set of θ ∈ 	′ such that ψθ is conservative. Obviously, we have:

[0,+∞) ⊂ 	ψ ⊂ 	′ ⊂ 	ψ ∪ {θ∞}.

If θ ∈ 	ψ , we set:

θ̄ = max
{
q ∈ 	ψ, ψ(q) = ψ(θ)

}
. (10)

We can give an alternative definition of θ̄ if Assumption 1 holds. Let θ∗ be the unique
positive root of ψ ′ if it exists. Notice that θ∗ = 0 if ψ is critical and that θ∗ exists
and is positive if ψ is super-critical. If θ∗ exists, then the branching mechanism ψθ∗ is
critical. We set 	ψ∗ for [θ∗,+∞) if θ∗ exists and 	ψ∗ = 	ψ otherwise. The function
ψ is a one-to-one mapping from 	

ψ∗ onto ψ(	ψ∗ ). We write ψ−1 for the inverse of
the previous mapping. The set {q ∈ 	ψ, ψ(q) = ψ(θ)} has at most two elements
and we have:

θ̄ = ψ−1 ◦ ψ(θ).

In particular, if ψθ is (sub)critical we have θ̄ = θ and if ψθ is super-critical then we
have θ < θ∗ < θ̄ . We will later on consider the following assumption.

Assumption 2 (Grey condition) The branching mechanism is such that:

+∞∫
du

ψ(u)
< ∞.

Let us point out that Assumption 2 implies that β > 0 or
∫
(0,1) r�(dr) = +∞.

Connections with branching processes. Let ψ be a branching mechanism satisfying
Assumption 1. A continuous state branching process (CSBP) with branching mecha-
nism ψ and initial mass x > 0 is the càdlàg R+-valued Markov process (Za, a ≥ 0)
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whose distribution is characterized by Z0 = x and:

E[exp(−λZa+a′)|Za] = exp(−Zau(a′, λ)), λ ≥ 0,

where (u(a, λ), a ≥ 0, λ > 0) is the unique non-negative solution to the integral
equation:

λ∫

u(a,λ)

dr

ψ(r)
= a; u(0, λ) = λ. (11)

The distribution of the CSBP started at mass x will be noted Pψx . For a detailed
presentation of CSBPs, we refer to the monographs [22,23] or [26].

In this context, the conservativity assumption is equivalent to the CSBP not blowing
up in finite time (Theorem 10.3 in [22]), and Assumption 2 is equivalent to the strong
extinction time, inf{a, Za = 0}, being a.s. finite. If Assumption 2 holds, then for all
h > 0, Pψx (Zh > 0) = exp(−xb(h)), where b(h) = limλ→+∞ u(h, λ). In particular
b(h) is such that

∞∫

b(h)

dr

ψ(r)
= h. (12)

Let us now describe a Girsanov transform for CSBPs introduced in [2] related to the
shift of the branching mechanism ψ defined by (9). Recall notation 	ψ and θ∞ from
the previous section. For θ ∈ 	ψ , we consider the process Mψ,θ = (Mψ,θ

a , a ≥ 0)
defined by:

Mψ,θ
a = exp

⎛
⎝θx − θ Za − ψ(θ)

a∫

0

Zsds

⎞
⎠ . (13)

Theorem 2.12 (Girsanov transformation for CSBPs, [2]) Letψ be a branching mech-
anism satisfying Assumption 1. Let (Za, a ≥ 0) be a CSBP with branching mechanism
ψ and let F = (Fa, a ≥ 0) be its natural filtration. Let θ ∈ 	ψ be such that either
θ ≥ 0 or θ < 0 and

∫
(1,+∞)

r�θ(dr) < +∞. Then we have the following:

(1) The process Mψ,θ is a F-martingale under Pψx .
(2) Let a, x ≥ 0. On Fa, the probability measure Pψθx is absolutely continuous w.r.t.

Pψx , and

dPψθx |Fa

dPψx |Fa

= Mψ,θ
a .
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2.4 The height process

Let (Xt , t ≥ 0) be a Lévy process with Laplace exponent ψ satisfying Assumption 1.
This assumption implies that a.s. the paths of X have infinite total variation over any
non-trivial interval. The distribution of the Lévy process will be noted P

ψ(d X). It is a
probability measure on the Skorokhod space of real-valued càdlàg processes. For the
remainder of this section, we will assume thatψ is (sub)critical.

For t ≥ 0, let us write X̂ (t) for the time-returned process:

X̂ (t)s = Xt − X(t−s)− , 0 ≤ s < t

and X̂ (t)t = Xt . Then (X̂ (t)s , 0 ≤ s ≤ t) has same distribution as the process (Xs, 0 ≤
s ≤ t). We will also write Ŝ(t)s = sup[0,s] X̂ (t)r for the supremum process of X̂ (t).

Proposition 2.13 (The height process, [13]) Let ψ be a (sub)critical branching
mechanism satisfying Assumption 1. There exists a lower semi-continuous process
H = (Ht , t ≥ 0) taking values in [0,+∞], with the intermediate values property,
which is a local time at 0, at time t, of the process X̂ (t) − Ŝ(t), such that the following
convergence holds in probability:

Ht = lim
ε↓0

1

ε

t∫

0

1{I t
s ≤Xs≤I t

s +ε}ds

where I t
s = infs≤r≤t Xr . Furthermore, if Assumption 2 holds, then the process H

admits a continuous modification.

From now on, we always assume that Assumptions 1 and 2 hold, and we always
work with this continuous version of H . The process H is called the height process.

For x > 0, we consider the stopping time τx = inf{t ≥ 0, It ≤ −x}, where
It = I t

0 is the infimum process of X . We denote by P
ψ
x (d H) the distribution of the

stopped height process (Ht∧τx , t ≥ 0) under P
ψ , defined on the space C+([0,+∞)) of

non-negative continuous functions on [0,+∞). The (sub)criticality of the branching
mechanism entails τx < ∞ P

ψ -a.s., so that under P
ψ
x (d H), the height process has a.s.

compact support.

The excursion measure. The height process is not a Markov process, but it has the
same zero sets as X − I (see [13], Paragraph 1.3.1), so that we can develop an excursion
theory based on the latter. By standard fluctuation theory, it is easy to see that 0 is a
regular point for X − I and that −I is a local time of X − I at 0. We denote by N

ψ the
associated excursion measure. As such, N

ψ is a σ -finite measure. Under P
ψ
x or N

ψ ,
we set:

σ(H) =
∞∫

0

1{Ht �=0}dt.
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When there is no risk of confusion, we will write σ for σ(H). Notice that, under
P
ψ
x , σ = τx and that under N

ψ , σ represents the lifetime of the excursion. Abusing
notations, we will write P

ψ
x (d H) and N

ψ [d H ] for the distribution of H under P
ψ
x or

N
ψ . Let us also recall the Poissonian decomposition of the measure P

ψ
x . Under P

ψ
x ,

let (a j , b j ) j∈J be the excursion intervals of X − I away from 0. Those are also the
excursion intervals of the height process away from 0. For j ∈ J , we will denote by
H ( j) : [0,∞) → R+ the corresponding excursion, that is

H ( j)
t = H(a j +t)∧b j , t ≥ 0.

Proposition 2.14 [14] Let ψ be a (sub)critical branching mechanism satisfying
Assumption 1. Under P

ψ
x , the random point measure N = ∑

j∈J δH ( j) (d H) is a

Poisson point measure with intensity xN
ψ [d H ].

Local times of the height process

Proposition 2.15 [13, Formula (36)] Let ψ be a (sub)critical branching mechanism
satisfying Assumption 1. Under N

ψ , there exists a jointly measurable process (La
s , a ≥

0, s ≥ 0) which is continuous and non-decreasing in the variable s such that,

L0
s = 0, s ≥ 0

and for every t ≥ 0, for every δ > 0 and every a > 0

lim
ε→0

N
ψ

⎡
⎣ sup

0≤s≤t∧σ

∣∣∣∣∣∣ε
−1

s∫

0

1{a<Hr ≤a+ε} dr − La
s

∣∣∣∣∣∣ 1{sup H>δ}

⎤
⎦ = 0.

Moreover, by Lemma 3.3 in [14], the process (La
σ , a ≥ 0) has a càdlàg modification

under N
ψ with no fixed discontinuities.

(Sub)critical Lévy trees. Let ψ be a (sub)critical branching mechanism satisfying
Assumptions 1 and 2. Let H be the height process defined under P

ψ
x or N

ψ . We consider
the so-called Lévy tree T H which is the random w-tree coded by the function H , see
Sect 2.2.4. Notice that we are indeed within the framework of proper real trees, since
Assumption 2 entails compactness of T H . The measurability of the random variable
T H taking values in T follows from Proposition 2.10 and Theorem 2.6. When there
is no confusion, we will write T for T H . Abusing notations, we will write P

ψ
x (dT )

and N
ψ [dT ] for the distribution on T of T = T H under P

ψ
x (d H) or N

ψ [d H ]. By
construction, under P

ψ
x or under N

ψ , we have that the total mass of the mass measure
on T is given by

mT (T ) = σ. (14)

Proposition 2.14 enables us to view the measure N
ψ [dT ] as describing a single

Lévy tree. Thus, we will mostly work under this excursion measure, which is the
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distribution of the (isometry class of the) w-tree T described by the height process
under N

ψ . In order to state the branching property of a Lévy tree, we must first define
a local time at level a on the tree. Let (T i,◦, i ∈ I ) be the trees that were cut off by
cutting at level a, namely the connected components of the set T \πa(T ). If i ∈ I ,
then all the points in T i,◦ have the same MRCA xi in T which is precisely the point
where the tree was cut off. We consider the compact tree T i = T i,◦ ∪ {xi } with the
root xi , the metric dT i

, which is the metric dT restricted to T i , and the mass measure
mT i

, which is the mass measure mT restricted to T i . Then (T i , dT i
, xi ,mT i

) is a
w-tree. Let

N T
a (dx, dT ′) =

∑
i∈I

δ(xi ,T i )(dx, dT ′) (15)

be the point measure on T (a)× T taking account of the cutting points as well as the
trees cut away. The following theorem gives the structure of the decomposition we
just described. From excursion theory, we deduce that b(h) = N

ψ [Hmax(T ) > h],
where b(h) solves (12). An easy extension of [14] from real trees to w-trees gives the
following result.

Theorem 2.16 [14] Letψ be a (sub)critical branching mechanism satisfying Assump-
tions 1 and 2. There exists a T -measure valued process (�a, a ≥ 0) càdlàg for the
weak topology on finite measures on T such that N

ψ -a.e.:

mT (dx) =
∞∫

0

�a(dx)da, (16)

�0 = 0, inf{a > 0, �a = 0} = sup{a ≥ 0, �a �= 0} = Hmax(T ) and for every fixed
a ≥ 0, N

ψ -a.e.:

• �a is supported on T (a),
• We have for every bounded continuous function ϕ on T :

〈�a, ϕ〉 = lim
ε↓0

1

b(ε)

∫
ϕ(x)1{h(T ′)≥ε}N T

a (dx, dT ′) (17)

= lim
ε↓0

1

b(ε)

∫
ϕ(x)1{h(T ′)≥ε}N T

a−ε(dx, dT ′), if a > 0. (18)

Furthermore, we have the branching property: for every a > 0, the conditional dis-
tribution of the point measure N T

a (dx, dT ′) under N
ψ [dT |Hmax(T ) > a], given

πa(T ), is that of a Poisson point measure on T (a)×T with intensity �a(dx)Nψ [dT ′].
The measure �a will be called the local time measure of T at level a. In the case

of Lévy trees, it can also be defined as the image of the measure ds La
s (H) by the

canonical projection pH (see [13]), so the above statement is in fact the translation of
the excursion theory of the height process in terms of real trees. This definition shows
that the local time is a function of the tree T and does not depend on the choice of
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the coding height function. It should be noted that Equation (18) implies that �a is
measurable with respect to the σ -algebra generated by πa(T ).

The next theorem, also from [14], relates the discontinuities of the process (�a, a ≥
0) to the infinite nodes in the tree. Recall Br∞(T ) denotes the set of infinite nodes in
the Lévy tree T .

Theorem 2.17 [14] Letψ be a (sub)critical branching mechanism satisfying Assump-
tions 1 and 2. The set {d(∅, x), x ∈ Br∞(T )} coincides N

ψ -a.e. with the set of discon-
tinuity times of the mapping a �→ �a. Moreover, N

ψ -a.e., for every such discontinuity
time b, there is a unique xb ∈ Br∞(T ) ∩ T (b), and

�b = �b− +�bδxb ,

where�b > 0 is called mass of the node xb and can be obtained by the approximation

�b = lim
ε→0

1

b(ε)
n(xb, ε), (19)

where n(xb, ε) = ∫
1{x=xb}(x)1{Hmax(T ′)>ε}(T ′)N T

b (dx, dT ′) is the number of sub-
trees originating from xb with height larger than ε.

Decomposition of the Lévy tree. We will frequently use the following notation for
the following measure on T:

Nψ [T ∈ ·] = 2βN
ψ [T ∈ ·] +

∫

(0,+∞)

r�(dr)Pψr [T ∈ ·]. (20)

where ψ is given by (8).
The decomposition of a (sub)critical Lévy tree T according to a spine �∅, x�, where

x ∈ T is a leaf picked at random at level a > 0, that is according to the local time
�a(dx), is given in Theorem 4.5 in [14]. Then by integrating with respect to a, we get
the decomposition of T according to a spine �∅, x�, where x ∈ T is a leaf picked at
random on T , that is according to the mass measure mT . Therefore, we will state this
decomposition without proof.

Let x ∈ T and let {xi , i ∈ Ix } = Br(T ) ∩ �∅, x� be the set of branching points on
the spine �∅, x�. For i ∈ Ix , we set:

T i = T \
(
T (x,xi ) ∪ T (∅,xi )

)
,

where T (y,xi ) is the connected component of T \{xi } containing y. We let xi be the
root of T i . The metric and measure on T i are respectively the restriction of dT to T i

and the restriction of mT to T i\{xi }. By construction, if x is a leaf, we have:

T = �∅, x� �i∈Ix (T i , xi ),
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where �∅, x� is a w-tree with root ∅, metric and mass measure the restrictions of dT

and mT to �∅, x�. We consider the point measure on [0, Hx ] × T defined by:

Mx =
∑
i∈Ix

δ(Hxi ,T i ).

Theorem 2.18 [14] Letψ be a (sub)critical branching mechanism satisfying Assump-
tions 1 and 2. We have for any non-negative measurable function F defined on
[0,+∞)× T:

N
ψ

[∫
mT (dx)F(Hx ,Mx )

]
=

∞∫

0

da e−ψ ′(0)a
E

[
F

(
a,
∑
i∈I

1{zi ≤a}δ(zi ,T̂ i )

)]
,

where under E,
∑

i∈I δ(zi ,T̂ i )
(dz, dT ) is a Poisson point measure on [0,+∞) × T

with intensity dz Nψ [dT ].
CSBP process in the Lévy trees. Lévy trees give a genealogical structure for CSBPs,
which is precised in the next theorem. We consider the process Z = (Za, a ≥ 0)
defined by:

Za = 〈�a, 1〉.

If needed we will write Za(T ) to emphasize that Za corresponds to the tree T .

Theorem 2.19 (CSBP in Lévy trees, [13] and [14]) Letψ be a (sub)critical branching
mechanism satisfying Assumptions 1 and 2, and let x > 0. The process Z under P

ψ
x

is distributed as the CSBP Z under Pψx .

Remark 2.20 This theorem can be stated in terms of the height process without
Assumption 2.

2.5 Super-critical Lévy trees

Let us now briefly recall the construction from [2] for super-critical Lévy trees using
a Girsanov transformation similar to the one used for CSBPs, see Theorem 2.12.

Let ψ be a super-critical branching mechanism satisfying Assumptions 1 and 2.
Recall θ∗ is the unique positive root of ψ ′ and that the branching mechanism ψθ is
sub-critical if θ > θ∗, critical if θ = θ∗ and super-critical otherwise. We consider
the filtration H = (Ha, a ≥ 0), where Ha is the σ -field generated by the random
variableπa(T ) and the P

ψθ∗
x -negligible sets. Forθ ≥ θ∗, we define the process Mψ,θ =

(Mψ,θ
a , a ≥ 0) with

Mψ,θ
a = exp

(
θx − θZa − ψ(θ)

a∫

0

Zsds

)
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By absolute continuity of the measures P
ψθ
x (resp. N

ψθ ) with respect to P
ψθ∗
x (resp.

N
ψθ∗ ), all the processes Mψθ ,−θ for θ > θ∗ are H-adapted. Moreover, all these

processes are H-martingales (see [2] for the proof). Theorem 2.16 shows that Mψθ∗ ,−θ∗

is H-adapted. Let us now define the ψ-Lévy tree, cut at level a by the following
Girsanov transformation.

Definition 2.21 Let ψ be a super-critical branching mechanism satisfying Assump-
tions 1 and 2. Let θ ≥ θ∗. For a ≥ 0, we define the distribution P

ψ,a
x (resp. N

ψ,a) by:
if F is a non-negative, measurable functional defined on T,

E
ψ,a
x [F(T )] = E

ψθ
x

[
Mψθ ,−θ

a F(πa(T ))
]
, (21)

N
ψ,a[F(T )] = N

ψθ

⎡
⎣exp

⎛
⎝θZa + ψ(θ)

a∫

0

Zs(ds)

⎞
⎠ F(πa(T ))

⎤
⎦ . (22)

It can be checked that the definition of P
ψ,a
x (and of N

ψ,a) does not depend on
θ ≥ θ∗. The probability measures P

ψ,a
x satisfy a consistence property, allowing us to

define the super-critical Lévy tree in the following way.

Theorem 2.22 Let ψ be a super-critical branching mechanism satisfying assump-
tions 1 and 2. There exists a probability measure P

ψ
x (resp. a σ -finite measure N

ψ ) on
T such that for a > 0, we have, if F is a measurable non-negative functional on T,

E
ψ
x [F(πa(T ))] = E

ψ,a
x [F(T )],

the same being true under N
ψ .

The w-tree T under P
ψ
x or N

ψ is called a ψ-Lévy w-tree or simply a Lévy tree.

Proof For n ≥ 1, 0 < a1 < · · · < an , we define a probability measure on T
n by:

P
ψ,a1,...,an
x (T1 ∈ A1, . . . , Tn ∈ An) = P

ψ,an
x (T ∈ An, πan−1(T )

∈ An−1, . . . , πa1(T ) ∈ A1)

if A1, . . . , An are Borel subsets of T. The probability measures

(Pψ,a1,...,an
x , n ≥ 1, 0 < a1 < · · · < an)

then form a projective family. This is a consequence of the martingale property of
Mψθ ,−θ and the fact that the projectors πa satisfy the obvious compatibility relation
πb ◦ πa = πb if 0 < b < a.

By the Daniell–Kolmogorov theorem, there exists a probability measure P̃
ψ
x on the

product space T
R+ such that the finite-dimensional distributions of a P̃

ψ
x -distributed

family are described by the measures defined above. It is easy to construct a version
of a P̃

ψ
x -distributed process that is a.s. increasing. Indeed, almost all sample paths
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of a P̃
ψ
x -distributed process are increasing when restricted to rational numbers. We

can then define a w-tree T a for any a > 0 by considering a decreasing sequence of
rational numbers an ↓ a and defining T a = ∩n≥1T an . Notice that T a is closed for all
a ∈ R+. It is easy to check that the finite-dimensional distributions of this new process
are unchanged by this procedure. Let us then consider T = ∪a>0T a , endowed with
the obvious metric dT and mass measure m. It is clear that T is a real tree, rooted
at the common root of the T a . All the T a are compact, so that T is locally compact
and complete. The measure m is locally finite since all the mT a

are finite measures.
Therefore, T is a.s. a w-tree. Then, if we define P

ψ
x to be the distribution of T , the

conclusion follows. Similar arguments hold under N
ψ . ��

Remark 2.23 Another definition of super-critical Lévy trees was given by Duquesne
and Winkel [15,16]: they consider increasing families of Galton–Watson trees with
exponential edge lengths which satisfy a certain hereditary property (such as uniform
Bernoulli coloring of the leaves). Lévy trees are then defined to be the Gromov–
Hausdorff limits of these processes. Another approach via backbone decompositions
is given in [11].

All the definitions we made for sub-critical Lévy trees then carry over to the super-
critical case. In particular, the level set measure �a , which is πa(T )-measurable, can
be defined using the Girsanov formula. Thanks to Theorem 2.12, it is easy to show
that the mass process (Za = 〈�a, 1〉, a ≥ 0) is under P

ψ
x a CSBP with branching

mechanism ψ . In particular, with u defined in (11) and b by (12), we have:

N
ψ
[
1 − e−λZa

]
= u(a, λ) and N

ψ [Hmax(T ) > a] = N
ψ [Za > 0] = b(a).

(23)

Notice that b is finite only under Assumption 2. We set:

σ =
+∞∫

0

Za da = mT (T ) (24)

for the total mass of the Lévy tree T . Notice this is consistent with (16) and (14) which
are defined for (sub)critical Lévy trees. Thanks to (24), notice that σ is distributed as
the total population size of a CSBP with branching mechanism ψ . In particular, its
Laplace transform is given for λ > 0 by:

N
ψ
[
1 − e−λσ ] = ψ−1(λ). (25)

Notice that N
ψ [σ = +∞] = ψ−1(0) > 0. We recall the following theorem, from [2],

which sums up the situation for general branching mechanisms ψ .

Theorem 2.24 [2] Let ψ be any branching mechanism satisfying Assumptions 1

and 2, and let q > 0 such that ψ(q) ≥ 0. Then, the probability measure P
ψq
x on
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T is absolutely continuous w.r.t. P
ψ
x , with

dP
ψq
x

dP
ψ
x

= Mψ,q∞ = eqx−ψ(q)σ1{σ<+∞}. (26)

Similarly, the excursion measure N
ψq on T is absolutely continuous w.r.t. N

ψ and we
have

dN
ψq

dNψ
= e−ψ(q)σ1{σ<+∞}. (27)

When applying Girsanov formula (27) to q = θ̄ defined by (10), we get the fol-
lowing remarkable corollary, due to the fact that ψθ(θ̄ − θ) = 0.

Corollary 2.25 Let ψ be a critical branching mechanism satisfying Assumptions 1
and 2, and θ ∈ 	ψ with θ < 0. Let F be a non-negative measurable functional defined
on T. We have:

e(θ̄−θ)x E
ψθ
x [F(T )1{σ<+∞}] = E

ψθ̄
x [F(T )],

N
ψθ [F(T )1{σ<+∞}] = N

ψθ̄ [F(T )].
(28)

We deduce from Proposition 2.14 and Theorem 2.22 that the point process
N T

0 (dx, dT ′) defined by (15) with a = 0 is under P
ψ
x (dT ) a Poisson point mea-

sure on {∅} × T with intensity σδ∅(dx)Nψ [dT ′]. Then we deduce from (21), with
F = 1, that for θ ≥ θ∗:

N
ψθ

⎡
⎣1 − exp

⎛
⎝θZa + ψ(θ)

a∫

0

Zsds

⎞
⎠
⎤
⎦ = −θ. (29)

2.6 Pruning Lévy trees

We recall the construction from [7] on the pruning of Lévy trees. Let T be a random
Lévy w-tree under P

ψ
x (or under N

ψ ), with ψ conservative. Let

m(ske)(dx, dθ) =
∑

i∈I ske

δ(xi ,θi )(dx, dθ)

be, conditionally on T , a Poisson point measure onT ×R+ with intensity 2βlT (dx)dθ .
Since there is a.s. a countable number of branching points (which have lT -measure
0), the atoms of this measure are distributed on T \(Br(T ) ∪ Lf(T )).

If � = 0, we have Br∞(T ) = ∅ a.s. whereas if �(R+) = ∞, Br∞(T ) is a.s. a
countable dense subset of T . If the latter condition holds, we consider, conditionally
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on T , a Poisson point measure

m(nod)(dx, dθ) =
∑

i∈I nod

δ(xi ,θi )(dx, dθ)

on T × R+ with intensity

∑
y∈Br∞(T )

�yδy(dx) dθ

where �x is the mass of the node x , defined by (19). Hence, if θ > 0, a node x ∈
Br∞(T ) is an atom of m(nod)(dx, [0, θ ]) with probability 1 − exp(−θ�x ). The set

{
xi , i ∈ I nod

}
=
{

x ∈ T , m(nod)({x} × R+
)
> 0

}

of marked branching points corresponds P
ψ
x -a.s or N

ψ -a.e. to Br∞(T ). For i ∈ I nod,
we set

θi = inf
{
θ > 0, m(nod)({xi } × [0, θ ]) > 0

}

to be the first mark on xi (which is conditionally on T exponentially distributed with
parameter �xi ), and we set

{
θ j , j ∈ J nod

i

}
=
{
θ > θi , m(nod)({xi } × {θ}) > 0

}

so that we can write

m(nod)(dx, dθ) =
∑

i∈I nod

δxi (dx)

⎛
⎜⎝δθi (dθ)+

∑
j∈J nod

i

δθ j (dθ)

⎞
⎟⎠ .

We set the measure of marks:

M(dx, dθ) = m(ske)(dx, dθ)+ m(nod)(dx, dθ), (30)

and consider the family of w-trees �(T ,M) = (�θ (T ,M), θ ≥ 0), where the
θ -pruned w-tree �θ is defined by:

�θ(T ,M) =
{

x ∈ T , M(�∅, x�×[0, θ ]) = 0

}
,

rooted at ∅
�θ (T ,M) = ∅

T , and where the metric d�θ (T ,M) and the mass measure
m�θ (T ,M) are the restrictions of dT and mT to �θ(T ,M). In particular, we have
�0(T ,M) = T . The family of w-trees �(T ,M) is a non-increasing family of real
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Fig. 1 The pruning process, starting from explosion time A defined in (32)

trees, in a sense that�θ(T ,M) is a subtree of�θ ′(T ,M) for 0 ≤ θ ′ ≤ θ , see Fig. 1.
In particular, we have that the pruning operators satisfy a cocycle property, for θ1 ≥ 0
and θ2 ≥ 0:

�θ2

(
�θ1(T ,M),Mθ1

) = �θ2+θ1(T ,M),

where Mθ (A × [0, q]) = M(A × [θ, θ + q]). Abusing notations, we write
N
ψ(dT , dM) for the distribution of the pair (T ,M)when T is distributed according

to N
ψ(dT ) and conditionally on T , M is distributed as described above.

The following result can be deduced from [2].

Theorem 2.26 Let ψ be a branching mechanism satisfying Assumptions 1 and 2.
There exists a non-increasing T-valued Markov process (Tθ , θ ∈ 	ψ) such that for all
q ∈ 	ψ , the process (Tθ+q , θ ≥ 0) is distributed as�(T ,M) under N

ψq [dT , dM].
In particular, this theorem implies that Tθ is distributed as N

ψθ for θ ∈ 	ψ and that
for θ0 ≥ 0, under N

ψ , the process of pruned trees (�θ0+θ (T ), θ ≥ 0) has the same
distribution as (�θ (T ), θ ≥ 0) under N

ψθ0 [dT ].
We want to study the time-reversed process (T−θ , θ ∈ −	ψ), which can be seen as

a growth process. This process grows by attaching sub-trees at a random point, rather
than slowly growing uniformly along the branches. We recall some results from [2] on
the growth process. From now on, we will assume in this section that the branching
mechanism ψ is critical, so that ψθ is sub-critical iff θ > 0 and super-critical iff
θ < 0.

We will use the following notation for the total mass of the tree Tθ at time θ ∈ 	ψ :

σθ = mTθ (Tθ ). (31)

The total mass process (σθ , θ ∈ 	ψ) is a pure-jump process taking values in (0,+∞].
Lemma 2.27 [2] Let ψ be a critical branching mechanism satisfying Assumptions 1
and 2. If 0 ≤ θ2 < θ1, then we have:

N
ψ [σθ2 |Tθ1] = σθ1

ψ ′(θ1)

ψ ′(θ2)
·
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Consider the ascension time (or explosion time):

A = inf
{
θ ∈ 	ψ, σθ < ∞}

, (32)

where we use the convention inf ∅ = θ∞. The following theorem gives the distribution
of the ascension time A and the distribution of the tree at this random time. Recall that
θ̄ = ψ−1(ψ(θ)) is defined in (10).

Theorem 2.28 [2] Letψ be a critical branching mechanism satisfying Assumptions 1
and 2.

(1) For all θ ∈ 	ψ , we have N
ψ [A > θ ] = θ̄ − θ .

(2) If θ∞ < θ < 0, under N
ψ , we have, for any non-negative measurable functional

F,

N
ψ [F(TA+θ ′ , θ ′ ≥ 0)|A = θ ] = ψ ′(θ̄)Nψ

[
F(Tθ ′ , θ ′ ≥ 0)σ0e−ψ(θ)σ0

]
.

(3) For all θ ∈ 	ψ , we have N
ψ [σA < +∞|A = θ ] = 1.

In other words, at the ascension time, the tree can be seen as a size-biased critical
Lévy tree. A precise description of TA is given in [2]. Notice that in the setting of [2],
there is no need of Assumption 2.

3 The growing tree-valued process

3.1 Special Markov Property of pruning

In [7], the authors prove a formula describing the structure of a Lévy tree, conditionally
on the θ -pruned tree obtained from it in the (sub)critical case. We will give a general
version of this result. From the measure of marks, M in (30), we define a measure of
increasing marks by:

M↑(dx, dθ ′) =
∑
i∈I ↑

δ(xi ,θi )(dx, dθ ′), (33)

with

I ↑ =
{

i ∈ I ske ∪ I nod, M(�∅, xi � × [0, θi ]) = 1
}
.

The atoms (xi , θi ) for i ∈ I ↑ correspond to marks such that there are no marks of M
on �∅, xi � with a θ -component smaller than θi . In the case of multiple θ j for a given
node xi ∈ Br∞(T ), we only keep the smallest one. In the case � = 0, the measure
M↑ describes the jumps of a record process on the tree, see [3] for further work in
this direction. The θ -pruned tree can alternatively be defined using M↑ instead of M
since for θ ≥ 0:

�θ(T ,M) =
{

x ∈ T , M↑(�∅, x�×[0, θ ]) = 0
}
.
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We set:

I ↑
θ =

{
i ∈ I ↑, xi ∈ Lf(�θ (T ,M))

}

=
{

i ∈ I ↑, θi < θ and M↑(�∅, xi �×[0, θ ]) = 0
}

and for i ∈ I ↑
θ :

T i = T \T ∅,xi = {x ∈ T , xi ∈ �∅, x�},

where T y,x is the connected component of T \{x} containing y. For i ∈ I ↑
θ , T i is a

real tree, and we will consider xi as its root. The metric and mass measure on T i are
the restrictions of the metric and mass measure of T on T i . By construction, we have:

T = �θ(T ,M)�
i∈I ↑

θ

(T i , xi ). (34)

Now we can state the general special Markov property.

Theorem 3.1 (Special Markov property) Let ψ be a branching mechanism satisfying
Assumptions 1 and 2. Let θ > 0. Conditionally on �θ(T ,M), the point measure:

M↑
θ (dx, dT ′, dθ ′) =

∑
i∈I ↑

θ

δ(xi ,T i ,θi )
(dx, dT ′, dθ ′)

under P
ψ
r0 (or under N

ψ ) is a Poisson point measure on�θ(T ,M)× T × (0, θ ] with
intensity:

m�θ (T ,M)(dx)

⎛
⎜⎝2βN

ψ [dT ′] +
∫

(0,+∞)

�(dr) re−θ ′r
P
ψ
r (dT ′)

⎞
⎟⎠ 1(0,θ](θ ′) dθ ′.

(35)

Proof It is not difficult to adapt the proof of the special Markov property in [7] to get
Theorem 3.1 in the (sub)critical case by taking into account the pruning times θi and
the w-tree setting; and we omit this proof which can be found in [6]. We prove how
to extend the result to the super-critical Lévy trees using the Girsanov transform of
Definition 2.21.

Assume that ψ is super-critical. For a > 0, we will write �θ,a(T ,M) =
πa(�θ (T ,M)) for short. According to (34) and the definition of super-critical Lévy
trees, we have that for any a > 0, the truncated tree πa(T ) can be written as:

πa(T ) = �θ,a(T ,M)�
i∈I ↑

θ ,

Hxi ≤a

(
πa−Hxi

(T i ), xi

)
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and we have to prove that
∑

i∈I ↑
θ

δ(xi ,T i ,θi )
(dx, dT ′, dθ ′) is conditionally on

�θ(T ,M) a Poisson point measure with intensity (35). Since a is arbitrary, it is
enough to prove that the point measure Ma , defined by

Ma(dx, dT ′, dθ ′) =
∑
i∈I ↑

θ

1{Hxi ≤a} δ(xi ,πa−Hxi
(T i ),θi )

(dx, dT ′, dθ ′),

is conditionally on �θ,a(T ,M) a Poisson point measure with intensity:

1[0,a](Hx )m�θ (T ,M)(dx) 1(0,θ](θ ′) dθ ′

×
⎛
⎜⎝2β(πa−Hx )∗N

ψ(dT ′)+
∫

(0,+∞)

�(dr) re−θ ′r (πa−Hx )∗P
ψ
r (dT ′)

⎞
⎟⎠ . (36)

Recall θ∗ is the unique real number such that ψ ′
θ∗(0) = 0, that is, such that ψθ∗ is

critical. Let� be a non-negative, measurable functional on�θ,a(T ,M)× T × (0, θ ]
and let F be a non-negative measurable functional on T. Let

B = N
ψ
[
F(�θ,a(T ,M)) exp(−〈Ma,�〉)].

Thanks to the Girsanov formula (22) and the special Markov property for critical
branching mechanisms, we get:

B = N
ψθ∗

⎡
⎣F(�θ,a(T ,M)) exp(− 〈Ma,�〉) exp

⎛
⎝θ∗Za(T )+ ψ(θ∗)

a∫

0

Zh(T )dh

⎞
⎠
⎤
⎦

= N
ψθ∗

⎡
⎣F(�θ,a(T ,M)) exp

⎛
⎝θ∗Za(�θ (T ,M))+ ψ(θ∗)

a∫

0

Zh(�θ (T ,M))dh

⎞
⎠

× exp

(
−
∫

m�θ,a(T ,M)(dx)G(Hx , x, θ)

)⎤
⎦ ,

with m�θ,a(T ,M)(dx) = 1[0,a](Hx )m�θ (T ,M)(dx) and G(h, x, θ) equal to:

θ∫

0

dθ ′
⎧⎨
⎩2βN

ψθ∗

⎡
⎣1−exp

⎛
⎝−�(x, πa−h(T ), θ ′)+ θ∗Za−h(T )+ ψ(θ∗)

a−h∫

0

Zt (T )dt

⎞
⎠
⎤
⎦

+
∫

(0,+∞)

�θ∗(dr)re−θ ′r
E
ψθ∗
r ×

⎡
⎣1 − exp

(
−�(x, πa−h(T ), θ ′)+ θ∗Za−h(T )

+ψ(θ∗)
a−h∫

0

Zt (T )dt

)⎤
⎦
⎫⎬
⎭ .
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By using the Poisson decomposition of P
ψθ∗
r (Proposition 2.14), we see that G(h, x, θ)

can be written as:

G(h, x, θ)=
θ∫

0

dθ ′

⎧⎪⎨
⎪⎩2βg(h, x, θ ′)+

∫

(0,∞)

�θ∗(dr) re−θ ′r (1−exp(−rg(h, x, θ ′))
)
⎫⎪⎬
⎪⎭,

with

g(h, x, θ ′)

= N
ψθ∗

⎡
⎣1 − exp

⎛
⎝−�(x, πa−h(T ), θ ′)+ θ∗Za−h(T )+ ψ(θ∗)

a−h∫

0

Zt (T )dt

⎞
⎠
⎤
⎦.

Thanks to the Girsanov formula and (29), we get:

g(h, x, θ ′) = N
ψθ∗

×
⎡
⎣(1 − exp(−�(x, πa−h(T ), θ ′))) exp

⎛
⎝θ∗Za−h(T )+ ψ(θ∗)

a−h∫

0

Zt (T )dt

⎞
⎠
⎤
⎦

+N
ψθ∗

⎡
⎣1 − exp

⎛
⎝θ∗Za−h(T )+ ψ(θ∗)

a−h∫

0

Zt (T )dt

⎞
⎠
⎤
⎦

= N
ψ
[
1 − exp(−�(x, πa−h(T ), θ ′))

]
− θ∗.

With g̃(h, x, θ ′) = N
ψ [1 − exp(−�(x, πa−h(T ), θ ′))] and thanks to (7), we get:

G(h, x, θ) =
θ∫

0

dθ ′

⎧⎪⎨
⎪⎩2β g̃(h, x, θ ′)+

∫

(0,∞)

�(dr) re−θ ′r (1 − exp(−r g̃(h, x, θ ′))
)
⎫⎪⎬
⎪⎭

+ψ(θ∗)− ψθ(θ
∗).

Notice that from the definition of G we have g replaced by g̃,�θ∗ replaced by� and
the additional term ψ(θ∗)−ψθ(θ∗). As

∫
m�θ,a(T ,M)(dx) = ∫ a

0 Zh(�θ (T ))dh, we
get:

B = N
ψθ∗

⎡
⎣F(�θ,a(T ,M))R(�θ,a(T ,M))

× exp

⎛
⎝θ∗Za(�θ (T ,M))+ ψθ(θ

∗)
a∫

0

Zh(�θ (T ,M))dh

⎞
⎠
⎤
⎦ , (37)
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with

R(T ) = exp

⎛
⎜⎝−

∫
mT (dx)

θ∫

0

dθ ′

⎡
⎢⎣2β g̃(Hx , x, θ ′)

+
∫

(0,∞)

�(dr) re−θ ′r (1 − exp(−r g̃(Hx , x, θ ′))
)
⎤
⎥⎦
⎞
⎟⎠ . (38)

Taking � = 0 (and thus R = 1) in (37) yields:

N
ψ [F(�θ,a(T ,M))] = N

ψθ∗

⎡
⎣F(�θ,a(T ,M)) exp

(
θ∗Za(�θ (T ,M))

+ψθ(θ∗)
a∫

0

Zh(�θ (T ,M))dh
)⎤⎦ . (39)

Using (39) with F replaced by F R gives:

N
ψ
[

exp(−〈Ma,�〉)F(�θ,a(T ,M))
]

= B

= N
ψ
[
F(�θ,a(T ,M))R(�θ,a(T ,M))

]
.

This implies that Ma is, conditionally on�θ,a(T ,M), a Poisson point measure with
intensity (36). This ends the proof. ��

3.2 An explicit construction of the growing process

In this section, we will construct the growth process using a family of Poisson point
measures. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let
θ ∈ 	ψ . According to (20) and (7), we have:

Nψθ [T ∈ ·] = 2βN
ψθ [T ∈ ·] +

∫

(0,+∞)

�(dr)re−θr
P
ψθ
r (T ∈ ·). (40)

Let T (0) ∈ T with root ∅. For q ∈ 	ψ and q ≤ θ , we set:

T(0)q = T (0) and m(0)
q = mT (0)

.

We define the w-trees grafted on T (0) by recursion on their generation. We suppose
that all the random point measures used for the next construction are defined on T

under a probability measure QT (0)
(dω).
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Suppose that we have constructed the family ((T(k)q ,m(n)
q ), 0 ≤ k ≤ n, q ∈

	ψ ∩ (−∞, θ)). We write

T(n) =
⊔

q∈	ψ, q≤θ
T(n)q .

We define the (n + 1)-th generation as follows. Conditionally on all trees from gener-
ations smaller than n, (T(k)q , 0 ≤ k ≤ n, q ∈ 	ψ ∩ (−∞, θ)), let

N n+1
θ (dx, dT , dq) =

∑
j∈J (n+1)

δ(x j ,T j ,θ j )
(dx, dT , dq)

be a Poisson point measure on T(n) × T ×	ψ with intensity:

μn+1
θ (dx, dT , dq) = m(n)

q (dx)Nψq [dT ] 1{q≤θ} dq.

For q ∈ 	ψ and q ≤ θ , we set

J (n+1)
q =

{
j ∈ J (n+1), q < θ j

}

and we define the tree T
(n+1)
q and the mass measure m(n+1)

q by:

T(n+1)
q = T(n)q �

j∈J (n+1)
q

(T j , x j ) and m(n+1)
q =

∑
j∈J (n+1)

q

mT j
(dx).

Notice that by construction, (T(n)q , n ∈ N) is a non-decreasing sequence of trees.

We set Tq to be the completion of ∪n∈NT
(n)
q , which is a real tree with root ∅ and

metric dTq , and we define a mass measure on Tq by mTq = ∑
n∈N

m(n)
q .

For q ∈ 	ψ and q < θ , we consider Fq the σ -field generated by T(0) and the

sequence of random point measures (1{q ′∈[q,θ]}N (n)
θ (dx, dT , dq ′), n ∈ N). We set

Nθ = ∑
n∈N

N n
θ . The backward random point process q �→ 1{q≤q ′}Nθ (dx, dT , dq ′)

is by construction adapted to the backward filtration (Fq , q ∈ 	ψ ∩ (−∞, θ ]).
The proof of the following result is postponed to Sect. 3.3.

Theorem 3.2 Letψ be a branching mechanism satisfying Assumptions 1 and 2. Under
Qψθ = N

ψθ [dT (0)]QT (0)
(dω), the process

((
Tq , dTq ,∅,mT̄q

)
, q ∈ 	ψ ∩ (−∞, θ ]

)

is a T-valued backward Markov process with respect to the backward filtration Fθ =
(Fq , q ∈ 	ψ ∩ (−∞, θ ]). It is distributed as ((Tq ,mTq ), q ∈ 	ψ ∩ (−∞, θ ]) under
N
ψ .
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Notice the theorem in particular entails that (Tq , dTq ,∅,mT̄q ) is a w-tree for all
q. To prove it, we will use the following lemma.

Lemma 3.3 Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let K
be a measurable non-negative process (as a function of q) defined on R+ × T × T

which is predictable with respect to the backward filtration Fθ . We have:

Qψθ

[∫
Nθ (dx, dT , dq) K (q,Tq ,Tq−)

]

= Qψθ

[∫
K
(

q,Tq ,Tq � (T , x)
)
μθ(dx, dT , dq)

]
,

whereμθ(dx, dT , dq)=∑
n≥1 μ

n(dx, dT, dq)=mTq (dx)Nψq [dT ] 1{q∈	ψ,q≤θ} dq.

This means that the predictable compensator of Nθ is given by:

μθ(dx, dT , dq) = mTq (dx)Nψq [dT ] 1{q∈	ψ,q≤θ} dq.

Notice that this construction does not fit in the usual framework of random point
measures since the support at time q of the predictable compensator is the (predictable
backward in time) random set Tq × T ×	ψ .

Proof Based on the recursive construction, we have:

Qψθ

[∫
Nθ (dx, dT , dq) K (q,Tq ,Tq−)

]

=
+∞∑
n=0

Qψθ

[
Qψθ

[ ∫
N n
θ (dx, dT , dq) K (q,Tq ,Tq � (T , x))

∣∣∣ (T(k)s , k ≤ n, s ≤ θ)

]]
.

Now, by construction, we have that:

Tq = T(n)q �
j∈J (n)q

(T̃ j , x j )

for T̃ j = Tq\T(x j ,∅)
q which is a measurable function of 1{q ′>q}N n

θ (dx, dT , dq ′) and
of the point measures 1{q ′>q}N �

θ (dx, dT , dq ′) for � ≥ n + 1. Therefore, applying the
Palm formula with the function

Fn

(
q, T , x,

∑
j∈J (n),q j>q

δ(x j ,T j ,θ j )

)

= Qψθ
[

K
(

q,T(n)q �
j∈J (n)q

(T̃ j , x j ),

×T(n)q �
j∈J (n)q

(T̃ j , x j )� (T , x)
) ∣∣∣ (T(k)s , k ≤ n, s ≤ θ),N n

θ

]
,

123



388 R. Abraham et al.

we get:

Qψθ

[∫
Nθ (dx, dT , dq) K (q,Tq ,Tq−)

]

=
+∞∑
n=0

Qψθ

⎡
⎣Qψθ

⎡
⎣
∫

N n
θ (dx, dT , dq)

× Fn

⎛
⎝q, T , x,

∑
j∈J (n),q j>q

δ(x j ,T j ,θ j )

⎞
⎠ ∣∣∣ (T(k)s , k ≤ n, s ≤ θ)

⎤
⎦
⎤
⎦

=
+∞∑
n=0

Qψθ

⎡
⎣Qψθ

⎡
⎣
∫
μn
θ (dx, dT , dq)

× Fn

⎛
⎝q, T , x,

∑
j∈J (n),q j>q

δ(x j ,T j ,θ j )

⎞
⎠ ∣∣∣ (T(k)s , k ≤ n, s ≤ θ)

⎤
⎦ g

⎤
⎦

=
+∞∑
n=0

Qψθ

[
Qψθ

[ ∫
μn
θ (dx, dT , dq) K

(
q,T(n)q �

j∈J (n)q
(T̃ j , x j ),

×T(n)q �
j∈J (n)q

(T̃ j , x j )� (T , x)
) ∣∣∣ (T(k)s , k ≤ n, s ≤ θ)

]]

=
+∞∑
n=0

Qψθ

[∫
μn
θ (dx, dT , dq) K

(
q,Tq ,Tq � (T , x)

)]

= Qψθ

[∫
K
(

q,Tq ,Tq � (T, x)
)
μθ(dx, dT , dq)

]
.

��
It can be noticed that the map q �→ Tq is non-decreasing càdlàg (backwards in

time) and that we have, for j ∈ ∪n∈N J (n), x j ∈ Tθ j : Tθ j − = Tθ j � (T j , x j ). In
particular, we can recover the random measure Nθ from the jumps of the process
(Tq , q ∈ 	ψ ∩ (−∞, θ ]). This and the natural compatibility relation of Nθ with
respect to θ gives the next corollary.

Corollary 3.4 Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let
(Tθ , θ ∈ 	ψ) be defined under N

ψ , and let

N =
∑
j∈J

δ(x j ,T j ,θ j )

be the random point measure defined as follows:

• The set {θ j , j ∈ J } is the set of jumping times of the process (Tθ , θ ∈ 	ψ): for
j ∈ J , Tθ j − �= Tθ j .
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Exit times for an increasing Lévy tree-valued process 389

• The real tree T j is the closure of Tθ j −\Tθ j .
• The point x j is the root of T j (that is x j is the only element y ∈ Tθ j − such that

x ∈ T j implies �y, x� ⊂ T j ).

Then the backward point process θ �→ 1{θ≤q ′}N (dx, dT , dq ′) defined on 	ψ has
predictable compensator:

μ(dx, dT , dq) = mTq (dx)Nψq [dT ] 1{q∈	ψ } dq,

with respect to the backward left-continuous filtration F = (Fθ , θ ∈ 	ψ) defined by:

Fθ = σ((x j , T j , θ j ), θ ≤ θ j ) = σ(Tq−, θ ≤ q).

More precisely, for any non-negative predictable process K with respect to the back-
ward filtration F , we have:

N
ψ

[∫
N (dx, dT , dq) K

(
q, Tq , Tq−

)]

= N
ψ

[∫
μ(dx, dT, dq) K

(
q, Tq , Tq � (T, x)

) ]
. (41)

Remark 3.5 Note that Assumption 2 is assumed only for technical measurability pur-
poses, see Remark 2.11. We conjecture that this results also holds without Assump-
tion 2.

As a consequence, thanks to property 3 of Theorem 2.28, we get, with the convention
sup ∅ = θ∞, that:

A = sup{θ j , j ∈ J and σ j = +∞} with σ j = mT j
(T j ).

3.3 Proof of Theorem 3.2

By construction, it is clear that the process (Tq , q ∈ 	ψ ∩ (−∞, θ ]) is a backward
Markov process with respect to the backward filtration (Fq , q ∈ 	ψ ∩ (−∞, θ ]). By
construction this process is càglàd in backward time. Since the process (Tq , q ∈ 	ψ)
is a forward càdlàg Markov process, it is enough to check that for θ0 ∈ 	ψ , such
that θ0 < θ , the two dimensional marginals (Tθ0 ,Tθ ) and (Tθ0 , Tθ ) have the same
distribution.

Replacingψ byψθ0 , we can assume that θ0 = 0 and 0 < θ . We will decompose the
big tree T0 conditionally on the small tree Tθ by iteration. This decomposition is similar
to the one which appears in [1] or [29] for the fragmentation of the (sub)critical Lévy
tree, but roughly speaking the fragmentation is here frozen except for the fragment
containing the root.

We set T (0) = Tθ and m̃(0) = mTθ , so that (T(0),m(0)) and (T (0), m̃(0)) have the
same distribution. Recall notation M↑ from (33) as well as (34): T0 = T (0) �

i∈I ↑,1
θ
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(T i , xi ), where we write I ↑,1
θ = I ↑

θ and where P1 = ∑
i∈I ↑,1

θ

δ(xi ,T i ,θi )
is, condition-

ally on T (0), a Poisson point measure with intensity:

ν1(dx, dT ′, dq) = m̃(0)(dx)

⎛
⎜⎝2βN

ψ [dT ′] +
∫

(0,+∞)

�(dr) re−qr
P
ψ
r (dT ′)

⎞
⎟⎠

1(0,θ](q) dq.

For i ∈ I ↑,1
θ , we define the subtree of T i :

T̃ i =
{

x ∈ T i , M↑(�xi , x�×[0, θi ]) = 0
}
.

Since T i is distributed according to N
ψ (or to P

ψ
ri for some ri > 0), using the property

of Poisson point measures, we have that conditionally on T 0 and θi , the tree T̃ i is
distributed as �θi (T ,M) under N

ψ (or under P
ψ
ri ) that is the distribution of T̃ i is

N
ψθi [dT ] (or P

ψθi
ri (dT )), thanks to the special Markov property. Furthermore we have

T i = T̃ i �
i ′∈I ↑,2

θ,i
(T i ′ , xi ′) where

∑
i ′∈I ↑,2

θ,i

δ
(xi ′ ,T i ′ ,θi ′ )

is, conditionally on T (0) and T̃ i a Poisson point measure on T̃ i × T × (0, θ ] with
intensity:

mT̃ i
(dx)

⎛
⎜⎝2βN

ψ(dT ′)+
∫

(0,+∞)

�(dr) re−qr
P
ψ
r (dT ′)

⎞
⎟⎠ 1[0,θi )(q) dq.

Thus we deduce, using again the special Markov property, that:

Ñ 1
θ (dx, dT , dq) =

∑
i∈I ↑,1

δ
(xi ,T̃ i ,θi )

(dx, dT , dq)

is conditionally on T 0 a Poisson point measure on T (0) × T ×	ψ with intensity:

μ̃1(dx, dT , dq) = m̃(0)
q (dx)Nψq [dT ] 1[0,θ)(q) dq,

with m̃(0)
q (dx) = m̃(0)(dx). We set T (1) = T (0)�

i∈I ↑,1
θ

(T̃ i , xi ) for the first generation

tree and for q ∈ [0, θ ]:
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Fig. 2 The tree T0, T (0), and a tree T i and its sub-tree T̃ i belonging to the first generation tree T (1)\T (0)

m̃(1)
q (dx) =

∑
i∈I ↑,1

θ

mT̃ i
(dx)1[0,θi )(q).

See Fig. 2 for a simplified representation. We get that (T(1)θ , (m
(1)
q , q ∈ [0, θ ]),T(0),

mT(0) ) and (T (1), (m̃(1)
q , q ∈ [0, θ ]), T (0), m̃(0)) have the same distribution.

Furthermore, by collecting all the trees grafted on T (1), we get that

T = T (1) �
i ′∈I ↑,2

θ

(T i ′ , xi ′),

where I ↑,2
θ = ∪

i∈I ↑,1
θ

I ↑,2
θ,i and where

P2 =
∑

i ′∈I ↑,2
θ

δ
(xi ′ ,T i ′ ,θi ′ )

is, conditionally on (T (1), (m̃(1)
q , q ∈ [0, θ ]), T (0), m̃(0)) a Poisson point measure on

T (1) × T × (0, θ ] with intensity:
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ν2(dx, dT , dq) = m̃(1)
q (dx)

⎛
⎜⎝2βN

ψ(dT ′)+
∫

(0,+∞)

�(dr) re−qr
P
ψ
r (dT ′)

⎞
⎟⎠ 1[0,θ](q) dq.

Notice that:

T (1) = {x ∈ T0, M↑(�∅, x�×[0, θ ]) ≤ 1} and m̃(1)
θ (dx)+ m̃(0)(dx)

= 1T (1) (x)mT0(dx). (42)

We can then iterate this construction, and by taking increasing limits we obtain that
the pair ((∪n∈NT

(n)
θ ,

∑
n∈N

m(n)
θ ),T0) has the same distribution as (T ′, T (0)), where:

T ′ =
{

x ∈ T0, M↑(�∅, x�×[0, θ ]) < +∞
}

and m̃′(dx) = 1T ′(x)mT0(dx).

To conclude, we need to check first that the completion of T ′ is T0 or, as T0 is complete,
that the closure of T ′ as a subset of T0 is exactly T0 and then that mT0(T ′c) = 0.

Notice that M↑ has fewer marks than M. Then Proposition 1.2 in [1] in the case
when β = 0 or an elementary adaptation of it in the general framework of [29],
gives there is no loss of mass in the fragmentation process. This implies that, if ψ is
(sub)critical, then:

mT0({x ∈ T0, M(�∅, x�×[0, θ ]) = ∞} = 0. (43)

Then, if ψ is super-critical, by considering the truncation of T0 at level a, πa(T0), and
using a Girsanov transformation from Definition 2.21 with θ = θ∗ and (43), we deduce
that (43) holds for πa(T0). Since a is arbitrary, we deduce by monotone convergence
that (43) holds also in the super-critical case. Thus we have mT0(T ′c) = 0. Since the
closed support of mT0 is the set of leaves Lf(T0), we deduce that Lf(T ′) is dense in
Lf(T0) and, as T ′ and T0 have the same root, that Sk(T ′) = Sk(T0). This implies that
the closure of T ′ is T0 and ends the proof.

4 Application to overshooting

We assume that ψ is critical, θ∞ < 0 and Assumptions 1 and 2 hold. We will write uθ

(resp. bθ ) for the solution of (11) (resp. (12)) when ψ is replaced by ψθ , for a ≥ 0,
h > 0 and t ∈ [0, h):

λ∫

uθ (a,λ)

dr

ψθ(r)
= a, and bθh(t) = bθ (h − t) with

∞∫

bθ (h)

dr

ψθ(r)
= h. (44)
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We have uθ (a, bθ (h − a)) = bθ (h). Notice that ∂hbθ (h)/ψθ (bθ (h)) = −1 and also
that we have ∂λuθ (a, λ) = ψθ(uθ (a, λ))/ψθ (λ) which implies that:

∂λuθ
(
a, bθ (h − a)

) = ψθ(bθ (h))

ψθ (bθ (h − a))
= − ψθ(bθ (h))

ψθ (bθ (h − a))2
∂hbθ (h − a). (45)

We set for θ ∈ 	ψ and λ ≥ 0:

γθ (λ) = ψ ′
θ (λ)− ψ ′

θ (0) = ψ ′(λ+ θ)− ψ ′(θ) = ∂θψθ (λ). (46)

Notice that the function γθ is non-negative and non-decreasing. Recall that θ̄ = ψ−1 ◦
ψ(θ). We deduce from (44) that for θ ∈ 	ψ , θ < 0 and h > 0:

θ̄ + bθ̄ (h) = θ + bθ (h) and ψθ̄ (b
θ̄ (h)) = ψθ(b

θ (h)). (47)

4.1 Exit times

Let h > 0. We are interested in the first time at which the process of growing trees
exceeds height h, in the following sense.

Definition 4.1 The first exit time out of h is the (possibly infinite) number Ah defined
by

Ah = sup
{
θ ∈ 	ψ, Hmax(Tθ ) > h

}
,

with the convention that sup ∅ = θ∞.

The constraint not to be higher than h will be coded by the function bθ (h) which
is the probability (under N

ψ ) for the tree T θ of having maximal height larger than h.
By definition of the function b, we have for θ ∈ 	ψ :

N
ψ [θ ≤ Ah] = N

ψ [Hmax(Tθ ) ≥ h] = bθ (h). (48)

Proposition 4.2 Letψ be a critical branching mechanism with θ∞ < 0 and satisfying
Assumptions 1 and 2. The function θ �→ bθh is of class C1 on (θ∞,+∞). And, under
N
ψ , the distribution of Ah on (θ∞,+∞) has density θ �→ −∂θbθ (h) with respect to

the Lebesgue measure. We also have the following expression for the density of Ah on
(θ∞,+∞). Let θ∞ < θ and h > 0. Then:

−∂θbθ (h) = ψθ
(
bθ (h)

) h∫

0

da
γθ (bθ (a))

ψθ (bθ (a))
=

h∫

0

da γθ
(
bθ (h − a)

)

× e−ψ ′(θ)a−∫ a
0 dx γθ (bθ (h−x)).

Notice that the distribution of Ah might have an atom at θ∞.
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Proof Notice that for θ∞ < θ , we have limλ→+∞ ψ ′′(λ) = β and limλ→+∞ ψ ′(λ) =
+∞. In particular ψ ′

θ (λ)/ψθ (λ) is bounded for λ large enough. This implies that∫ +∞ dr ψ ′
θ (r)/ψθ (r)

2 is finite thanks to Assumption 2. We deduce that the function
θ �→ bθh is of class C1 on (θ∞,+∞) and, thanks to (48), that under N

ψ , the distribution
of Ah on (θ∞,+∞) has density θ �→ −∂θbθ (h)with respect to the Lebesgue measure.

Taking the derivative with respect to θ in the last term of (44), using (46) and the
change of variable r = bθ (a) gives the first equality of the proposition:

− ∂θbθ (h) = ψθ
(
bθ (h)

) +∞∫

bθ (h)

dr
γθ (r)

ψθ (r)2
= ψθ

(
bθ (h)

) h∫

0

da
γθ (bθ (a))

ψθ (bθ (a))
· (49)

From (44) we get that ∂t bθh(t) = ψθ(bθh(t)). Hence, we have:

t∫

0

ψ ′
θ

(
bθh(r)

)
dr =

t∫

0

ψ ′
θ (b

θ
h(r))

ψθ (bθh(r))
∂t b

θ
h(r) dr = log

(
ψθ(bθh(t))

ψθ (bθh(0))

)
.

This gives:

t∫

0

γθ
(
bθh(r)

)
dr =

t∫

0

ψ ′
θ

(
bθh(r)

)
dr − tψ ′(θ) = log

(
ψθ(bθh(t))

ψθ (bθh(0))

)
− tψ ′(θ).

(50)

We deduce that:

h∫

0

da γθ
(
bθ (h − a)

)
e−ψ ′(θ)a−∫ a

0 dx γθ (bθ (h−x)) = ψθ
(
bθ (h)

) h∫

0

da
γθ (bθ (a))

ψθ (bθ (a))
·

This proves the second equality of the proposition. ��

Since we will also be dealing with super-critical trees, there is always the positive
probability that in the Poisson process of trees an infinite tree arises, which will be
grafted onto the process, effectively making it infinite and thus outgrowing height h. In
the next proposition, we will compute the conditional distribution of the overshooting
time Ah , given A. Note that we always have A ≤ Ah .

Proposition 4.3 Letψ be a critical branching mechanism with θ∞ < 0 and satisfying
Assumptions 1 and 2. For θ∞ < θ0 < θ and θ0 < 0 (that is ψθ0 super-critical), we
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have, with θ̂ = θ̄0 − θ0 + θ :

N
ψ [Ah ≥ θ |A = θ0] = 1 − ψ ′(θ̂)ψ

θ̂

(
bθ̂ (h)

) +∞∫

bθ̂ (h)

dr

ψ
θ̂
(r)2

,

N
ψ [Ah = A|A = θ0] = ψ ′(θ̄0)ψθ̄0

(
bθ̄0(h)

) +∞∫

bθ̄0 (h)

dr

ψθ̄0
(r)2

·

Since ψθ̄0
is sub-critical, we have ψ ′(θ̄0) > 0 and ψθ̄0

(r) ∼ rψ ′(θ̄0) when r goes

down to 0. Since limh→+∞ bθ̄0(h) = 0, we deduce that:

lim
h→+∞ N

ψ [Ah = A|A = θ0] = 1.

This has a straightforward explanation. If h is very large, with high probability the
process up to A will not have crossed height h, so that the first jump to cross height
h will correspond to the grafting time of the first infinite tree which happens at the
ascension time A. We also deduce from (47) that:

N
ψ [Ah = A|A = θ0] = ψ ′(θ̄0)ψθ0

(
bθ0(h)

) +∞∫

bθ0 (h)

dr

ψθ0(r)
2 · (51)

Proof We use the notation Zθ
h = Zh(T θ ) and Zh = Zh(T 0). We have:

N
ψ [Ah ≥ θ |A = θ0] = N

ψ [Zθ
h > 0|A = θ0] = N

ψ [Z A+(θ−θ0)
h > 0|A = θ0]

= ψ ′(θ̄0)N
ψ

[
σ01{Z(θ−θ0)

h >0}e
−ψ(θ0)σ0

]

= ψ ′(θ̄0)N
ψθ̄0

[
σ01{Z(θ−θ0)

h >0}

]

= ψ ′(θ̄0)N
ψ

[
σθ̄0

1{Z θ̄0+(θ−θ0)
h >0}

]

= ψ ′(θ̄0)N
ψ

[
σθ̄0

1{Z θ̂
h>0}

]
,

where we used (2) of Theorem 2.28 for the third equality, Girsanov formula (27) for the
fourth and the homogeneity property of Theorem 2.26 in the fifth. We now condition

with respect to T θ̂ . The indicator function being measurable, the only quantity left to
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compute is the conditional expectation of σθ̄0
given T θ̂ . Thanks to Lemma 2.27, the

fact that θ̂ > 0 and the homogeneity property, we get:

N
ψ [Ah ≥ θ |A = θ0] = ψ ′(θ̂)Nψ

[
σ
θ̂
1{Z θ̂

h>0}

]
= ψ ′(θ̂)Nψθ̂

[
σ1{Zh>0}

]
.

Using that N
ψ
θ̂ [σ ] = 1/ψ ′(θ̂), which can be deduced from (25), we get:

N
ψ [Ah ≥ θ |A = θ0] = ψ ′(θ̂)Nψθ̂ [σ ] − ψ ′(θ̂)Nψθ̂

⎡
⎣

h∫

0

Zada1{Zh=0}

⎤
⎦

= 1 − ψ ′(θ̂)
h∫

0

da lim
λ→∞ N

ψ
θ̂

[
Zae−λZh

]
.

Now, conditioning by Za and using limλ→∞ u θ̂ (h − t, λ) = bθ̂h(t) as well as (23), we
get:

lim
λ→∞ N

ψ
θ̂

[
Zae−λZh

]
= lim

λ→∞ N
ψ
θ̂

[
Zae−Zau θ̂ (h−a,λ)

]

= N
ψ
θ̂

[
Zae−Zabθ̂h (a)

]
= ∂λu θ̂ (s, bθ̂h(a)).

Then use (45) to get:

h∫

0

da lim
λ→∞ N

ψ
θ̂

[
Zae−λZh

]
=

h∫

0

da∂λu θ̂ (s, bθ̂h(a))

= ψ
θ̂
(bθ̂ (h))

h∫

0

da
|∂hbθ̂ (h − a)|
ψ
θ̂
(bθ̂ (h − a))2

= ψ
θ̂
(bθ̂ (h))

+∞∫

bθ̂ (h)

dr

ψ
θ̂
(r)2

,

and thus deduce the first equality of the proposition. Note that
∫ +∞ dr/ψθ (r)2 < +∞

thanks to Assumption 2 (this is actually true in general). Let θ go down to θ0 and use
the fact that N

ψ -a.e. A ≤ Ah to get the second equality. ��
Remark 4.4 In the quadratic case ψ(u) = βu2, we can obtain closed formulæ. For all
θ > 0, we have:

uθ (t, λ) = 2θλ

(2θ + λ) exp(2βθ t)− λ
and bθ (t) = 2θ

e2βθ t − 1
·
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We deduce the following exact expression of the conditional distribution for θ0 < θ ,
θ0 < 0 and with θ̄0 = |θ0| = −θ0 and θ̂ = θ + 2|θ0|:

N
ψ [Ah ≥ θ |A = θ0] = 1 + (βθ̂h)/sinh2(βθ̂h)− cotanh(βθ̂h),

N
ψ [Ah = A|A = θ0] = βθ0h/sinh2(βθ0h)− cotanh(βθ0h).

Notice that limθ0→−∞ N
ψ [Ah = A|A = θ0] = 1. This corresponds to the fact that if

A is large, then the tree TA is small and has little chance to cross level h. (Note that
TA has finite height but TA− has infinite height.) Thus the time Ah is equal to the time
when an infinite tree is grafted that is, to the ascension time A.

4.2 Distribution of the tree at the exit time

Before stating the theorem describing the tree before it overshoots a given height
h > 0 under the form of a spinal decomposition, we will explain how this spine is
distributed. Recall (46) for the definition of γθ .

Lemma 4.5 Letψ be a critical branching mechanism satisfying Assumptions 1 and 2.
Let θ ∈ 	ψ . The non-negative function

f : t �→ γθ (b
θ
h(t)) exp

⎛
⎝−

t∫

0

γθ (b
θ
h(r))dr

⎞
⎠ (52)

is a probability density on [0, h) with respect to Lebesgue measure. If ξ is a random
variable whose distribution is f , then we have E[exp(−ψ ′(θ)ξ)] < +∞.

Notice the integrability property on ξ is trivial if θ ≥ 0.

Proof Notice that f = g′e−g with g(t) = ∫ t
0 γθ (b

θ
h(r)) dr . Thus we have

h∫

0

f =
h∫

0

g′e−g = e−g(0) − e−g(h)

and f is a density if and only if g(h) = ∞. We deduce from (50) that
∫ t

0 γθ (b
θ
h(r))dr

diverges as t goes to h. The last part of Proposition 4.2 implies that e−ψ ′(θ)ξ is inte-
grable. ��

Recall Eq. (5) defining the grafting procedure.

Theorem 4.6 Let ψ be a critical branching mechanism satisfying Assumptions 1
and 2. Let θ∞ < θ and let F be a non-negative measurable functional on T

2. Then,
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we have:

N
ψ
[
F(TAh , TAh−)|Ah = θ

] = 1

E
[
e−ψ ′(θ)Hx

]E
[

F
(
�∅, x� �i∈I (T i , xi ),

× (�∅, x� �i∈I (T i , xi ))� (T, x)
)

e−ψ ′(θ)Hx
]
,

where the spine �∅, x� is identified with the interval [0, Hx] (and thus y ∈ �∅, x� is
identified with Hy) and:

• The random variable Hx is distributed with density given by (52).
• Conditionally on Hx, sub-trees are grafted on the spine [0, Hx] according to a

Poisson point measure N = ∑
i∈I δ(xi ,T i ) on [0, Hx] × T with intensity:

νθ (da, dT ) = da

⎛
⎜⎝2β(θ + bθh(a))N

ψθ [dT , Hmax(T ) < h − a]

+
∫

(0,+∞)

r�θ+bθh (x)
(dr)Pψθr (dT , Hmax(T ) < h − a)

⎞
⎟⎠ . (53)

• Conditionally on Hx and on N , T is a random variable on T with distribution

Nψθ [dT |Hmax(T ) > h − Hx].

In other words, conditionally on {Ah = θ}, we can describe the tree before over-
shooting height h by a spinal decomposition along the ancestral branch of the point at
which the overshooting sub-tree is grafted. Conditionally on the height of this point,
the overshooting tree has distribution Nψθ [dT ], conditioned on overshooting.

If θ > 0 then ψ ′(θ) > 0, and we can understand the weight e−ψ ′(θ)Hx/

E[e−ψ ′(θ)Hx ] as a conditioning of the random variable Hx to be larger than an inde-
pendent exponential random variable with parameter ψ ′(θ).

Remark 4.7 When h goes to infinity, we have, for θ ≥ 0, limh→+∞ bθ (h) = 0 and
thus the distribution of Ah concentrates on 	ψ ∩ (−∞, 0). For θ < 0 and θ ∈
	ψ , we deduce from (47) that limh→+∞ bθ (h) = θ̄ − θ > 0. And the distribution
of ξ in Lemma 4.5 clearly converges to the exponential distribution with parameter
γθ (bθ (+∞)) = ψ ′(θ̄)−ψ ′(θ). Then the weight e−ψ ′(θ)Hx/E[e−ψ ′(θ)Hx ] changes this
distribution. In the end, Hx is asymptotically distributed as an exponential random
variable with parameter ψ ′(θ̄). Notice this is exactly the distribution of the height of
a random leaf taken in TA, conditionally on {A = θ}, see Lemma 7.6 in [5].

Remark 4.8 A direct application of Theorem 4.6 with F(T , T ′) chosen equal to

G(T , T ′) = 1{mT (T )<+∞,mT ′
(T ′)=+∞}, (54)
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allows one to compute for θ < 0:

N
ψ [A = Ah |Ah = θ ] = (

ψ ′(θ̄)− ψ ′(θ)
) C(θ, h)

ψ ′(θ̄)− ψ ′(θ)C(θ, h)
,

where C(θ, h) = ψ ′(θ̄)ψθ (bθ (h))
∫ +∞

bθ (h) dr ψθ(r)−2 = N
ψ [A = Ah |A = θ ]. The

last equality is a consequence of (51). As limh→+∞ N
ψ [A = Ah |A = θ ] = 1, we get

that

lim
h→+∞ N

ψ [A = Ah |Ah = θ ] = 1.

Remark 4.9 By considering the function G in (54) instead of F in the proof of The-
orem 4.6, we can recover the distribution of TA given in [5], but we also can get the
joint distribution of (TA−, TA). Roughly speaking (and unsurprisingly), conditionally
on {A = θ}, TA− is obtained from TA by grafting an independent random tree T
on a independent leaf x chosen according to mTA (dx) and the distribution of T is
Nψθ [dT, Hmax(T ) = +∞]. Notice that choosing a leaf at random on TA gives that
the distribution of TA is a size-biased distribution of N

ψθ [dT ].
Proof of Theorem 4.6 Thanks to the compensation formula (41), we can write, if g is
any measurable functional R �→ R+ with support in (θ∞,+∞):

N
ψ [F(TAh , TAh−)g(Ah)]

= N
ψ

⎡
⎣∑

j∈J

1{Hmax(Tθ j )<h}F(Tθ j , Tθ j � (T j , x j ))g(θ j )1{Hx j +Hmax(T j )>h}

⎤
⎦

=
∫

	ψ

dθ g(θ)B(θ, h),

where, using the homogeneity property and the Girsanov transformation (28):

B(θ, h) = N
ψ

[
1{Hmax(Tθ )<h}

∫
mTθ (dx)

×
∫

Nψθ [dT ]F(Tθ , Tθ � (T, x))1{Hx +Hmax(T )>h}
]

= N
ψθ

[
1{Hmax(T )<h}

∫
mT (dx)

×
∫

Nψθ [dT ]F(T , T � (T, x))1{Hx +Hmax(T )>h}
]

= N
ψθ̄

[
1{Hmax(T )<h}

∫
mT (dx)
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×
∫

Nψθ [dT ]F(T , T � (T, x))1{Hx +Hmax(T )>h}
]
.

Notice we only replaced N
ψθ by N

ψθ̄ in the last equality.
We explain how the term 1{Hmax(T )<h} changes the decomposition of T according

to the spine given in Theorem 2.18. Let� a non-negative measurable function defined
on [0,+∞)×T and ϕ a non-negative measurable function defined on [0,+∞). Using
Theorem 2.18 and notations therein, we get:

N
ψθ̄

[∫
mT (dx) ϕ(Hx )e

−〈Mx ,�〉1{Hmax(T )<h}
]

=
∞∫

0

da ϕ(a)e−ψ ′̄
θ
(0)a

E

⎡
⎣e−∑

i∈I 1{zi ≤a}�(zi ,T̄ i )
∏

i∈I,zi ≤a

1{Hmax(T̄ i )<h−zi }

⎤
⎦

=
h∫

0

da ϕ(a) exp

⎛
⎝−ψ ′(θ̄)a −

a∫

0

dx Nψθ̄
[
1 − e−�(x,T )1{Hmax(T )<h−x}

]⎞⎠.

Using the definition of Nψθ̄ , see (40), (46) and the Girsanov transformation (28), we
get:

Nψθ̄
[
1 − e−�(x,T )1{Hmax(T )<h−x}

]

= γθ̄

(
N
ψθ̄

[
1 − e−�(x,T )1{Hmax(T )<h−x}

])

= γθ̄

(
bθ̄ (h − x)+ N

ψθ
[(

1 − e−�(x,T )) 1{Hmax(T )<h−x}
])
.

Thanks to (46) and (47), we have for λ ≥ 0:

γθ̄ (b
θ̄ (h − x)+ λ) = γθ+bθ (h−x)(λ)+ γθ (b

θ (h − x))+ ψ ′(θ)− ψ ′(θ̄).

Take λ = N
ψθ

[(
1 − e−�(x,T )) 1{Hmax(T )<h−x}

]
, to deduce that:

N
ψθ̄

[∫
mT (dx) ϕ(Hx )e

−〈Mx ,�〉1{Hmax(T )<h}
]

=
h∫

0

da ϕ(a) exp

⎛
⎝−ψ ′(θ)a −

a∫

0

dx γθ (b
θ (h − x))

⎞
⎠
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× exp

⎛
⎝−

a∫

0

dx γθ+bθ (h−x)

(
N
ψθ

[(
1 − e−�(x,T )) 1{Hmax(T )<h−x}

])⎞⎠

=
h∫

0

da ϕ(a) exp

⎛
⎝−ψ ′(θ)a −

a∫

0

dx γθ (b
θ (h − x))

⎞
⎠E

[
e−∑

i∈I 1{zi ≤a}�(zi ,T̃ i )
]
,

where under E,
∑

i∈I δ(zi ,T̃ i )
(dz, dT ) is a Poisson point measure on [0, h] × T with

intensity νθ in (53). Since Laplace transforms characterize random measure distribu-
tions, we get that for any non-negative measurable function F̃ , we have:

N
ψθ̄

[∫
mT (dx)F̃(Hx ,Mx )1{Hmax(T )<h}

]

=
h∫

0

da e−ψ ′(θ)a−∫ a
0 dx γθ (bθ (h−x))

E

[
F̃

(
a,
∑
i∈I

1{zi ≤a}δ(zi ,T̃ i )

)]
.

If we identify the spine �∅, x� (with its metric) with the interval [0, Hx ] (with the
Euclidean metric), we can use this result to compute B(θ, h) with:

F̃(Hx ,Mx ) =
∫

Nψθ [dT | Hx + Hmax(T ) > h]F(T , T � (T, x)),

Mx = ∑
i∈Ix

δ(Hxi ,T i ) and T = [0, Hx ] �i∈Ix (T i , Hxi ). Since Nψθ [Hmax(T ) >
h] = γθ (bθ (h)), we have:

γθ (b
θ (h − Hx ))F̃(Hx ,Mx ) =

∫
Nψθ [dT ]F(T , T � (T, x))1{Hx +Hmax(T )>h}.

Therefore, we have:

B(θ, h) = N
ψθ̄

[
1{Hmax(T )<h}

∫
mT (dx)

×
∫

Nψθ [dT ]F(T , T � (T, x))1{Hx +Hmax(T )>h}
]

=
h∫

0

da γθ (b
θ (h − a))e−ψ ′(θ)a−∫ a

0 dx γθ (bθ (h−x))
E

[
F̃

(
a,
∑
i∈I

1{zi ≤a}δ(zi ,T̃ i )

)]
.
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Thus, we get:

N
ψ [F(TAh , TAh−)g(Ah)] =

∫

	ψ

dθ g(θ)

h∫

0

da γθ (b
θ (h − a))

e−ψ ′(θ)a−∫ a
0 dx γθ (bθ (h−x))

E

[
F̃

(
a,
∑
i∈I

1{zi ≤a}δ(zi ,T̃ i )

)]
.

Then use the distribution of Ah under N
ψ given in Proposition 4.2 to conclude. ��
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