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Abstract. We consider the exit measure of super Brownian motion with a stable branching
mechanism of a smooth domain D of R

d . We derive lower bounds for the hitting probability
of small balls for the exit measure and upper bounds in the critical dimension. This com-
pletes results given by Sheu [22] and generalizes the results of Abraham and Le Gall [2].
Because of the links between exits measure and partial differential equations, those results
imply bounds on solutions of elliptic semi-linear PDE. We also give the Hausdorff dimension
of the support of the exit measure and show it is totally disconnected in high dimension.
Eventually we prove the exit measure is singular with respect to the surface measure on ∂D
in the critical dimension. Our main tool is the subordinated Brownian snake introduced by
Bertoin, Le Gall and Le Jan [4].

1. Introduction

1.1. Presentation of the results

A superprocess X = (Xt ,PX
ν ) on Rd is a Markov process taking values in the space

of finite measures on Rd ,Mf , which describes the evolution of a cloud of branching
particles. We refer to Dynkin [10] and Dawson [6] for a detailed introduction to the
subject. We consider here the α-super Brownian motion X, where α ∈ (1, 2]. We
introduce the notation (ν, f ) = ∫

f (y)ν(dy), where the measure ν ∈ Mf and the
function f is an element of B(Rd), the set of measurable functions on Rd taking
values in R. The law of X is characterized by its Laplace transform:

• X0 = ν PX
ν -a.s.

• Let γ be a Brownian motion in Rd starting at x. We denote by Px its law. For
every nonnegative bounded function f ∈ B(Rd), and for every t ≥ s ≥ 0,

EX
ν

[
e−(Xt ,f )

∣∣ σ(Xu, 0 ≤ u ≤ s)
]
= e

−
(
Xs,v(t−s,·)

)
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where v is the unique nonnegative measurable solution of the integral equation:

v(t, x)+ Ex

[∫ t

0
ds v(s, γt−s)

α

]
= Ex

[
f (γt )

]
.

Let D be a bounded domain (i.e. open connected subset) of Rd . The goal of
this paper is to study the exit measure of D for the α-super Brownian motion. This
is a measure on ∂D introduced by Dynkin in [11] which describes the position of
the cloud of particles at their first exit time from D. This exit measure is related to
the semi-linear partial differential equation 1

2�u = uα in D.
More precisely, the law of the exit measure is characterized by: for every ν ∈

Mf , such that supp ν ⊂ D, for every nonnegative bounded function f ∈ B(Rd),

EX
ν

[
e−(XD,f )

]
= e−(ν,v),

where v is the unique nonnegative measurable solution of the integral equation

v(x)+ Ex

[∫ κD

0
ds v(γs)

α

]
= Ex[f (γκD )], x ∈ D. (1)

The stopping time κD = inf{s > 0; γs �∈ D}, with the convention inf ∅ = +∞, is
the first exit time of D for γ . The function v solves 1

2 �u = uα in D.
From now on, we assume D is regular. If f is continuous, then v is continuous

in D̄ and is the unique nonnegative solution of the Dirichlet problem:{
1
2�u = uα in D,

u|∂D = f.

We will be mainly interested in solution of 1
2 �u = uα in D with boundary

conditions which blow up. Let y0 ∈ ∂D be fixed. The set B∂D(y0, ε) = {y ∈
∂D; |y − y0| < ε} is a ball on the boundary of D. We will also write Bε when there
is no confusion. We write δx for the Dirac mass at point x ∈ Rd . From [14] (see
also [12] theorem 1.4 and remark 4.3), the function

uε(x) = − log PX
δx

[XD(Bε) = 0], x ∈ D, (2)

is the minimal nonnegative solution of:{
1
2 �u = uα in D,

limx→y,x∈D u(x) = ∞ where y ∈ Bε.

Let RD be the range of the α-super Brownian motion in D (it can be viewed as the
range of the α-superprocess where the underlying Brownian motion is replaced by
a Brownian motion killed out of D). From [15] theorem 2.5 (see also [12] theorem
2.1 and remark 4.3) the function vε(x) = − log PX

δx
[RD ∩Bε = ∅] is the maximal

solution of: {
1
2 �u = uα in D,

limx→y,x∈D u(x) = 0 where y ∈ ∂D\Bε,
(3)
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and Bε denotes the closure of Bε. There is a natural way to build RD and XD on
the same probability space (see [12]). Let (Fn, n ≥ 1) be an increasing sequence of
closed sets such that Fn ⊂ D̄\Bε and

⋃
n≥1 Fn = D̄\Bε. Since RD is a.s. a closed

subset of D, we have a.s.

{RD ⊂ D̄\Bε

} = ⋃
n≥1

{RD ⊂ Fn} .

By lemma 2.1 of [12] with Q = R ×D, we have the following inclusion:

{RD ⊂ Fn} ⊂
{
XD(F c

n ) = 0
}
.

Since
{
XD(F c

n ) = 0
} ⊂ {XD(Bε) = 0}, we deduce the inclusion

{RD ⊂ D̄\Bε

} ⊂ {XD(Bε) = 0} .

As a consequence we have uε ≤ vε in D, and we deduce that uε is the minimal
nonnegative solution of




1
2 �u = uα in D

limx→y,x∈D u(x) = 0 where y ∈ ∂D\Bε

limx→y,x∈D u(x) = ∞ where y ∈ Bε.

(4)

From now on we assume that D is of class C2. In particular D enjoys the
uniform outer ball condition. Using the exit measure XD we prove the following
results on the semi-linear PDE.

Theorem 1.1. For ε > 0, small enough, the function uε is the unique nonnegative
measurable solution of (4).

In particular uε is the maximal nonnegative solution of (3). We can describe the
behavior of uε as a function of ε. The critical dimension is dc = (α + 1)/(α − 1).
Let us introduce the function ϕd(ε) defined on (0,∞) by:

ϕd(ε) =




1 if d < dc[
log(1/ε)

]−1/(α−1) if d = dc

εd−dc if d > dc.

We first give a lower bound of uε.

Theorem 1.2. Let K be a compact subset of D. There exist positive constants cd
and ε0, such that for every ε ∈ (0, ε0], x ∈ K , we have

cdϕd(ε) ≤ uε(x).
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An upper bound for vε and thus for uε was given by Sheu (see lemma 4.2 and the
following remark in [22]) for d �= dc. Let K be a compact subset of D. He proved
there exist positive constants Cd and ε0, such that for every ε ∈ (0, ε0], x ∈ K , we
have

uε(x) ≤ Cdϕd(ε).

The critical dimension is more delicate. It was proved by Abraham and Le Gall in
[2] for the particular case α = 2. For a general α ∈ (1, 2], we get:

Theorem 1.3. Let d = dc. Let K be a compact subset of D. There exist positive
constants C and ε0, such that for every ε ∈ (0, ε0], x ∈ K , we have

uε(x) ≤ C
[
log(1/ε)

]−1
.

However, the proof of this theorem suggests that the upper bound should beϕdc (ε) =[
log(1/ε)

]−1/(α−1). (This is explained in Remark 6.2).
As an immediate corollary of the above results, we get that if K is a compact

subset of D, then there exist positive constants Cd , ε0 such that any solution of (3)
with ε ∈ (0, ε0] is bounded from above byCdϕ(ε) if d �= dc or byCdc

[
log(1/ε)

]−1

if d = dc.
We give now results on the exit measure XD . Sheu [22] proved that if d > dc

(resp. d < dc) then a.s. the exit measure, XD , is singular (resp. absolutely contin-
uous) with respect to the surface measure on D. As a consequence of the above
theorem, we get:

Corollary 1.4. Let ν ∈ Mf with its support in D. PX
ν -a.s., the measure XD is

singular (resp. absolutely continuous) with respect to the Lebesgue measure on ∂D

if and only if d ≥ dc (resp. d < dc).

Proof. The case d �= dc is from [22] theorems 3.3 and 4.3. Let us consider the
critical case. Let y0 ∈ ∂D and Bε = B∂D(y0, ε). From the definition of XD , we
have for ν ∈ Mf with its support in D, and x ∈ D,

EX
ν

[
e−λXD(Bε)

]
= e−(ν,uλ) and EX

δx

[
e−λXD(Bε)

]
= e−uλ(x),

where uλ is the solution of (1) with f = λ1Bε . Letting λ go to infinity in the latter
equation, we deduce that uλ(x) converges to − log PX

δx
[XD(Bε) = 0] = uε(x).

Therefore, by letting λ go to infinity in the former equality, we get

PX
ν [XD(Bε) > 0] = 1 − e−(ν,uε) .

This can also be seen as a consequence of the well known cluster representation of
the superprocesses. Thanks to theorem 1.3, taking the limit as ε goes to 0, we get
PX
ν [y0 ∈ supp XD] = 0 for every y0 ∈ ∂D. By integrating with respect to θ(dy0),

the Lebesgue measure on ∂D, we get

EX
ν

[
θ(supp XD)

] = 0,

which gives the result. �
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If A ∈ B(Rd), we denote by dim A its Hausdorff dimension. An upper bound
of the Hausdorff dimension of the support of the exit measure was given in [22].
We complete this result with the following theorem.

Theorem 1.5. Let ν ∈ Mf with its support in D. PX
ν -a.s. on {XD �= 0}, we have

dim supp XD = 2

α − 1
∧ (d − 1).

Once we have the result on the hitting probability of small balls of the boundary
of ∂D, we can derive a result on the connected components of XD (see [1] for more
result in the particular case α = 2).

Theorem 1.6. If d > 2dc − 1, then PX
ν -a.s. the support of XD is totally discon-

nected.

1.2. Description of the proofs

The main tool used here to study α-super Brownian motion is the Brownian snake,
a path valued Markov process, introduced by Le Gall. Unfortunately, this process
gives only a representation of superprocesses for α = 2. To treat general α’s, we
used a subordination method described in [4]. The intuitive idea of subordination is
to consider (in the particles system picture) Brownian particles and to “freeze” them
from time to time. While these particles are motionless, the branching mechanism
still goes on. Thus, we can consider the particle paths as Brownian paths along
which some masses are added (these masses correspond to the “freezing times”).
When there is a large mass, a lot of branching occur at this point (a large mass cor-
responds to a large interval of time during which the particle is motionless). Hence,
the paths of the range are still Brownian paths but the branching mechanism has
changed. To get the desired superprocess, the “freezing times” are given by jumps
of a subordinator. The construction of the Brownian snake and the subordination
procedure will be developed in section 2.

The proof of the lower bound of uε (theorem 1.2) in section 3 uses the integral
equation (1) and bounds on the Poisson kernel and Green function in D.

Section 4 is devoted to some technical lemmas on the typical behavior of the
snake paths near the end points. They are generalizations of results from [21] and
[2] whereα = 2. The proofs are more involved because of the time change. We have
to look not only at the spatial motion but also at the time change. For a first reading,
this section may be skipped, but for the notations and remarks of subsection 4.1.

We then use those lemmas to prove uniqueness (theorem 1.1) in section 5. This
proof relies heavily on the snake construction.

The proof of the upper bound of uε in the critical dimension (theorem 1.3) in
section 6 is based on bounds of the Poisson kernel. For these bounds to be accurate,
we need to control the behavior of the snake paths near their end point, this is the
aim of the lemmas of section 4. We follow the proof of theorem 4.1 in [2], but the
arguments are more delicate because of the subordination method.

The upper bound in theorem 1.5 is due to Sheu [22]. The lower bound of the
Hausdorff dimension of the exit measure is proved in section 7. And theorem 1.6
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on connected component is proved in section 8. Those results are the elliptic coun-
terpart of section 5.2 and theorem 2.4 in [8].

Eventually the appendix deals with the law of the time reversal of stable sub-
ordinators. Some notations are recalled at the end of the appendix.

All the theorems were known for α = 2. From now on we assume that α ∈
(1, 2). We denote by c a generic non trivial constant whose value may vary from
line to line.

2. The subordination approach to superprocesses

2.1. The Brownian snake

Let E be a Polish space and (βt ) a càdlàg Markov process with values in E. Let
W be the set of all killed paths in E. By definition, a killed path in E is a càdlàg
mapping w : [0, ζ ) −→ E where ζ = ζw > 0 is called the lifetime of the path.
By convention, we also agree that every point z ∈ E is a killed path of lifetime 0.
Let us fix z ∈ E and let us denote by Wz the subset of W of all killed paths w with
initial point w(0) = z (in particular, z ∈ Wz).

From proposition 5 of [4], we know that there exists a continuous strong Markov
process in Wz, denoted by W = (Ws, s ≥ 0), whose law is described by:

• The lifetime process (ζt , t ≥ 0) is a one-dimensional reflecting Brownian motion
in R+.

• Conditionally on (ζt , t ≥ 0), the process (Wt , t ≥ 0) is still a Markov process
whose transition kernels are described by: let 0 < s < s′ and ms,s′ = inf

u∈[s,s′]
ζu.

– Ws(u) = Ws′(u) for every u ∈ [0,ms,s′ ].
– The processes

(
Ws(u + ms,s′), u ≥ 0

)
and

(
Ws′(u + ms,s′), u ≥ 0

)
are con-

ditionally on β0 = Ws(ms,s′), independent and distributed as the Markov
process β killed respectively at times ζs −ms,s′ and ζs′ −ms,s′ .

Remark 2.1. Notice this description is not really complete. Indeed, if β is not
continuous, the quantity Ws(ms,s′) is not defined when ms,s′ is equal to ζs or ζ ′s .
However this description gives the right intuition. Furthermore under rather gen-
eral conditions on β, a.s. Ws(t) has a limit as t goes to the lifetime ζs . In this case
Ws(ms,s′) will be well defined. We refer to [4] for a precise description.

2.2. The subordination method

Our main goal in this section is to recall from [4] how superprocesses with a general
branching mechanism can be constructed using the Brownian snake and a subor-
dination method. As mentioned in the introduction, the idea is to use the previous
construction using for β a “freezed” Brownian motion.

Let S = (St , t ≥ 0) be a ρ-stable subordinator, where ρ = α − 1, whose La-
place transform is: for λ ≥ 0, Ē

[
e−λSt

] = e−c∗ρ tλρ . We set c∗ρ = 2−ρ/1(1 + ρ),
this choice will be explained in section 2.4. We denote by ξ the associated residual
lifetime process defined by ξt = inf {Ss − t; Ss > t}, and by L the right continuous
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inverse of S, Lt = inf {s; Ss > t}, so that L can be viewed as the local time at 0 of
the Markov process ξ . Let γ = (γt , t ≥ 0) be an independent Brownian motion in
Rd . We would like here to take β = γ ◦L, which is a Brownian motion freezed at
random times. However, this is not a Markov process and so the previous construc-
tion does not apply. For this reason, we will consider the process ξ̄t =

(
ξt , Lt , γLt

)
which is a Markov process with values in E = R+ × R+ × Rd . The second com-
ponent will give the time change and only the third component will really give the
spatial motion.

Let P̄z be the law of ξ̄ started at z ∈ E. For simplicity we write 1t = γLt ,
and P̄x = P̄z when z = (0, 0, x). We denote by W = (Ws, s ≥ 0) the Brownian
snake with spatial motion ξ̄ . Denote by Ew the probability measure under which
W starts at w, and by E∗

w the probability under which W starts at w and is killed
when ζ reaches zero. We introduce an obvious notation for the coordinates of a
path w ∈ W:

w(t) = (ξt (w), Lt (w), 1t (w)) for 0 ≤ t < ζw.

We set ŵ = limt↑ζw 1t (w) (resp L̂(w) = limt↑ζw Lt (w)) if the limit exists, ŵ = ∂

(resp. L̂(w) = ∂ ′) otherwise, where ∂ (resp. ∂ ′) is a cemetery point added to Rd (resp
R). Some continuity properties hold for the process W (see [4] lemma 10 and [8]
lemma 5.3). Fix w0 ∈ Wz, such that the functions t �→ Lt(w0) and t �→ 1t(w0) are
continuous on [0, ζw0) and have a continuous extension on [0, ζw0 ]. Then Ew0 -a.s.
the mappings s �→ (

Lt∧ζs (Ws), t ≥ 0
)

and s �→ (
1t∧ζs (Ws), t ≥ 0

)
are continu-

ous with respect to the uniform topology on the set of continuous functions defined
on R+. In particular, the processes Ŵs and L̂(Ws) are well defined and continuous
Ew0 -a.s.

It is clear that the trivial path z ∈ E is a regular recurrent point for W . We denote
by Nz the associated excursion measure (see [5]). The law under Nz of (ζs, s ≥ 0)
is the Itô measure of positive excursions of linear Brownian motion. We assume
that Nz is normalized so that

Nz

[
sup
s≥0

ζs > ε

]
= 1

2ε
.

We also set σ = inf {s > 0, ζs = 0}, which represents the duration of the excursion.
Then for any nonnegative measurable function G on Wz, we have:

Nz

∫ σ

0
G(Ws) ds =

∫ ∞

0
ds Ēz

[
G
((
ξ̄t , 0 ≤ t < s

))]
. (5)

For simplicity we write Nx = Nz when z = (0, 0, x). The continuity properties
mentioned above under Ew0 also hold under Nz.

Let C(R+,W) denote the set of continuous functions from R+ to W . Let
w ∈ Wz. We now recall the excursion decomposition of the Brownian snake under
E∗
w. We define the minimum process for the lifetime ζ̃s = inf{ζu, u ∈ [0, s]}. Let

(αi, βi), i ∈ I be the excursion intervals of ζ − ζ̃ above 0 before time σ . For every
i ∈ I , we set Wi

s (t) = Ws+αi
(t+ζαi

), for 0 ≤ t < ζαi+s−ζαi
, and s ∈ (0, βi−αi).

Although the process ξ̄ is not continuous, proposition 2.5 of [20] still holds.
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Proposition 2.2. The random measure
∑

i∈I δ(αi ,W
i) is under E∗

w a Poisson point
measure on [0, ζw] × C(R+,W) with intensity

2dtNw(t)(dW).

2.3. Exit measures

Let Q be an open subset of E with z ∈ Q (or w0(0) ∈ Q). As in [4], we can define

the exit local time from Q, denoted by
(
L

Q
s , s ≥ 0

)
. Nz-a.e. (or Ew0 -a.s.), the exit

local time LQ is a continuous increasing process given by the approximation: for
every s ≥ 0,

LQ
s = lim

ε↓0

1

ε

∫ s

0
1{τQ(Wu)<ζu<τQ(Wu)+ε}du,

where τQ(w) = inf {r > 0;w(r) �∈ Q} is the exit time of Q for w. We then define
under the excursion measure Nz the exit measure of Q for the snake, YQ(W), by
the formula: for every bounded nonnegative function ϕ ∈ B(Rd),

(
YQ, ϕ

) = ∫ σ

0
ϕ(Ŵs)dL

Q
s .

We write YQ for YQ(W) when there is no confusion.
Intuitively, this measure describes the particles frozen when they first leave Q.

There are mainly two kinds of interesting domains Q: first when Q = R+×[0, t)×
Rd and Q = R+ × R+ × D. The former was used in [8] to get path properties
of α-super Brownian motion. The latter will be useful here to get properties of the
exit measure XD .

The first moment of the random measure can be derived by taking the limit in
(5) (see [20] proposition 3.3 for details). We have for every nonnegative measurable
function G on Wz

Nz

∫ σ

0
G(Ws) dL

Q
s = ĒQ

z [G] , (6)

where P̄Q
z is the sub-probability on Wz defined as the law of ξ̄ stopped at time τQ

under P̄z(· ∩
{
τQ < ∞}

).
We apply the construction of the exit measure with Q = QD = R+×R+×D,

where D is a domain of Rd . For convenience, we write YD = YQD
, τD = τQD

,
P̄D
z = P̄QD

z and also P̄D
x for P̄D

z when z = (0, 0, x).
Informally, in this case, the exit local time LD increases only when the snake

path Ws hits R+ × R+ × D for the first time at its lifetime ζs . Thus, the support
of the exit measure YD is given by the end points Ŵs of such paths Ws . In the
branching particles representation, YD describes the particles frozen at their first
exit time of D.

Let ϕ be a nonnegative bounded measurable function on ∂D. Thanks to prop-
osition 6 of [4] the function

u(z) = Nz

[
1 − e−(YD,ϕ)

]
, z ∈ R+ × R+ ×D,
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satisfies

u(z) = Ēz

[
ϕ(1τD)

]− 2Ēz

[∫ τD

0
ds u(ξ̄s)

2
]
. (7)

By arguing as in [20], theorem 4.1, we easily get a “Palm measure formula” for
the random measure YD .

Proposition 2.3. For every nonnegative measurable function F on Rd ×Mf , for
every t > 0 and z ∈ R+ × R+ ×D, we have

Nz

[∫
YD(dy)F (y, YD)

]
=
∫

P̄D
z (dw)E

[
F

(
ŵ,

∫
Nw(dW)YD(W)

)]
,

where for every w ∈ Wz, Nw(dW) denotes under E, a Poisson measure on
C
(
R+,W)

with intensity

4
∫ ζw

0
du Nw(u)[dW].

Intuitively, we pick a point on ∂D according to the exit measure. It is a typical
point of the support of the exit measure. This point is the end point of a path dis-
tributed as the Markov process ξ̄ (a “freezed” Brownian motion) stopped when it
leaves D. The distribution of the snakes that branch from this path is described by
a Poisson point process. The branching points are uniformly distributed along the
path taking into account of the freezing times.

2.4. Relationship between the snake and the α-super Brownian motion

We introduced the process YD because its distribution under the excursion measure
Nx is the canonical measure of the α-super Brownian motion started at δx .

Proposition 2.4. Let ν ∈ Mf , such that supp ν ⊂ D, and let
∑

i∈I δWi be a Pois-
son measure on C(R+,W) with intensity

∫
ν(dx)Nx[dW]. The random measure

∑
i∈I

YD(Wi)

has the same distribution as XD under PX
ν .

Let f ∈ B(Rd) be bounded and nonnegative. For z = (k, l, x) ∈ QD , we set
u(z) = Nz[1 − e−(YD,f )] and v(x) = u(0, 0, x). To prove the proposition, it is
enough to check that the nonnegative function v solves (1). From (7), we see we
need to express u(k, l, x) in term of v(x). The proof is then similar to the proof of
theorem 8 in [4] and is not reproduced here. In particular it involves some integral of
the Lévy measure of the Subordinator S. In order for the constant in front of v(γs)α

in (1) to be equal to 1, the computations yield the exact value of the constant c∗ρ .
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3. Lower bound of the hitting probability of small balls for XD and YD

Thanks to the snake representation of the α-super Brownian motion (proposition
2.4), theorem 1.2 on the lower bound of the hitting probability of the exit measure
XD is equivalent to the following proposition.

Proposition 3.1. Let K be a compact subset of D. There exists a constant cK , such
that for every x ∈ K , for every y ∈ ∂D, ε ∈ (0, 1/2),

Nx [YD (B∂D(y, ε)) > 0] ≥ cKϕd(ε).

Its proof relies on well known bounds on the Poisson kernel and on the Green func-
tion in D. At the end of this section we complete this proposition by describing
the behavior of the hitting measure Nx [YD (B∂D(y, ε)) > 0] when x is close to y

(lemma 3.2).
We first recall that (1) can be rewritten as

v(x)+
∫
D

dy GD(x, y)v(y)1+ρ =
∫
∂D

PD(x, z)f (z)θ(dz), (8)

where θ is the surface measure on ∂D, PD is the Poisson kernel in D and GD

the Green function of D. We then give some useful bounds for the Poisson kernel
and the Green function. There exist positive constants c(D) and C(D) (see [17]
formula (3.19)) such that for every (x, y) ∈ D × ∂D,

c(D)d(x, ∂D) |x − y|−d ≤ PD(x, y) ≤ C(D)d(x, ∂D) |x − y|−d , (9)

where d(x, ∂D) = inf{|x − y|; y ∈ ∂D}. There exists a positive constant C(D)

(see [25] theorem 3 with q = 0) such that for every (x, y′) ∈ D ×D,

GD(x, y′) ≤ C(D)
∣∣x − y′

∣∣1−d
d(y′, ∂D). (10)

Proof of Proposition 3.1. Let a > 0. Let x ∈ K, y ∈ ∂D, ε ∈ (0, 1/2). We set
hd(ε) = ε−d+1ϕd(ε). We have:

Nx [YD (B∂D(y, ε)) > 0] ≥= Nx

[
1 − exp [−ahd(ε)YD (B∂D(y, ε))]

] =: vε(x),

where, thanks to proposition 2.4, the function vε is the only nonnegative solution
of (8) with f = ahd(ε)1B∂D(y,ε). As

vε(x) ≤ ahd(ε)

∫
B∂D(y,ε)

PD(x, z)θ(dz),

we deduce from (8) that

vε(x) ≥ ahd(ε)

∫
B∂D(y,ε)

PD(x, z)θ(dz)

− [ahd(ε)]
1+ρ

∫
D

dy GD(x, y)

[∫
B∂D(y,ε)

PD(y, z)θ(dz)

]1+ρ

. (11)
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We now bound the second term of the right-hand side, which we denote by I . We
decompose the integration over D in an integration over D∩B(y, 2ε)c (denoted by
I1) and over D∩B(y, 2ε) (denoted by I2), where B(x, r) is the ball in Rd centered
at x with radius r . We easily get an upper bound on I1. We have for ε > 0 small
enough,

I1 =
∫
D∩B(y,2ε)c

dy′ GD(x, y′)
[∫

B∂D(y,ε)

PD(y′, z)θ(dz)
]1+ρ

≤ c

∫
D∩B(y,2ε)c

dy′
∣∣x − y′

∣∣1−d
d(y′, ∂D)2+ρ sup

z∈B(y,ε)

∣∣y′ − z
∣∣−d(1+ρ)

×
[∫

B∂D(y,ε)

θ(dz′)
]1+ρ

≤ cε(d−1)(1+ρ)

[
c +

∫
diam D≥r≥2ε

rd−1r2+ρr−d(1+ρ)dr

]
≤ cεd−1hd(ε)

−ρ.

We use the notation diam D = sup{∣∣z− z′
∣∣; (z, z′) ∈ D2}. We also have for ε > 0

small enough,

I2 =
∫
D∩B(y,2ε)

dy′ GD(x, y′)
[∫

B∂D(y,ε)

PD(y′, z)θ(dz)
]1+ρ

≤ c

∫
D∩B(y,2ε)

dy′
[∫

B∂D(y,ε)

d(y′, ∂D)
1+ 1

[1+ρ]
∣∣y′ − z

∣∣−d
θ(dz)

]1+ρ

≤ c

∫
D∩B(y,2ε)

dy′
[∫

B∂D(y,ε)

∣∣y′ − z
∣∣−d+1+ 1

[1+ρ] θ(dz)

]1+ρ

≤ c

∫
D∩B(y,2ε)

dy′
[
ε1/[1+ρ]

]1+ρ

= cεd+1.

Combining those results together, we get that there exists a positive constant c′1
such that for every (x, y) ∈ K × ∂D, ε ∈ (0, 1/2),

I ≤ c′1[ahd(ε)]
1+ρεd−1hd(ε)

−ρ.

On the other hand, there exists a constant c′2 such that for every (x, y) ∈ K × ∂D,
ε ∈ (0, 1/2): ∫

B∂D(y,ε)

PD(x, z)θ(dz) ≥ c′2ε
d−1.

Plugging the previous inequalities into (11), we get

vε(x) ≥ aϕd(ε)
[
c′2 − c′1a

ρ
]
.
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Since the constant a is arbitrary, we can take a = (c′2/2c′1)
1/ρ to get

Nx [YD (B∂D(y, ε)) > 0] ≥ vε(x) ≥ 1

2
c′2aϕd(ε). �

We can also derive another bound when the starting point x is near the boundary
using similar techniques.

Lemma 3.2. LetA > a > 0. There exist two constants c(A, a) > 0 and ε(D) > 0,
such that for every y0 ∈ ∂D, ε ∈ (0, ε(D)), y ∈ B∂D(y0, ε), η ∈ (0, ε), x ∈ D

with d(x, y) < Aη and d(x, ∂D) > aη, we have

Nx [YD(B∂D(y0, ε) ∩ B∂D(y, η)) > 0] ≥ c(A, a)η−2/ρ.

Proof. We use the same techniques as in the proof of the previous proposition.
We replace the upper bound of the Green function by the following : there exists a
constant c such that, for every (x, y) ∈ D ×D,

GD(x, y) ≤ c|y − x|2−d if d ≥ 3.

For d = 2, we bound GD(x, y) by the Green function of R2\B, where B is a ball
outside D tangent to D in y0. Since D is bounded of class C2, the “uniform exte-
rior sphere” condition holds, that is the radius of B can be chosen independently
of y0. �

4. Some technical lemmas

4.1. Remarks and notations

In this section we look at the behavior of the path Ws = (ξt (Ws), Lt (Ws), 1t (Ws);
t ∈ [0, ζs]) near its end point. This behavior is crucial for the proof of the unique-
ness theorem in the next section and for giving an estimate of the hitting probability
of small balls for the exit measure in the critical dimension (proposition 6.1). We
will write Ŵs = 1ζs (Ws) for the spatial end point and L̂s = Lζs (Ws) for the time
change end point of the path Ws . Lemma 4.2 and lemma 4.4 are devoted to the up-
per bounds of the probability of unusually large value of the continuous processes
L̂s and Ŵs from a constant piecewise approximation. Eventually, we then deduce
some uniform behavior of the spatial motion γ (Ws) = 1 ◦ L−1(Ws) near the end
point Ŵs = γ

L̂s
(Ws) (lemma 4.5 and lemma 4.6) and of the inverse of the time

change S(Ws) = L−1(Ws) near the end point L̂s (lemma 4.7). These estimates
would be easy to obtain if we considered a typical path. But we want to apply them
to the first path hitting Bε. Consequently, we must get uniform estimates which are
true for all the paths of the snake.

More precisely, we show in lemma 4.5 that outside a set of small probability,
the spatial motion is not abnormally fast near its end point. We show in lemma 4.6,
that if the end point is on ∂D, then the path does not spend too much time near ∂D
(for example, the path does not approach ∂D tangentially). Eventually in lemma
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4.7 we prove the time change increments are not abnormally small near the end
point. This means that the intensity of the branching mechanism is not too low.

Let us introduce some notations. For w ∈ W , we define κD(w) = LτD(w)

if τD(w) < ∞, κD(w) = ∞ otherwise. We extend this definition to the process
ξ̄ . With the notations of section 2.2, under P̄x , x ∈ D, κD is the exit time of D

for γ , whereas τD is the exit time of D for 1 = γL. Notice that P̄x-a.s. we have
SκD− = τD . We define for w ∈ W such that L̂(w) is finite, the inverse of the time
process L: St (w) = inf{u ≥ 0, Lu(w) > t} and for the spatial motion, we also set
γt (w) = 1St (w) for t ∈ [0, L̂(w)).

We write L̂s for L̂(Ws), and we set L̂s = L̂0 for s ≥ σ .

Remark 4.1. In particular, for a given s > 0, if s < σ , then the path γ (Ws) is under
Nx distributed as a Brownian motion started at point x (and killed at time L̂s).
Similarly, the path S(Ws) is distributed as the subordinator introduced in section
2.2 (killed at time L̂s). The notations are consistent with those from section 2.2.

4.2. Lemmas and proofs

Lemma 4.2. Let θ > 0. There exist a constant C(θ) such that for every stopping
time τ with respect to the filtration generated by ζ , for every a > 0, c > θ , x ∈ Rd ,
on {τ < ∞},

Nx

[
sup

u∈[τ,τ+a]

∣∣∣L̂τ − L̂u

∣∣∣ ≥ caρ/2
∣∣∣∣τ
]
≤ C(θ) e−c/θ .

Remark 4.3. Set E∗
(r) =

∫
P̄r
x(dw)E∗

w, where P̄r
x is the law of ξ̄ under P̄x killed at

time r . Let τ be a stopping time with respect to the filtration generated by ζ . By
the strong Markov property of the Brownian snake at time τ , we see that under
Nx[τ < ∞, ·], conditionally on ζτ , (Wτ+s , s ≥ 0) is distributed according to E∗

(ζτ )
.

Proof. Let αp = c0(p + 1)2−pρ/2 and c0 such that
∑

p≥0 αp = 1. Using the

continuity of the path (L̂s, s ≥ 0), we have for r > 0,

E∗
(r)

[
sup
s≤a

∣∣∣L̂s − L̂0

∣∣∣ ≥ caρ/2
]
≤
∑
p≥0

2p∑
l=1

E∗
(r)

[∣∣∣L̂(l−1)2−pa − L̂l2−pa

∣∣∣≥αpca
ρ/2

]
.

Using the Brownian snake property, we see that conditionally on the lifetime pro-
cess ζ , L̂(l−1)2−pa − L̂l2−pa is distributed as L

(1)
t1

− L
(2)
t2

where L(1) and L(2) are
independent and distributed according to

∫
P̄t0
x (dw)P̄w(t0) where t0 = inf{ζu; u ∈

[(l−1)2−pa, l2−pa]}, t1 = ζ(l−1)2−pa− t0 and t2 = ζl2−pa− t0. Thus
∣∣∣L(1)

t1
− L

(2)
t2

∣∣∣
is stochastically dominated by Lt1∨t2(< Lt1+t2) under P̄0. For h > 0, δ > 0, we
have

P̄0[Lt ≥ h] = P̄0[Sh ≤ t] ≤ Ē0

[
e−δSh+δt

]
= eδt−c∗ρδρh . (12)
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With t = t1 + t2 and h = αρca
ρ/2, we deduce that for δ > 0,

E∗
(r)

[∣∣∣L̂(l−1)2−pa − L̂l2−pa

∣∣∣ ≥ αpca
ρ/2

]
≤ Pr

[
eδ(t1+t2)

]
e−c∗ρδραpca

ρ/2

= P0

[
eδζ̄2−pa

]
e−c∗ρδραpca

ρ/2
,

where under Pu, ζ is a linear Brownian motion started at u and ζ̄v = ζv −
2 inf{ζu; u ≤ v} is a 3-dimensional Bessel process started at 0 under P0. Take
δ = b(2−pa)−1/2. By scaling, we have

P0

[
eδζ̄2−pa

]
e−c∗ραpca

ρ/2δρ = c1(b) e−c∗ραpc2pρ/2bρ ,

where c1(b) depends only on b. Thus we have

E∗
(r)

[
sup

s∈[0,a]

∣∣∣L̂s − L̂0

∣∣∣ ≥ caρ/2

]
≤

∞∑
p=0

2p∑
l=1

c1(b) e−c∗ραpc2pρ/2bρ

≤c1(b) e−c∗ρc0cb
ρ

∞∑
p=0

2p e−c∗ρc0cb
ρp

= c2(θ) e−c/θ , (13)

where we take b = [c∗ρc0θ ]−1/ρ for the last equality. Since the result is independent
of r > 0, the lemma is then a consequence of the remark before the beginning of
this proof. �

Let n ≥ 1 be an integer. We define inductively a sequence of stopping time
(τi, i ≥ 0) by

τ0 = 0 and τi+1 = inf{v > τi;
∣∣ζv − ζτi

∣∣ = 2−n/ρ}.
Let N = inf{i > 0; τi = 0}. Recall that, conditionally on {τ1 < ∞}, the se-
quence (ζτi , i ≥ 1) is a simple random walk on 2−n/ρZ+ stopped when it reaches
0. Therefore, we have for i0 > 1,

∞∑
i=1

Nx

[
ζτi = i02−n/ρ

] = Nx [τ1 < ∞] Nx

[ ∞∑
i=1

1{ζτi=i02−n/ρ }
∣∣∣ τ1 < ∞

]

= 2Nx

[
sup
s≥0

ζs > 2−n/ρ

]
= 2n/ρ.

Lemma 4.4. Let λ > 0. There exist two constants C∗ > 0, c∗ > 0 such that for
any integer n ≥ 1, for every M > m ≥ 2−n/ρ , we have

Nx

[
∃i ∈ {1, · · · , N − 1},m ≤ ζτi ≤ M, sup

s∈[τi ,τi+1]

∣∣∣Ŵs − Ŵτi

∣∣∣ ≥ c∗n1+ ρ
4 2−n/2

]

≤ C∗M22n/ρ e−λn,
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Nx

[
∃i ∈ {1, · · · , N − 1},m ≤ ζτi ≤ M, sup

s∈[τi ,τi+1]

∣∣∣L̂s − L̂τi

∣∣∣ ≥ c∗n1+ ρ
2 2−n

]

≤ C∗M22n/ρ e−λn .

Proof. Let c1, c∗ be two positive constants whose value will be fixed later. We set
a = c12−2n/ρ log(2n/ρ). Let k ≥ 1. We have

Nx

[
ζτi = k2−n/ρ, sup

s∈[τi ,τi+1]

∣∣∣Ŵs − Ŵτi

∣∣∣ ≥ c∗n1+ ρ
4 2−n/2

]

≤ Nx

[
ζτi = k2−n/ρ, τi+1 − τi > a

]
+Nx

[
ζτi = k2−n/ρ, sup

s∈[τi ,τi+a]

∣∣∣Ŵs − Ŵτi

∣∣∣ ≥ c∗n1+ ρ
4 2−n/2

]
.

The law of τi+1 − τi knowing {i < N} is the law of the first exit time from
[−2−n/ρ, 2−n/ρ] for a standard linear Brownian motion started at 0. Thus there
exist two positive constants a1, a2 (independent of n, c1) such that:

Nx

[
ζτi = k2−n/ρ, τi+1 − τi > a

] ≤ Nx

[
ζτi = k2−n/ρ

]
a12−a2c1n/ρ.

Set αp = c0(p + 1)2−pρ/4 for p ≥ 0 and c0 is so that
∑∞

p=0 αp = 1. For r > 0,
we have

In = E∗
(r)

[
sup

s∈[0,a]

∣∣∣Ŵs − Ŵa

∣∣∣ ≥ c∗n1+ ρ
4 2−n/2

]

≤
∞∑

p=0

2p∑
l=1

E∗
(r)

[∣∣∣Ŵ(l−1)2−pa − Ŵl2−pa

∣∣∣ ≥ αpc∗n1+ ρ
4 2−n/2

]
.

Conditionally on (Lt (Ws), t ∈ [0, ζs), s ≥ 0), Ŵ(l−1)2−pa − Ŵl2−pa is a centered
Gaussian random variable with variance

V 2 = L̂(l−1)2−pa + L̂l2−pa − 2 inf
s∈[(l−1)2−pa,l2−pa]

L̂s .

If Z is a d-dimensional centered Gaussian random variable with variance V 2, then

P[|Z| > b] ≤ 2d/2 e−b2/4V 2
.

Let V 2
0 = (p + 1)n2−pρ/2aρ/2. We have

E∗
(r)

[∣∣∣Ŵ(l−1)2−pa − Ŵl2−pa

∣∣∣ ≥ αpc∗n1+ ρ
4 2−n/2, V 2 < V 2

0

]
≤ 2d/2 e−n(p+1)c2c

2∗c
−ρ/2
1 ,
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where c2 depends only on ρ. From the proof of lemma 4.2 (see (13)), we deduce
that for θ ∈ (0, 1),

E∗
(r)

[
V 2 ≥ V 2

0

]
≤ E∗

(r)

[
E∗
(ζ(l−1)2−pa)

[
sup

s≤2−pa

∣∣∣L̂s − L̂0

∣∣∣ ≥ V 2
0 /3

]]

≤ c3(θ) e−(p+1)n/3θ ,

where c3 depends only on θ . Thus we have

In ≤ 2d/2 e−n(p+1)c2c
2∗c

−ρ/2
1 +c3(θ) e−(p+1)n/3θ .

Let λ > 0 be fixed. We can choose c1, c∗, θ−1 large enough so that for every n ≥ 1,
M > m ≥ 2−n/ρ ,

Nx

[
∃i ∈ {1, · · · , N − 1},m ≤ ζτi ≤ M, sup

s∈[τi ,τi+1]

∣∣∣Ŵs − Ŵτi

∣∣∣ ≥ c∗n1+ ρ
4 2−n/2

]

≤
[M2n/ρ ]+1∑

k=1

∞∑
i=1

Nx[ζτi = k2−n/ρ](a12−a2c1n/ρ + In)

≤ C∗M22n/ρ e−λn,

where C∗ is a constant independent of n,M and m. This ends the proof of the first
inequality.

The second inequality is proved in a similar way. �

We are now going to give three lemmas which describe the behavior of the
paths Ws for s ≥ 0, near their end-point.

For a path w ∈ W , we set for A0 > 0 and integers n > n0 ≥ 1,

FA0
n0,n

(w) = 1{L̂(w)≥2−n0+1}
1

n− n0

n−1∑
k=n0

1{sup
t∈[0,2−k−1] |γL̂(w)−t

(w)−ŵ|>A02−k/2}.

We have the following lemma :

Lemma 4.5. Let δ ∈ (0, 1]. For every λ > 0, we can choose A0 > 0 such that
there exists a constant K1 and for every integers n ≥ 3, n0 ∈ [1, n−√

n], for every
M > m ≥ 2−n/ρ , x ∈ Rd ,

Nx

[
∃s≥0; m≤ζs≤M, L̂s > 2−n0+1, FA0

n0,n
(Ws) > δ

]
≤K1M22n/ρe−λ(n−n0).

Proof. For A > 0, n > n0 ≥ 1, w ∈ W , we set

F̃ A
n0,n

(w) = 1{L̂(w)≥2−n0 }
1

n− n0

n−1∑
k=n0

1{sup
t∈[0,2−k ] |γL̂(w)−t

(w)−ŵ|>A2−k/2}.
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From the remark following lemma 4.2, we have for k > 0,

I = Nx

[
L̂τi > 2−n0 , F̃ A

n0,n
(Wτi ) > δ | ζτi = k2−n/ρ

]
= E∗

(k2−n/ρ)

[
L̂τi > 2−n0 , F̃ A

n0,n
(Wτi ) > δ

]
.

Conditionally on L̂τi , (γL̂τi
−t

(Wτi )− γ
L̂τi

(Wτi ), t ∈ [0, L̂τi ]) is under E∗
(k2−n/ρ)

a

standard Brownian motion. Thanks to lemma 0 in [21] and a scaling argument, we
easily get I ≤ e(dc0−δA)(n−n0), where c0 is a universal constant. Hence, summing
over k ∈ {1, · · · , [M2n/ρ] + 1} and i ≥ 1, we have for M > m ≥ 2−n/ρ ,

Nx

[
∃i ∈ {1, · · · , N − 1};m ≤ ζτi ≤ M, L̂τi > 2−n0 , F̃ A

n0,n
(Wτi ) > δ

]
≤ 2M22n/ρ e(dc0−δA)(n−n0) . (14)

We will now interpolate between τi and τi+1. Let A0 > 1, λ > 0. We consider the
two constants c∗, C∗ defined in lemma 4.4. We write

A1 =
⋂

i∈{1,... ,N−1}

{
sup

r∈[τi ,τi+1]

∣∣∣Ŵr − Ŵτi

∣∣∣ ≤ c∗n1+ ρ
4 2−n/2

}

A2 =
⋂

i∈{1,... ,N−1}

{
sup

r∈[τi ,τi+1]

∣∣∣L̂r − L̂τi

∣∣∣ ≤ c∗n1+ ρ
2 2−n

}
.

Fix n > n0 ≥ 1. Assume there is s0 > 0 such that L̂s0 ≥ 2−n0+1 and m ≤ ζs0 ≤ M .
There is a unique i ∈ {1, . . . , N−1} such that s0 ∈ [τi, τi+1). We want to compare
F̃ A
n0,n

(Wτi ) and F
A0
n0,n(Ws0) on A1 ∩ A2. Let s1 ∈ [τi, τi+1] such that ζs ≥ ζs1 for

s ∈ [τi, τi+1]. All the paths Ws for s ∈ [τi, τi+1] coincide up to time ζs1 . From the
snake property, we have on A1,

sup
t∈[0,L̂s0−L̂s1 ]

∣∣∣γL̂s0−t
(Ws0)− Ŵτi

∣∣∣ ≤ sup
s∈[τi ,τi+1]

∣∣∣Ŵs − Ŵτi

∣∣∣ ≤ c∗n1+ ρ
4 2−n/2.

Notice there exists c1 (depending only on c∗) such that if n0 ≤ k ≤ n − c1 log n,

then 2−k−1 ≥ c∗n1+ ρ
2 2−n and 2−

k
2−1 ≥ c∗n1+ ρ

4 2−n/2. For n0 ≤ k ≤ n− c1 log n,
we have on A2, L̂s0 − 2−k−1 ≥ L̂τi − 2−k > 0. Since the path (γt (Ws0), t ≥ 0)
and (γt (Wτi ), t ≥ 0) coincide up to time L̂s1 , we get on A2,

{
γt (Ws0); L̂s0 − 2−k−1 ≤ t ≤ L̂s1

}
⊂
{
γt (Wτi ); L̂τi − 2−k ≤ t ≤ L̂τi

}
.
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We deduce that for n0 ≤ k ≤ n− c1 log n, on A1 ∩ A2,

sup
t∈[0,2−k−1]

∣∣∣γL̂s0−t
(Ws0)− Ŵs0

∣∣∣ ≤ sup
s∈[τi ,τi+1]

∣∣∣Ŵs − Ŵτi

∣∣∣
+ sup

t∈[0,L̂s0−L̂s1 ]

∣∣∣γL̂s0−t
(Ws0)− Ŵτi

∣∣∣
+ sup

t∈[L̂s0−L̂s1 ,2
−k−1]

∣∣∣γL̂s0−t
(Ws0)− Ŵτi

∣∣∣
≤ 2c∗n1+ ρ

4 2−n/2 + sup
t∈[0,2−k]

∣∣∣γL̂τi
−t

(Wτi )− Ŵτi

∣∣∣ .
Therefore on A1 ∩A2, we have F

A0
n0,n(Ws0) ≤ F̃

A0/2
n0,n (Wτi )+ c1

log n
n−n0

. Let δ > 0 be

fixed. For n large enough, and n0 ∈ [1, n−√
n], we have c1

log n
n−n0

≤ c1
log n√

n
≤ δ/2.

Decomposing on the sets A1 ∩ A2, Ac
1 and Ac

2, we get

Nx

[
∃s ≥ 0, m ≤ ζs ≤ M, L̂s > 2−n0+1, FA0

n0,n
(Ws) > δ

]
≤ Nx

[
∃i ∈ {1, . . . , N − 1}, m ≤ ζτi ≤ M, L̂τi > 2−n0 , F̃

A0/2
n0,n (Wτi ) >

δ

2

]

+Nx

[
∃i ∈ {1,. . . ,N − 1}, m≤ζτi ≤M, sup

r∈[τi ,τi+1]

∣∣∣Ŵr − Ŵτi

∣∣∣≥c∗n1+ρ
4 2−n/2

]

+Nx

[
∃i ∈ {1, . . . , N − 1}, m ≤ ζτi ≤ M, sup

r∈[τi ,τi+1]

∣∣∣L̂r − L̂τi

∣∣∣ ≥ c∗n1+ ρ
2 2−n

]

≤ 2M22n/ρe

(
dc0− δA0

4

)
(n−n0) + 2C∗M22n/ρe−λn

by formula (14) and lemma 4.4.
It suffices now to take A0 large enough so that δ A0

4 − dc0 > λ to get the right
member bounded from above by

2(C∗ + 1)M22n/ρe−λ(n−n0). �

Let γ[0,r] = (γt , t ∈ [0, r]) a path in Rd . For a0 > 0 and an integer k ≥ 1, we
set

Aa0
k (γ[0,r]) =

{
∃t ∈

[
r − 15

16
2−k, r − 7

8
2−k

]
, d(γt ,D

c) < a02−k/2
}

and

φa0
n0,n

= 1{r≥2−n0+1}
1

n− n0

n−1∑
k=n0

1Aa0
k (γ [0,r])

.

We then have the following lemma :
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Lemma 4.6. For every λ > 0, we can choose a0 > 0 such that there exists a con-
stantK2 and for every integers n ≥ 3, n0 ∈ [1, n−√

n], for everyM > m ≥ 2−n/ρ ,
x ∈ D,

Nx

[
∃s≥0; m≤ζs≤M, L̂s >2−n0+1, φa0

n0,n

(
γ[0,L̂s ](Ws)

)
>

1

6
, τD(Ws)=ζs

]
≤ K2M22n/ρ2n−n0e−λ(n−n0).

Proof. Let us set

Ãa0
k (γ[0,r]) =

{
∃t ∈

[
r − 2−k, r − 3

4
2−k

]
; d(γ (t),Dc) < a02−k/2

}

and for n1 > n0 ≥ 1,

φ̃a0
n0,n1

(γ[0,r]) = 1{r>2−n0 }
1

n1 − n0

n1−1∑
k=n0

1Ãa0
k (γ[0,r])

.

From [2] p.265, it is easy to see that for r > 2−n0 , x ∈ D,

Px

[
{γt ∈D; t ∈ [0, r − 2−n1−1]}∩{φ̃a0

n0,n1
(γ[0,r]) > 1/12}

]
≤2n1−n0g1(a0)

n1−n0 ,

where g1 is a nondecreasing function (independent of r) such that lima↓0 g1(a) = 0.
We take a0 > 0 such that g1(a0) ≤ e−2λ. Conditionally on ζτi , L̂τi , the process

γ[0,L̂τi
](Wτi ) =

(
γt (Wτi ), t ∈ [0, L̂τi ]

)
is a standard Brownian motion started at

x. Hence, we have for k ≥ 1,

Nx

[
ζτi = k2−n/ρ, L̂τi > 2−n0 , φ̃a0

n0,n1
(γ[0,L̂τi

](Wτi )) > 1/12, κD(Wτi )

> L̂τi − 2−n1−1
]
≤ Nx

[
ζτi = k2−n/ρ

]
2n1−n0 e−2λ(n1−n0) .

Summing over i ≥ 1 and k ∈ {1, · · · , [M2n/ρ]+1}, we have for M ≥ m ≥ 2−n/ρ ,

Nx

[
∃i ∈ {1, · · · , N − 1};m ≤ ζτi ≤ M, L̂τi > 2−n0 ,

φ̃a0
n0,n1

(γ[0,L̂τi
](Wτi )) > 1/12, κD(Wτi ) > L̂τi − 2−n1−1

]
≤ 2M22n/ρ2n1−n0 e−2λ(n1−n0) .

We will now interpolate between τi and τi+1. We consider the two constants c∗, C∗
defined in lemma 4.4. We write

A2 =
⋂

i∈{1,... ,N−1}

{
sup

r∈[τi ,τi+1]

∣∣∣L̂r − L̂τi

∣∣∣ ≤ c∗n1+ ρ
2 2−n

}
.
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Fix n > n0 ≥ 1. Assume there is s0 > 0 such that L̂s0 ≥ 2−n0+1 and m ≤ ζs0 ≤ M .
There is a unique i ∈ {1, . . . , N − 1} such that s0 ∈ [τi, τi+1). We want to com-
pare φ̃A

n0,n1
(Wτi ) and φ

A0
n0,n(Ws0) on A2. Let s1 ∈ [τi, τi+1] such that ζs ≥ ζs1 for

s ∈ [τi, τi+1]. All the paths Ws for s ∈ [τi, τi+1] coincide up to time ζs1 .
Notice there exists c1 (depending only on c∗) such that if n0 ≤ k ≤ n−c1 log n,

then 1
16 2−k ≥ c∗n1+ ρ

2 2−n. For n0 ≤ k ≤ n− c1 log n, we have on A2,

L̂τi − 2−k ≤ L̂s0 −
15

16
2−k ≤ L̂s0 −

7

8
2−k ≤ L̂τi −

3

4
2−k.

And since L̂τi − 3
4 2−k ≤ L̂s1 , we have

{
γt (Ws0); t ∈

[
L̂s0 −

15

16
2−k, L̂s0 −

7

8
2−k

]}

⊂
{
γt (Wτi ); t ∈

[
L̂τi − 2−k, L̂τi −

3

4
2−k

]}
.

Notice we also have L̂τi > 2−n0 since L̂s0 > 2−n0+1. Let n1 be the largest integer
smaller than n− c1 log n. From the snake property, since κD(Ws0) = L̂s0 , we have
that κD(Ws) ≥ L̂s1 for s ∈ [τi, τi+1]. And thus we get on A2, κD(Wτi ) ≥ L̂s1 ≥
L̂τi − 2−n1−1. For n large enough, n1 > n0. The previous remarks lead to

φa0
n0,n

(
γ[0,L̃s0 ](Ws0)

)
≤ n1 − n0

n− n0
φ̃a0
n0,n1

(
γ[0,L̂τi

](Wτi )
)
+ c1

ln n

n− n0

≤ φ̃a0
n0,n1

(
γ[0,L̂τi

](Wτi )
)
+ 1

12

for n large enough. Decomposing on the sets A2 and Ac
2, we get for n large enough,

Nx

[
∃s≥0; m≤ζs≤M, L̂s≥2−n0+1, φa0

n0,n

(
γ[0,L̂s ](Ws)

)
>

1

6
, τD(Ws)=ζs

]

≤ Nx

[
∃i ∈ {1, . . . , N − 1}; m ≤ ζτi ≤ M, L̂τi ≥ 2−n0 ,

φ̃a0
n0,n1

(
γ[0,L̂τi

](Wτi )
)
>

1

12
, κD(Wτi ) ≥ L̂τi − 2−n1−1

]

+Nx

[
∃i∈{1, . . . , N−1}; m≤ζτi ≤M, sup

r∈[τi ,τi+1]

∣∣∣L̂r − L̂τi

∣∣∣≥c∗n(1+ρ
2 )2−n

]

≤ 2M22n/ρ2n1−n0 e−λ(n1−n0) +C∗M22n/ρe−λn

≤ (2 + C∗)M22n/ρ2n−n0e−λ(n−n0),

where we use that
√
n ≥ 2c1 log n implies 2(n1 − n0) ≥ n − n0 for the last

inequality. �
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Let S[0,r) = (St , t ∈ [0, r)) be a càdlàg path in R. We define for a1 > 0 and
n > n0 ≥ 1,

ψa1
n0,n

(S[0,r)) = 1{r>2−n0+1}
1

n− n0

n−1∑
k=n0

1{
S(

r− 7
8 2−k

)
−−S(

r− 15
16 2−k

)
−<a12−k/ρ

}.

Lemma 4.7. For every λ > 0, we can choose a1 large enough such that there
exists a constant K3 and for every integers n ≥ 3, n0 ∈ [1, . . . n−√

n], for every
M > m ≥ 2−n/ρ , x ∈ Rd ,

Nx

[
∃s > 0; m ≤ ζs ≤ M, L̂s > 2−n0+1, φa1

n0,n

(
S[0,L̂s )

(Ws)
)
>

1

6

]
≤ K3M22n/ρ2n−n0e−λ(n−n0).

Proof : the same ideas of the proof of lemma 4.6 lead to define

ψ̃a1
n0,n

(S[0,r)) = 1{r>2−n0 }
1

n− n0

n−1∑
k=n0

1{
S
(r− 3

4 2−k)−−S
(r−2−k)−<a12−k/ρ

}.

Using the strong Markov property at time τi for the Brownian snake, we get

Nx

[
ζτi = k2−n/ρ, L̂τi > 2−n0 , ψ̃a0

n0,n
(S[0,L̂τi

)
(Wτi )) > 1/12

]
= Nx

[
ζτi = k2−n/ρ

]
P̄x

[
Lk2−n/ρ > 2−n0 , ψ̃a0

n0,n
(S[0,L

k2−n/ρ )) > 1/12
]
.

From the lemma 9.1 in the appendix we know that for r > 0, (St , t ∈ [0, Lr))

and (SLr− − S(Lr−t)−, t ∈ [0, Lr)) are identically distributed under P̄x . Let q the
integer part of (n− n0)/12. The set

{Lk2−n/ρ > 2−n0 ,
1

n− n0

n−1∑
k=n0

1{S2−k−S 3
4 2−k<a12−k/ρ } > 1/12}

is a subset of

⋃
n0≤k1<···<kq<n

q⋂
j=1

{
S2−kj − S 3

4 2−kj < a12−kj /ρ
}
.

Since the increments of the process S are independent, we have by scaling that
the probability of the last event is g2(a1)

n−n0 , where g2 is a function such that
lima↓0 g2(a) = 0. We take a1 > 0 so that g2(a1) ≤ e−λ. Notice there are less than
2n−n0 possible choices for k1, . . . , kq . Thus we have

Nx

[
ζτi = k2−n/ρ, L̂τi > 2−n0 , ψ̃a0

n0,n
(S[0,L̂τi

)
(Wτi )) > 1/12

]
≤ Nx

[
ζτi = k2−n/ρ

]
2n−n0 e−λ(n−n0) .
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And summing over i ≥ 1 and k ∈ {1, · · · , [M2n/ρ] + 1}, we have for M ≥ m ≥
2−n/ρ ,

Nx

[
∃i∈{1, · · · , N − 1}; m≤ζτi ≤M, L̂τi >2−n0 , ψ̃a0

n0,n
(S[0,L̂τi

)
(Wτi ))>1/12

]
≤ 2M22n/ρ2n−n0 e−λ(n−n0) .

The end of the proof is similar to the one of lemma 4.6. �

5. Proof of the uniqueness theorem 1.1

The proof of this theorem relies heavily on the lemmas of the previous section and
on the excursion decomposition of the snake.

Proof of Theorem 1.1. Let Bε = B∂D(y0, ε), where y0 ∈ ∂D. We denote by vε the
maximal nonnegative solution of (4) and uε the minimal nonnegative solution. In
the first section we recall a representation of those functions in terms of the super-
process X. From the characterization of RD (this a projection of the graph GD on
Rd ) in 2.2 C from [12], the Poisson representation of proposition 2.2 and lemma
5.2 in [8] (with the Brownian motion replaced by the Brownian motion stopped at
its exit time of D), we get for x ∈ D, vε(x) ≤ Nx[T < ∞], where

T = inf{s > 0, ζs = τD(Ws) and Ŵs ∈ Bε}.
(In fact we will see the above inequality is an equality.) We deduce from (2) and
the snake representation of the exit measure that uε(x) = Nx[YD(Bε) > 0]. The
strong Markov property applied at the stopping time T gives

uε(x) = Nx[T < ∞, YD(Bε) > 0] = Nx[T < ∞,E∗
WT

(YD(Bε) > 0)].

Thus, to prove the uniqueness, it is enough to prove that E∗
WT

(YD(Bε) > 0)) = 1
Nx-a.e. on {T < ∞}. Using proposition 2.2 on {T < ∞}, we have

E∗
WT

(YD(Bε) > 0) = 1 − exp

{
−
∫ ζT

0
NWT (t)(YD(Bε) > 0)dt

}
.

Thanks to the snake property, it is clear that Nx-a.e. for every s ∈ (0, σ ), L(Ws) =
(Lt (Ws), t ∈ [0, ζs]) is continuous nondecreasing and the path (1t (Ws), t ∈
[0, ζs]) is constant on intervals where L(Ws) itself is constant. Therefore the time
change Ss(WT ) = t implies

E∗
WT

(YD(Bε) > 0) = 1 − exp

{
−
∫ L̂T

0
Nγs(WT )(YD(Bε) > 0)dSs(WT )

}
.

Notice that γs(WT ) ∈ D for s ∈ [0, L̂T ) and ŴT ∈ Bε. Now, let A, a, a′ > 0. We
set J = J (A, a, a′) the set of integers k such that 2−k+1 ≤ L̂T and∣∣γs(WT )− ŴT

∣∣ ≤ A2−k/2 for s ∈
[
0, L̂T − 2−k

]
,

d
(
γs(WT ),D

c) > a2−k/2 for s ∈
[
L̂T − 15

16
2−k, L̂T − 7

8
2−k

]
,

and S
L̂T− 15

16 2−k (WT )− S
L̂T− 7

8 2−k (WT ) ≥ a′2−k/ρ.
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Lemmas 4.5, 4.6 and 4.7 show that we can choose A, a, a′ such that J is infinite
Nx-a.e. Moreover, lemma 3.2 gives for ε > 0 small enough that there exists c > 0

such that if k ∈ J and if t ∈
[
L̂T − 15

16 2−k, L̂T − 7
8 2−k

]
, then we have

Nγt (WT )(YD(Bε) > 0) ≥ c2k/ρ.

We deduce that∫ L̂T

0
Nγs(WT )(YD(Bε) > 0)dSs(WT )

≥
∑
k∈J

∫ L̂T− 7
8 2−k

L̂T− 15
16 2−k

Nγs(WT )(YD(Bε) > 0)dSs(WT )

≥
∑
k∈J

c2k/ρ(S
L̂T− 15

16 2−k (WT )− S
L̂T− 7

8 2−k (WT ))

≥
∑
k∈J

ca′2k/ρ2−k/ρ = +∞.

This implies that E∗
WT

(YD(Bε) > 0) = 1 Nx-a.e., which in turn implies vε = uε

in D. �

We end this section with a lemma which will be useful later. Let K ⊂ D be a
compact set.

Lemma 5.1. Let λ > 0. There exist δ0 > 0, C > 0 such that for all x ∈ K ,
δ ∈ (0, δ0],

Nx [∃s ∈ (0, σ ); κD(Ws) < δ] ≤ Cδλ,

Nx

[
∃s ∈ (0, σ ); ζs < δ2/ρ, L̂s > δ

]
≤ Cδλ.

The proof of the first inequality uses an uniqueness result in a parabolic setting
similar to theorem 1.1. The proof of the second inequality is more involved.

Proof. Let G = {(L̂s, Ŵs), s ∈ (0, σ )} be the graph of the Brownian snake. Using
the Brownian snake property on [s, inf{u > s; ζu = τD(Ws)}], we see that the set
A1 = {∃s ∈ (0, σ ); κD(Ws) < δ} is a subset of {G ∩ [0, δ)×Dc �= ∅}. Let O be a
smooth domain such that Dc ⊂ O and K ⊂ (Ō)c. Then we have

A1 ⊂ {G ∩ [0, δ)×O �= ∅} ⊂
⋂

t∈[0,δ)∩Q

{G ∩ {t} ×O �= ∅} .

We consider the stopping time for the Brownian snake

Tt = inf
{
s > 0; ζs = τR+×[0,t)×Rd (Ws) and Ŵs ∈ O

}
,

where we use the notation of section 2.3. Let Yt be the exit measure of the Brownian
snake of R+ × [0, t)× Rd . We have {Yt (O) > 0} ⊂ {Tt < ∞}. Arguing as in the
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proof of theorem 1.1 (mainly lemma 9.1 has to be replaced by the duality lemma
p.45 of [3]), we can prove that for x ∈ Rd ,

Nx[Tt < ∞] = Nx[Yt (O) > 0].

Therefore we have using theorem 8 of [4] and the right continuity of X for δ > 0,

Nx[A1] ≤ Nx[G ∩ {t} ×O �= ∅ for some t ∈ [0, δ) ∩ Q]

≤ Nx[Yt (O) > 0 for some t ∈ [0, δ) ∩ Q]

≤ − log
(

1 − PX
δx

[Xt(O) �= 0 for some t ∈ [0, δ)]
)
.

The first inequality of the lemma is then a consequence of theorem 9.2.4. of [6].
The proof of the second inequality is more involved. We set m = δ2/ρ and

A2 = {∃s ∈ (0, σ ); ζs < m, L̂s > δ}. We have

Nx[A2] ≤
∞∑
k=0

Nx

[
∃s ∈ (0, σ ); ζs ∈ (m2−k−1,m2−k], L̂s > δ

]
.

For each k ∈ Z+, we define inductively a sequence of stopping time (τ k
i , i ≥ 0) by

τ k
0 = 0, and τ k

i+1 = inf
{
v > τk

i ;
∣∣∣ζv − ζτk

i

∣∣∣ = m2−k−1
}
.

Let Nk = inf{i > 0; τ k
i = ∞}. Recall that Nx[τ k

1 < ∞] = m−12k . Conditionally
on {τ k

1 < ∞}, the sequence (ζτk
i
, i ≥ 1) is a simple random walk on m2−k−1Z+

stopped when it reached 0. We have for j0 ≥ 1,

Nx

[ ∞∑
i=1

1{ζ
τk
i
=j0m2−k−1}

]
= Nx

[
τ k

1 < ∞
]

Nx

[ ∞∑
i=1

1{ζ
τk
i
=j0m2−k−1}

∣∣∣∣τ k
1 < ∞

]

= m−12k+1. (15)

We have

Nx

[
∃s ∈ (0, σ ); ζs ∈ (m2−k−1,m2−k] and L̂s > δ

]

≤
2∑

j=1

Nx

[
∃i∈{1,· · ·,Nk − 1}; ζτk

i
=jm2−k−1 and ∃s∈ [τ k

i , τ
k
i+1], s.t. L̂s >δ

]

≤
2∑

j=1

∞∑
i=1

Nx

[
ζτk

i
= jm2−k−1, ∃s ∈ [τ k

i , τ
k
i+1] s.t. L̂s > δ

]
.

We consider only j ∈ {1, 2}. Let c1 > 0 be a constant whose value will be chosen
later. We set a = c1(m2−k−1)2 log(2k+1/m) and c2 = c

−2/ρ
1 2(k+1)3ρ/4m−ρ/4. For
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δ small enough, notice that c2a
ρ/2 < δ/2 for every k ∈ Z+. We have

Nx

[
ζτk

i
= jm2−k−1, ∃s ∈ [τ k

i , τ
k
i+1] s.t. L̂s > δ

]
≤ Nx

[
ζτk

i
= jm2−k−1, τ k

i+1 − τ k
i > a

]

+ Nx


ζτk

i
= jm2−k−1, sup

s∈[τ k
i ,τ

k
i +a]

∣∣∣L̂s − L̂τk
i

∣∣∣ > c2a
ρ/2




+ Nx

[
ζτk

i
= jm2−k−1, L̂τk

i
> δ − c2a

ρ/2
]
.

We write I
(l)
k for the l-th term of the right member. The distribution of τ k

i+1 − τ k
i

knowing {i < Nk} is the law of the first exit time from [−m2−k−1,m2−k−1] for a
standard linear Brownian motion started at 0. Thus there exist two positive constants
a1, a2 such that

I
(1)
k = Nx

[
ζτk

i
= jm2−k−1, τ k

i+1 − τ k
i > a

]
≤ Nx

[
ζτk

i
= jm2−k−1

]
a1 e−a2c1 log(m−12k+1) .

For δ < 1 and k ≥ 0, we have c2 > c
−2/ρ
1 = θ . We deduce from lemma 4.2

that

I
(2)
k = Nx


ζτk

i
= jm2−k−1, sup

s∈[τ k
i ,τ

k
i +a]

∣∣∣L̂s − L̂τk
i

∣∣∣ > c2a
ρ/2




≤ Nx

[
ζτk

i
= jm2−k−1

]
c3 e−m−ρ/42(k+1)ρ/4

,

where c3 depends only on c1.
Conditionally on ζτk

i
= jm2−k−1, the path Wτk

i
is distributed as ξ̄ under

P̄jm2−k−1

x . So, we get for b > 0,

I
(3)
k = Nx

[
ζτk

i
= jm2−k−1, L̂τk

i
> δ − c2a

ρ/2
]

≤ Nx

[
ζτk

i
= jm2−k−1

]
P̄x[Ljm2−k−1 > δ − c2a

ρ/2]

≤ Nx

[
ζτk

i
= jm2−k−1

]
ebjm2−k−1−c∗ρbρ(δ−c2a

ρ/2),

where we used (12). Now take b = (c∗ρ)−1/ρm−12k+1 and use the fact that
c2a

ρ/2 < δ/2 = mρ/2/2 to get

I
(3)
k ≤ Nx

[
ζτk

i
= jm2−k−1

]
c4 e−m−ρ/22(k+1)ρ/2 .
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We have

Nx[A2] ≤
2∑

j=1

∞∑
k=0

∞∑
i=1

[I (1)
k + I

(2)
k + I

(3)
k ].

We deduce from (15) and the upper bounds on I
(1)
k , I

(2)
k and I

(3)
k , that for λ > 0

given, we can choose c1 and C large enough so that Nx[A2] ≤ Cδλ. �

6. An upper bound for the hitting probability of small balls for YD
in the critical dimension dc

The theorem 1.3 is a direct consequence of the next inequality and the snake repre-
sentation of the exit measure (proposition 2.4). Once again the proof relies on the
uniform behavior of the paths Ws near its end point.

Proposition 6.1. Let d = dc, K ⊂ D be a compact set. There exist two positive
constants CK and εK such that for all x ∈ K , y ∈ ∂D, ε ∈ (0, εK ],

Nx [YD(B∂D(y, ε)) > 0] ≤ CK (log(1/ε))−1 .

Proof of Proposition 6.1. Let d = dc. Recall the notation at the beginning of
section 3. By formula (6), we have

Nx [YD(B∂D(y, ε))] = Ēx

[
1B∂D(y,ε)(1τD )

]
= Ex

[
1B∂D(y,ε)(γκD )

]
=
∫
B∂D(y,ε)

θ(dz)PD(x, z),

where θ is the surface measure on ∂D and PD is the Poisson kernel. From (9), we
see that if K is a compact subset of D, there exist positive constants CK and εK
such that for every x ∈ K , y ∈ ∂D, ε ∈ (0, εK ],

Nx [YD(B∂D(y, ε))] ≤ CKεdc−1.

Then we consider the stopping time

T = inf{s > 0; τD(Ws) = ζs and Ŵs ∈ B∂D(y, ε)}.

We have from the construction of YD ,

{YD(B∂D(y, ε)) > 0} ⊂ {T < ∞} .

Consequently, using the strong Markov property at time T , we get

Nx [YD(B∂D(y, ε))] = Nx

[
T < ∞;E∗

WT
[YD(B∂D(y, ε))]

]
.
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Thus we see that a lower bound for E∗
WT

[YD(B∂D(y, ε))] with the previous upper
bound of Nx [YD(B∂D(y, ε))] yield an upper bound for Nx [T < ∞], that is for
Nx [YD(B∂D(y, ε)) > 0]. By proposition 2.2 and relation (6), we have

E∗
WT

[YD(B∂D(y, ε))] = 2
∫ ζT

0
dt NWT (t) [YD(B∂D(y, ε))]

= 2
∫ ζT

0
dt P̄WT (t)

[
1τD ∈ B∂D(y, ε)

]
= 2

∫ ζT

0
dt P1t (WT )

[
γκD ∈ B∂D(y, ε)

]
= 2

∫ ζT

0
dt

∫
B∂D(y,ε)

θ(dz)PD(1t (WT ), z).

The time change Sv(WT ) = t and (9) imply

E∗
WT

[YD(B∂D(y, ε))] = 2
∫ κD(WT )

0
dSv(WT )

∫
B∂D(y,ε)

θ(dz)PD(γv(WT ), z)

≥ 2c
∫ κD(WT )

0
dSv(WT ) d(γv(WT ), ∂D)

×
∫
B∂D(y,ε)

θ(dz) |γv(WT )− z|−d .

Remark 6.2. Let ε be small, and consider the integer n ≥ 1 such that 2−n ≤
ε2 < 2−n+1. Let Vn be the set of integer k ∈ {0, . . . , n} such that, for all v ∈
[L̂T − 2−k, L̂T − 2−(k+1)], we have∣∣∣γv(WT )− ŴT

∣∣∣ < A02−k/2, d
(
γv(WT ), ∂D

)
> a02−k/2. (16)

As mentioned in remark 4.1, for a fixed time t , the paths S(Wt) and γ (Wt) are
distributed respectively according to the law of a subordinator of index ρ and a
Brownian motion. If this were also true for WT , then we would get

E∗
WT

[YD(B∂D(y, ε))] ≥ cεdc−1
∑
k∈Vn

∫
[L̂T−2−k,L̂T−2−(k+1))

dSv(WT ) 2k(dc−1)/2.

By the scaling property of subordinators and lemma 9.1, we would have

E∗
WT

[YD(B∂D(y, ε))] ≥ cεdc−1Card (Vn)
1/ρS1

whereS1 is a subordinator of indexρ. Moreover, the scaling property for the Brown-
ian motion and Borel-Cantelli lemma give that Card Vn ≥ cn and finally we get the
upper bound for the hitting probability c[log(1/ε)]−1/ρ . Unfortunately, there is no
reason for the law of S(WT ), where T is random, to be the law of a subordinator, nor
for the law of γ (WT ) to be the law of a Brownian motion. (For the usual Brownian
snake, the law of WT , where T is the first hitting time of a ball is the law of a
diffusion but not of a Brownian motion. This example from Le Gall can be found
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in [9] proposition 1.4.). That is why we need the lemmas of section 4 which say
that the estimates of (16) are true sufficiently often along the path γ (WT ) and that
we have similar estimates for the path S(WT ). However, this remark suggests that
the accurate upper bound for the hitting probability should be c[log(1/ε)]−1/ρ .

Let us go back to the proof. Let ε be small, and consider the integer n ≥ 1
such that 2−n ≤ ε2 < 2−n+1. Let n0 be the integer part of n/2. Let λ > 0 be large
enough. Let us assume that ε is small enough so that c∗n1+ ρ

2 2−n < 2−n1 where c∗
is defined in lemma 4.4 and n1 > n0 is the integer part of 11n/12. Consider the set

B = {ζT ≥ 2 ∗ 2−n/ρ} ∩ {L̂T > 2 ∗ 2−n0}
Let Un be the set of integers k ∈ {n0, · · · , n1} such that for all v ∈ [L̂T −
15
16 2−k, L̂T − 7

8 2−k], we have∣∣∣γv(WT )− ŴT

∣∣∣ < A02−k/2, d(γv(WT ), ∂D) > a02−k/2, (17)

and S
(L̂T− 7

8 2−k)−(WT ) − S
(L̂T− 15

16 2−k)−(WT ) > a12−k/ρ , where A, a0, a1 are de-

fined in lemma 4.5, 4.6 and 4.7. On B, we then have for ε > 0 small enough,

E∗
WT

[YD(B∂D(y, ε))]

≥
∑
k∈Un

∫
[L̂T−15

16 2−k,L̂T− 7
8 2−k)

dSv(WT )a02−k/2

×
∫
B∂D(y,ε)

θ(dz)[A02−k/2+4 ∗ 2−n/2]−d ≥ c′εdc−1Card Un,

where the constant c′ > 0 is independent of W , n and x ∈ K . Notice that on

B1 = B ∩ {ζT ≤ 2n/ρ} ∩ {FA0
n0,n1

(WT ) < 1/6} ∩ {φa0
n0,n1

(WT ) < 1/6}
∩{ψa1

n0,n1
(WT ) < 1/6},

Card Un > n/3 ≥ c′′ log(1/ε). Thus we deduce from the previous inequalities that
there exist a constant C such that for any ε small enough and x ∈ K ,

Cεdc−1 ≥ Nx[T < ∞;B1]εdc−1 log(1/ε).

The set Bc
1 is a subset of ∪6

i=1Hi , where

H1 =
{

sup
s≥0

ζs ≥ M

}
with M = 2n/ρ;

H2 = {∃s ∈ (0, σ ); κD(Ws) < 4.2−n0
} ⊃ {

L̂T ≤ 2 ∗ 2−n0
}
;

H3 =
{
∃s ∈ (0, σ ); ζs < 2 ∗ 2−n/ρ, L̂s > 2−n0

}
⊃
{
ζT < 2 ∗ 2−2n/ρ

}
∩
{
L̂T > 2 ∗ 2n0

}
;

H4 =
{
∃s ∈ (0, σ ), 2 ∗ 2−n/ρ ≤ ζs ≤ M,FA0

n0,n1
(Ws) > 1/6

}
;

H5 = {∃s ∈ (0, σ ), 2 ∗ 2−n/ρ ≤ ζs ≤ M,φa0
n0,n1

(Ws) > 1/6
} ;

H6 = {∃s ∈ (0, σ ), 2 ∗ 2−n/ρ ≤ ζs ≤ M,ψa0
n0,n1

(Ws) > 1/6
}
.
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Using the normalization of Nx for H1, lemma 5.1 for H2 and H3, lemmas 4.5, 4.6
and 4.7 respectively for H4, H5 and H6, we see we can choose A0, a0 and a1 so
that Nx[Bc

1] ≤ c′εδ for some constants c′ > 0, δ > 0. So we deduce that for x ∈ K ,
ε > 0 small enough

Nx [YD(B∂D(y, ε)) > 0] ≤ Nx[T < ∞] ≤ C
[
log 1/ε

]−1 + c′εδ,

which ends the proof. �

7. Lower bound of dim supp XD

Using the snake representation of XD , we see that a lower bound for the Haus-
dorff dimension of the support of YD will provide a lower bound for the Hausdorff
dimension of the support of XD .

Proposition 7.1. Let d ≥ 2. Let x ∈ D. Nx-a.e. on {YD �= 0}, we have

dim supp YD ≥ 2

α − 1
∧ (d − 1).

Proof. We set d0 = 2
α−1 ∧ (d − 1). Following the idea of [8], we will first prove

that for ε ∈ (0, d0/3),

Nx

[∫
YD(dz) Fd0−3ε (z, YD)

]
= 0,

where if θ > 0, Fθ is the measurable function on Rd ×Mf defined by

Fθ(y, ν) = 1{
lim sup
n→∞

ν(B∂D(y, 2−n))2nθ > 0

}.

By proposition 2.3, we have

Nx

[∫
YD(dy)Fθ (y, YD)

]
=
∫

P̄D
x (dw)E

[
Fθ

(
ŵ,

∫
Nw(dW) YD(W)

)]
.

(18)

In order to use the Borel-Cantelli lemma, we first bound
∫

P(dω)1An(w, ω), where

An :=
{
(w, ω); 2n(d0−3ε)

∫
Nw(ω)(dW) YD(W)

(
B∂D(ŵ, 2−n)

) ≥ Cd0 2−nε

}

and Cd0 = Cd0(w) is a finite positive constant that does not depend on n and ω,
and depends only on w. Its value will be fixed later. Recall that τD is the exit time
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of D for the process 1 and κD is the exit time of D for the process γ . Using the
Markov inequality, we get for P̄D

x -a.e. paths w,

E
[
1An

] ≤ E

[
C−1

d0
2n(d0−2ε)

∫
Nw(dW)YD(W)

(
B∂D(ŵ, 2−n)

)]

= 2n(d0−2ε)C−1
d0

4
∫ ζw

0
dv Nw(v)

[
YD

(
B∂D(y, 2−n)

)]
y=ŵ

= 4 2n(d0−2ε)C−1
d0

∫ τD(w)

0
dv P̄D

w(v)

[
ŵ ∈ B∂D(y, 2−n)

]
y=ŵ

= 4 2n(d0−2ε)C−1
d0

∫
[0,κD(w))

dSu(w) Pγu(w)

[
γκD ∈ B∂D(y, 2−n)

]
y=γκD (w)

,

(19)

where γ is under Px a Brownian motion in Rd started at x. In the first equality we
used the form of the intensity of the Poisson measure Nw. In the second one, we
applied (6). In the third one, we made the formal change of variable v = Su, using
the specific properties of the process ξ under P̄D

x , and in particular the fact that
1 = γL is constant over each interval (Su−, Su).

Let r ∈ (0, 1], we have for 0 ≤ u < κD

Pγu

[
γκD ∈ B∂D(y, r)

]
y=γκD

=
∫
B∂D(γκD ,r)

PD(γu, y
′)θ(dy′).

We deduce from (9) that for (y, y′) ∈ D × ∂D,

PD(y, y′) ≤ c1d(y, ∂D)
∣∣y − y′

∣∣−d ≤ c1d(y, ∂D)−(d0−ε)
∣∣y − y′

∣∣(d0−ε)+1−d
.

Notice also there exists a positive constant c2 such that for all (y, y′′) ∈ D × ∂D,
r ∈ (0, 1], ∫

B∂D(y′′,r)

∣∣y − y′
∣∣(d0−ε)+1−d

θ(dy′) ≤ c2r
d0−ε.

Thus we deduce that for every r ∈ (0, 1],

Pγu

[
γκD ∈ B∂D(y, r)

]
y=γκD

≤ c1c2 rd0−εd(γu, ∂D)−(d0−ε). (20)

The proof of the next lemma is postponed to the end of this section.

Lemma 7.2. Let θ > 0, then P̄D
x -a.s. we have

sup
u∈[0,κD)

(κD − u)θ+1/2

d(γu, ∂D)
< ∞.

The proof of the following lemma relies on an integration by part and on the path
properties of the subordinator S (see lemma 3.2.3 in [8]).
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Lemma 7.3. Let d ′ ∈ [0, 2/ρ), then P̄D
x (dw)-a.s. we have∫

[0,κD)

(κD − u)−d ′/2dSu < ∞.

As a consequence of those two lemmas, the variable

Cd0 =
∫

[0,κD)

dSu d(γu, ∂D)−(d0−ε)

is finite P̄D
x -a.s. Thus plugging (20) into (19), we get that for every n ≥ 1,

E
[
1An

] ≤ 4c1c2 2−nε.

Applying the Borel-Cantelli lemma to the sequence (An, n ≥ 1), we get P̄D
x -a.s.,

P-a.s.

lim sup
n→∞

2n(d0−3ε)
∫

Nw(dW)YD(W)
(
B∂D(ŵ, 2−n)

) = 0.

Hence by the definition of Fθ and (18), we get

Nx

[∫
YD(dy)Fd0−3ε (y, YD)

]
= 0.

We deduce from theorem 4.9 of [16], that Nx-a.e. on {YD �= 0},
dim supp YD ≥ d0 − 3ε.

Since ε is arbitrary, the lower bound of the proposition follows. �

Proof of Lemma 7.2. It is enough to prove the result under Px . Let θ ∈ (0, 1/2)
and Dε = {y ∈ D; d(y, ∂D) > ε}. For simplicity we write κ = κD and κε = κDε .
We will first derive an upper bound for

Px

[
κ − κε ≥ ε2−θ

]
.

For ε > 0 small enough, we have using the Markov property at time κε:

Px

[
κ − κε ≥ ε2−θ

]
≤
(

1 − e−1
)−1 [

1 − Ex

[
e−ε−2+θ (κ−κε)

]]
≤
(

1 − e−1
)−1

sup
y∈D, d(y,∂D)=ε

[
1 − Ey

[
e−ε−2+θ κ

]]
(21)

Since the domain D is bounded C2, we have the uniform exterior sphere condition.
There exists h > 0 such that for each point y0 ∈ ∂D, we can find y1 ∈ Dc so that
y0 ∈ ∂B(y1, h) and B(y1, h) ⊂ Dc, where B(y, r) is the ball centered at y with
radius r . For y ∈ D there exists y0 ∈ ∂D such that d(y, ∂D) = |y − y0|. Clearly,
under Py , κ ≤ κB(y1,h), when y1 is defined as above. Thus[

1 − Ey

[
e−ε−2+θ κ

]]
≤
[
1 − Ey

[
e−ε−2+θ κB(y1,h)

]]
.
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On the other hand, following [18] (p. 88) (see also [24]), it is easy to prove that for
y′ ∈ Rd ,

∣∣y′∣∣ > h, β ≥ 0,

Ey′
[
e−βκB(0,h)

] =
∣∣y′∣∣−ν

Kν(
√

2β
∣∣y′∣∣)

|h|−ν Kν(
√

2βh)
,

where ν = (d/2)−1 andKν is the second modified Bessel function. SinceKν(r) =√
π/2r e−r [1+O(1/r)] (see [23] p. 202), it easy to deduce from (21) and the pre-

vious inequality (take β = ε−2+θ and y′ = y − y1, where d(y, ∂D) = ε and∣∣y′∣∣ = h+ ε) that for ε small enough,

Px

[
κ − κε ≥ ε2−θ

]
≤ cεθ/2,

where the constant c is independent of ε. Now thanks to the Borel-Cantelli lemma
we get that Px-a.s. the sequence

(
2n(2−θ)(κ − κ2−n), n ≥ 1

)
is bounded.

On the other hand notice that for u ∈ [κ2−n+1 , κ2−n ] we have d(γu, ∂D) ≥ 2−n

and κ − u ≤ κ − κ2−n+1 . Thus we have

κ − u

d(γu, ∂D)2−θ
≤ 4 2(n−1)(2−θ)(κ − κ2−n+1).

Since the right hand side is uniformly bounded in n, we get the lemma. �

8. Proof of Theorem 1.6 on the connected component of XD

The proof of Theorem 1.6 mimic the proof of Theorem 2.4 in [8]. It relies on the
next two lemmas. We only give the proof of Lemma 8.2 because it differs from its
analogue in [8].

Lemma 8.1. We consider the product measure Nx1⊗Nx2 on the spaceC(R+,W)2.
The canonical process on this space is denoted by (W 1,W 2). Assume d > 2dc−1.
Then for every (x1, x2) ∈ D2, we have Nx1 ⊗ Nx2 -a.e.

supp YD(W 1) ∩ supp YD(W 2) = ∅.

Lemma 8.2. For ε > 0, δ > 0, set

gε(δ) = sup Ny

[
supp YD ∩ ∂D\B∂D(z, ε) �= ∅] ,

where the supremum is taken over (y, z) ∈ D×∂D, such thatd(y, ∂D) = |y − z| <
δ. Then for every ε > 0, limδ↓0 gε(δ) = 0.

Proof. Since the boundary of D is C2, we have the uniform exterior sphere condi-
tion. There exists δ0 ∈ (0, ε/3), for every z ∈ ∂D, we can find z0 ∈ Dc (unique)
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such that B(z0, δ0) ⊂ Dc and ∂B(z0, δ0)∩ ∂D = {z}. We define Br = B(z0, rδ0).
We have for y ∈ B2\B1, Ny-a.e.

{supp YD ∩ ∂D\B∂D(z, ε) �= ∅}
⊂
{
∃s ∈ (0, σ ); ζs = τD(Ws) and Ŵs ∈ ∂D\B∂D(z, ε)

}
⊂
{
∃s ∈ (0, σ ); τB̄c

3
(Ws) < ∞, τB̄c

3
(Ws) < τB1(Ws)

}
.

The first inclusion is a consequence of the definition of LR+×R+×D and the second
is a consequence of the snake property. By the special Markov property (cf [4]
proposition 7), if N is the number of excursions of the Brownian snake outside
R+×R+×B2\B1 that reach R+×R+×Bc

3 before R+×R+×B1, then we have

Ny

[
∃s ∈ (0, σ ); τB̄c

3
(Ws) < ∞, τB̄c

3
(Ws) < τB1(Ws)

]
= Ny[N > 0]

≤ Ny[N ]

= Ny

[∫
YB2\B1(dy

′)Ny′ [τB̄c
3
(Ws) < ∞, τB̄c

3
< τB1 ]

]

≤ Ny

[∫
∂B2

YB2\B1(dy
′)Ny′ [τB̄c

3
< +∞]

]
.

We used the fact that if y′ ∈ ∂B1, then from the snake property, we have Ny′ -a.e.
for all s ∈ (0, σ ), τB1(Ws) = 0. By symmetry, we get that Ny′ [τB̄c

3
< +∞] = c0

is independent of y′ ∈ ∂B2. It is also finite since (Ŵs, s ≥ 0) is continuous under
E(0,0,y′). We then deduce from (6) that

Ny

[
supp YD ∩ ∂D\B∂D(z, ε) �= ∅] ≤ c0Ey[κB2 < κB1 ].

Thus we get that for δ ∈ (0, δ0),

gε(δ) ≤ c0Ey[κB(0,2δ0) < κB(0,δ0)],

where |y| = δ0 + δ. The lemma is then a consequence of classical results on
Brownian motion. �

Proof of Theorem 1.6. Let (Dk, k ≥ 0) be an increasing sequence of open subsets
of D such that D̄k ⊂ Dk+1 and d(y, ∂D) ≤ 1/k for all y ∈ ∂Dk . From the special
Markov property (see [4] proposition 7) and proposition 2.4, we get that the law
XD under PX

ν is the same as the law of
∑

i∈I YD(Wi), where conditionally on XDk
,

the random measure
∑

i∈I δWi is a Poisson measure on C(R+,W) with intensity∫
XDk

(dy)Ny[·]. With a slight abuse of notation, we may assume that the point
measure

∑
i∈I YD(Wi) is also defined under PX

ν . It follows from lemma 8.1 and
properties of Poisson measures that a.s. for every i �= j ,

supp YD(Wi) ∩ supp YD(Wj ) = ∅.
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For ε > 0, let Uε denote the event “supp XD is contained in a finite union of
disjoint compact sets of ∂D with diameter less than ε”. It is easy to check that Uε

is measurable. Let k be large enough. Furthermore, by the previous observations,
and denoting by yi ∈ Dk the common starting point of the paths Wi

s , and by zi the
only point in ∂D such that |yi − zi | = d(yi, ∂D), we have

PX
ν [Uε] ≥ PX

ν

[
∀i ∈ I, diam (supp YD(Wi)) ≤ ε

]
≥ PX

ν

[
∀i ∈ I, supp YD(Wi) ⊂ B∂D(zi, ε/2)

]
= EX

ν

[
exp−

∫
XDk

(dy)Ny[supp YD ∩ ∂D\B∂D(z, ε/2) �= ∅]

]
≥ EX

ν

[
exp−gε/2(1/k)(XDk

, 1)
]
,

where for B ∈ B(Rd), diam (B) = sup{∣∣x − x′
∣∣; (x, x′) ∈ B × B}. We can now

let k go to +∞, using lemma 8.2, to conclude that PX
ν [Uε] = 1. Since this holds

for every ε > 0, we conclude that supp XD is totally disconnected PX
ν -a.s. �

9. Appendix

Lemma 9.1. Let (St , t ≥ 0) be a stable subordinator. For r > 0, let Lr = inf{u >

0, Su > r}. Then (St , t ∈ [0, Lr)) and (SLr− − S(Lr−t)−, t ∈ [0, Lr)) are identi-
cally distributed.

We write P for the law of the subordinator S = (St , t ≥ 0) started at 0. We recall
that the Laplace transform ofS is given byη(λ) = c∗ρλρ , where c∗ρ = 2−ρ/1(1+ρ).
Its Lévy measure is given by P(ds) = 1(0,∞)(s)[2ρ1(ρ)1(1 − ρ)]−1s−1−ρds.
Notice that Lr is the last exit time of [0, r] for S. Let Q = (Qt , t ≥ 0) be the
transition kernel of S and U = ∫∞

0 Qt dt its potential. The transition kernels
and the potential are absolutely continuous with respect to the Lebesgue measure
l on R. And we have Qt(x, dy) = qt (y − x)dy and U(x, dy) = u(y − x)dy,
where u(y) = ρ2ρyρ−11y≥0. Let Q̂ = (Q̂t , t ≥ 0) be the transition kernel of
(−St , t ≥ 0). This is the dual kernel of Q with respect to l. We consider the process
V defined by

Vt =
{
S(Lr−t)− if 0 ≤ t < L,

� if t ≥ L,

where � is a cemetery point added to R. Notice the law of S0 is δ0, the Dirac mass
at 0, and thus, the density of δ0U w.r.t. the reference measure l is just u. Thanks
to XVIII 45 and 51 of [7], the process V is under P a Markov process with kernel
(Q̃t , t ≥ 0) defined as the u-transform of Q̂, that is

Q̃t (x, dy) = 1

u(x)
u(y)qt (x − y)dy.
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We define the process Y by

Yt =
{
V0 − Vt if 0 ≤ t < L,

� if t ≥ L.

Notice that Y0 = 0 P-a.s. and the process Y is right continuous and nondecreasing
up to its lifetime. We want to prove that Y and the process S killed at time Lr

have the same law. It will be enough to check that for every integer n ≥ 1, every
sequence tn > · · · > t1 > 0, and f1, . . . , fn, measurable nonnegative functions
on R,

E
[
f1(Yt1) . . . fn(Ytn)

] = E
[
f1(St1) . . . fn(Stn)1Stn<r

]
.

Using the transition kernel of V , we get

I = E
[
f1(Yt1) . . . fn(Ytn)

]
= E

[
f1(V0 − Vt1) . . . fn(V0 − Vtn)

]
=
∫

R

ν(dv0)

∫
R

Q̃t1(v0, dv1)f1(v0 − v1). . .

∫
R

Q̃tn−tn1
(vn−1, dvn)fn(v0−vn),

where ν is the law of V0 = SLr−. Thanks to [3] proposition 2 p.76, we have that

ν(dv0) = u(v0)1v0<rdv0

∫ ∞

r−v0

P(ds) = c′ρu(v0)(r − v0)
−ρ1v0<rdv0.

Thus we have

I=c′ρ
∫

R

dv0 u(v0)(r − v0)
−ρ1v0<r

∫
Rn

dv1 . . . dvn
u(v1)

u(v0)
qt1(v0−v1)f1(v0−v1). . .

× u(vn)

u(vn−1)
qtn−tn−1(vn−1 − vn)fn(v0 − vn)

= c′ρ
∫

R

dv0 (r − v0)
−ρ1v0<r

∫
Rn

dv1 . . . dvn u(vn) qt1(v0 − v1)f1(v0 − v1) . . .

× qtn−tn−1(vn−1 − vn)fn(v0 − vn).

We use the change of variable z = v0, y1 = v0 − v1, · · · , yn = v0 − vn, and the
definition of u to get

I = c′ρ
∫

Rn

dy1 . . . dyn qt1(y1)f1(y1) . . . qtn−tn−1(yn − yn−1)fn(yn)

×
∫

R

dz (r − z)−ρρ2ρ(z− yn)
ρ−11r>z>yn

= E
[
f1(St1) . . . fn(Stn)1Stn<r

]
,

because c′ρ
∫
R dz (r − z)−ρρ2ρ(z− yn)

ρ−11r>z>yn = 1r>yn . �
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Notations

dc = (α + 1)/(α − 1) critical dimension.
θ(dy) Lebesgue measure on ∂D.
Bε = B∂D(y0, ε) ball on ∂D.
PD Poisson kernel of D.
GD Green function of D.
γt Brownian motion in Rd .
Ex law of γ started at x.
ρ = (α − 1) .
St ρ-stable subordinator.
ξt residual life time of S.
Lt time change, inverse of S.
1t = γLt “freezed” Brownian motion.
E = R+× R+× Rd : state space of ξ = (ξ, L, 1).
Pz law of ξ t started at z ∈ E.
Px law of ξ started at (0, 0, x).

P
D

x law of ξ killed out of R+ × R+ ×D.
P
r

x law of ξ killed at time r .
κB exit time of B for γ .
τB exit time of B for 1 = γL.
w = (w, ζ ) E-valued path with life time ζ ; for t ∈ [0, ζ ), we write w(t) =
(ξt (w), Lt (w), 1t (w)).
τB(w) exit time of B for 1(w).
κB(w) exit time of B for 1L−1(w).
ŵ = 1ζ (w) spatial end point.

Notations for the snake

ζs life time of the snake at time s.
Ws snake at time s; for t ∈ [0, ζs), Ws(t) = (ξt (Ws), Lt (Ws), 1t (Ws)).
St (Ws) inverse of the time change Lt(Ws).
γt (Ws) = 1St (Ws)(Ws) spatial motion of the snake path Ws .
Ŵs = 1ζs (Ws) end point of the spatial motion of the snake path Ws .
L̂s = Lζs (Ws) end point of the time change of the snake path Ws .
Ew law of Ws started at path w.
E∗
w law of Ws started at path w and killed when its life ζs time reaches 0.

E∗
(r) =

∫
P
r

x(dw)E∗
w law of Ws killed when its life time reaches 0 and started

with a typical (random) path of life time r .
Nz excursion measure of the snake started at the trivial path z ∈ E.
Nx excursion measure of the snake started at the trivial path (0, 0, x).
σ duration of the snake excursion.
LD exit local time of D.
YD exit measure of the snake.
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