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Abstract. We consider the exit measure of super Brownian motion with a stable branching
mechanism of asmooth domain D of R¢. We derive lower bounds for the hitting probability
of small balls for the exit measure and upper bounds in the critical dimension. This com-
pletes results given by Sheu [22] and generalizes the results of Abraham and Le Gall [2].
Because of the links between exits measure and partial differential equations, those results
imply bounds on solutionsof elliptic semi-linear PDE. We al so give the Hausdorff dimension
of the support of the exit measure and show it is totally disconnected in high dimension.
Eventually we prove the exit measure is singular with respect to the surface measure on 9 D
in the critical dimension. Our main tool is the subordinated Brownian snake introduced by
Bertoin, Le Gall and Le Jan [4].

1. Introduction
1.1. Presentation of the results

A superprocess X = (X,, PX) onRR“ isaMarkov processtaking valuesin the space
of finitemeasureson R¢, M , which describesthe evol ution of acloud of branching
particles. Werefer to Dynkin [10] and Dawson [6] for adetailed introduction to the
subject. We consider here the «-super Brownian motion X, whereo € (1, 2]. We
introduce the notation (v, f) = [ f(y)v(dy), where the measure v € My and the
function f is an element of B(R?), the set of measurable functions on R? taking
vauesinR. Thelaw of X ischaracterized by its Laplace transform:

e Xo=v P‘)f -as.

e Let y be aBrownian motion in R? starting at x. We denote by P, its law. For

every nonnegative bounded function f e B(R?), and for every r > s > 0,

EY [e_(X”f) |o(Xu,0<u < s)] = o~ (Xowt=5.0)
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where v is the unique nonnegative measurabl e solution of the integral equation:
t
v(t, x) + Ex |:f0 ds v(s, Vt—s)ai| =E [f()/t)]

Let D be a bounded domain (i.e. open connected subset) of R?. The goal of
this paper isto study the exit measure of D for the «-super Brownian motion. This
isameasure on 3 D introduced by Dynkin in [11] which describes the position of
the cloud of particles at their first exit time from D. This exit measureisrelated to
the semi-linear partia differential equation %Au =u®*inD.

More precisely, the law of the exit measure is characterized by: for every v €
M s, such that supp v C D, for every nonnegative bounded function f e BRY),

EX [e—<XD,f>] — e V),

where v is the unigque nonnegative measurable solution of the integral equation

v(x) + Ex [/0 ds v()/s)“} =E[f(p)]l. xe€D. D

The stopping timexp = inf{s > 0; y; & D}, with the convention inf @ = +o0, is
the first exit time of D for y. The function v solv&% Au=u*inD.

From now on, we assume D isregular. If f iscontinuous, then v is continuous
in D and is the unique nonnegative solution of the Dirichlet problem:

%Au =u% inD,
upp = f.

We will be mainly interested in solution of % Au = u® in D with boundary
conditions which blow up. Let yo € dD be fixed. The set Byp(yo,e) = {y €
daD; |y — yo| < e} isaball ontheboundary of D. Wewill alsowrite B, when there
is no confusion. We write 8, for the Dirac mass at point x € R?. From [14] (see
also [12] theorem 1.4 and remark 4.3), the function

ue(x) = —10gP} [Xp(B;) =0], xeD, @)
is the minimal nonnegative solution of:

%Au:u"‘ in D,
limy_, xep u(x) = oo where y € B,.

Let R p betherange of the a-super Brownian motionin D (it can be viewed asthe
range of the «-superprocess where the underlying Brownian motion is replaced by
aBrownian motion killed out of D). From [15] theorem 2.5 (see aso [12] theorem
2.1 and remark 4.3) the function v, (x) = —log IPgi [Rp N B, = ] isthe maximal
solution of:

1 o H
{EAuzu in D, 3)

limy_y vepu(x) =0  where y e dD\B,,
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and B, denotes the closure of B,. Thereisanatural way to build Rp and Xp on
the same probability space (see[12]). Let (F,,, n > 1) bean increasing sequence of
closed setssuch that F,, ¢ D\B, and|J,,-, F, = D\B,. Since R p isas. aclosed
subset of D, we have as.

{Rp € D\B:} = J{Rp C Fu}.

n>1
By lemma 2.1 of [12] with Q = R x D, we have the following inclusion:
{Rp C Fp} C {Xp(F)=0}.
Since {XD(FnC) = 0} C {Xp(Bs) = 0}, we deduce the inclusion
{Rp C D\Be} C {Xp(B:) =0}

As a consequence we have u, < v, in D, and we deduce that u. is the minimal
nonnegative solution of

% Au = u” in D
lime_y rep u(x) =0 where y € 9D\B, 4
limy_y xep u(x) = 00 where y € B,.

From now on we assume that D is of class C2. In particular D enjoys the
uniform outer ball condition. Using the exit measure X p we prove the following
results on the semi-linear PDE.

Theorem 1.1. For ¢ > 0, small enough, the function . isthe unique nonnegative
measurable solution of (4).

In particular u, isthe maximal nonnegative solution of (3). We can describethe
behavior of u, asafunction of . Thecritical dimensionisd, = (¢« +1)/(x — 1).
Let usintroduce the function ¢, (¢) defined on (0, co) by:

1 if d < d,
¢a(e) = { [log(1/e)] V™ ifd =d.
gd—de ifd > d,.

We first give alower bound of u..

Theorem 1.2. Let K be a compact subset of D. There exist positive constants c;
and ¢, such that for every ¢ € (0, gg], x € K, we have

Cdpd(€) < ug(x).
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An upper bound for v, and thus for u, was given by Sheu (see lemma 4.2 and the
following remark in [22]) for d # d... Let K be acompact subset of D. He proved
there exist positive constants C; and g, such that for every ¢ € (0, go], x € K, we
have

ue(x) < Capa(e).

The critical dimension is more delicate. It was proved by Abraham and Le Gall in
[2] for the particular case « = 2. For ageneral « € (1, 2], we get:

Theorem 1.3. Let d = d.. Let K be a compact subset of D. There exist positive
constants C and ¢q, such that for every ¢ € (0, gg], x € K, we have

ue(x) < C [log(1/e)] "

However, theproof of thistheorem suggeststhat the upper bound shouldbegy, (¢) =
[log(1/e)] Y. (Thisis explained in Remark 6.2).

As an immediate corollary of the above results, we get that if K isacompact
subset of D, then there exist positive constants Cy, ¢ such that any solution of (3)
withe € (0, &o] isbounded from aboveby Cy¢(e) if d # d. orby C,, [Iog(l/a)]_1
ifd =d..

We give now results on the exit measure X p. Sheu [22] proved that if d > d,
(resp. d < d.) then a.s. the exit measure, X p, is singular (resp. absolutely contin-
uous) with respect to the surface measure on D. As a consequence of the above
theorem, we get:

Corollary 1.4. Let v € M, with its support in D. PX-as., the measure Xp is
singular (resp. absolutely continuous) with respect to the Lebesgue measureon d D
ifand only if d > d. (resp.d < d.).

Proof. The case d # d. is from [22] theorems 3.3 and 4.3. Let us consider the
critical case. Let yg € dD and B, = Byp(yo, €). From the definition of X p, we
havefor v € M withitssupportin D, and x € D,

Ef [e*”D(BE)] —e i) gng EX I:ef)\XD(Bg):I _ e,

where u* isthe solution of (1) with f = A1p, . Letting A go to infinity in the latter
equation, we deduce that u*(x) converges to — Iogngi[XD(Bs) = 0] = u,(x).
Therefore, by letting A go to infinity in the former equality, we get

PX[Xp(Bs) > 0] = 1 — e~ te)

This can a so be seen as a conseguence of the well known cluster representation of
the superprocesses. Thanks to theorem 1.3, taking the limit as ¢ goesto 0, we get
PX[yo € supp Xp] = Ofor every yo € 3 D. By integrating with respect to 6 (dyo),
the Lebesgue measure on 3 D, we get

EX [6(supp Xp)] =0,

which gives the result. O
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If A e B(R?), we denote by dim A its Hausdorff dimension. An upper bound
of the Hausdorff dimension of the support of the exit measure was given in [22].
We complete this result with the following theorem.

Theorem 1.5. Let v € M withitssupportin D. PX-as. on {Xp # 0}, we have
. 2
dmsupp Xp=—— A (d —1).
oa—1

Oncewe have theresult on the hitting probability of small balls of the boundary
of 8 D, we can derive aresult on the connected components of X p (see[1] for more
result in the particular case o« = 2).

Theorem 1.6. If d > 2d. — 1, then PX-as. the support of X, is totally discon-
nected.

1.2. Description of the proofs

The main tool used here to study «-super Brownian motion isthe Brownian snake,
apath valued Markov process, introduced by Le Gall. Unfortunately, this process
gives only a representation of superprocesses for « = 2. To treat general «’s, we
used a subordination method described in [4]. Theintuitiveideaof subordinationis
to consider (inthe particles system picture) Brownian particlesand to “freeze” them
from time to time. While these particles are motionless, the branching mechanism
gtill goes on. Thus, we can consider the particle paths as Brownian paths along
which some masses are added (these masses correspond to the “freezing times’).
When thereisalarge mass, alot of branching occur at this point (alarge mass cor-
respondsto alargeinterval of time during which the particleis motionless). Hence,
the paths of the range are still Brownian paths but the branching mechanism has
changed. To get the desired superprocess, the “freezing times’ are given by jumps
of a subordinator. The construction of the Brownian snake and the subordination
procedure will be developed in section 2.

The proof of the lower bound of «, (theorem 1.2) in section 3 uses theintegral
equation (1) and bounds on the Poisson kernel and Green functionin D.

Section 4 is devoted to some technical lemmas on the typical behavior of the
snake paths near the end points. They are generalizations of results from [21] and
[2] wherea = 2. The proofsaremoreinvolved because of thetime change. We have
tolook not only at the spatial motion but also at the time change. For afirst reading,
this section may be skipped, but for the notations and remarks of subsection 4.1.

We then use those lemmas to prove uniqueness (theorem 1.1) in section 5. This
proof relies heavily on the snake construction.

The proof of the upper bound of u, in the critical dimension (theorem 1.3) in
section 6 is based on bounds of the Poisson kernel. For these boundsto be accurate,
we need to control the behavior of the snake paths near their end point, thisis the
aim of the lemmas of section 4. We follow the proof of theorem 4.1in [2], but the
arguments are more delicate because of the subordination method.

The upper bound in theorem 1.5 is due to Sheu [22]. The lower bound of the
Hausdorff dimension of the exit measure is proved in section 7. And theorem 1.6
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on connected component is proved in section 8. Those results are the elliptic coun-
terpart of section 5.2 and theorem 2.4 in [8].

Eventually the appendix deals with the law of the time reversal of stable sub-
ordinators. Some notations are recalled at the end of the appendix.

All the theorems were known for « = 2. From now on we assume that « €
(1, 2). We denote by ¢ a generic non trivial constant whose value may vary from
linetoline.

2. Thesubordination approach to super processes
2.1. The Brownian snake

Let E be a Polish space and (B;) a cadlag Markov process with valuesin E. Let
W be the set of al killed pathsin E. By definition, akilled path in E is acadlag
mapping w : [0,¢) — E where¢ = ¢, > 0iscaled the lifetime of the path.
By convention, we also agree that every point z € E isakilled path of lifetime O.
Let usfix z € E and let usdenote by W, the subset of W of al killed paths w with
initial point w(0) = z (in particular, z € W,).

From proposition 5 of [4], weknow that there existsacontinuous strong Markov
processin W,, denoted by W = (W, s > 0), whose law is described by:

e Thelifetimeprocess(¢;, ¢t > 0) isaone-dimensional reflecting Brownian motion

inRt.
e Conditionally on (¢, t > 0), the process (W;,t > 0) is still a Markov process
whosetransitionkernelsaredescribedby: let0 < s < s’andmy ¢ = inf ¢,.

u€ls,s’
— Wi(u) = Wy (u) for every u € [0, my ¢]. o
— The processes (W (u + my ¢), u > 0) and (Wy (u + my ¢), u > 0) are con-
ditionally on Bo = W, (m; ), independent and distributed as the Markov
process g killed respectively at times ¢, — my ¢ and gy — my .

Remark 2.1. Notice this description is not realy complete. Indeed, if 8 is not
continuous, the quantity W;(m, ) is not defined when my  is equal to ¢ or £,.
However this description gives the right intuition. Furthermore under rather gen-
eral conditionson 8, a.s. W, (¢) hasalimit asr goesto the lifetime ¢;. In this case
Wy (my ¢) will bewell defined. We refer to [4] for a precise description.

2.2. The subordination method

Our maingoal inthissectionisto recall from [4] how superprocesseswith ageneral
branching mechanism can be constructed using the Brownian snake and a subor-
dination method. As mentioned in the introduction, the ideais to use the previous
construction using for g a*“freezed” Brownian motion.

Let S = (S;, t > 0) be a p-stable subordinator, where p = a — 1, whose La
place transform is: for > 0, E[e™*%] = e %™ Weset ¢ = 277/ T'(1 + p),
this choice will be explained in section 2.4. We denote by ¢ the associated residual
lifetimeprocessdefined by & = inf {S; — #; S; > ¢}, and by L theright continuous
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inverseof S, L, = inf {s; S, > ¢}, sothat L can be viewed asthelocal time at 0 of
the Markov processé. Let y = (4, r > 0) be an independent Brownian motion in
R?. We would like here to take 8 = y o L, which isaBrownian motion freezed at
random times. However, thisis not aMarkov process and so the previous construc-
tion does not apply. For this reason, we will consider the process &, = (gt, Ly, yL,)
which isaMarkov processwith valuesin E = RT x R x R?. The second com-
ponent will give the time change and only the third component will really give the
spatial mation.

Let P, be the law of & started a z € E. For smplicity we write T, = yy,,
and P, = P, when z = (0,0, x). We denote by W = (W, s > 0) the Brownian
snake with spatial motion &. Denote by E,, the probability measure under which
W starts at w, and by E? ' the probability under which W starts at w and is killed
when ¢ reaches zero. We introduce an obvious notation for the coordinates of a
path w € W:

w() = & w), Ly(w), Ty(w)) for 0=t < gy.

Weset o = limy, Ty (w) (resp L(w) = lim;4¢, Li(w)) if the limit exists, w = 9
(resp. L(w) = 3') otherwise, whered (resp. 3’) isacemetery point added toR? (resp
R). Some continuity properties hold for the process W (see [4] lemma 10 and [8]
lemmab.3). Fix wg € W,, suchthat thefunctionss — L,(wo) andt + I';(wo) are
continuous on [0, &,,) and have a continuous extension on [0, ¢,,]. Then E,,-a.s
the mappings s + (Liag, (Wy), 1 = 0) and s > (Tiag, (W), ¢ > 0) are continu-
ouswith respect to the uniform topology on the set of continuous functions defined
onR*. In particular, the processes W, and L (W) are well defined and continuous
Euy-as.

Itisclear that thetrivial pathz € E isaregular recurrent point for W. Wedenote
by N, the associated excursion measure (see [5]). The law under N, of (¢;, s > 0)
is the 1t6 measure of positive excursions of linear Brownian motion. We assume
that N, is normalized so that

1
N, [supgs > 8] =0
s>0 &

Weasoseto = inf {s > 0, ¢; = 0}, whichrepresentstheduration of theexcursion.
Then for any nonnegative measurable function G on W,, we have:

NZ/OJG(WS) ds=/0°°ds E.[G((B.0=1<s))]. 5)

For simplicity we write N, = N, when z = (0, 0, x). The continuity properties
mentioned above under E,,, aso hold under N;.

Let C(R*, W) denote the set of continuous functions from R* to W. Let
w € W,. Wenow recall the excursion decomposition of the Brownian snake under
E* . We define the minimum process for the lifetime Ly = inf{¢u,u € [0, s]}. Let
(ai, Bi), i € I betheexcursionintervalsof ¢ — ¢ above 0 beforetime . For every
i €I,weset W’(t) = Wyto, t+84;),fOr0 <1 < o405 — &y, aNds € (0, B — ;).
Although the process £ is not continuous, proposition 2.5 of [20] still holds.
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Proposition 2.2. Therandommeasure  ;; 8, wi) isunder E;, a Poisson point
measure on [0, ¢,,] x C(RT, W) with intensity

ZdINw(l)(dW).
2.3. Exit measures

Let Q bean open subset of E withz € Q (or wo(0) € Q). Asin[4], we can define
the exit local timefrom Q, denoted by (LSQ s > O). N;-ae. (or E,,-as.), the exit

local time L€ is a continuous increasing process given by the approximation: for
every s > 0,

L1
L? =lim _A 1{‘EQ(WM)<§L¢<rQ(Wu)+5}du’

where tg(w) = inf {r > 0; w(r) ¢ Q} istheexit time of Q for w. We then define
under the excursion measure N, the exit measure of Q for the snake, Yo (W), by
the formula: for every bounded nonnegative function ¢ € B(RY),

(Yo.9) = /0 o(Wy)dL2.

We write Y for Yo (W) when there is no confusion.

Intuitively, this measure describes the particles frozen when they first leave Q.
Thereare mainly two kinds of interesting domains Q: firstwhen 0 = R™ x [0, ¢) x
R? and Q = Rt x Rt x D. The former was used in [8] to get path properties
of a-super Brownian motion. The latter will be useful here to get properties of the
exit measure X p.

The first moment of the random measure can be derived by taking the limit in
(5) (see[20] proposition 3.3 for details). We havefor every nonnegative measurable
function G on W,

N, / ’ G(Wy) dL? =E?[q], (6)
0

where P2 is the sub-probability on W, defined asthe law of & stopped at time 7o
under P, (- N {‘L’Q < oo}).

We apply the construction of the exit measurewith Q = OQp = R™ xRt x D,
where D is a domain of R?. For convenience, we write Yp = Yo, TD = T0p,
PP = P22 and also PP for PP whenz = (0, 0, x).

Informally, in this case, the exit local time L? increases only when the snake
path W hitsRT x R x D for the first time at its lifetime ¢,. Thus, the support
of the exit measure Yp is given by the end points vi/s of such paths W;. In the
branching particles representation, Y describes the particles frozen at their first
exit timeof D.

Let ¢ be anonnegative bounded measurable function on 9 D. Thanks to prop-
osition 6 of [4] the function

u(z) = N, [1 - e—(YDW] . zeR* xRt x D,
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satisfies
u(2) = E; [o(Te)] — 2E; [ /o ds u(és)z] : @)

By arguing asin[20], theorem 4.1, we easily get a“ Palm measure formula” for
the random measure Yp,.

Proposition 2.3. For every nonnegative measurable function F on R? x Mg, for
everyr > 0andz e Rt x R x D, we have

N, [f Yp(dy)F (y, YD)] = /lE’ZD(dw)E [F <u3, /Nw(dW)YD(W))],

where for every w € W,, N, (dW) denotes under E, a Poisson measure on
C (R*, W) with intensity

Cw
4/(; du Nw(u)[dW].

Intuitively, we pick apoint on 9 D according to the exit measure. It isatypical
point of the support of the exit measure. This point is the end point of a path dis-
tributed as the Markov process £ (a “freezed” Brownian motion) stopped when it
leaves D. The distribution of the snakes that branch from this path is described by
a Poisson point process. The branching points are uniformly distributed along the
path taking into account of the freezing times.

2.4. Relationship between the snake and the «-super Brownian motion

We introduced the process Y, because its distribution under the excursion measure
N, isthe canonical measure of the a-super Brownian motion started at 8.

Proposition 2.4. Letv € M, suchthatsuppv C D,andlet ), ; 8y beaPois-
son measure on C(R™, W) with intensity [ v(dx)N,[dW]. The random measure

> Yp(W

iel
has the same distribution as X , under PX.

Let f € B(R?) be bounded and nonnegative. For z = (k, [, x) € Qp, we set
u(z) = N[1— e ¥:N] and v(x) = u(0,0, x). To prove the proposition, it is
enough to check that the nonnegative function v solves (1). From (7), we see we
need to expressu(k, I, x) in term of v(x). The proof isthen similar to the proof of
theorem 8in[4] andisnot reproduced here. In particular it involvessomeintegral of
the Lévy measure of the Subordinator S. In order for the constant in front of v(y;)“
in (1) to be equal to 1, the computations yield the exact value of the constant 7.
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3. Lower bound of the hitting probability of small ballsfor Xp and Yp

Thanks to the snake representation of the «-super Brownian motion (proposition
2.4), theorem 1.2 on the lower bound of the hitting probability of the exit measure
X p isequivalent to the following proposition.

Proposition 3.1. Let K beacompact subset of D. Thereexistsa constant ¢, such
that for every x € K, for every y € D, ¢ € (0, 1/2),

Ni [Yp (Byp(y, €)) > 0] = ckga(e).

Its proof relies on well known bounds on the Poisson kernel and on the Green func-
tion in D. At the end of this section we complete this proposition by describing
the behavior of the hitting measure N, [Yp (Byp(y, €)) > 0] when x iscloseto y
(lemma 3.2).

We first recall that (1) can be rewritten as

v(X)+/Ddy Gp(x, y)o(y)H* :/aD Pp(x,2) f(2)0(d2), 8

where 6 is the surface measure on 9D, Pp is the Poisson kernel in D and Gp
the Green function of D. We then give some useful bounds for the Poisson kernel
and the Green function. There exist positive constants ¢(D) and C (D) (see [17]
formula (3.19)) such that for every (x, y) € D x 9D,

c(D)d(x, D) |x — y|* < Pp(x,y) < C(D)d(x, D) |x —y|™*, (9

where d(x, dD) = inf{|x — y|; y € dD}. There exists a positive constant C (D)
(see [25] theorem 3 with ¢ = 0) such that for every (x, y') € D x D,

Gp(x,y) < C(D) |x —y|""d(y, aD). (10)

Proof of Proposition 3.1. Leta > 0. Letx € K,y € aD, ¢ € (0,1/2). We set
ha(e) = e~ g (). We have:

Ni [Yp (Bap(y, €)) > 0] == Ny [1— exp[~ahq(e)Yp (Bap(y. e)]] =t ve(x),
where, thanks to proposition 2.4, the function v, is the only nonnegative solution

of (8) with f = a/’ld(g)lBaD(ysé‘)' As

Ve (x) < ahq(e) Pp(x, 2)0(dz),
Byp(y.e)
we deduce from (8) that

Ve(x) > ahq(e) Pp(x, 2)8(dz)
Byp (y,¢)

1+p
—[ahd(s)]lﬂ)/dy Gp(x,y) [/ PD(y,z)G(dz)] - (11)
D Byp(y.e)
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We now bound the second term of the right-hand side, which we denote by 7. We
decomposetheintegration over D inanintegration over DN B(y, 2¢)¢ (denoted by
I7) and over DN B(y, 2¢) (denoted by 1), where B(x, r) istheball inR¢ centered
at x with radius r. We easily get an upper bound on /1. We have for ¢ > 0 small
enough,

1+p
= / a0y Gp(x, y') [ / PD<y’,z>9<dz>}
DNB(y,2¢)¢ Byp(y,e)

< Cf dy e —y[hde oDy sup |y — 2| YO
DNB(y,2¢)°

zeB(y,¢)
1+p
x [/ 9(dz’)i|
Byp(y,e)

< Cg(dfl)(lﬁo) |:C+/ rd1r2+prd(1+,0)dr:|
diam D>r>2¢
d—1 —p
<ce“ Thy(e)P.

We usethe notation diam D = sup{|z — 7| (z,Z) € D?}.Wedsohavefore > 0

small enough,

1+p
I =/ dy' Gp(x,y") [/ Pp(y’, Z)é’(dz)}
DNB(y,2¢) Byp(y.e)

_ Lt —d 4p
c/ dy’/ d(y', D) T |y — | Wﬂ}
DNB(y,2¢) L/ Bap (v.€)

—d+ 1t iy e
c/ dy’ / |y/ — Z| [3+] G(dZ)j|
DNB(y,2¢) LS Byp (y,¢)

< f dy '81/[1+p1]1“’
DNB(y,2¢) -

d+1

IA

IA

~

=cC¢

Combining those results together, we get that there exists a positive constant ¢}
such that for every (x,y) € K x 9D, ¢ € (0, 1/2),

I < cjlahg(e)]*Pedhg(e)=".

On the other hand, there exists a constant ¢/, such that for every (x, y) € K x dD,
e €(0,1/2):

/ Pp(x, 2)0(dz) = ched™L.
Byp(y,e)

Plugging the previous inequalities into (11), we get

ve(x) > agq(e) [ch — cia”].
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Since the constant a is arbitrary, we can take a = (c5/2c)Y/* to get

1
Ny [Yp (Bap(y, ) > 0] = ve(x) = > R4 (e). O

We can al so derive another bound when the starting point x isnear the boundary
using similar techniques.

Lemma3.2. Let A > a > 0. Thereexisttwo constantsc(A, a) > Oande(D) > 0,
such that for every yo € dD, ¢ € (0,e(D)),y € Byp(yo,€),n € (0,¢),x € D
withd(x, y) < Anandd(x, D) > an, we have

N, [Yp(Byp(yo, €) N Byp(y, m) > 0] > c(A, a)yn~2/*.

Proof. We use the same techniques as in the proof of the previous proposition.
We replace the upper bound of the Green function by the following: there exists a
constant ¢ such that, for every (x, y) € D x D,

Gp(x,y) <cly—x"?4 if d>3.

For d = 2, we bound G p(x, y) by the Green function of RZ\B, where B isaball
outside D tangent to D in yo. Since D is bounded of class C?, the “uniform exte-
rior sphere” condition holds, that is the radius of B can be chosen independently
of Y0- [l

4. Sometechnical lemmas
4.1. Remarks and notations

In this section we look at the behavior of the path Wy = (&, (Wy), L (Wy), T'y(Wy);
t € [0, ¢]) near its end point. This behavior is crucia for the proof of the unique-
nesstheorem in the next section and for giving an estimate of the hitting probability
of small balls for the exit measure in the critical dimension (proposition 6.1). We
will write W, = T, (W;) for the spatial end pointand L, = L, (W;) for thetime
change end point of the path W;. Lemma4.2 and lemma4.4 are devoted to the up-
per bounds of the probability of unusually large value of the continuous processes
L, and W, from a constant piecewise approximation. Eventually, we then deduce
some uniform behavior of the spatial motion y (W;) = I o L~1(W;) near the end
point W, = vi,(Ws) (lemma 4.5 and lemma 4.6) and of the inverse of the time

change S(W,) = L~1(W,) near the end point is (lemma 4.7). These estimates
would be easy to obtain if we considered atypical path. But we want to apply them
to thefirst path hitting B.. Consequently, we must get uniform estimates which are
true for al the paths of the snake.

More precisely, we show in lemma 4.5 that outside a set of small probability,
the spatial motion is not abnormally fast near its end point. We show inlemma 4.6,
that if theend point ison d D, then the path does not spend too much time near 9 D
(for example, the path does not approach a D tangentially). Eventually in lemma
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4.7 we prove the time change increments are not abnormally small near the end
point. This means that the intensity of the branching mechanismis not too low.

Let us introduce some notations. For w € W, we define kp(w) = L, (w)
if p(w) < o0, kp(w) = oo otherwise. We extend this definition to the process
£. With the notations of section 2.2, under P,, x € D, «p is the exit time of D
for y, whereas tp is the exit time of D for I' = y;. Notice that P,-a.s. we have
Skp— = tp. We definefor w € W such that i(w) isfinite, the inverse of thetime
process L: S;(w) = inf{u > 0, L, (w) > t} and for the spatial motion, we also set
yi(w) = T, (w) for € [0, L(w)).

We write L, for L(W,), andweset L, = Lo fors > o.

Remark 4.1. Inparticular, foragivens > 0,if s < o, thenthe path y (W;) isunder
N, distributed as a Brownian motion started at point x (and killed at time ;).
Similarly, the path S(W;) is distributed as the subordinator introduced in section
2.2 (killed at time L,). The notations are consistent with those from section 2.2.

4.2. Lemmas and proofs

Lemma4.2. Letd > 0. There exist a constant C(#) such that for every stopping
time ¢ with respect to thefiltration generated by ¢, for everya > 0,¢ > 6, x € R¢,
on{r < o0},

L, —I:u‘ > cal!?

N, [ sup r:| <Cc® e,
uelt,7+4a]

Remark 4.3. St Ef = [ P;(dw)E;,, where P} isthe law of & under P, killed at
time r. Let t be a stopping time with respect to the filtration generated by ¢. By

the strong Markov property of the Brownian snake at time 7, we see that under
N[t < o0, -], conditionally on ¢, (W, 4, s > 0) isdistributed according toEZr).

Proof. Let o, = co(p + 1)277°/2 and ¢o such that )"
continuity of the path (I:g, s > 0), wehaveforr > 0,

2r
Ly — Lo‘ > cap/z} = Z ZE}'}) HL(lfl)Z_Pa — Lip-rq
p=>01=1

Using the Brownian snake property, we see that conditionally on the lifetime pro-
cess ¢, Ly 1y2-ra — Liz-ra isdistributed as L) — Lf) where LD and L@ are
independent and distributed according to f po (dw)l5w(,0) where g = inf{¢,; u €

[(—=D27Pa,l27Pal}, t1 = §y_1)2-ra —to@Nd 12 = {j-p, — 0. ThUS‘Lg) — L§22)

is stochastically dominated by Ly, (< Li+r,) Under Py. For b > 0,8 > 0, we
have

»>0¢p = 1. Using the

]ETZ"r) |:suap zozpca'o/z].

s<

PolLy = h] = Pol$y < 1] < Bo [0 | == (12)
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Withs =11 + 1 and h = aca”/?, we deduce that for § > 0,
= Otpcap/z] <P, [eﬁ(f1+t2)] e—c;‘,épapcaﬂ/z

=Py [eBETp“] efc;;aﬂal,caﬂ/z

E¢y I:‘L(lfl)Z—"a — Lio-r4

where under P,, ¢ is a linear Brownian motion started at u and ¢, = ¢, —
2inf{¢,; u < v} is a3-dimensional Bessel process started at 0 under Py. Take
8 = b(2~Pa)~1/2, By scaling, we have

Po [eagzﬂaail e—cf,a,,cztp/zsp = c1(b) e—Cf]Otchﬂ/zbﬂ

where ¢1(b) depends only on b. Thus we have

oo 2P
~ ~ . )
E>(kr) sup |Ls — LO' > ca"/z < E E c1(b) e—cpachl’p/ bP
s€[0,a] =0i=1

o
<ca(b) e PP Y " 2p @m0k’
p=0
= ca(0)e/?, (13)
wherewetakeb = [c%cof] ~/* for thelast equality. Sincethe result isindependent

of r > 0, the lemma s then a consequence of the remark before the beginning of
this proof. O

Let » > 1 be an integer. We define inductively a sequence of stopping time
(ti,i > 0) by

=0 and 741 =inf{v> 53[5 — & | =27).

Let N = inf{i > 0;r; = 0}. Recdl that, conditionaly on {r1 < o0}, the se-
quence (¢, i > 1) isasimple random walk on 27"/ 7. stopped when it reaches
0. Therefore, we have for ig > 1,

00 00
ZNx [{r,- = l~027n/p] = Ny [11 < oo] Ny |:Z 1{§r’.:i02*’1/ﬂ} 71 < OO:|
i=1 i=1

s>0

= 2N, [sup{s > 2””} = 2P,

Lemma4.4. Let . > 0. There exist two constants C,, > 0, ¢, > 0 such that for
any integer n > 1, for every M > m > 27"/P we have

W, — W,

N |:EIie{l,~~~,N—1},m§§'r,- =M, sup

selzi Tyl

> C*nl+% 2;1/2:|

< C*M22n/p ef)\n7
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ils - lAlr,'

N, [Elie{l,-n,N—l},mgg,i <M, sup

Lo
> C*I’l1+22 n
selti,Ti41]

< C,M22V/P g

Proof. Let c¢1, ¢, betwo positive constants whose value will be fixed later. We set
a = c1272/°|og(2"/°). Let k > 1. We have

W, — W,

" L —k27/r, sup

P
> C*nl+z 2711/2
selzi,Tiya]

< N, [;n = k2P, Tivl — T > a]

WS - W‘L’l‘

“I‘Nx |:;‘L’,' = szn/p’ SJp

[
> C*I’ll+42 n/2 )
s€lt,ti+a)

The law of 7,11 — 7; knowing {i < N} is the law of the first exit time from
[—27"/P, 27"/P] for a standard linear Brownian motion started at 0. Thus there
exist two positive constants as, a2 (independent of n, ¢1) such that:

N, [Er,- = k2P, Tivl — T > a] <N, [{n = k2_"/’°] a2~ %2cn/p

Seta, = co(p + 12 7/*for p > Oand coissothat 7" g, = 1. Forr > 0,
we have

Iy = IE?r) Sup WS - Wu = c*nl+%2—n/2
s€[0,a]
oo 2°
- S o
= 3 3 B [ W vzra — Wiase] 2 apeani27].
p=01I=1

Conditionally on (L;(W;), € [0, &), s > 0), Wy_1)2-ra — Wia-p, is a centered
Gaussian random variable with variance

V2 = [Al(l_]_)zfpa + ilzﬂ)a -2 inf is.
se[(l—1)2=Pa,l2=Pd]

If Z isad-dimensional centered Gaussian random variable with variance V2, then
P[1Z] > b] < 24/2g7 57142

Let V@ = (p + Dn2PP/%qP/?, We have

¥ 7 oo
E?’) HW(I*]-)Z_”& - le_pa = apc*nl+42 11/2’ V2 < VOZ]

—p/2
< 242 e n(p+Deacte;” ’
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where ¢, depends only on p. From the proof of lemma 4.2 (see (13)), we deduce
that for 6 € (0, 1),

2 2 r 7 2
E¢ [V = VO] = E [Ei‘mzm { SUp L — LO) = Vo/ 3“

s<27Pa
< c3(0) e—([?+1)n/39’
where c3 depends only on 6. Thus we have

I, < 242 g nriDeader™ | gy g (prin/3

Let 2 > 0befixed. Wecan choosect, ¢, 1 large enough so that for every n > 1,
M>m>2"/°,

i

Ny [ai e{l,-- . N-L,m<t¢, <M, sup |W— W\ > c*n“ﬁz"/z}

selni,tiqal
[Mzn/p]+l o)
= Z ZNX[ZT:’ = kz—n/P](alz—azcln/p 1)
k=1 i=1

< C . M2%/P g

where C, is aconstant independent of n, M and m. This ends the proof of the first
inequality.
The second inequality is proved in asimilar way. O

We are now going to give three lemmas which describe the behavior of the
paths W, for s > 0, near their end-point.
For apath w € W, we set for Ag > O and integersn > ng > 1,

1 n—1

Ao —1 . R N
FnoJl (w) = 1{L(w)22"’0+1} n — no Z 1{SUD,E[0‘2—k—1] I)/L(w),,(w)—WI>A02’k/2}'
k=ng

We have the following lemma:

Lemma4.b. Let § € (0, 1]. For every A > 0, we can choose Ag > 0 such that
thereexistsa constant K1 and for everyintegersn > 3,ng € [1, n — /n], for every
M>m>2"r xc R,

N, [ESZO; m<¢ <M, I:S > 2_”°+1, Frﬁ)?n(wy) > 5] §K1M22ﬂ/08—k(n—no).

Proof. For A > 0,n > ng> 1, w € W, we set
1 n—1

L2020 Lty iy (011> 42472
k=ng

Fron(w) =1,
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From the remark following lemma4.2, we have for k > 0,

I=N, [L > 2770, fA

no,n

(We) > 8| ¢ =277

IE:(1<2 n/p)

no,n

[ifl. > 270 FA (W) > 5].

Conditionally on Lr, (yL _,(Wr,) Yi. (W), t € [0, L, .]) isunder ]E(k2 w/py @
standard Brownian motion. Thanks to lemma0in [21] and ascaling argument, we
easily get I < edc0—34)(1—n0) \where ¢ is a universal constant. Hence, summing
overk e {1,---,[M2"/P] +1}andi > 1, wehavefor M > m > 27"/°,

N, [ai €fL o N—1him< gy <M, Ly >270 FA (W) >3]
< 2M 22 p gldco—8A)(n—no) (14)

We will now interpolate between z; and t; 1. Let Ag > 1, & > 0. We consider the
two constants ¢, Cy defined inlemma 4.4. We write

~

W, — Wy,

Ay = m { sup < c*nl-l-ﬁz—n/Z}
ieft,... . N—1y \relutil

A= ) {wp

iet,... . N—1y reluzivl

P
< cnltz2 "}

Fixn > ng > L. AssumethereiSso > Osuchthat Ly, > 27"+t andm < ¢, < M.
Thereisauniquei e{l,. — 1} suchthat sg € [1;, 7;+1). Wewant to compare

FA (W) and F,QO,,(WSO) on Al N Ajp. Letsy € [1;, 1i11] such that ¢, > ¢, for
s € [, ti+1]. All the paths W, for s € [1;, 7;41] coincide up to time g,,. From the
snake property, we have on A1,

A~ ~

Ws _ W‘[l- 1+%27n/2'

sup VixO,,(Wso) - Wr,— = sp

te[O,iSO—ﬁxl] selri,ti41]

< c4n

Notice there exists ¢1 (depending only on ¢,) such that if ng < k < n — c1logn,
then2*=1 > e,n¥*52 " and 27571 > ¢,n+52/2 Forng < k < n — c1logn,
wehaveon Ay, Ly, —27%1 > L, — 27% > 0. Since the path (y;(Wy,), t > 0)
and (y,(Wy,), t > 0) coincide up to time Ly, , we get on Ay,

{Vt(Wso); iso - Z_k_l <t < isl C {Vl(Wri)§ iri — 2k <t < iri} .
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We deducethat for ng < k <n —cylogn, on A1 N Ay,

sup Vi, _ (Wso) — Wro < sup W Wr,—
te€[0,2-%-1] 0 selti, T4l
+ ‘VL _,(Wso) Wr,
te[0, LSO—le]
+ sup Yi t(Wso) W,
te[LYo—l:Sl,Z k=1
< 2c n1+%2_"/2 + sup |y; _,(Wr;) Wy,
t€[0,274]
Therefore on Ay N Az, wehave F;0, (Wy,) < Fadl2(Ws,) + c1 ,Logn” Lets > Obe

fixed. For n large enough, and ng € [1, n —ﬂ,wehaveclr'f_in’; <c 'i’fﬁ” <§8/2.
Decomposing on the sets A1 N A2, Af and A5, we get

Nx I:as > 0’ m < é‘s <M, Z/s > 2—n0+1’ Frﬁ)(,)n(WY) > (S]

. P
<N, |:Eli e{l.... . N—1}, m<i, <M, Ly >27"0, Fio%W,)> E]

W, — W,

N, [Hi e{l,... N=1}, m<{; <M, sup

> C*nl-i—% 2—n/2
rd i, Tija]

+Nx|:5|i€{l,...,N—1},mffr,-SM, aJp

A . > C*n1+% 2—7!
reft,tital
< om21ng(40= )10 | o0 ool gt
by formula (14) and lemma 4.4.
It suffices now to take Ag large enough so that 8% —dcg > A to get the right
member bounded from above by
2(Cy + DM 221/ P =2 n=n0), 0

Let y10.1 = (v, t € [0, r]) apathin R?. For ag > 0 and an integer k > 1, we
set

15 7
ALo) =13t € |r— =275 r — 227% |, d(y, D) < ag27"/?
’ 16 8
and
1 n—1
ao — [ a
Pron = Lrz2n0t1y n—no k;g 1Ak°(y[o,,]>-

We then have the following lemma:
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Lemma 4.6. For every A > 0, we can choose ag > 0 such that there exists a con-
stant K and for everyintegersn > 3,ng € [1, n—+/n],foreveryM > m > 27"/°,
xeD,

~ B 1
N, |:E|S20; m<g{ <M, Ly>2 n0+l’ sgn (y[OL (Ws))>6: TD(WS):§Si|
< K2M22n/p2n—noe—)»(n—no)_

Proof. Let us set

AL o) = { e [r 27 - gz—k} L d(y (1), D) < aoz—k/Z}

andforny > ng > 1,

ni—1

Z A o) °

From [2] p.265, it iseasy to seethat for r > 270, x € D,

‘/;ffg,nl(?’[&r]) 1. 0- "oy

P [(neDsrel0,r — 27 (g, (o) > 1/12] <20 ga(ag)™ ™,

where g1 isanondecreasing function (independent of r) suchthatlima 1081(a) =0.
We take ag > 0 such that g1(ag) < e~%*. Conditionally on ¢y, Ly, the process

V[o,i,.](er) = ()/t(Wri),t € [0, L,,.]) is a standard Brownian motion started at
x. Hénce, we havefor k > 1,

I:é'f :kz n/p LT > 2 no ¢n0 nl(y[O,ifi](Wfi)) > 1/12, KD(W'L’,')

> Ly =27 S N g, = k2 P] 20 g B0
Summingoveri > landk € {1,--- ,[M2"/°]+ 1}, wehavefor M > m > 27"/7,
Nx|:5|l € {17 7N_1}7m =< ;‘fi < Mvifl‘ > 27}10,

390 s Mo (We)) > 1/12,kp(Wy) > Ly — 2"11}

< 2M 221 poni—no g=2h(n1—no)

Wewill now interpolate between t; and ;1. We consider the two constants ¢, C
defined in lemma 4.4. We write

A= {wp

ie{l,...,N—1} relt, iyl

A A

L,—L;

T

£
< cnttz2 ”}.
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Fixn > ng > 1. Assumethereissg > 0suchthat ﬁxo > 270t lgndm < Lo <M.
Thereisauniquez € {1 ., N — 1} such that 59 € [1;, ti1+1). We want to com-
pare ¢/t . (Wr,) and ¢, n(Wso) on A. Lets1 € [, 7iy1] suchthat &5 > ¢, for
s € [, ti+1]. All the paths W, for s € [7;, 7;41] coincide up to time g, .

Noticethereexistsci (dependingonly onc,) suchthatif ng < k < n—cylogn,
then % 27k > ¢,ntt227" Forng < k < n — c1logn, we have on A,

. . 15 A . 3
Ly, —2% <Ly — Ez—" <Lg— §2_k <Ly - zl2"‘.

Andsince L., — 327% < L, we have

R 15 ~ 7
{)’t(Wso); te [Lso - Esz, Ly, — §2kj|}

{Vt(Wr,) te[ =27k L, —§2 “

Notice we also have L., > 2770 since Ly, > 2701, Let n1 be the largest integer

smaller thann — Kt logn. From the snake property, since k p (Wy,) = I:SO, we have

that kp(Wg) > le fors € [7;, ti+1]. And thus we get on Ap, kp(Wy,) > le >
Ly —27"~ 1. For n large enough, n1 > no. The previous remarks lead to

ni Inn

¢38,n (V[O,ZSO](WXO)) =

~a 1
< o, (V[o,iri](Wr,-)> T35

— 10 74 ( R )
—no Prons V[Oqui](Wf") + . no

for n large enough. Decomposing on the sets .4, and .A$, we get for n large enough,
. T —not+l ag 1
N |3520 m=g =M. L=27% ¢, (vg 19 (W) > 5. o (W)=
SNXI:Hle{lavN_l}ymig‘E,SMa ifi227n09
pao W, 1 W) > L, —27m1
Pnons (V[o,i,l.]( r,-)) > 1 kp(Wg;) > Ly, —

i —i.

4N |:Elie{1,... S N=1}; m<¢, <M, sup

relt, il

> c*n(l+§)2”:|

< 2 M 2%/ pgni—no g=A(n1—no) +C*M22"/pe_}‘"
<2+ C*)MZZn/Pzn—noe—A(n—;zo) 7

where we use that /n > 2cilogn implies 2(ny — ng) > n — ng for the last
inequality. O
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Let Sjo,ry = (S, t € [0, 7)) be acadlag path in R. We define for 1 > 0 and

n>ng>1,

1pno n(S[O r)) - 1{r>2 n0+1} Z 1{
Lemma4.7. For every . > 0, we can choose a1 large enough such that there

exists a constant K3 and for every integersn > 3,ng € [1, ...n — 4/n], for every
M>m>2"r xc R,

(r—g27%)- _S(r— Bok)- <ai2=k/r }

R 1
Ny |:E|S >0 m=<¢ <M, Ly > 2_’10+1v ¢Z(1),n (S[o ij)(WY)) > éi|
< K3M22n//72n—noe—)»(ﬂ—no).
Proof : the sameideas of the proof of lemma 4.6 lead to define

21

no

i L (S[0.r) = 1. 0-n0 .
0,1 {r> } _
{ S-30-k) - S¢r—ak)- <12 W}

Using the strong Markov property at time z; for the Brownian snake, we get

N, [;,,. = k270 Ly > 27080 (S 1, (We)) > 1/12]
=N [gfi = kz_n/p] P [LkZ nip > 2710 1pno n(S[OﬁLszn/P)) = 1/12] ’

From the lemma 9.1 in the appendix we know that for » > 0O, (S, 1 € [O, L))
and (Sp,— — S, —n—,t € [0, L,)) areidentically distributed under P;. Let ¢ the
integer part of (n — ng)/12. The set

B 1 n—1
(Lig-nio > 2770, Z L5, k—83, s <arz-tiry > 1/12}
i

n—ng Pl

isasubset of
q
_k.
U m {Sszj — S%z—kj < a2 ]/p}.
no<ki<--<kg<n  j=1

Since the increments of the process S are independent, we have by scaling that
the probability of the last event is g2(a1)" "0, where g is a function such that
lim, 0 g2(a) = 0. Wetakeas > O sothat g2(a1) < e *. Notice there are less than
2"7"0 possible choicesfor kg, . .. , k;. Thuswe have

N, [ L = kZ*”/p, ir,- > 27" ,,agn(S[o ir.)(WTi)) -~ 1/12]
<N [ = szn/p] on—no g=A(n-no)
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And summingoveri > landk € {1, ---,[M2""] + 1}, we havefor M > m >
zfn/p,

N, [3"6{1,--- N =1} m<gy <M, Ly >27"0, 0 (S[o,ir,->(Wff))>1/12]

no,n
< 2M22n/p2n—no e—A(n—izo) )

The end of the proof is similar to the one of lemma 4.6. O

5. Proof of the uniquenesstheorem 1.1

The proof of thistheorem relies heavily on the lemmas of the previous section and
on the excursion decomposition of the snake.

Proof of Theorem 1.1. Let B, = Byp(yo, ), where yg € d D. We denote by v, the
maximal nonnegative solution of (4) and u, the minimal nonnegative solution. In
the first section we recall arepresentation of those functionsin terms of the super-
process X . From the characterization of R p (this a projection of the graph Gp on
R?) in 2.2 C from [12], the Poisson representation of proposition 2.2 and lemma
5.2in[8] (with the Brownian motion replaced by the Brownian motion stopped at
itsexit time of D), weget for x € D, v.(x) < Ni[T < o0], where

T =inf{s > 0, ¢, = tp(W,) and W, € B,}.

(In fact we will see the above inequality is an equality.) We deduce from (2) and
the snake representation of the exit measure that u.(x) = N,[Yp(B:) > 0]. The
strong Markov property applied at the stopping time T’ gives

ug(x) = Ny [T < 00, Yp(B,) > 0] =N, [T < oo, IE’;VT(YD(BS) > 0)].

Thus, to prove the uniqueness, it is enough to prove that E*‘;VT (Yp(By) >0) =1
N,-ae on{T < oo}. Using proposition 2.2 on {T < oo}, we have

ir
E}‘;VT(YD(Bg) >0 =1-—exp {—/0 NWT(t)(YD(Bs) > O)dt} .

Thanksto the snake property, it is clear that N, -ae. for every s € (0, o), L(W;) =
(L;(Wy),t € [0,¢]) is continuous nondecreasing and the path (I';(W;),t €
[0, &]) isconstant on intervals where L(Wy) itself is constant. Therefore the time
change S;(Wr) = ¢ implies

Lr
Wy, (YD(Be) > 0) =1—exp {_./0 Ny, owr(Yp(Be) > O)dSs(WT)} .

Noticethat y,(Wr) € D fors € [0, L7) and Wy € B.. Now, let A, a,a’ > 0. We
set J = J(A, a, d') the set of integers k such that 2=%*1 < L and

W) = Wr| < 42792 for se o iy —27F],

.15, . 7
d(ys(Wr), D) > a27%%2  for se |:LT - Ez—", Lt — gz—"} :

and ;1,4 (Wr) = S;, 1,0 (Wr) 2 a'27107.
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Lemmas 4.5, 4.6 and 4.7 show that we can choose A, a, a’ such that J isinfinite
N,-a.e. Moreover, lemma 3.2 gives for ¢ > 0 small enough that there existsc > 0

suchthat if k e J andif 1 [ Ly — §2%, Ly — 2], then we have

Ny, wp) (Yp(Bg) > 0) > 287,

We deduce that
Ly
/O Ny, (wp)(Yp(Be) > 0)dSs(Wr)

ir—%zik
z 2/ Ny, (wr)(Yp(Be) > 0)dSs(Wr)

P15
ke VLT~ 182 ,

= > 2708y, a5y Wr) = ;154 (Wr)
keJ

> an/Zk/pZ_k/p = 400.
kelJ

Thisimplies that ]E’;VT(YD(BS) > 0) = 1 N,-ae., whichinturnimpliesv, = u,
inD. O

We end this section with alemmawhich will be useful later. Let K € D bea
compact set.

Lemmab.1l. Let A > 0. There exist 5o > 0, C > 0 such that for all x € K,
8 € (0, 8o,
Ny [3s € (0,0); kp(Wy) < 8] < C&*,
N, [as €©,0)¢ <%0 1, > 5] < cs*,
The proof of thefirst inequality uses an uniquenessresult in a parabolic setting
similar to theorem 1.1. The proof of the second inequality is more involved.

Proof. LetG = {(is, Wy), s € (O, o)} be the graph of the Brownian snake. Using
the Brownian snake property on [s, inf{u > s; ¢, = Tp(W;)}], we see that the set
A1 ={3s € (0,0); kp(W;) < 8} isasubset of {GNJO, ) x D¢ # }. Let O bea
smooth domain such that D¢ ¢ O and K C (0)°. Then we have

Ar1c{Gn[0.) x0£dC () {GN{t)x 0 #0}.

t€[0,6)NQ

We consider the stopping time for the Brownian snake
T, = inf {s > 0,8 = Tpiwpoxre(Ws) and W, e 0},

wherewe use the notation of section 2.3. Let Y; bethe exit measure of the Brownian
snake of Rt x [0, 1) x RY. We have {Y;(0) > 0} C {T; < oo}. Arguing asin the
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proof of theorem 1.1 (mainly lemma 9.1 has to be replaced by the duality lemma
p.45 of [3]), we can prove that for x € RY,

Ny[T; < oo] = N,[Y;(0) > 0]
Therefore we have using theorem 8 of [4] and the right continuity of X for § > 0,

Ny[A1]l = N, [GN{t} x O #£@ forsome 1€ ]0,8) NQ]
<N,[Y;(O) >0 forsome t€[0,8) NQ]
< —log <1— PY[X;(0)#0 forsome t € [0, 6)]) )
Thefirst inequality of the lemma s then a consequence of theorem 9.2.4. of [6].

The proof of the second inequality is more involved. We set m = 82/P and
Ao =1{3s € (0,0); ¢, < m, Ly > §}. We have

oo
NilAl = D N, [35 € Qo) gy € 2L m2 ™), Ly > 5.
k=0
For each k € Z., we defineinductively a sequence of stopping time (rl.k, i > 0) by

k __ k k.
75, =0, and ri+l—|nf{v>tl-,

& = ¢ =m27.

Let Ny = inf{i > 0; 7} = oco}. Recall that N[z} < oo] = m~12*. Conditionally
on {rf < oo}, the sequence (¢,«, i > 1) isasimple random walk on /A
stopped when it reached 0. We have for jg > 1,

o o
N, [Z L, :.,omzkl}} =N, [t < 00| N, [Z L o jomz+) |5 < oo:|
=1 i=1
=m 12 (15)
We have
N, [Els €(0,0);¢ € (m27k71, m27k] and f,s > 8]

MN

x[EIi e{l,---,Ny — 1}; ;'Tik =ij*k71 and Else[‘cik, r,-ﬁ_l], st is >8]
1

.
I

HMN

o0
Z [{Tik = ij_k_l, ds € [rl-k, rikJrl] st. Ly > 8] .
i=1

We consider only j € {1, 2}. Let ¢1 > 0 be aconstant whose value will be chosen
later. We set a = c1(m2%~1)2log(2**1/m) and ¢ = c[z/pZ(kJrl)?”’/“m*p/“. For
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8 small enough, notice that coa?/? < §/2 for every k € Z... We have

Ny [ff.k = jm27%1 35 e [2F, th ] st Ly > 8]

. —k—1 _k k
< N, I:é-rik = jm2 Tl — T > a]

+ Ny | S = jm27%1 aup > coa”/?

selef Tk +al

Ly — L
1

+ N, I:é'tik = jmz_k_l, irik > — Czap/z] .

We write I for the I-th term of the right member. The distribution of 7%, — £
k g i+1

1
knowing {i < N;} isthelaw of thefirst exit time from [—-m2~%—1 m2~*=1] for a
standard linear Brownian motion started at 0. Thusthere exist two positive constants
ai, ap such that

1 ok
I,E ) =N, [g“rl_k = jm27%1 tl.kJrl—tl-k > a]

<N, [Q.’f _ jmz—k—l] a1 e—azer log(m =124+

For§ < 1landk > 0, we have co > cl_z/" = #. We deduce from lemma 4.2
that

I =N, | gu=jm27* sup |Ly— Ly

se[rik,rik+a] !

> coaP!?

_ n—plAok+1)p/4

<N, [Er,k = ij_k_l] c3€ ,

where ¢3 depends only on ¢;. .
Conditionally on ¢« = jm27%1, the path W« is distributed as & under

k-1
pImZ g, we get for b > 0,
Ik(s) =N, [;T_k = jm27%1, if.k >8— cza”/z]
= Ny [ = jm2 T PulL s > 8 — 2

<N [ = jmart T e e
—_ X fi - ’

where we used (12). Now take b = (c})~?m~12F1 and use the fact that
c2aP? < §/2 = mP/2/2 to get

. —— o —P/29(k+1)
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We have

2 o0 o

N[ A2 < 330 + 12 + 120,

j=1k=0i=1

We deduce from (15) and the upper bounds on I,El), I,fz) and Ik(B), that for A > 0
given, we can choose c; and C large enough so that N, [.A»] < C8*. O

6. An upper bound for the hitting probability of small ballsfor Yp
in the critical dimension d.

Thetheorem 1.3 isadirect consequence of the next inequality and the snake repre-
sentation of the exit measure (proposition 2.4). Once again the proof relies on the
uniform behavior of the paths W; near its end point.

Proposition 6.1. Let d = d., K C D be a compact set. There exist two positive
constants Cx and ex suchthat for all x € K,y € aD, ¢ € (0, eg],

N [Yp(Byp(y,€)) > 0] < Cx (log(1/e) 2.

Proof of Proposition 6.1. Let d = d.. Recall the notation at the beginning of
section 3. By formula (6), we have

Nx [YD(Bap (v, )] = Ex [18,5(.0) T'ep)]
x [1Bap(y,8)()’:<0)]

:/ 0(dz)Pp(x, z2),
Byp(y,e)

where 0 is the surface measure on d D and Pp isthe Poisson kernel. From (9), we
see that if K isacompact subset of D, there exist positive constants Cx and ex
such that forevery x € K,y € aD, ¢ € (0, ex],

N: [Yp(Byp(y, e))] < Cxe® L.
Then we consider the stopping time
T =inf{s >0 tp(Wy) =¢ and Wi € Byn(y, &)}
We have from the construction of Yp,
{Yp(Bap(y,€)) > 0} C{T < oo}.
Consequently, using the strong Markov property at time 7', we get

N; [Yp(Bip(y.€)] = N, [T < o0; By, [Yp(Byp (v, e))]] .
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Thus we see that alower bound for IE’;VT [Yp(Byp (v, €))] with the previous upper
bound of N, [Yp(Byp(y, €))] yield an upper bound for N, [T < o], that is for
N, [Yp(Byp(y, €)) > Q]. By proposition 2.2 and relation (6), we have

¢r
Eyy, [Yp(Bap(y, )] = 2/0 dt Ny, o) [Yp(Byp(y, &))]

ir _
2/0 dt Py, [Tz € Ban(y, €)]

ir
2/0 dt Pr,owy) [Viep € Ban(y. 6)]

ir
_2 / di / 6(dz) Pp (T (Wr), 2).
0 Byp(y.€)

Thetime change S, (W) =t and (9) imply

kp(Wr)
EYy, [YD(Byp(y, €))] = 2/ ds,(Wr) 0(dz) Pp(yv(Wr), 2)
0 Bap(y.e)

kp (W)
> 2 /O dSu(Wr) d(ys(Wr), 3D)
y / 6(d2) Iy (Wr) — 2.
Byp(y,e)

Remark 6.2. Let ¢ be small, and consider the integer n > 1 such that 27" <
2 < 27"*1 Let V, be the set of integer k € {0, ..., n} such that, for al v €
[Ly —27%, Ly — 2~ ®+D], we have

"(Wr) = Wr| < 40272, d(y,(Wp),0D) > a2 ¥2. (16)

As mentioned in remark 4.1, for a fixed time ¢, the paths S(W;) and y (W,) are
distributed respectively according to the law of a subordinator of index o and a
Brownian motion. If this were also true for W, then we would get

Efy, [YpBop(y.eN] zce® ™y [ dsS,(Wr) 244172,
keV, [LT—ka,LT—Zf(lH'l))

By the scaling property of subordinators and lemma 9.1, we would have
E}y, [Yp(Bap(y. €))] = cee™'Card (V)17 51

where S isasubordinator of index p. Moreover, the scaling property for the Brown-
ian motion and Borel-Cantelli lemmagivethat Card V,, > c¢n and finally we get the
upper bound for the hitting probability c[log(1/¢)] /. Unfortunately, thereis no
reasonfor thelaw of S(W7), where T israndom, to bethelaw of asubordinator, nor
for thelaw of y (Wr) to bethelaw of a Brownian motion. (For the usual Brownian
snake, the law of Wy, where T is the first hitting time of a ball is the law of a
diffusion but not of a Brownian motion. This example from Le Gall can be found
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in [9] proposition 1.4.). That is why we need the lemmas of section 4 which say
that the estimates of (16) are true sufficiently often along the path y (Wr) and that
we have similar estimates for the path S(Wr). However, this remark suggests that
the accurate upper bound for the hitting probability should be c[log(1/¢)]~ /7.
Let us go back to the proof. Let ¢ be small, and consider the integer n > 1
suchthat 27" < ¢2 < 2771, Let ng betheinteger part of n/2. Let A > 0 belarge
enough. Let usassumethat ¢ issmall enough so that c*n1+%2—" < 27" wherec,
isdefinedinlemmad.4 and n1 > ng istheinteger part of 11n/12. Consider the set

B={tr>2%2"°yN{Ly > 2% 27"}

Let U, be the set of integers k € {no, -+, n1} such that for al v e [Ly —
B2k, Ly — {27, we have

YoWr) = Wr| < 4272, (W), 0D) > a02™%, (17)

and Sz, 1ok (Wr) = Sj, 1551, (Wr) > a127"/%, where A, ao, a1 are de-
fined inlemma4.5, 4.6 and 4.7. On B, we then have for ¢ > 0 small enough,

EW, [Yp(Bap(y, €))]

> > dS,(Wr)ag2~*/?
kEU LT EZ kLT 27k)

x / 0(dz)[Ao2 *?+4 %2727 > (¢4~ 1Card U,
ap(y,€)

where the constant ¢/ > 0 isindependent of W, n and x € K. Notice that on
Bi=BN{¢r <27y 0 {FL,, (Wr) < 1/6) N (¢S, (Wr) < 1/6)

N, (Wr) < 1/6},

Card U, > n/3 > " log(1/¢). Thuswe deduce from the previousinequalitiesthat
there exist aconstant C such that for any ¢ small enoughand x € K,

Ce%™1 > N,[T < oo; Bi]e*Llog(1/e).
The set B is asubset of US_; H;, where

'H1={5Up§sZM} with M = 2"/*;

s>0

HZ = {HS € (07 U), KD(Ws) < 4.2—}10} D) HZ‘T < 2 % 2_n0] ;
Hz = {38‘ € (0,0); g < 2*2_”/'0’ i‘s - 2—}10}

S e <2s22) iy > 2420

{Els €(0,0),2%27"P <, < M, F (W,) > 1/6};

no,ni

{35 €(0,0),24 27" <ty < M, ¢, (W) > 1/6};
(35 €(0,0),2%27"7 < ¢ < M, Yy, (W,) > 1/6}.

no,n1
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Using the normalization of N, for H1, lemma5.1 for H»2 and H3, lemmas 4.5, 4.6
and 4.7 respectively for Ha, Hs and Hg, we see we can choose Ag, ag and a1 SO
that N, [B§] < ¢’&® for someconstants¢’ > 0, § > 0. Sowededucethat for x € X,
& > 0 small enough

N; [Yp(Bap(y. €)) > 0] < N,[T < 0] < C [logl/e] ™ +c'e’,

which ends the proof. O

7. Lower bound of dim supp Xp

Using the snake representation of X p, we see that a lower bound for the Haus-
dorff dimension of the support of Y will provide alower bound for the Hausdorff
dimension of the support of X p.

Proposition 7.1. Letd > 2. Letx € D. N,-a.e. on {Yp # 0}, we have

dimsupp Yp >

a_lA(d—l).

Proof. Wesetdp = -2 A (d — 1). Following the idea of [8], we will first prove
that for ¢ € (0, do/3),

N, [ / Yp(d2) Fapse (2, YD)} o,

whereif & > 0, Fy isthe measurable function on RY x M ; defined by

Fy(y,v) =1 .
{Iimsupv(BaD(y, 272" > 0}

n—oo

By proposition 2.3, we have

N, [ / Yo (dy)Fs (v, YD>] - / PP (dw)E [Fe (@, / Ny (@W) YD<W>)].
(18)

In order to use the Borel-Cantelli lemma, wefirst bound [ P(dw)14, (w, ®), where
Ay = {(w, w); 2"(do=3) / Nuw(@)(dW) Yp(W) (Byp(h,27")) > cdoz—"g}

and Cy4, = Cgy(w) is afinite positive constant that does not depend on » and w,
and depends only on w. Its value will be fixed later. Recall that 7 isthe exit time
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of D for the process I' and «p is the exit time of D for the process y. Using the
Markov inequality, we get for PP-a.e. paths w,

E[1l4,] <E [c;olz"%—zﬂ / Nouw(@W)Yp (W) (Byp (b, 2—"))}

Cw
= 2"(‘10‘2‘9)C;014/0 dv Ny [Yp (Ban(y.27)],_,
nido—20) -1 [P =p —n
= 42" /0 dv Py, [ € Byp(y, 2 )]}:u;

— 4 nldo=2e) 01 / ds P B 2"
do [0.kp () u(w) (W) [VKD € BD(y’ )]YZVKD (w)?
(19

where y isunder P, aBrownian motion in R¢ started at x. In the first equality we
used the form of the intensity of the Poisson measure V,,. In the second one, we
applied (6). In the third one, we made the formal change of variable v = S, using
the specific properties of the process & under PP, and in particular the fact that
I' = y; isconstant over each interval (S,—, S,).

Letr € (0, 1], wehavefor0 < u < «kp

Py [venr € Ban(y, r)]y:m) = /B Pp(yu. y)O(dy").

BD(VKDJ')
We deduce from (9) that for (y, y’) € D x 9D,
—d —(dg— do—e)+1—d
Pp(y.y) < c1d(y.dD) |y — ¥'| ™ < cad(y, D)~ |y — |07+~

Notice also there exists a positive constant ¢, such that for al (y, y”) € D x 9D,
r € (0, 1],

/ [y =y 770y < carto.
Byp(y".r)

Thus we deduce that for every r € (0, 1],
Py, [ve» € Ban(r.n)],_, < c1c2r®d(y,, dD)" 7. (20)
—Yep
The proof of the next lemmais postponed to the end of this section.
Lemma7.2. Letd > 0, then PP-a.s. we have

(KD _ u)('?+l/2
— <
u€l0,kp) d(Yu,dD)

The proof of the following lemma relies on an integration by part and on the path
properties of the subordinator S (seelemma 3.2.3in [8]).
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Lemma7.3. Letd € [0, 2/p), then PP (dw)-a.s. we have
/ (kp —u)~97245s, < .
[0.xp)
As a consequence of those two lemmas, the variable
Cap = / dS, d(yu, dD)~ "
[0.xp)

isfinite PP-as. Thus plugging (20) into (19), we get that for every n > 1,
E [1An] < 4cqcp 277,

Applying the Borel-Cantelli lemma to the sequence (A,,n > 1), we get PP-as,,
P-as.

n—oo

lim sup 2"(do=3¢) / Nuw(@W)Yp (W) (Byp (b, 27")) = 0.
Hence by the definition of Fy and (18), we get

N, [ / Yo (dy) Fay_3: (v, YD>} —o.

We deduce from theorem 4.9 of [16], that N,-a.e. on {Yp # 0},
dim supp Yp > dop — 3e.
Since ¢ is arbitrary, the lower bound of the proposition follows. O

Proof of Lemma 7.2. It is enough to prove the result under P,. Let 6 € (0, 1/2)
and D, ={y € D;d(y, dD) > &}. For simplicity wewritex = kp and«, = «p,.
We will first derive an upper bound for

Py [K —Kg > 8278] .

For ¢ > 0 small enough, we have using the Markov property at time «.:

P, [K — ke > 82*9] < (1 - efl)_1 [1 —E [e*e_M(K*Ke)]]

< (1 - e_l)_l sup [1 -E, [e“fm"]] (21)

yveD, d(y,0D)=¢

Sincethe domain D isbounded €2, we have the uniform exterior sphere condition.
There exists h > 0 such that for each point yo € 9D, we can find y1 € D¢ so that
yo € dB(y1, h) and B(y1, h) C D¢, where B(y, r) isthe ball centered at y with
radiusr. For y € D thereexists yo € D suchthat d(y, dD) = |y — yo|. Clearly,
under Py, k < kB(y,,n), When y; is defined as above. Thus

|:1 _ Ey I:e—£*2+9/(i|i| S [1 _ Ey [e_g*ZJr@KB(yl.h)]] .
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On the other hand, following [18] (p. 88) (seealso[24]), it iseasy to prove that for
y eRY, |y| > h, B =0,

I KBy
|h|~" Ky(v/2Bh)

wherev = (d/2)—1and K, isthe second modified Bessel function. Since K, (r) =

w/2r € "[14 0(1/r)] (see[23] p. 202), it easy to deduce from (21) and the pre-
vious inequality (take 8 = ¢ 2™ and y/ = y — y1, where d(y, dD) = ¢ and
|¥'| = h + ¢) that for & small enough,

E, [e*ﬂKB(o,h)]

P, [/c — Kg > 82_0] < 089/27

where the constant ¢ isindependent of £. Now thanks to the Borel-Cantelli lemma
we get that P,-as. the sequence (22~ (k — kp-n), n > 1) is bounded.

On the other hand noticethat for u € [ky-n+1, k2-n] Wehaved(y,, dD) > 27"
andx — u < k — ky-nt+1. Thus we have

K —U
42D e Y.
d(yu, 0D)2=0 = (o)
Since the right hand side is uniformly bounded in r, we get the lemma. O

8. Proof of Theorem 1.6 on the connected component of Xp

The proof of Theorem 1.6 mimic the proof of Theorem 2.4in [8]. It relies on the
next two lemmas. We only give the proof of Lemma 8.2 because it differsfrom its
analoguein [8].

Lemma 8.1. Weconsider theproduct measureN,, ®N,, onthespace C (R ™, W)2.

The canonical process on this spaceisdenoted by (W1, W2). Assumed > 2d, — 1.
Then for every (x1, x2) € D?, we have Ny, ® Ny,-a.e

supp Yp (W) Nsupp Yp (W?) = 9.
Lemma8.2. Fore > 0,6 > 0O, set
:(8) = supN, [supp Yp N dD\Byp(z, ¢) # 9],

wherethe supremumistakenover (y, z) € DxdD,suchthatd(y,dD) = |y — z| <
8. Then for every e > 0, lims 0 g,(8) = 0.

Proof. Sincethe boundary of D is C2, we have the uniform exterior sphere condi-
tion. There exists 8o € (0, ¢/3), for every z € dD, we can find zg € D¢ (unique)
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such that B(zg, 80) € D¢ and d B(zg, §0) N 0D = {z}. We define B, = B(zo, o).
We havefor y € Bo\By, Ny-ae.
{supp Yp N 0D\ Byp(z, &) # 0}
clase@amic =m0 ad W, ecaD\BipG o)

c {35 € © o) Tz (W) < o0, Tge (W) < T (W]

Thefirstinclusion isaconsequence of the definition of LE™*R"xD and the second
is a consequence of the snake property. By the special Markov property (cf [4]
proposition 7), if N isthe number of excursions of the Brownian snake outside
RT x RT x Bp\By that reachR* x R* x B beforeR™ x R* x By, then we have

N, [35 € (0.0): 75 (W) < 00, 7 (W) < 75,(W))|
=Ny[N > (]
= Ny[N]

= Ny |:/ YBZ\Bl(dy/)Ny’[fBg(WY) < 00, ‘L'Bg < ‘L’Bl]]
<N, |:/ YBz\Bl(dy')Ny’[fég < ~|—oo]] .
0By

We used the fact that if y* € 9By, then from the snake property, we have N, -ae.
foréls e (0,0), ta(w,) = 0. By symmetry, we get that Ny/[fég < 4o0] = co

isindependent of y' € 9B>. Itis alsofinitesince(vfls, s > 0) is continuous under
E(0,0,,). We then deduce from (6) that

Ny [supp Yp NOD\B;p(z, &) # ¥] < coEylkp, < «B,].

Thus we get that for § € (0, 8p),

8e(8) < coEy[kp(0,250) < KB(0,80)]

where |y| = §p + 8. The lemma is then a consequence of classical results on
Brownian motion. ([

Proof of Theorem 1.6. Let (Dy, k > 0) be an increasing sequence of open subsets
of D suchthat Dy C Dyy1andd(y, dD) < 1/kforal y € 3 D;. From the special
Markov property (see [4] proposition 7) and proposition 2.4, we get that the law
X p under PY isthesameasthelaw of ), _, Yp(W'), where conditionally on X p,,
the random measure ", _; 8y is a Poisson measure on C(R*, W) with intensity
| X p, (dy)Ny[-]. With a slight abuse of notation, we may assume that the point
measure Y, Yp(W') is aso defined under PX. It follows from lemma 8.1 and
properties of Poisson measures that a.s. for every i # j,

supp Yp(W') Nsupp Yp(W/) = 0.
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For ¢ > O, let U, denote the event “supp X p is contained in afinite union of
disoint compact sets of 9 D with diameter lessthan ¢”. It is easy to check that U,
is measurable. Let k be large enough. Furthermore, by the previous observations,
and denoting by y; € Dy the common starting point of the paths W!, and by z; the
only pointin @ D such that |y; — z;| = d(y;, dD), we have

PX[U,] > P¥ [Vi e 1, diam (supp Yp(W')) < g]

> PX

L |

Vi € 1, supp Yp(W') C Byp(zi. £/2)]

exp — _/XDk(dy)Ny[SUpp Yp N3dD\Byp(z,€/2) # VJ]}

EX
> EX [exp—ge/2(1/0) (X p,. D],

where for B € B(R?), diam (B) = ,x’) € B x B}. We can now
let k go to +o0, using lemma 8.2, to conclude that PX[U,] = 1. Since this holds
for every ¢ > 0, we conclude that supp X p istotally disconnected PX -as. O

9. Appendix

Lemma9.1. Let (S;,r > 0) beastablesubordinator. For r > 0, let L, = inf{u >
0,S, >r}.Then(S;,r € [0, L)) and (Sp,— — S, —n—, t € [0, L,)) are identi-
cally distributed.

Wewrite Pfor thelaw of the subordinator S = (S;, ¢ > 0) started at 0. Werecall
that theL aplacetransformof Sisgivenby n(1) = c;1”, wherecy = 277/ T'(1+p).
Its Lévy measure is given by T1(ds) = 1(0,00)($)[2°T ()T (1 — p)]~Ls~17ds.
Notice that L, is the last exit time of [0, r] for S. Let O = (Q;,t > 0) be the
transition kernel of S and U = f0°° Q; dt its potential. The transition kernels
and the potential are absolutely continuous with respect to the Lebesgue measure
[ on R. And we have Q;(x,dy) = g1 (y — x)dy and U(x,dy) = u(y — x)dy,
where u(y) = p2°yP~ 11\>0 Let Q = (Q,,t > 0) be the transition kernel of
(=S, t > 0). Thisisthedual kernel of Q with respect to!. We consider the process
V defined by

Vo= S(L,—n— if O0<r<lL,
T a if r>1L,

where A isacemetery point added to R. Notice the law of Sp is 8o, the Dirac mass
a 0, and thus, the density of §oU w.r.t. the reference measure [ isjust u. Thanks
to XVIII 45 and 51 of [7], the process V is under P a Markov process with kernel
(0, t > 0) defined as the u-transform of O, that is

O/ (x,dy) = ﬁ u(y)q: (x — y)dy.
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We define the process Y by

Y, — Vo—V, if 0<r<L,
T a if r>L.

Noticethat Yo = 0 P-a.s. and the process Y isright continuous and nondecreasing
up to its lifetime. We want to prove that Y and the process S killed at time L,
have the same law. It will be enough to check that for every integer n > 1, every
sequencet, > --- > 1 > 0,and f1, ..., f,, measurable nonnegative functions
onR,

E[AAV) . fa(Y,)] = E[f1(Se) - .- fu(Si) 15, <]
Using the transition kernel of V, we get

I =E[AA(Yy)... fn(Y,)]
=E[AMVo— Vi) ... fuVo—V,)]

= [ v [ Gutwo.dvn w0~ vo)... [ Grms oo dun) fo(wo—vn).
R R R

where v isthelaw of Vo = Sr,—. Thanksto [3] proposition 2 p.76, we have that

o0
v(dvo) = M(UO)1v0<rdv0/ I(ds) = C;;M(UO)(r - UO)7p1v0<rdv0-
r—uvg
Thus we have
_ u(v1)
I=c;/ dvo u(vo)(r — vo) plvo<r/ dvy...dv, —161:1(vo—v1)f1(vo—v1)-.-
R Rn u(vo)

u(vy)
X —_—
u(vp—1)

= ¢, /Rdvo (r— vo)_"1uo<r/]R dvy...dvy u(vn) g (vo —v1) fi(vo —v1) ...

CZtn—t,,_l(vn—l — vy) fu(vo — vy)

X Clt,lftn,l(vnfl — Uy) fn(vo — vn).

We use the change of variable z = vg, y1 = vg — v1, -+ - , yu» = Vo — U, and the
definition of u to get

I = CQ)/R dyi...dyn gy (yO) 13D - - - Gt—t,.1n = Yn—1) fa(Yn)

x/ dz (r —z) Pp2P(z — yn)p711r>z>yn
R
=E[/1(Sy) - - fu(Si) s, <r]

because c/p fR dz (r —2) Pp2°f(z — yn)p_11r>z>yn =1isy,. O
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Notations

d.=(a+1)/(a¢—1) critica dimension.
0(dy) Lebesgue measureondD.

B, = Byp(yo,¢) balonaD.

Pp  Poisson kernel of D.

Gp Greenfunctionof D.

¥,  Brownian motioninR?.

E. lawof y started at x.

p=(—-1) .

S;  p-stable subordinator.

& residua lifetimeof S.

L, timechange, inverseof S.

Iy =y, “freezed” Brownian motion.

E =Rtx Rtx R?: state space of &€ = (£, L, T).
P, lawof &, statedat z € E.

law of & started at (0, 0, x).

law of £ killed out of RT x Rt x D.
law of & killed at time r.

kg exittimeof B for y.

tp exittimeof BforT' = y;.

w = (w,¢) E-vaued path with lifetime ¢; for ¢ € [0, ¢), we write w(z) =
(&:(w), L (w), T'r(w)).

g(w) exittimeof B for I'(w).

kp(w) exittimeof B for I'; -1(w).
w=T,(w) spatia end point.

.0, 70,00

Notations for the snake

¢y lifetime of the snake at time s.

Wy snakeattimes; forr € [0, &), W (t) = (& (Ws), L (Wy), T't(Wy)).
S; (W) inverse of thetime change L, (W;).

vi(Wy) = T's,(w,)(Wy)  spatial motion of the snake path W;.

W, = I, (Ws)  end point of the spatial motion of the snake path W;.
Ly= L, (Wy) end point of the time change of the snake path W;.

E, law of W started at path w.

E*  law of W, started at path w and killed when itslife ¢, time reaches 0.
Ef, = [P.(dw)E%  law of W; killed when its life time reaches 0 and started
With atypical (random) path of lifetimer.

N, excursion measure of the snake started at the trivial pathz € E.

N, excursion measure of the snake started at the trivial path (0, O, x).

o duration of the snake excursion.

LP  exitlocal timeof D.

Yp exit measure of the snake.
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