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Abstract

We consider a super-critical Galton-Watson tree τ whose non-degenerate offspring
distribution has finite mean. We consider the random trees τn distributed as τ

conditioned on the n-th generation, Zn, to be of size an ∈ N. We identify the possible
local limits of τn as n goes to infinity according to the growth rate of an. In the low
regime, the local limit τ0 is the Kesten tree, in the moderate regime the family of local
limits, τθ for θ ∈ (0,+∞), is distributed as τ conditionally on {W = θ}, where W is the
(non-trivial) limit of the renormalization of Zn. In the high regime, we prove the local
convergence towards τ∞ in the Harris case (finite support of the offspring distribution)
and we give a conjecture for the possible limit when the offspring distribution has
some exponential moments. When the offspring distribution has a fat tail, the problem
is open. The proof relies on the strong ratio theorem for Galton-Watson processes.
Those latter results are new in the low regime and high regime, and they can be used
to complete the description of the (space-time) Martin boundary of Galton-Watson
processes. Eventually, we consider the continuity in distribution of the local limits
(τθ, θ ∈ [0,∞]).
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1 Introduction

The study of Galton-Watson (GW) processes and more generally GW trees conditioned
to be non extinct goes back to Kesten [24], see Lemma 1.14 therein. In the sub-critical
and non-degenerate critical case the extinction event E being of probability one, there
are many non equivalent limiting procedures to define a GW tree conditioned on the
non-extinction event. Those so-called local limits of GW trees have received a renewed
interest recently because of the possibility of condensation phenomenon: a node in the
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Expansive GW trees

limiting tree has an infinite degree. This appears when conditioning sub-critical GW
trees to be large, see Jonsson and Stefánson [22] and Janson [21] when conditioning
on large total population and Abraham and Delmas [3], when conditioning on large
sub-population or [2] for a survey from the same authors. The other typical behavior for
the local limit of GW trees is to exhibit an infinite spine on which are grafted independent
finite GW sub-trees, such as in [24]. Various conditionings lead to such a local limit,
which we call the Kesten tree, for critical or subcritical GW trees, see Abraham and
Delmas [4] and references therein for a general study and [2] for other recent references
in this direction also. Intuitively, the local limit is the Kesten tree when the events
approximating the non-extinction event decrease in probability at polynomial rate. One
of the motivations of the current work is to present local limits of sub-critical GW trees
with different behavior (that is other than an infinite spine or a node of infinite degree),
see the partial results from Section 9, where we present a family of local limits with an
infinite backbone not reduced to a spine.

Recently, with Bouaziz, we considered in [1] the local limits of GW trees τ with
geometric offspring distribution (see Section 1.4 for a precise definition) conditioned
on the size Zn of the population at generation n being equal to an ∈ N. Because the
distribution of Zn is explicit for the geometric offspring distribution, it is possible to
compute all the possible local limits (if any) for the sub-critical, critical and super-critical
cases and for all the possible sequences (an, n ∈ N∗). The local limit, when it exists, is a
random tree which depends on the rate of convergence of (an, n ∈ N∗) towards infinity.
When this sequence is positive bounded or grows slowly to infinity, the limit is still the
Kesten tree. This result already appears in the critical case in [4], see Section 6. When
the growth to infinity is moderate, then the local limit can be described as an infinite
random backbone on which are grafted independent finite GW trees. Surprisingly the
backbone does not enjoy the branching property as the numbers of children of individuals
at generation n on the backbone are not independent and depend also on the size of the
backbone at generation n. If the growth to infinity is high, then the local limit exhibits
the condensation phenomenon: the root, and only the root, of the local limit has an
infinite number of children. The aim of the present work is to extend those results mainly
to general super-critical offspring distribution and marginally to sub-critical offspring
distribution.

1.1 The main results

Let p = (p(k), k ∈ N) be a non-degenerate offspring distribution with finite mean
µ =

∑
k∈N kp(k). Let f denote the corresponding generating function so that f ′(1) = µ,

and let Rc ≥ 1 be its radius of convergence. We shall mainly consider the super-critical
case µ ∈ (1,+∞), except in Section 9 where we consider a particular sub-critical
offspring distribution (that is µ ∈ (0, 1)).

We recall the local convergence of random ordered rooted trees. The ordered rooted
trees, defined in Section 2.1, are subsets of the set of finite sequences of positive integers
U =

⋃
n≥0(N∗)n with the convention (N∗)0 = {∂}, and ∂ being the root of the tree. For a

tree t and u ∈ U , we denote by ku(t) ∈ N̄ = N
⋃
{∞} the out-degree of a node u ∈ t or

equivalently the number of children of u in t, with the convention that ku(t) = −1 if u 6∈ t.
We denote by zh(t) the size of t at generation h ∈ N. A sequence of trees tn converges
locally to a tree t if ku(tn) converges to ku(t) for all u ∈ U . And we say that a sequence
of random trees Tn converges locally in distribution to a random tree T if (ku(Tn), u ∈ U)

converges in distribution to (ku(T ), u ∈ U) for the finite dimensional marginals. See
Section 2.2 for a precise setting.

We consider the random tree τ defined as the GW tree with super-critical non-
degenerate offspring distribution p and finite mean µ, and we define Z = (Zn = zn(τ), n ∈
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Expansive GW trees

N) the corresponding GW process, with Zn being the size of τ at generation n, starting at
Z0 = 1. Let a ∈ N and b ∈ N̄ be respectively the lower and upper bound of the support of
p. We have a < b as p is non-degenerate. Let c = P(E) be the probability of the extinction
event. We recall that c ∈ [0, 1) is the only root of f(r) = r on [0, 1). Notice that c = 0 if
and only if a ≥ 1. When P(Zn = an) > 0, we denote by τn a random tree distributed as τ
conditioned on {Zn = an}. We study the local convergence in distribution of (τn, n ∈ N∗)
according to the rate of growth of the sequence (an, n ∈ N∗). According to Seneta [33]
or Asmussen and Hering [6], we shall consider the Seneta-Heyde norming (cn, n ∈ N)

which is a sequence such that Zn/cn converges a.s. to a limit W and P(W = 0) = c, see
its definition in Section 4. When µ = +∞, then such a normalization does not exists and
when the L log(L) condition holds, that is

∑
k∈N∗ pk log(pk) < +∞, then cn is equivalent

to µn up to an arbitrary positive multiplicative constant, see Seneta [34]. However, we
stress that the L log(L) condition is not assumed in this paper and that we only consider
the case µ finite. It is well known that the distribution of W , restricted to (0,+∞), has a
continuous positive density w with respect to the Lebesgue measure, see the seminal
work of Harris [20] and the general result from Dubuc [13]. However, w is explicitly
known in only two cases: the geometric offspring distribution, see Section 1.4 below and
the example developed by Hambly [19].

We now introduce the possible local limiting trees.

Definition 1.1. Let τ be a GW tree with non-degenerate super-critical offspring distri-
bution p with finite mean µ ∈ (1,+∞).

• If c > 0, we denote by τ0,0 a random tree distributed as τ conditionally on the
extinction event E .

• If c > 0, we denote by τ0 the corresponding Kesten tree, see Definition 3.3. If c = 0

(that is a ≥ 1), we denote by τ0 the deterministic regular a-ary tree.

• For θ ∈ (0,+∞), we denote by τθ a random tree distributed as τ conditioned on
{W = θ}.

• If b <∞, we denote by τ∞ the deterministic regular b-ary tree.
If b = +∞ and Rc > 1, we denote by τ∞ an inhomogeneous Galton-Watson tree
with offspring distribution at generation h given by

p̃
(λc)
k (k) =

{
ζh+1(λc)

k

ζh(λc)
p(k) for k ∈ N,

1{ζh(λc)=+∞} for k = +∞,

where ζh(λ) = E
[
eλµ

−hW
]

and λc = sup{λ ≥ 0, ζh(λ) < +∞}.

The tree τθ is defined in Section 5 as a random (non-homogeneous in time) infinite
backbone on which, if c > 0, are grafted independent GW trees distributed as τ0,0, but
it can indeed be viewed as a regular version of the distribution of τ conditioned on
{W = θ} for θ ∈ (0,+∞) according to Remark 5.3. The description of the backbone of τθ

and of its offspring distribution is one of the main contribution of this paper. The infinite
backbone does not enjoy the branching property, and the offspring distribution ρθ,r of
the individuals of the current generation depends on the size r of the current generation,
see Definition (4.5). The probability distribution ρθ,r is a function of the density w. The
distribution of τθ is in a sense a generalization of the Kesten tree distribution.

The tree τ∞ generalizes the tree obtained in [1] as the local limit of a geometric
Galton-Watson tree. Four different shapes must be considered to describe this tree:

• If b < +∞, τ∞ is the regular b-ary tree.

• If b = +∞ and λc = +∞, τ∞ is the full Ulam-Harris tree, every node has an infinite
number of offspring.
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Expansive GW trees

• If b = +∞, λc < +∞ and ζ0(λc) < +∞, τ∞ is an inhomogeneous Galton-Watson
tree, the nodes of which having finite degree.

• If b = +∞, λc < +∞ and ζ0(λc) = +∞, τ∞ exhibits a condensation phenomenon at
the root but all the other nodes have a finite number of offspring.

The tree τ∞ appears as a natural local limit of non-homogeneous GW trees T (λ)

introduced in Section 8.1 and with a nice representation given in Section 8.2 using again
an immortal backbone on which are grafted independent GW trees distributed as τ0,0

(see also an alternative representation given in Section 8.4 as an infinite backbone on
which are grafted independent GW trees distributed as τ ).

We can now give the first main result on the local convergence in distribution of τn
according to the growth rate of (an, n ∈ N∗). Those local convergences are new, but for
the extinction case and for the geometric offspring distribution.

Theorem 1.2. Let τ be a GW tree with non-degenerate super-critical offspring distribu-
tion p with finite mean. We assume that the sequence (an, n ∈ N∗) is such that τn is well
defined for all n ∈ N∗.

• Extinction case: an = 0 for all n ≥ n0 for some n0 ∈ N∗. If c = 0, then τn is not
defined. If c > 0, then τn is well defined and we have:

τn
(d)−−−−→
n→∞

τ0,0.

• Low regime: limn→∞ an/cn = 0 and an > 0 for all n ∈ N∗. Then, we have:

τn
(d)−−−−→
n→∞

τ0.

• Moderate regime: limn→∞ an/cn = θ ∈ (0,+∞). Then, we have:

τn
(d)−−−−→
n→∞

τθ.

• High regime: limn→∞ an/cn = +∞. (Partial results.) If b <∞ (Harris case) or if
p is geometric, then we have:

τn
(d)−−−−→
n→∞

τ∞.

The local convergence is well known in the extinction case, it is stated in Proposition
6.4 for convenience. For the low regime, it is stated in Proposition 6.5. For the moderate
regime, it is stated in Proposition 6.2. For the high regime, it is stated in [1] for p
geometric and in Proposition 6.3 for the Harris case. All the proofs rely on the strong
ratio theorem, see Section 1.2 below.

Conjecture 1.3. In the high regime, the convergence in distribution of τn towards τ∞

holds for any super-critical offspring distribution p such that Rc > 1 (or equivalently
such that W has some positive exponential moments, see the first part of Section 8.1).

The existence and characterization of local limits in the high regime when Rc = 1 is
an open question.

Remark 1.4. We recall from Dubuc [14] some sufficient conditions on x ∈ N such that
Pk(Zn = x) > 0, where Pk denote, for k ∈ N∗, the distribution of the GW process Z
started from Z0 = k. Notice first that if x = 0, then Pk(Zn = x) > 0 if and only if c > 0,
that is a = 0. We now consider the case x > 0. The offspring distribution p is said
to be of type (L0, r0), if L0 is the period of p, that is the greatest common divisor of
{n−`; n > ` and p(n)p(`) 6= 0}, and r0 is the residue (mod L0) of any n such that p(n) 6= 0.
It is clear that Pk(Zn = x) > 0 implies x = k rn0 (mod L0). According to [14], for any b > a

EJP 24 (2019), paper 15.
Page 4/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP272
http://www.imstat.org/ejp/


Expansive GW trees

such that p(b) > 0 (take b = b if b <∞), there exists d ∈ N such that for all k ∈ N∗ and
x ∈ [[kan + d, kbn − d]] with x = krn0 (mod L0), we have Pk(Zn = x) > 0. Taking k = 1 and
x = an, this provides sufficient conditions for τn to be well defined. In particular, notice
that there exist sequences (an, n ∈ N∗) in all the regime such that τn is well defined.

Moreover, we have the following continuity result in distribution for the family of
limiting trees.

Theorem 1.5. Let p be a non-degenerate super-critical offspring distribution with finite
mean. The family (τθ, θ ∈ [0,+∞)) is continuous for the local convergence in distribution.
In particular, we have

τθ
(d)−−−→
θ→0

τ0.

The continuity of (τθ, θ ∈ [0,+∞)) is proven in Section 7 and more precisely in
Corollary 7.1 for the continuity at 0. The continuity at 0 allows to explain and extend
Corollary 3 from Berestycki, Gantert and Mörters [9] on the convergence in distribution
of τ(ε) (distributed as τ conditionally on {0 < W ≤ ε}) towards τ0 as ε goes down to 0,
see Corollary 7.2.

When θ goes to infinity, we only have the following partial results.

Theorem 1.6. If b <∞ or if p is geometric, then we have:

τθ
(d)−−−−−→

θ→+∞
τ∞.

Assume b = +∞ and Rc > 1. If τθ converges in distribution as θ goes to infinity,
then the limit is τ∞.

The continuity at infinity is proven in [1] for the geometric case and in Proposition
8.10 for the Harris case. The fact that τ∞ is the only possible limit if b = +∞ and Rc > 1

is proven in Corollary 8.8. We conjecture that this convergence indeed holds true.
If Rc = 1, then we have no hint concerning the existence or non-existence of possible

limits for τθ as θ goes to infinity. Notice that it is not clear that τθ is stochastically
non-decreasing with θ.

Remark 1.7. Partial results concerning the sub-critical case are presented in Section 9,
under the assumption that Rc > 1 and the equation f(r) = r has a finite root in (1, Rc].
This assumption is equivalent to assuming that the sub-critical GW tree is distributed as
a super-critical GW tree conditioned on the extinction event. In this case, we can use the
previous results in the super-critical case to get results in the sub-critical case.

To finish with the description of all the possible limiting trees, let us mention that all
trees τθ, for θ ∈ [0,+∞], can be described as an infinite backbone of immortal individuals
on which are grafted finite trees distributed as τ0,0, i.e. GW trees conditioned on
extinction. This description also arises when conditioning a super-critical Galton-Watson
tree on survival, see [27], Section 5.7. The finite grafted trees in this case are distributed
as τ0,0. This is however not always the case. For instance in [4], Section 5.2, the local
limit of sub-critical GW trees conditioned on their total progeny to be very large, is an
infinite spine on which are grafted independent finite GW trees which are not distributed
as τ0,0. In our present context, it appears that conditioning on {Zn > 0} or {Zn = an}
affects only the immortal backbone and not the distribution of the grafted finite trees.

1.2 Strong ratio theorem for super-critical GW process

We set for k, h ∈ N∗:

Hn(h, k) =
Pk(Zn−h = an)

P(Zn = an)
, (1.1)
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where Z is under Pk a GW process starting from Z0 = k. The proofs of Theorem 1.2,
when there is no condensation, rely on the elementary identity (2.6) which states that
P(rh(τn) = t) = Hn(h, zh(t))P(rh(τ) = t), where rh(s) denotes the restriction of the tree
s up to generation h ∈ N∗, and t is a tree with height h (that is zh(t) > 0 and zh+1(t) = 0).
Since the local convergence in distribution of τn towards a tree with finite nodes is
equivalent to the convergence of P(rh(τn) = t) for all h ∈ N∗ and all tree t of height
h, up to the identification of the limit, the local convergence can be deduced from the
convergence as n goes to infinity of Hn(h, k) for all h, k ∈ N∗. The result is in the same
spirit as the strong ratio theorem for random walks.

In the next theorem, completing known results described in the discussion below, we
explicit all the possible limits of Hn (with only partial results in the high regime). Notice
that all the regimes described in the following theorem are valid thanks to Remark 1.4.

Theorem 1.8. Let p be a non-degenerate super-critical offspring distribution with finite
mean µ ∈ (1,+∞). We assume that the sequence (an, n ∈ N∗) is such that P(Zn = an) > 0

for all n ∈ N∗.

• Extinction case: an = 0 for all n ≥ n0 for some n0 ∈ N∗. If c = 0, then P(Zn =

0) = 0 for all n ∈ N, and thus Hn is not defined. If c > 0, then we have:

H0,0(h, k) := lim
n→∞

Hn(h, k) = ck−1. (1.2)

• Low regime: limn→∞ an/cn = 0 and an > 0 for all n ∈ N∗. We have1:

H0(h, k) := lim
n→∞

Hn(h, k) =


kck−1f ′(c)−h if a = 0,

f ′(c)−h1{k=1} if a = 1,

p(a)−(ah−1)/(a−1)1{k=ah} if a ≥ 2.

(1.3)

• Moderate regime: limn→∞ an/cn = θ ∈ (0,+∞). We have, with the notation
wk(θ) =

∑k
i=1

(
k
i

)
ck−iw∗i(θ):

Hθ(h, k) := lim
n→∞

Hn(h, k) = µh
wk
(
µhθ

)
w(θ)

1{k=rh0 (mod L0)}, (1.4)

where (L0, r0) is the type of p.

• High regime: limn→∞ an/cn = +∞. (Partial results.) We have:

H∞(h, k) := lim
n→∞

Hn(h, k) =

{
p(b)−(bh−1)/(b−1)1{k=bh} if b <∞,

0 if p is geometric.
(1.5)

Contrary to the short proof of the strong ratio theorem for random walks given
by Neveu [29], the proof presented here for the strong ratio theorem rely on explicit
equivalent of Pk(Zn−h = an) for n large. The well known extinction case is given in
Remark 3.2.

The result for the low regime is much more delicate. We shall distinguish between
the Schröder case f ′(c) > 0 and the Böttcher case f ′(c) = 0, and in those two cases
consider the sequence (an, n ∈ N∗) bounded or unbounded. The case an bounded and
a = 0 can be found in Papangelou [31]. The case an bounded, a = 1 is an easy extension
of [31], see Case I in the proof of Proposition 6.5 in the Schröder case. The case an
unbounded and a ≤ 1 (Schröder case) can be derived, see Lemma 6.6, from the precise
asymptotics of P`(Zn = an) given by Fleischmann and Wachtel [17]. The case a ≥ 2

1Notice that a = 0, resp. a = 1, resp. a ≥ 2, is equivalent to c > 0, resp. c = 0 and f ′(c) > 0, resp. f ′(c) = 0.
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(Böttcher case) is given in Lemma 12.4 and Lemma 12.5. The former lemma relies on a
precise approximation of P`(Zn = an) given in Lemma 12.3 for an unbounded, which is
an extension of the precise asymptotics given by Fleischmann and Wachtel [18].

The moderate regime is a direct consequence of the local limit theorem in Dubuc and
Seneta [12], see Lemma 6.1 here.

The high regime in the Harris case when lim supn→∞ an/b
n < 1 is detailed in Lemma

11.6 with ` = 1. It relies on techniques similar to those developed in [18] or in Flajolet
and Odlyzko [16] to get an equivalent to Pk(Zn = an), see Lemma 11.5. The proof is
however given in details because the adaptation is not straightforward. The high regime
for the geometric offspring distribution is given in [1].

If b = ∞ and f(Rc) = +∞, we conjecture that τn converges locally in distribution
towards a limit τ∞ whose root has an infinite number of children. Using the elementary
identity (2.6), we deduce the following conjecture that if b =∞ and f(Rc) = +∞, then:

H∞(h, k) := lim
n→∞

Hn(h, k) = 0. (1.6)

If b = +∞ and f(Rc) < +∞, then τ∞ has no condensation and thus H∞(h, k) might exists
and be given by f−h+1(Rc)

k/f(Rc), where, for n ∈ N∗, fn denotes the n-th iterate of f
and f−n its inverse (which is well defined because fn is increasing). See the martingale
term in the right hand side of (8.7) with λ = λc.

If Rc = 1, the possible existence of a limit for Hn is an open question. See Wachtel,
Denisov and Korshunov [35] for a first step in the study of this so-called heavy-tailed
case.

1.3 Link with the Martin boundary of super-critical GW process

Recall that Z is a super-critical GW process with non-degenerate offspring distribution
p with finite mean µ. The Martin boundaryM of the non-negative space-time GW process
corresponds to all extremal non-negative space-time harmonic functions H defined on
N2, and is related to the set of all extremal non-negative martingales N = (Nn =

H(n,Zn), n ∈ N). Considering only the case Z0 = 1, then Remark 1.4 implies that the
functions H are only defined for (n, k) such that k = rn0 (mod L0), where (L0, r0) is the
type of p. Let H denote the set of non-negative space-time function H such that there
exists a sequence (an, n ∈ N∗) with H(h, k) = limn→∞Pk(Zn−h = an)/P(Zn = an) for all
h, k ∈ N. According to Kemeny, Snell and Knapp [23] Chapter 10, we haveM⊂ H.

Consider the collection H∗ = {Hθ, θ ∈ [0,∞)}. We deduce from Section 1.2 that
H∗ ⊂ H. This appears already in Athreya and Ney [7], see also Section II.9 from Athreya
and Ney [8]. We also deduce from Section 1.2 that H0,0 ∈ H if and only if a = 0. We
get a complete description of H andM in the Harris case and geometric case. To our
knowledge, the results for the Harris case in the present work and for the geometric
case in [1] are the first complete descriptions of the Martin boundary for super-critical
GW process. This (partially) answers a question raised in [7], on the identification of
H\H∗.
Theorem 1.9. Let p be a non-degenerate super-critical offspring distribution with finite
mean. If b <∞, then we have:

M = H =

{
H∗ ∪ {H0,0, H∞} if a = 0,

H∗ ∪ {H∞} if a ≥ 1.

If p is geometric, then we haveM = H = H∗ ∪ {H0,0} if a = 0 andM = H = H∗ if a > 0.

Proof. The description of H is a consequence of Theorem 1.8. The fact that H∗ ⊂ M
follows from Lootgieter [26], Corollary 2.3.II c). (Notice that the result in [26] is stated
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under the L log(L) condition and the aperiodic condition, that is L0 = 1. The L log(L)

condition is satisfied in the Harris case (b <∞) and in the geometric case. The periodic
case is an immediate extension.) This result is based on the fact that for all θ ∈ (0,+∞)

a.s. limn→∞ zn(τθ)/cn = θ. See Remark 5.3 for a slightly weaker result. The fact that
H0,0 (when it is defined) and H∞ are extremal is immediate. SinceM⊂ H according to
[23] Chapter 10, we deduce thatM = H.

In the same spirit, Overbeck [30] has given an explicit description of the Martin
boundary for some time-continuous branching processes, see for example Theorem 2
therein.

We conjecture that H = H∗ or H = H∗ ∪ {H0,0} as soon as b = +∞ and f(Rc) = +∞,
keeping H0,0 if and only if a = 0. Otherwise, existence of a limit function H when
limn→∞ an/cn = +∞ is still open in the general case.

We end this section with some works related to Martin boundary for GW process. We
refer to Dynkin [15] or to [23] for a presentation of the Martin boundary. For the extremal
non-negative harmonic functions (space only) of GW process, we refer to Theorem 3
in Cohn [11], which is stated under the L log(L) condition and an aperiodic condition.
(Notice that the L log(L) and aperiodic conditions are indeed required in the proof of
Theorem 3 in [11] as it relies on Corollary 2.3.II a) from [26].) For the Martin entrance
boundary of GW process, see Alsmeyer and Rösler [5].

1.4 The geometric offspring distribution case

We consider the geometric super-critical offspring distribution. We collect results
developed in [1] and in this paper.

Let 0 < q < η ≤ 1 and define the G(η, q) geometric offspring distribution by{
p(0) = 1− η,
p(k) = ηq(1− q)k−1 for k ∈ N∗.

We have a = 0 if η < 1 and a = 1 if η = 1. Moreover, we have b = +∞, (L0, r0) = (1, 0),
µ = η/q ∈ (1,+∞). It is easy to compute

f(s) =
(1− η)− s(1− q − η)

1− s(1− q)
,

and deduce that Rc = 1/(1− q), f(Rc) = +∞, c = (1− η)/(1− q) ∈ [0, 1) and f ′(c) = q/η.
It is also easy to check that

w(θ) = (1− c)2 e−(1−c)θ

for θ > 0 and thus λc = sup{λ ∈ R; E[exp(λW )] < +∞} = 1 − c > 0. If c > 0 or
equivalently η < 1, then τ0,0 has geometric offspring distribution G(q, η). We have for
θ ∈ (0,+∞), r ∈ N∗:

ρθ,r(s) =
(r − 1)!

(|s|1 − 1)!

(
θ(1− c)(µ− 1)

)|s|1−r
e−θ(1−c)(µ−1), s ∈ (N∗)r,

with |s|1 =
∑r
i=1 si for s = (s1, . . . , sr); and

Hθ(h, k) = µh e−θ(1−c)(µ
h−1)

k∑
i=1

(
k

i

)
ck−i

(
θ(1− c)2µh

)i−1

(i− 1)!
·

Notice that the definition of Hθ is similar to the extremal space-time harmonic functions
given in Theorem 2 from [30] for binary splitting in continuous time.
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We have that (τn, n ∈ N∗) converges locally in distribution towards τθ if

lim
n→∞

an/µ
n = θ ∈ [0,+∞] and an > 0 for all n ∈ N∗.

The family (τθ, θ ∈ [0,+∞]) is continuous in distribution for local convergence. The
random tree τ∞ has only one node of infinite degree which happens to be the root. The
space-time Martin boundary isM = H = H∗ if c = 0 andM = H = H∗ ∪ {H0,0} if c > 0.

1.5 Organization of the paper

We recall the definition of trees, the local convergence and the distribution of the
Galton-Watson tree τ in Section 2. Section 3 is devoted to the Kesten tree associated with
τ . We introduce in Section 4 a probability distribution ρθ,r in (4.5) which plays a crucial
role to describe the local limits in the moderate regime. We present the local limits
in the moderate regime in Section 5. The statements of the local convergence are in
Section 6. The continuity of the local limits is studied in Section 7 and the partial results
on the continuity at θ = +∞ are presented in Section 8. Section 9 is devoted to the
sub-critical case (when it is seen as the super-critical case conditioned to the extinction
event). After some ancillary results given in Section 10, we give detailed proofs in the
technical Section 11 for the Harris case and state the results for the Böttcher case in
Section 12.

2 Notations

We denote by N = {0, 1, 2, . . .} the set of non-negative integers, by N∗ = {1, 2, . . .} the
set of positive integers and N̄ = N ∪ {+∞}. For any finite set E, we denote by ]E its
cardinal.

We say that a function g defined on (0,+∞) is multiplicatively periodic with period
c > 0 if g(cx) = g(x) for all x > 0. Notice that g is also multiplicatively periodic with
period 1/c.

2.1 The set of discrete trees

We recall Neveu’s formalism [28] for ordered rooted trees. Let U =
⋃
n≥0(N∗)n be

the set of finite sequences of positive integers with the convention (N∗)0 = {∂}. We also
set U∗ =

⋃
n≥1(N∗)n = U\{∂}.

For u ∈ U , let |u| be the length or the generation of u defined as the integer n such
that u ∈ (N∗)n. If u and v are two sequences of U , we denote by uv the concatenation of
two sequences, with the convention that uv = vu = u if v = ∂. The set of strict ancestors
of u ∈ U∗ is defined by

Anc(u) = {v ∈ U , ∃w ∈ U∗, u = vw},

and for S ⊂ U∗, being non-empty, we set Anc(S ) =
⋃
u∈S Anc(u).

A tree t is a subset of U that satisfies:

• ∂ ∈ t.

• If u ∈ t\{∂}, then Anc(u) ⊂ t.

• For every u ∈ t, there exists ku(t) ∈ N̄ such that, for every i ∈ N∗, ui ∈ t ⇐⇒ 1 ≤
i ≤ ku(t).

We denote by T∞ the set of trees. For r ∈ N̄, r ≥ 1, we denote by tr the regular r-ary
tree, defined by ku(tr) = r for all u ∈ tr. Let t ∈ T∞ be a tree. The vertex ∂ is called the
root of the tree t and we denote by t∗ = t\{∂} the tree without its root. For a vertex
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u ∈ t, the integer ku(t) represents the number of offspring (also called the out-degree)
of the vertex u ∈ t. By convention, we shall write ku(t) = −1 if u 6∈ t. The height H(t) of
the tree t is defined by:

H(t) = sup{|u|, u ∈ t} ∈ N̄.

For n ∈ N, the size of the n-th generation of t is defined by:

zn(t) = ]{u ∈ t, |u| = n}.

We denote by T∗f the subset of trees with finite out-degrees except the root’s:

T∗f = {t ∈ T∞; ∀u ∈ t∗, ku(t) < +∞}

and by Tf = {t ∈ T∗f ; k∂(t) < +∞} the subset of trees with finite out-degrees.

Let h, k ∈ N∗. We define T(h)
f the subset of finite trees with height h:

T
(h)
f = {t ∈ Tf ; H(t) = h}

and T(h)
k = {t ∈ T(h)

f ; k∂(t) = k} the subset of finite trees with height h and out-degree
of the root equal to k. The restriction operators rh and rh,k are defined, for every t ∈ T∞,
by:

rh(t) = {u ∈ t; |u| ≤ h} and rh,k(t) = {∂} ∪ {u ∈ rh(t)∗; Anc(u) ∩ {1, . . . , k} 6= ∅},

so that, for t ∈ Tf , if H(t) ≥ h, then rh(t) ∈ T(h)
f ; and for t ∈ T∗f , if H(t) ≥ h and

k∂(t) ≥ k, then rh,k(t) ∈ T(h)
k .

2.2 Convergence of trees

SetN1 = {−1}∪N̄, endowed with the usual topology of the one-point compactification
of the discrete space {−1} ∪ N. For a tree t ∈ T∞, recall that by convention the out-
degree ku(t) of u is set to -1 if u does not belong to t. Thus a tree t ∈ T∞ is uniquely
determined by the N1-valued sequence (ku(t), u ∈ U) and then T∞ is a subset of NU1 . By
Tychonov’s theorem, the set NU1 endowed with the product topology is compact. Since
T∞ is closed it is thus compact. In fact, the set T∞ is a Polish space (but we don’t need
any precise metric at this point). The local convergence of sequences of trees is then
characterized as follows. Let (tn, n ∈ N) and t be trees in T∞. We say that limn→∞ tn = t

if and only if limn→∞ ku(tn) = ku(t) for all u ∈ U . It is easy to see that:

• If (tn, n ∈ N) and t are trees in Tf , then we have limn→∞ tn = t if and only if
limn→∞ rh(tn) = rh(t) for all h ∈ N∗.

• If (tn, n ∈ N) and t are trees in T∗f , then we have limn→∞ tn = t if and only if
limn→∞ rh,k(tn) = rh,k(t) for all h, k ∈ N∗.

If T is a Tf -valued (resp. T∗f -valued) random variable, then its distribution is charac-

terized by
(
P(rh(T ) = t); h ∈ N∗, t ∈ T(h)

f

)
(resp.

(
P(rh,k(T ) = t); h, k ∈ N∗, t ∈ T(h)

k

)
).

Using the Portmanteau theorem, we deduce the following characterization of conver-
gence in distribution:

• Let (Tn, n ∈ N) and T be Tf -valued random variables. Then, if a.s. H(T ) = +∞, we
have:

Tn
(d)−−−−→
n→∞

T ⇐⇒

lim
n→∞

P(rh(Tn) = t) = P(rh(T ) = t) for all h ∈ N∗, t ∈ T(h)
f . (2.1)
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• Let (Tn, n ∈ N) and T be T∗f -valued random variables. Then, if a.s. H(T ) = +∞
and k∂(T ) = +∞, we have:

Tn
(d)−−−−→
n→∞

T ⇐⇒

lim
n→∞

P(rh,k(Tn) = t) = P(rh,k(T ) = t) for all h, k ∈ N∗, t ∈ T(h)
k . (2.2)

2.3 Galton-Watson trees

Let p = (p(n), n ∈ N) be a probability distribution on N. A Tf -valued random variable
τ is called a GW tree with offspring distribution p if for all h ∈ N∗ and t ∈ Tf with
H(t) ≤ h:

P(rh(τ) = t) =
∏

u∈rh−1(t)

p(ku(t)).

The generation size process defined by (Zn = zn(τ), n ∈ N) is the so-called GW process.
We refer to [8] and [6] for a general study of GW processes.

We recall here the classical result on the extinction probability of the GW tree and
introduce some notations. We denote by E = {H(τ) < +∞} =

⋃
n∈N{Zn = 0} the

extinction event and denote by c the extinction probability:

c = P(E). (2.3)

Then, if f denotes the generating function of p, c is the smallest non-negative root of
f(s) = s. We denote by µ the mean of p i.e. µ = f ′(1). We recall the three following
cases:

• The sub-critical case (µ < 1): c = 1.

• The critical case (µ = 1): c = 1 (unless p(1) = 1 and then c = 0).

• The super-critical case (µ > 1): c ∈ [0, 1), the process has a positive probability of
non-extinction. Notice that c = 0 if and only if a ≥ 1.

We consider the lower and upper bounds of the support of p:

a = inf{n ∈ N; p(n) > 0} and b = sup{k; p(k) > 0} ∈ N̄. (2.4)

We say that p is non-degenerate if a < b. We define fn the n-th iterate of f , which is the
generating function of Zn. We recall that limn→∞ fn(0) = c. We also introduce in the
supercritical case (µ > 1) the Schröder constant α defined by:

f ′(c) = µ−α, α ∈ (0,+∞]. (2.5)

We set Pk the probability under which the GW process (Zn, n ≥ 0) starts with Z0 = k

individuals and write P for P1 so that:

Pk(Zn = a) = P(Z(1)
n + · · ·+ Z(k)

n = a),

where the (Z(i), 1 ≤ i ≤ k) are independent random variables distributed as Z under P.
We consider a sequence (an, n ∈ N∗) of elements of N and, when P(Zn = an) > 0, τn

a random tree distributed as the GW tree τ conditioned on {Zn = an}. Let n ≥ h ≥ 1 and

t ∈ T(h)
f . We have, with k = zh(t):

P(rh(τn) = t) = P(rh(τ) = t)
Pk(Zn−h = an)

P(Zn = an)
· (2.6)
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3 The Kesten tree

In this section, we consider a GW tree τ with offspring distribution p = (p(n), n ∈ N)

having mean µ ∈ (0,+∞). Recall that c ∈ [0, 1] denotes the extinction probability of τ .
We define an associated probability distribution p on N as follows:

Definition 3.1. (i) If c = 0, we define p as the Dirac mass at point a.

(ii) If c > 0, we define the probability distribution p = (p(n), n ∈ N) by:

p(n) = cn−1p(n) for n ∈ N. (3.1)

We denote by m the mean of p. If µ ≤ 1 and p(1) 6= 1, as c = 1, we have p = p and
m = µ. If c > 0, we have m = f ′(c) ∈ (0, 1].

Remark 3.2. If c > 0, let τ0,0 be a GW tree with offspring distribution p defined in (3.1).
It is well known that the GW tree τ conditioned on the extinction event E is distributed
as τ0,0. Indeed, we have using the branching property that, for h ∈ N∗, t ∈ T(h)

f , and
setting k = zh(t):

P(rh(τ) = t| E) = P(rh(τ) = t)
Pk(E)

P(E)
= ck−1P(rh(τ) = t) = P(rh(τ0,0) = t).

Let k ∈ N∗. If f (k)(1) ∈ (0,+∞), that is p has finite moment of order k and the support
of p is not a subset of {0, . . . , k − 1}, then we define the k-th order size-biased probability
distribution of p as p[k] = (p[k](n), n ∈ N) with:

p[k](n) = 1{n≥k}

(
n

k

)
k!

f (k)(1)
p(n). (3.2)

The generating function of p[k] is f[k](s) = skf (k)(s)/f (k)(1). The probability distribution
p[1] is the so-called size-biased probability distribution of p.

We now define the so-called Kesten tree τ̂0 associated with the offspring distribution
p.

Definition 3.3 (Kesten tree). (i) If c > 0, the Kesten tree τ̂0 is a two-type GW tree
where the vertices are either of type s (for survivor) or of type e (for extinction). Its
distribution is characterized as follows.

– The root is of type s.
– The number of offspring of a vertex depends, conditionally on the vertices of

lower or same height, only on its own type (branching property).
– A vertex of type e produces only vertices of type e with offspring distribution
p.

– The random number of children of a vertex of type s has the size-biased
distribution of p that is p[1] defined by (3.2) with k = 1. (Notice that p[1] is
well defined as c > 0.) Furthermore, all of the children are of type e but one,
uniformly chosen at random which is of type s.

(ii) If c = 0, the (degenerate) Kesten tree τ̂0 is given by ta the regular a-ary tree, with
a ≥ 1 defined by (2.4). It can be seen as a GW tree with degenerate offspring
distribution the Dirac mass at point a. In this case all the individuals have type s.

Informally, when c > 0, the individuals of type s in τ̂0 form an infinite spine on which
are grafted independent GW trees distributed (see Remark 3.2) as τ conditionally on the
extinction event E .

We define τ0 = Ske(τ̂0) as the tree τ̂0 when one forgets the types of the vertices. If
c = 0, then τ0 is the regular a-ary tree. If c > 0, the distribution of τ0 is given in the
following classical result.
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Lemma 3.4. Let p be an offspring distribution with finite positive mean such that c > 0.
The distribution of τ0 is characterized by: for all h ∈ N∗ and t ∈ T(h)

f with k = zh(t):

P(rh(τ0) = t) = kck−1m−hP(rh(τ) = t). (3.3)

If µ ≤ 1, this is the usual link between Kesten tree and the size-biased GW tree. If
µ > 1, the lemma just means that the Kesten tree is the sized biased tree associated
with the tree conditioned on extinction (which is the subcritical GW tree with offspring
distribution p). We give a short proof of this well-known result.

Proof. According to Section 2.2, the distribution of τ0 is characterized by (3.3) for all
h ∈ N∗ and t ∈ T(h)

f with k = zh(t).

Let h ∈ N∗, t ∈ T(h)
f and v ∈ t such that |v| = h. Let V be the vertex of type s at level

h in τ̂0. We have, with k = zh(t):

P(rh(τ0) = t, V = v) =
∏

u∈rh−1(t)\Anc({v})

p(ku(t))
∏

u∈Anc({v})

1

ku(t)
p[1](ku(t))

= m−hc
∑
u∈rh−1(t)(ku(t)−1)

∏
u∈rh−1(t)

p(ku(t))

= m−hck−1P(rh(τ) = t),

where we used (3.2) (with k = 1, n = ku(t) and p replaced by p) and (3.1) (with n = ku(t))
for the second equality and that

∑
u∈rh−1(t)(ku(t)− 1) = k − 1 for the last one. Summing

over all v ∈ t such that |v| = h gives the result.

4 A distribution associated with super-critical GW trees

In this section, we consider a super-critical GW tree τ with non-degenerate offspring
distribution p = (p(n), n ∈ N) with finite mean µ ∈ (1,+∞). We recall that f denotes the
generating function of p and c is the smallest root in [0, 1) of f(s) = s. Notice that a = 0

is equivalent to c > 0.
Following [33] or [6], we consider the Seneta-Heyde norming: (cn, n ∈ N) is a

sequence such that
(
e−Zn/cn , n ∈ N

)
is a martingale and c0 ∈ (−1/ log(c),+∞). This se-

quence is increasing positive and unbounded. Furthermore, we have that a < cn+1/cn <

µ for all n ∈ N and that the sequence (cn+1/cn, n ∈ N) is increasing2 and converges to-
wards µ. We also have that (Zn/cn, n ∈ N) converges a.s. towards a non-negative random
variable W with Laplace transform ϕ(λ) = E

[
e−λW

]
such that ϕ(+∞) = P(W = 0) = c

and for all λ ≥ 0:

f(ϕ(λ/µ)) = ϕ(λ). (4.1)

The probability distribution ofW , up to a multiplicative constant, is the unique probability
distribution solution of (4.1).

Remark 4.1. If one assumes that p satisfies E[Z1 log(Z1)] < +∞, then Kesten and Stigum
results asserts that (µ−nZn, n ∈ N) converges a.s. towards W up to a scaling factor and
that limn→∞ µ−ncn exists and belongs to (0,+∞).

2We provide a short proof of the fact that the sequence (cn+1/cn, n ∈ N) is increasing, as we didn’t find
a reference. Define g1(λ) = log(f(e−λ))/λ so that g1(1/cn+1) = −cn+1/cn. So to prove that the sequence
(cn+1/cn, n ∈ N) is increasing, it is enough to check that g1 is increasing, or more generally that the function
g2(λ) = log(E[e−λX ])/λ defined for λ > 0 is increasing, where X is a non constant real-valued random
variable with finite Laplace transform. Indeed, we have g′2(λ) > 0 as E[Y e−Y ] + E[e−Y ] log(E[e−Y ]) < 0 for
any random variable Y such that Y e−Y is integrable, thanks to Jensen inequality with the strictly concave
function −x log(x) applied to e−Y .
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Remark 4.2. Let Rc = sup{r ≥ 1; f(r) < +∞} ≥ 1 be the convergence radius of the
generating function f of p. Set

K = {λ ∈ R; E[eλW ] < +∞}, (4.2)

and λc = supK ≥ 0. According to Theorem 8.1 in [25] (see also [32]), we have that λc > 0

if and only if Rc > 1. We then deduce that (4.1) holds for λ ∈ C such that R(λ) ∈ K. We
get that f(Rc) = ϕ(−λc) ∈ [1,+∞] and thus that:

Rc = ϕ(−λc/µ). (4.3)

According to [12] and references therein, the distribution ofW is cδ0(dt)+w(t)1{t>0}dt,
where w is a positive continuous function defined on (0,+∞). Let (W`, ` ∈ N∗) be indepen-
dent random variables distributed as W . The distribution of

∑k
`=1W` is ckδ0(dt)+wk(t)dt,

where (by decomposing according to the number k− i of random variables W` which are
equal to 0):

wk(θ) =

k∑
i=1

(
k

i

)
ck−iw∗i(θ) for θ > 0, (4.4)

and w∗i denotes the i-fold convolution of the function w. We now define a new probability
distribution related to the function w. For r ∈ N∗, s = (s1, . . . , sr) ∈ (N∗)r and θ ∈
(0,+∞), we set |s|1 =

∑r
i=1 si and:

ρθ,r(s) = µ
w∗|s|1(µθ)

w∗r(θ)

r∏
i=1

f (si)(c)

si!
· (4.5)

Lemma 4.3. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let θ ∈ (0,+∞), r ∈ N∗. Then ρθ,r = (ρθ,r(s), s ∈ (N∗)r) defines a probability
distribution on (N∗)r.

Proof. For convenience, we shall prove that ρθ/µ,r is a probability distribution. Let ŵ
denote the Laplace transform of w: ŵ(λ) =

∫∞
0
w(t) e−λt dt for λ ≥ 0. We deduce from

(4.1) that f(c + ŵ(λ)) = c + ŵ(µλ) = f(c) + ŵ(µλ). We deduce that for r ∈ N∗:

ŵ(µλ)r = (f(c + ŵ(λ))− f(c))
r

=
∑

k1,...,kr∈N∗

r∏
i=1

p(ki)
(
(c + ŵ(λ))ki − cki

)
=

∑
k1,...,kr∈N∗

r∏
i=1

p(ki)

ki∑
si=1

(
ki
si

)
cki−siŵ(λ)si

=
∑

s=(s1,...,sr)∈(N∗)r

ŵ(λ)|s|1
r∏
i=1

+∞∑
ki=si

(
ki
si

)
cki−sip(ki)

=
∑

s=(s1,...,sr)∈(N∗)r

ŵ(λ)|s|1
r∏
i=1

f (si)(c)

si!
,

where we used for the last equality that for s ∈ N∗, x ∈ [0, 1]:

f (s)(x) =

+∞∑
k=s

k!

(k − s)!
xk−sp(k) = s!

+∞∑
k=s

(
k

s

)
xk−sp(k).
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Since ŵ(µλ)r is the Laplace transform of w∗r(t/µ)/µ, by uniqueness of the Laplace
transform and the continuity of w (and thus of w∗i), we get using the definition (4.5) of
ρθ,r that for all θ ∈ (0,+∞):

1

µ
w∗r(θ/µ) =

∑
s=(s1,...,sr)∈(N∗)r

w(θ)∗|s|1
r∏
i=1

f (si)(c)

si!
=

1

µ
w∗r(θ/µ)

∑
s∈(N∗)r

ρθ/µ,r(s). (4.6)

Since w is non-zero, we get that
∑
s∈(N∗)r ρθ/µ,r(s) = 1 and thus ρθ/µ,r is a probability

distribution as ρθ/µ,r(s) is non-negative.

We end this section with the limit of ρθ,r as θ goes to 0 and in a particular case to
+∞. Recall Definitions (2.4) and (2.5). One has to distinguish two cases when θ goes to
0: the so-called Schröder case a ≤ 1 (equivalently p(0) + p(1) 6= 0, f ′(c) > 0 or α < +∞)
and the so-called Böttcher case a ≥ 2 (equivalently p(0) + p(1) = 0, f ′(c) = 0 or α = +∞).
When θ goes to infinity we consider the particular so-called Harris case where p has a
finite support (equivalently b is finite).

Lemma 4.4. Let p be a non-degenerate super-critical offspring distribution with finite
mean.

(i) In the Schröder case (a ≤ 1), we get that ρθ,1 converges to the Dirac mass at point
1 as θ goes down to 0.

(ii) In the Böttcher case (a ≥ 2), we get that, for all r ∈ N∗, ρθ,r converges to the Dirac
mass at (a, . . . , a) ∈ Nr as θ goes down to 0.

(iii) In the Harris case (b <∞), we get that, for all r ∈ N∗, ρθ,r converges to the Dirac
mass at (b, . . . , b) ∈ Nr as θ goes to infinity.

Proof. We give the proof of (i). The technical proofs of (ii) and (iii) are postponed
respectively to Sections 12.3 and 11.3.

According to [10], there exists a positive continuous multiplicatively periodic function
V defined on (0,+∞) with period µ such that for all x > 0:

x1−αw(x) = V (x) + o(1) as x↘ 0. (4.7)

We have for θ > 0 as θ goes down to 0:

ρθ,1(1) = µf ′(c)
w(µθ)

w(θ)
=
V (µθ) + o(1)

V (θ) + o(1)
= 1 + o(1),

where we used Definition (2.5) of the Schröder constant for the first equality and that V
has multiplicative period µ for the last one. This implies that limθ→0 ρθ,1(1) = 1 and thus
ρθ,1 converges to the Dirac mass at 1 as θ goes down to 0.

5 Extremal GW trees

We are in the setting of Section 4. If c > 0, we define the sub-critical offspring
distribution p by (3.1) and, see (3.2), the corresponding size-biased distribution p[`] of
order ` ∈ N∗. For ` ∈ N∗ such that f (`)(c) > 0, we have:

p[`](k) =

(
k

`

)
`!

f (`)(c)
ck−`p(k), k ≥ `. (5.1)

If c = 0 but p(`) > 0 (or equivalently f (`)(c) > 0), then we define p[`] as the Dirac mass
at point `, so that Definition (5.1) is consistent for c ≥ 0. Recall Definition (2.4) of a and
note that p = p[a] if c = 0.

Let θ ∈ (0,+∞). We define a two-type random tree τ̂θ and shall consider the corre-
sponding tree τθ = Ske(τ̂θ) when one forgets the types of the vertices of τ̂θ.
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Definition 5.1 (Extremal tree). Let p be a non-degenerate super-critical offspring distri-
bution with finite mean. The labeled random tree τ̂θ is a two-type random tree where the
vertices are either of type s (for survivor) or of type e (for extinction) and τθ = Ske(τ̂θ)

denotes the corresponding random Tf -valued tree when one forgets the labels (or types).
The distribution of τ̂θ is characterized as follows:

• The root is of type s.

• The number of offspring of a vertex of type e does not depend on the vertices of
lower or same height (branching property for vertices of type e).

• A vertex of type e produces only vertices of type e with offspring distribution p (as
in the Kesten tree).

• For every h ≥ 0, we set

Sh = {u ∈ τθ; |u| = h and the vertex u has type s in τ̂θ}.

For a vertex u of type s, we denote by κs(u) the number of children of u with type
s and by κe(u) the number of children of u with type e. Conditionally given rh(τθ)

and (S`, 0 ≤ ` ≤ h), we have:

(i) (κs(u), u ∈ Sh) has distribution ρµhθ,]Sh
.

(ii) For every u ∈ Sh, conditionally on {κs(v) = sv ≥ 1, v ∈ Sh}, κe(u) is such that
ku(τθ) = κs(u) + κe(u) has distribution p[su] and the su vertices of type s are
chosen uniformly at random among the ku(τθ) children.

Notice that Property (i) in the above definition breaks down the branching property.
If c = 0, then a.s. κe(u) = 0, so that there are no individuals of type e. We stress, and
shall use later on, that τ̂θ truncated at level h can be recovered from rh(τθ) and Sh as
all the ancestors of a vertex of type s are of type s and a vertex of type s has at least one
child of type s.

Since all the vertices of type s have at least one offspring of type s, we get ]Sh+1 ≥
]Sh. The offspring distribution of vertices of type s can also be described as follows. For
every h ≥ 0, conditionally given rh(τθ) and Sh, we compute the probability that

• we have ]Sh+1 − ]Sh = n for some n ≥ 0 i.e. n new vertices of type s appear at
generation h+ 1,

• every node u of Sh has ku offspring, su of them being of type s, where the integers
((su, ku), u ∈ Sh) satisfy 1 ≤ su ≤ ku and

∑
u∈Sh

su = n+ ]Sh,

• for every u ∈ Sh and every subset Au ⊂ {1, . . . , ku} such that ]Au = su, the
positions of the offspring of u of type s among all the offspring of u, are given by Au
i.e. Sh+1 ∩ {u1, . . . , uku} = uAu where we recall that uv denotes the concatenation
of the two sequences u and v.

We have:

P
(
∀u ∈ Sh, κ

s(u) + κe(u) = ku and Sh+1 ∩ {u1, . . . , uku} = uAu | rh(τθ),Sh

)
= ρµhθ,]Sh

((su, u ∈ Sh))
∏
u∈Sh

1(
ku
su

) p[su](ku)

= µ
w∗(]Sh+n)(µh+1θ)

w∗]Sh(µhθ)

∏
u∈Sh

cku−sup(ku),

(5.2)

where we used (4.5) and (5.1) for the last equality.
By construction, a.s. individuals of type s have a progeny which does not suffer

extinction whereas individuals of type e (if any) have a progeny which suffers extinction.
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Since the individuals of type s do not satisfy the branching property, the random tree τ̂θ

is not a two-type inhomogeneous GW tree.
Using this definition, it is easy to get that the distribution of the tree rh(τθ) is

absolutely continuous with respect to those of the original GW tree rh(τ).

Lemma 5.2. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let θ ∈ (0,+∞). Let h ∈ N∗ and t ∈ T(h)

f . We have, with k = zh(t):

P(rh(τθ) = t) = P(rh(τ) = t)µh
wk(µhθ)

w(θ)
·

Proof. Let h ∈ N∗, t ∈ T(h)
f and Sh ⊂ {u ∈ t; |u| = h} be non empty. Set k = zh(t). In

order to shorten the notations, we set A = Sh
⋃

Anc(Sh). We set, for ` ∈ {0, . . . , h− 1},
S` = {u ∈ A, |u| = `} the vertices at level ` which have at least one descendant in Sh. For
u ∈ rh−1(t), we set su(t) = ](A

⋂
uN∗), the number of children of u having descendants

in Sh. We recall that τ̂θ truncated at level h can be recovered from rh(τθ) and Sh. We
compute CSh = P(rh(τθ) = t, Sh = Sh). We have, using (5.2):

CSh =

 ∏
u∈rh−1(t), u 6∈A

p(ku(t))

 h−1∏
`=0

µ
w∗(]S`+1)(µ`+1θ)

w∗(]Sh)(µ`θ)

∏
u∈S`

cku(t)−su(t)p(ku(t))

=

 ∏
u∈rh−1(t)

p(ku(t))

  ∏
u∈rh−1(t)

cku(t)−1

[∏
u∈A

c−(su(t)−1)

]
µh
w∗(]Sh)(µhθ)

w(θ)

= P(rh(τ) = t) ck−]Shµh
w∗(]Sh)(µhθ)

w(θ)
, (5.3)

where we used that for a tree s, we have
∑
u∈rh−1(s) ku(s)− 1 = zh(s)− 1 and that s = A

is tree-like with zh(s) = ]Sh. Remark that CSh depends only of ]Sh. Since ]Sh ≥ 1 as the
root is of type s, we obtain:

P(rh(τθ) = t) =

k∑
i=1

∑
Sh⊂{u∈t; |u|=h}

1{]Sh=i} CSh

=

k∑
i=1

(
k

i

)
P(rh(τ) = t) ck−iµh

w∗i(µhθ)

w(θ)
= P(rh(τ) = t)µh

wk(µhθ)

w(θ)
,

where we used (4.4) for the last equality.

Remark 5.3. Let Ec = {W > 0} denote the non-extinction event. Using Lemma 5.2, we

get for h ∈ N∗, t ∈ T(h)
f , and g a non-negative measurable function defined on R+, that:∫ +∞

0

g(θ)P(rh(τθ) = t)w(θ)dθ = E
[
g(W )1{rh(τ)=t,Ec}

]
This implies that for every non-negative measurable function G defined on T∞ ×R+, we
have: ∫ +∞

0

E[G(τθ, θ)]w(θ)dθ = E
[
G(τ,W )1{Ec}

]
.

Thus, the distribution probability of τθ is a regular version of the distribution of τ
conditionally on {W = θ}. From Lemma 5.2, we get that this version is continuous on T(h)

f

for all h ∈ N∗. In particular, we deduce that for a.e. θ ∈ (0,+∞), a.s. limn→∞ zn(τθ)/cn =

θ (see also Theorem 2.II in [26] for an a.s. convergence for all θ ∈ (0,+∞) under stronger
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hypothesis). The distribution of τ conditionally on Ec can be written as a mixture of
distributions of τθ as for every Borel set A of T∞,∫ +∞

0

P(τθ ∈ A)w(θ)dθ = P({τ ∈ A} ∩ Ec).

6 Convergence of conditioned super-critical GW trees

We are in the setting of Section 4, with τ a GW tree with super-critical non-degenerate
offspring distribution p with finite mean µ. We consider a deterministic N-valued
sequence (an, n ∈ N∗) such that P(Zn = an) > 0 for every n > 0. See Remark 1.4
for conditions on the existence of such sequences. We denote by τn a random tree
distributed as the GW tree τ conditioned on {Zn = an}. We study the limit in distribution
of τn as n goes to infinity and we consider different regimes according to the growth
speed of the sequence (an, n ∈ N∗). Recall that Zn is under Pk distributed as a GW
process with offspring distribution p starting at Z0 = k.

We say that the offspring distribution p is of type (L0, r0), when L0 is the period of
p, that is the greatest common divisor of {n − `; n > ` and p(n)p(`) 6= 0}, and r0 is the
residue (mod L0) of any n such that p(n) 6= 0. See Remark 1.4 on sufficient conditions to
get Pk(Zn = a) > 0.

6.1 The intermediate regime: limn→∞ an/cn ∈ (0,+∞)

We first state a strong ratio limit which is a direct consequence of the local limit
theorem in [12].

Lemma 6.1. Let p be a non-degenerate super-critical offspring distribution with finite
mean and type (L0, r0). Let θ ∈ (0,+∞). Assume that limn→∞ an/cn = θ and that
an = rn0 (mod L0) for all n ∈ N∗. For all h, k ∈ N∗, we have:

lim
n→∞

Pk(Zn−h = an)

P(Zn = an)
= µh

wk
(
µhθ

)
w(θ)

1{k=rh0 (mod L0)}.

Proof. The local limit theorem in [12] states that for all k ∈ N∗, θ ∈ (0,+∞) and
(an, n ∈ N) a sequence of elements of N∗ such that limn→∞ an/cn = θ, we have:

lim
n→∞

[
cnPk(Zn = an)− L01{an=krn0 (mod L0)}wk(θ)

]
= 0. (6.1)

We now assume that an = krn0 (mod L0) and limn→∞ an/cn = θ ∈ (0,+∞). Using Remark
1.4, we deduce that Pk(Zn−h = an) > 0 if and only if an = krn−h0 (mod L0) that is k =

rh0 (mod L0). In this case, noticing that limn→∞ an/cn−h = µhθ as limn→∞ cn/cn−h = µh,
using (6.1), we get that:

lim
n→∞

Pk(Zn−h = an)

P(Zn = an)
= lim
n→∞

cn
cn−h

wk
(
µhθ

)
w(θ)

= µh
wk
(
µhθ

)
w(θ)

·

We deduce the following local convergence.

Proposition 6.2. Let p be a non-degenerate super-critical offspring distribution with
finite mean. Let θ ∈ (0,+∞). Assume that limn→∞ an/cn = θ and that τn is well defined
for all n. Then, we have the following convergence in distribution:

τn
(d)−−−−→
n→∞

τθ.

Proof. Assume that p is of type (L0, r0), so that τn is well defined for n large if and
only if an = rn0 (mod L0). Using that a.s. H(τθ) = +∞, the characterization (2.1) of the
convergence in Tf , (2.6) with k = rh0 (mod L0), and Lemmas 5.2 and 6.1, we directly get
the result.
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6.2 The high regime in the Harris case: limn→∞ an/cn = +∞
Let p be a non-degenerate super-critical offspring distribution with finite mean. Recall

b (the supremum of the support of p) defined in (2.4). Notice that b finite (Harris case)
implies that p has finite mean. When b < ∞, we define τ∞ as tb, the deterministic
regular b-ary tree.

Proposition 6.3. Let p be a non-degenerate super-critical offspring distribution with
b < ∞. Assume that an ≤ bn for all n ∈ N∗, limn→∞ an/cn = ∞ and that τn is well
defined for all n. Then, we have the following convergence in distribution:

τn
(d)−−−−→
n→∞

τ∞.

Proof. We assume that τn is well defined, that is P(Zn = an) > 0. For h ∈ N∗, we have

P(rh(τ) = rh(tb)) = p(b)(bh−1)/(b−1). We deduce from (2.6) and (2.1), using that tb has
a.s. an infinite height, that the proof of Proposition 6.3 is complete as soon as we prove
that for all k ≤ bh:

lim
n→∞

Pk(Zn−h = an)

P(Zn = an)
= p(b)−(bh−1)/(b−1)1{k=bh}. (6.2)

In fact, it is enough to prove (6.2) for k = bh as P(Zh = bh) = p(b)−(bh−1)/(b−1) and:

P(Zn = an) = P(Zh = bh)Pbh(Zn−h = an) +
∑

k≤bh−1

P(Zh = k)Pk(Zn−h = an). (6.3)

It is also enough to consider the two cases: limn→∞ an/b
n = 1 or lim supn→∞ an/b

n < 1

with limn→∞ an/cn = +∞.
We first consider the case limn→∞ an/b

n = 1. Notice that Pk(Zn−h = an) = 0 for
kbn−h < an as each individual produces at most b children. For k ≤ bh − 1, we have
kbn−h ≤ bn − bn−h. Since limn→∞ an/b

n = 1, we deduce that for h, k ∈ N∗, if k ≤ bh − 1,
then kbn−h < an for n large enough. Using (6.3), we deduce that for n large enough,
P(Zn = an) = P(Zh = bh)Pbh(Zn−h = an) as soon as P(Zn = an) > 0. This gives (6.2).

The case lim supn→∞ an/b
n < 1 and limn→∞ an/cn = +∞ is proven in Section 11.4,

see Lemma 11.6 with ` = 1.

6.3 The low regime: limn→∞ an/cn = 0

Let p be a non-degenerate super-critical offspring distribution with finite mean. If
c > 0 (and thus a = 0), we recall that τ0,0 denote the distribution of the GW tree τ with
offspring distribution p given in (3.1). According to Remark 3.2, we have the following
result for the extinction regime.

Proposition 6.4. Let p be a non-degenerate super-critical offspring distribution with
finite mean such that c > 0. Assume that an = 0 for n large enough so that τn is well
defined for n large enough. Then, we have the following convergence in distribution:

τn
(d)−−−−→
n→∞

τ0,0.

Recall the Kesten tree τ0 from Definition 3.3. Recall that a ≥ 1 implies that a.s.
τ0 = ta, the deterministic regular a-ary tree.

Proposition 6.5. Let p be a non-degenerate super-critical offspring distribution with
finite mean. Assume that an ≥ 1∨ an for all n ∈ N∗, limn→∞ an/cn = 0 and that τn is well
defined for all n. Then, we have the following convergence in distribution:

τn
(d)−−−−→
n→∞

τ0.

EJP 24 (2019), paper 15.
Page 19/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP272
http://www.imstat.org/ejp/


Expansive GW trees

Proof. We give the proof in the Schröder case (a ≤ 1). The Böttcher case (a ≥ 2) is more
technical and its proof is postponed to Section 12.5. We suppose throughout the proof
that p is of type (L0, r0).

Case I: the sequence (an, n ∈ N∗) is bounded. We first consider the case a = 0. The
ratio theorem, see (4) in [31] (or [8] Theorem A.7.4), implies, that for all `, k, h ∈ N∗, if
P(Zn = k) > 0 for n large enough, then:

lim
n→∞

P`(Zn−h = k)

P(Zn = k)
= `c`−1f ′(c)−h.

We deduce from (2.6) and (3.3), as m = f ′(c), that for h ∈ N∗ and t ∈ T(h)
f , we have

limn→∞P(rh(τn) = t) = P(rh(τ0) = t). Since τ0 has a.s. an infinite height, we get that
τn converges in distribution towards τ0 using the convergence characterization (2.1).

We consider now the case a = 1. Recall that ta is the regular a-ary tree. According to
Remark 1.4, for k large enough, we get that P(Zn = k) > 0 and P(Zn−h = k) > 0 for n
large enough. It is easy to check that for h ∈ N, k ∈ N∗:

P(rh(τ) = rh(ta)|Zn = k) = p(1)h
P(Zn−h = k)

P(Zn = k)
·

For k = 1, the left hand side member is equal to one. For k > 1, it is not difficult to
get, by considering the lowest vertex of τ with out-degree larger than one, that the
sequence (P(Zn = k)/P(Zn = 1), n ∈ N∗) is bounded. Then arguing as in [31], one gets

that limn→∞
P(Zn−h=k)
P(Zn=k) = p(1)−h. This gives that limn→∞P(rh(τ) = rh(ta)|Zn = k) = 1.

This implies that τn converges in distribution towards τ0 = ta using the convergence
characterization (2.1).

Case II: limn→∞ an = +∞. We first consider the case a = 0. Then we have fn(0) > 0 for

all n ∈ N∗. Since {
∑`
i=1 Z

(i)
n−h = an} contains

⋃`
j=1

(
{Z(j)

n−h = an}
⋂
i 6=j{Z

(i)
n−h = 0}

)
, we

deduce that P`(Zn−h = an) ≥ `fn−h(0)`−1P(Zn−h = an). Using that limn→∞ fn−h(0) = c,
we deduce from Lemma 6.6, stated below, that:

lim inf
n→∞

P`(Zn−h = an)

P(Zn = an)
≥ `c`−1f ′(c)−h.

As f ′(c) = m, we deduce from (2.6) and (3.3) that

lim inf
n→∞

P(rh(τn) = t) ≥ P(rh(τ0) = t). (6.4)

Since τ0 has a.s. an infinite height, we deduce that (6.4) holds for all t ∈ T(h′)
f with

0 ≤ h′ ≤ h. Since singletons are open subsets of the closed discrete set
⋃

0≤h′≤hT
(h′)
f ,

we deduce from the Portmanteau theorem that (rh(τn), n ∈ N) converges in distribution
towards rh(τ0). Since this holds for all h ∈ N∗, and since τ0 has a.s. an infinite height,
we conclude using the convergence characterization (2.1).

We now consider the case a = 1. Then we have a.s. τ0 = ta. We deduce, as
f ′(c) = p(1), that P(rh(τ) = rh(ta)) = f ′(c)h and thus, using (2.6) and Lemma 6.6:

P(rh(τn) = rh(ta)) = P(rh(τ) = rh(ta))
P(Zn−h = an)

P(Zn = an)
−−−−→
n→∞

1.

Since this holds for all h ∈ N∗, and since ta has a.s. an infinite height, we conclude using
the convergence characterization (2.1).
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The proof of the previous proposition in the Schröder case is based on the following
strong ratio limit.

Lemma 6.6. Let p be a non-degenerate super-critical offspring distribution with finite
mean in the Schröder case (a ≤ 1). Assume that limn→+∞ an = +∞, limn→+∞ an/cn = 0

and P(Zn = an) > 0 for every n ∈ N∗. Then we have for all h ∈ N∗:

lim
n→+∞

P(Zn−h = an)

P(Zn = an)
= f ′(c)−h. (6.5)

Notice that according to Remark 1.4, the condition P(Zn = an) > 0 in Lemma 6.6 is
satisfied as soon as an = rn0 (mod L0) as limn→+∞ an = +∞ and limn→+∞ an/cn = 0.

Proof. Since a ≤ 1, we have r0 ∈ {0, 1}. We deduce from Corollary 5 in [17], that for
kn ≤ cn and limn→∞ kn = +∞:

lim
n→∞

sup
k∈[kn,cn], k=r0 (mod L0),

∣∣∣∣ µn−ρkcρk
L0w(k/µn−ρkcρk)

P(Zn = k)− 1

∣∣∣∣ = 0, (6.6)

where ρk = min{` ≥ 1; c` ≥ k}. Recall that limn→∞ cn+1/cn = µ. The hypothesis
on an imply thus that limn→∞ ρan = +∞. Set ρ = ρan for simplicity. Assume that
an = rn0 (mod L0), so that P(Zn = an) > 0 for n large enough. For n large enough, we
have:

P(Zn−h = an)

P(Zn = an)
∼ µhw(an/µ

n−h−ρcρ)

w(an/µn−ρcρ)
∼ µαhV (a/cρ)

V (a/cρ)
= f ′(c)−h,

where we used (6.6) for the first approximation, the representation (4.7) of w in the
Schröder case and that V is multiplicatively periodic with period µ for the second one.

7 Continuity in law of the extremal GW trees at θ = 0

We are in the setting of Section 4. Recall the definition of τ̂θ given in Section 5
for θ > 0 and in Section 3 for θ = 0. Since the function w is continuous, we get that
the distribution of τ̂θ and thus of τθ, as a function of θ ∈ (0,+∞) is continuous. From
the convergence of the offspring distribution of the individuals of type s which is a
consequence of Lemma 4.4, we deduce the continuity in distribution of τ̂θ for θ ∈ [0,+∞).
This directly gives the continuity in distribution of τθ for θ ∈ [0,+∞). We stress in the
next corollary that only the convergence at 0 is non-trivial.

Corollary 7.1. Let p be a non-degenerate super-critical offspring distribution with finite
mean. We have the following convergence in distribution:

τθ
(d)−−−→
θ→0

τ0.

As a consequence of Corollary 7.1, we recover directly Corollary 3 from [9], which
is stated only in the Böttcher case (p(0) + p(1) = 0) and extend it to the Schröder case,
see next corollary. Recall that in the Böttcher case, the random tree τ0 is in fact the
(deterministic) regular a-ary tree. For ε ∈ (0, 1), let τ(ε) be distributed as τ conditionally
on {0 < W ≤ ε}. Notice that if c = 0, then conditioning on {0 < W ≤ ε} is the same as
conditioning on {0 ≤W ≤ ε}.
Corollary 7.2. Let p be a non-degenerate super-critical offspring distribution with finite
mean. We have the following convergence in distribution:

τ(ε)
(d)−−−→
ε→0

τ0.
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Proof. Let h ∈ N∗ and t ∈ T(h)
f and set k = zh(t). We deduce from Lemma 5.2 that for

all θ ∈ (0,+∞):

P(rh(τ) = t)µh wk(µhθ) = P(rh(τθ) = t)w(θ).

Integrating with respect to θ ∈ (0, ε] for some ε > 0, we get:

P(rh(τ) = t)Pk(0 < W ≤ εµh) =

∫ ε

0

P(rh(τθ) = t)w(θ) dθ,

where W under Pk is distributed as
∑k
`=1W`, where (W`, ` ∈ N∗) are independent

random variables distributed as W under P. Using Corollary 7.1, we get that:

lim
ε→0

∫ ε
0
P(rh(τθ) = t)w(θ) dθ

P(0 < W ≤ ε)
= P(rh(τ0) = t).

This implies that:

lim
ε→0

P(rh(τ) = t)
Pk(0 < W ≤ εµh)

P(0 < W ≤ ε)
= P(rh(τ0) = t). (7.1)

On the other hand, we have:

P(rh(τ) = t, 0 < W ≤ ε) = P

(
rh(τ) = t, 0 < lim

n→∞

Zn
cn
≤ ε
)

= P(rh(τ) = t)Pk

(
0 < lim

n→∞

Zn
cn+h

≤ ε
)

= P(rh(τ) = t)Pk
(
0 < W ≤ εµh

)
,

where we used that limn→∞ cn/cn+h = µ−h for the last equality. We deduce that:

P(rh(τ) = t | 0 < W ≤ ε) = P(rh(τ) = t)
Pk
(
0 < W ≤ εµh

)
P(0 < W ≤ ε)

·

Then use (7.1) and the characterization (2.1) of the convergence in Tf to conclude.

8 Weak continuity in law of the extremal GW trees at θ = +∞
We are in the setting of Section 4. We introduce here the tree τ∞ presented in

Definition 1.1 that will be the good candidate for the limiting tree of the conditioned GW
tree in the high regime.

In Section 8.1, we introduce a whole family (T (λ))λ≤λc of inhomogeneous GW trees
which converges in distribution to τ∞ as λ → λc. These trees are first constructed by
absolute continuity with respect to the distribution of rh(τ) and in Section 8.2 viewed
as finite trees grafted on an infinite backbone of immortal particles. This two type GW
trees generalize the Kesten tree and the trees τθ of Section 5.

In Section 8.3, the tree τ∞ is indeed proven to be the limit in distribution of the trees
τθ as θ → +∞ for the geometric offspring distribution, see [1], and the Harris case, see
Proposition 8.10. In general, this convergence is more involved and we prove only a
weak limit in Proposition 8.7 which implies that τ∞ is the only possible limit, if any, for
τθ as θ → +∞, see Corollary 8.8, but the proof of the convergence remains open.

We give in Section 8.4 an alternative description of the tree T (λ) as a two type GW
tree, where trees distributed as τ (which are thus possibly infinite) are grafted on an
infinite backbone.
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8.1 A family of inhomogeneous GW trees

We set ϕ̃(λ) = ϕ(−λ) = E[exp(λW )] for λ ∈ R. Recall from Remark 4.2 that: λc =

sup{λ ∈ R; ϕ̃(λ) < +∞} ≥ 0, Rc = ϕ̃(λc/µ) ≥ 1 is the convergence radius of the
generating function f of p, see (4.3), and f(Rc) = +∞ if and only if ϕ̃(λc) = +∞. For
λ ∈ [−∞, λc] and h ∈ N, we set:

ζh(λ) = ϕ̃(λµ−h) = E[eλµ
−hW ] ∈ [c,+∞]. (8.1)

We have for h, ` ∈ N (with an obvious convention when ζh+`(λ) = +∞) that:

fh (ζh+`(λ)) = ζ`(λ). (8.2)

The sequence (ζh(λ), h ∈ N) is bounded from below by c and from above by 1 if λ ≤ 0 and
from below by 1 and from above by ζ0(λ) if λ ≥ 0. Notice that if λc = +∞, then we have
ζh(λc) = +∞ for all h ∈ N. Notice that ζh(−∞) = c and thus ζh(−∞) = 0 for all h ∈ N if
a ≥ 1; and ζh(−∞) > 0 for all h ∈ N if a = 0. We deduce that:

(i) ζh(λ) ∈ (0,+∞) if and only if λ ∈ (−∞, λc), or λ = −∞ and a = 0, or λ = λc and
ζ0(λc) < +∞ (the latter condition being equivalent to f(Rc) < +∞).

(ii) ζh(λ) = +∞ if and only if λ = λc = +∞, or λ = λc, h = 0 and ζ0(λc) = +∞ (the
latter condition being equivalent to f(Rc) = +∞).

(iii) ζh(λ) = 0 if and only if λ = −∞ and a > 0.

For h ∈ N and λ ∈ [−∞, λc], we define the probability p̃
(λ)
h =

(
p̃

(λ)
h (k), k ∈ N̄

)
as

follows. Recall a ∈ N and b ∈ N̄ defined in (2.4).

(i) If ζh(λ) ∈ (0,+∞), we set for k ∈ N:

p̃
(λ)
h (k) =

ζh+1(λ)k

ζh(λ)
p(k). (8.3)

Thanks to (8.2), we get
∑
k∈N p̃

(λ)
h (k) = f(ζh+1(λ))/ζh(λ) = 1, so that p̃(λ)

h defined
by (8.3) is a probability distribution on N.

(ii) If ζh(λ) = +∞ (which implies λ = λc), we set p̃(λ)
h the Dirac mass at b.

(iii) If ζh(λ) = 0 (which implies λ = −∞ and a > 0), we set p̃(λ)
h the Dirac mass at

a ∈ N∗.

For simplicity, we shall write p̃h for p̃(λ)
h , and specify the value of λ only if needed.

We define T (λ) as a GW tree with offspring distribution p̃h at generation h ∈ N. Since
the case λ = λc will appears later, we will particularize it and write

τ∞ = T (λc). (8.4)

If λc = +∞, then the tree τ∞ is the regular b-ary tree tb, where b ∈ N̄. Notice that
the root of τ∞ has an infinite number of children if and only if ζ0(λc) = +∞ and b =∞,
whereas all the other individuals have an infinite number of children if and only if
λc = b =∞.

Notice that T (λ), for λ = 0, is distributed as τ . Since λ 7→ p̃
(λ)
h is continuous on the set

of probability distributions over N̄, for λ ∈ (−∞, λc), we get that the distribution of T (λ)

is continuous for the local convergence in distribution as a function of λ over (−∞, λc).
It is easy to check that the tree-valued random variable T (−∞) is in fact distributed as τ
conditionally on the extinction event E = {H(τ) < +∞}, that is τ0,0, if a = 0 or as the
regular a-ary tree ta if a ≥ 1. In the latter case, T (−∞) is thus defined as the Kesten tree
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τ0 defined in Section 3. Taking particular care of the cases a ≥ 1 (when λ goes to −∞),
0 < λc < +∞ (when λ goes to λc), and λc = +∞ with either b finite or not (when λ goes
to λc), it is not difficult to check that the probability distributions p̃(λ)

h over N̄ converge

towards p̃(−∞)
h as λ goes to −∞, and to p̃(λc)

h as λ goes to λc. This implies the following
result.

Lemma 8.1. Let p be a non-degenerate super-critical offspring distribution with finite
mean. We have that the family (T (λ), λ ∈ [−∞, λc]) is continuous in distribution.

Let λ ∈ [−∞, λc]. If ζ0(λ) ∈ (0,+∞), then for h ∈ N∗ and t ∈ T(h)
f , we have:

P(rh(T (λ)) = t) =
∏

u∈rh−1(t)

p̃|u|(ku(t)). (8.5)

If λc < +∞ and ζ0(λc) = +∞, then for h ∈ N∗, k0 ∈ N∗ and t ∈ T(h)
k0

, we have:

P(rh,k0(τ∞) = t) =
∏

u∈rh−1(t)∗

p̃|u|(ku(t)), (8.6)

where we recall that for a tree s we set s∗ = s \ {∂}. Remark that a.s. T (λ) ∈ Tf if and
only if ζ0(λ) or b is finite, and that a.s. τ∞ ∈ T∗f if and only if ζ1(λ) or b is finite.

We give a representation of the distribution of T (λ) as the distribution of τ with a
martingale weight. The proof of the following lemma is elementary and thus left to the
reader.

Lemma 8.2. Let p be a non-degenerate super-critical offspring distribution with finite
mean. For λ ∈ [−∞, λc] such that ζ0(λ) ∈ (0,+∞), h ∈ N∗ and t ∈ T(h)

f , we have with
k = zh(t):

P
(
rh(T (λ)) = t

)
=
ζh(λ)k

ζ0(λ)
P (rh(τ) = t) . (8.7)

For λc < +∞ and ζ0(λc) = +∞, h ∈ N∗, k0 ∈ N∗ and t ∈ T(h)
k0

, we have with k = zh(t):

P
(
rh,k0(T (λc)) = t

)
=

ζh(λc)
k

ζ1(λc)k0
P (rh(τ) = t)

p(k0)
· (8.8)

Notice that λc < +∞ and ζ0(λc) = +∞ occurs in the case of the geometric offspring
distribution studied in [1].

8.2 A family of two-type GW trees

We keep notations from Section 8.1. For λ ∈ (−∞, λc], we give a description of T (λ)

using a two-type GW tree T̂ (λ),e.
For h ∈ N and λ ∈ (−∞, λc] such that ζh(λ) is finite, we define the probability

distribution p̂(λ),e
h = (p̂

(λ),e
h (`), ` ∈ N∗) by:

p̂
(λ),e
h (`) =

(ζh+1(λ)− c)
`

(ζh(λ)− c)

f (`)(c)

`!
· (8.9)

Notice that p̂(λ),e
h is indeed a probability as by the Taylor-Lagrange expansion at c of

f , we have, using (8.2) that
∑
`≥1 p̂

(λ),e
h (`) = (f(ζh+1(λ))− c)/(ζh(λ)− c) = 1. For ` ∈ N∗

such that f (`)(c) > 0, we also recall the `th-size biased probability distribution p[`], see
Definition (5.1), with the convention that p[`] is the Dirac mass at ` if c = 0.

We define a two type random tree T̂ (λ),e in the next definition and write T (λ),e =

Ske(T̂ (λ),e) for the tree T̂ (λ),e when one forgets the types of the vertices of T̂ (λ),e.
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Definition 8.3. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let λ ∈ (−∞, λc]. The labeled tree T̂ (λ),e is a two-type random tree whose vertices
are either of type s (for survivor) or of type e (for extinct).

(i) If ζ0(λ) = ζ1(λ) = +∞, then T̂ (λ),e is the regular b-ary tree and all its vertices are
of type s (and thus there is no vertex of type e).

(ii) If ζ1(λ) < +∞, the random tree T̂ (λ),e is defined as follows:

– For a vertex, the number of offspring of each type and their positions depend,
conditionally on the vertices of lower or same height, only on its own type
(branching property).

– The root is of type s with probability (ζ0(λ)− c)/ζ0(λ). This probability is set
to 1 if ζ0(λ) = +∞.

– A vertex of type e produces only vertices of type e with sub-critical offspring
distribution p.

– Recall that only ζ0(λ) might be infinite. Let h ∈ N such that ζh(λ) is finite. A
vertex u ∈ T̂ (λ),e at level h of type s produces κs(u) vertices of type s with prob-

ability distribution p̂
(λ),e
h and κe(u) vertices of type e such that conditionally

on κs(u) = su ≥ 1, ku(T (λ),e) = κs(u) + κe(u) has distribution p[su], defined in
(5.1), and the su individuals of type s are chosen uniformly at random among
the ku(T (λ),e) children. More precisely, as for Definition 5.1, we denote by
Sh = {u ∈ T (λ),e; |u| = h and u is of type s} the set of vertices of T̂ (λ),e with
type s at level h ∈ N, and we have for u ∈ Sh: for all ku ∈ N∗, su ∈ {1, . . . , ku},
and Au ⊂ {1, . . . , ku} such that ]Au = su,

P
(
κs(u) + κe(u) = ku and Sh+1 ∩ {u1, . . . , uku} = uAu | rh(T (λ),e),Sh

)
= p̂

(λ),e
h (su)

1(
ku
su

) p[su](ku) =
(ζh+1(λ)− c)su

ζh(λ)− c
cku−su p(ku).

– If ζ0(λ) = +∞, then the root, which is of type s a.s., has infinitely many children
of types s and e, each children being, independently from the other, of type s

with probability (ζ1(λ)− c)/ζ1(λ). That is for k0 ∈ N∗ and S1 ⊂ {1, . . . , k0}:

P (S1 ∩ {1, . . . , k0} = S1) =

(
ζ1(λ)− c

ζ1(λ)

)]S1
(

c

ζ1(λ)

)k0−]S1

.

Unless a ≥ 1 or ζ0(λ) = ζ1(λ) = +∞, conditionally on the fact that the root is of type
s, a.s. there exists an infinite number of vertices of type s and of type e. By construction
individuals of type s have a progeny which does not suffer extinction, whereas individuals
of type e have a finite progeny. Informally the individuals of type s in T̂ (λ),e, if any, form
a backbone, on which are grafted, if a = 0, independent GW trees distributed as τ
conditionally on the extinction event E . This is in a sense a generalization of the Kesten
tree, where the backbone is reduced to an infinite spine in the case a ≤ 1. We stress that
T̂ (λ),e, truncated at level h can be recovered from rh(T (λ),e) and Sh as all the ancestors
of a vertex of type s is also of a type s and a vertex of type s has at least one children of
type s.

The following result states that the random tree T (λ) can be seen as the skeleton of a
two-type GW tree.

Lemma 8.4. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Then, for λ ∈ (−∞, λc], the tree T (λ),e is distributed as T (λ).
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Proof. Let λ ∈ (−∞, λc]. We first consider the case ζ0(λ) finite. We assume c > 0 (or

equivalently a = 0). Let h ∈ N∗, t ∈ T(h)
f and Sh ⊂ {u ∈ t; |u| = h}. Set k = zh(t) =

]{u ∈ t; |u| = h}. In order to shorten the notations, we set A = Sh
⋃

Anc(Sh). We set, for
` ∈ {0, . . . , h − 1}, S` = {u ∈ A, |u| = `} the vertices at level ` which have at least one
descendant in Sh. For u ∈ rh−1(t), we set su(t) = ](A

⋂
uN∗), the number of children of

u having descendants in Sh. We recall that T̂ (λ),e truncated at level h can be recovered
from rh(T (θ),e) and Sh. We compute CSh = P(rh(T (λ),e) = t, Sh = Sh). We have by
construction if ]Sh > 0:

CSh =
ζ0(λ)− c

ζ0(λ)

 ∏
u∈rh−1(t), u 6∈A

p(ku(t))

 [∏
u∈A

(
ζ|u|+1(λ)− c

)su(t)

ζ|u|(λ)− c
cku(t)−su(t) p(ku(t))

]

= P(rh(τ) = t) ck−]Sh
(ζh(λ)− c)

]Sh

ζ0(λ)
, (8.10)

where we used that for a tree s, we have
∑
u∈rh−1(s) ku(s)− 1 = zh(s)− 1 and that s = A

is tree-like with zh(s) = ]Sh. It is elementary to check that Formula (8.10) is also true
when Sh is empty, and the root is thus of type e. Since CSh depends only of ]Sh, we shall
write C]Sh for CSh . We get:

P(rh(T (λ),e) = t) =

k∑
i=0

(
k

i

)
Ci = P(rh(τ) = t)

ζh(λ)k

ζ0(λ)
·

We deduce from (8.7) that T (λ),e and T (λ) have the same distribution.
The case ζ0(λ) finite and c = 0 (i.e. a > 0) is clear, as there is no vertex of type e in

T̂ (λ),e and the offspring distribution of individuals of type s at level h in T̂ (λ),e given by
(8.9), that is:

p̂
(λ),e
h (`) =

(ζh+1(λ)− c)
`

(ζh(λ)− c)

f (`)(c)

`!
=
ζh+1(λ)`

ζh(λ)
p(`),

coincides with the offspring distribution p̃(λ)
h (k) given in (8.3) of individuals at level h in

T (λ).
We consider the case ζ0(λ) = +∞, ζ1(λ) finite and c > 0. Let k0, h ∈ N∗, t ∈ T(h)

k0
and

Sh ⊂ {u ∈ t; |u| = h}. Set k = zh(t) = ]{u ∈ t; |u| = h}. Arguing as in the case ζ0(λ)

finite, we get if c > 0:

CSh = P(rh,k0(T (λ),e) = t, Sh = Sh) =
P(rh(τ) = t)

p(k0)
ck−]Sh

(ζh(λ)− c)]Sh

ζ1(λ)k0
,

and thus, writing C]Sh for CSh as the latter quantity depends only on ]Sh:

P(rh,k0(T (λ),e) = t) =

k∑
i=0

(
k

i

)
Ci =

P(rh(τ) = t)

p(k0)

ζh(λ)k

ζ1(λ)k0
·

Then use (8.8) to conclude. The sub-case c = 0 is handled in the same way as when ζ0(λ)

is finite.
Eventually, we consider the case ζ1 = +∞. In this case T (λ),e and T (λ) are by

definition regular b-ary trees, and they are thus a.s. equal.

For λ > −∞, we denote by T (λ),∗ the tree-valued random variable distributed as T (λ)

conditionally on the non extinction event (which is distributed as the skeleton of T̂ (λ),e

conditionally on the root being of type s). Recall the Kesten tree τ0 defined in Section 3.

EJP 24 (2019), paper 15.
Page 26/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP272
http://www.imstat.org/ejp/


Expansive GW trees

Lemma 8.5. Let p be a non-degenerate super-critical offspring distribution with finite
mean. We have the following convergence in distribution:

T (λ),∗ (d)−−−−−→
λ↘−∞

τ0.

Proof. Considering the cases a = 0 and a ≥ 1, it is easy to check that the distributions
p̂

(λ),e
h over N̄ defined in (8.9) converge as λ goes to −∞ towards the Dirac mass at

max(1, a). This implies the convergence in distribution as λ goes to −∞ of T̂ (λ),e con-
ditionally on the root being of type s towards τ̂0. Using that the extinction event of
T (λ),e corresponds to the root of T̂ (λ),e being of type s, we obtain the convergence of the
lemma.

Remark 8.6. In the proof of Lemma 8.5, we proved in fact the convergence of the
two-type random trees T̂ (λ),e conditionally on the root being of type s towards τ̂0 as λ
goes to −∞, using the convergence in distribution of the probability distribution p̂(λ),e

as λ goes to −∞.
Similarly, considering carefully the three cases ζ0(λc) finite; ζ0(λc) = +∞ and ζ1(λc)

finite; ζ0(λc) = ζ1(λc) = +∞, it is not very difficult to check that T̂ (λ),e converges in
distribution towards T̂ (λc),e as λ goes up towards λc. Then, by considering only the
skeleton, this allows to recover the convergence in distribution of T (λ) towards τ∞ as
λ goes up to λc, thus recovering the continuity at λc in Lemma 8.1. Notice that when
ζ0(λc) = +∞, then the root of T̂ (λc),e is a.s. of type s and has infinitely many children.

8.3 Continuity in law of the extremal GW trees at θ = +∞
Recall that T (λ),∗ is distributed as T (λ) conditionally on the non extinction event

(which is distributed as the skeleton of T̂ (λ),e conditionally on the root being of type s).
Recall that ζ0(λ) > c for λ > −∞. For λ ∈ (−∞, λc], such that ζ0(λ) is finite, we

consider the function gλ defined by:

gλ(θ) =
1

ζ0(λ)− c
w(θ) eλθ 1(0,+∞)(θ).

Since, by definition,
∫
gλ = 1, we deduce that gλ is a probability density. Let Θλ be a

random variable with density gλ. We consider the random tree τΘλ and the random
two-type tree τ̂Θλ , which conditionally on {Θλ = θ} are distributed respectively as τθ

and τ̂θ. We have the following representation.

Proposition 8.7. Let p be a non-degenerate super-critical offspring distribution with
finite mean. Then, for λ ∈ (−∞, λc] such that E[eλW ] is finite, we have that τΘλ (resp.
τ̂Θλ) is distributed as T (λ),∗ (resp. as T̂ (λ),e conditionally on the root being of type s).

Proof. Let h ∈ N∗, t ∈ T(h)
f and Sh ⊂ {u ∈ t; |u| = h} with Sh non empty. We recall

that the distribution of τ̂θ up to generation h is completely characterized by rh(τθ) its
skeleton up to level h and by the set Sh of vertices at generation h which are of type s.
We still denote by Sh the vertices of τΘλ at generation h which are of type s. We have
with k = zh(t) and ` = ]Sh:

P(rh(τΘλ) = t,Sh = Sh) =

∫
P(rh(τθ) = t,Sh = Sh) gλ(θ) dθ

= P(rh(τ) = t) ck−`
1

ζ0(λ)− c

∫
w∗`(µhθ) eλθ µhdθ

= P(rh(τ) = t) ck−`
1

ζ0(λ)− c
E

[
eλµ

−h∑`
i=1Wi

∏̀
i=1

1{Wi>0}

]
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= P(rh(τ) = t) ck−`
(ζh(λ)− c)`

ζ0(λ)− c
, (8.11)

where we used (5.3) for the second equality, that (Wi, i ∈ N∗) are independent random
variables distributed as W for the third one and the definition of ζh given in (8.1). Then
use (8.10) and that the root of T̂ (λ),e is of type s with probability (ζ0(λ)− c)/ζ0(λ) to get
that:

P(rh(τΘλ) = t,Sh = Sh) = P(rh(T (λ),e) = t,Sh = Sh| type of ∂ is s).

Since τ̂Θλ up to level h is characterized by τΘλ and Sh, and similarly for T̂ (λ),e, we
deduce from the previous equality that τ̂Θλ is distributed as T̂ (λ),e conditionally on its
root being of type s. Then, forgetting about the types, we deduce that τΘλ is distributed
as T (λ),∗.

When λ goes to −∞, we get that the measure gλ(θ) dθ converges weakly to the Dirac
mass at 0. We deduce that Θλ converges in distribution towards 0 as λ goes to −∞.
We then recover from Proposition 8.7 and Corollary 7.1 the convergence in distribution
of T (λ),∗, that is of T (λ),e conditionally on the non-extinction event, towards τ0 given in
Lemma 8.5.

If E[eλcW ] = +∞ (and thus λc > 0) or equivalently f(Rc) = +∞, then when λ goes up
to λc we get that Θλ converges in distribution towards +∞. We deduce from Lemma 8.1
the following corollary.

Corollary 8.8. Let p be a non-degenerate super-critical offspring distribution whose
generating function blows-up (that is f(Rc) = +∞). Then, if (τθ, θ ∈ [0,∞)) converges in
distribution as θ goes to infinity, then the limit is the distribution of τ∞.

Remark 8.9. If Rc = +∞, then the tree τ∞ has all its nodes with degree b ∈ N̄. Since
the distribution of τ∞ is maximal in the convex set of probability distributions on T∞, we
get that the distribution of τ∞ is the limit in distribution of a sub-sequence (τθn , n ∈ N)

with limn→∞ θn = +∞.

We are able to prove the stronger result on the convergence in distribution of
(τθ, θ ∈ [0,∞)) as θ goes to infinity in the particular case of the geometric offspring
distribution (in this case λc is positive finite, E[eλcW ] = +∞ and b = ∞), see [1]. The
next proposition, which is a direct consequence of the convergence of ρθ,r as θ → +∞
given in Lemma 4.4, asserts that it also holds if the offspring distribution has a finite
support which is the so-called Harris case (in this case b <∞ and λc = +∞). Otherwise,
the general case is open.

Proposition 8.10. Let p be a non-degenerate super-critical offspring distribution with
finite support, that is b < +∞ (Harris case). Then we have the following convergence in
distribution:

τθ
(d)−−−→
θ→∞

τ∞.

8.4 A remark on an other trees family

We provide in this section an alternative description of T (λ) using a two-type GW tree
T̂ (λ),n.

We assume that λc > 0. Notice that the sequence (ζh(λ), h ∈ N) defined in (8.1) is
non-increasing and ζh(λ) > 1 for all h ∈ N, λ ∈ (0, λc]. Furthermore, as Rc > 1, we get
that f (`)(1) is finite for all ` ∈ N. For h ∈ N and λ ∈ (0, λc] such that ζh(λ) is finite, we

define the probability p̂(λ),n
h as p̂(λ),e

h in (8.9) but with c replaced by 1. That is for ` ∈ N∗:

p̂
(λ),n
h (`) =

(ζh+1(λ)− 1)`

(ζh(λ)− 1)

f (`)(1)

`!
· (8.12)
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For ` ∈ N such that ` ≤ b, we recall the `th-size biased probability distribution of p
defined in (3.2). We define a two type random tree T̂ (λ),n in the next definition and write
T (λ),n = Ske(T̂ (λ),n) as the tree T̂ (λ),n when one forgets the types of the vertices of T̂ (λ),n.

Definition 8.11. Let p be a non-degenerate super-critical offspring distribution such
that λc > 0. Let λ ∈ (0, λc]. We define a labeled random tree T̂ (λ),n, whose vertices are
either of type s (for survivor) or of type n (for normal).

(i) If ζ0(λ) = ζ1(λ) = +∞, then T̂ (λ),n is the regular b-ary tree and all its vertices are
of type s (and thus there is no vertex of type n).

(ii) If ζ1(λ) < +∞, the random tree T̂ (λ),n is defined as follows:

– For a vertex, the number of offspring of each type and their positions depend,
conditionally on the vertices of lower or same height, only on its own type
(branching property).

– The root is of type s with probability (ζ0(λ)− 1)/ζ0(λ). This probability is set
to 1 if ζ0(λ) = +∞.

– A vertex of type n produces only vertices of type n with super-critical offspring
distribution p.

– Recall that only ζ0(λ) might be infinite. Let h ∈ N such that ζh(λ) is finite.
A vertex u ∈ T̂ (λ),n at level h of type s produces κs(u) vertices of type s

with probability distribution p̂
(λ),n
h and κn(u) vertices of type n such that

conditionally on κs(u) = su ≥ 1, ku(T (λ),n) = κs(u) + κn(u) has distribution
p[su], defined in (3.2), and the su individuals of type s are chosen uniformly
at random among the ku(T (λ),n) children. More precisely if we denote by
Sh = {u ∈ T (λ),n; |u| = h and u is of type s} the set of vertices of T̂ (λ),n with
type s at level h ∈ N, and we have for u ∈ Sh: for all ku ∈ N∗, su ∈ {1, . . . , ku},
and Au ⊂ {1, . . . , ku} such that ]Au = su,

P
(
κs(u) + κn(u) = ku and Sh+1 ∩ {u1, . . . , uku} = uAu | rh(T (λ),n),Sh

)
= p̂

(λ),n
h (su)

1(
ku
su

) p[su](ku) =
(ζh+1(λ)− 1)su

ζh(λ)− 1
cku−su p(ku).

If ζ0(λ) = +∞, then the root, which is of type s a.s., has infinitely many children
of type s and n, each children being, independently from the other, of type s

with probability (ζ1(λ)− 1)/ζ1(λ). That is for k0 ∈ N∗ and S1 ⊂ {1, . . . , k0}:

P (S1 ∩ {1, . . . , k0} = S1) =

(
ζ1(λ)− 1

ζ1(λ)

)]S1
(

1

ζ1(λ)

)k0−]S1

.

The main difference with T̂ (λ),e is that the individuals of type s in T̂ (λ),n, if any, form a
backbone on which are grafted, if a = 0, independent GW trees distributed as τ (instead
of τ conditionally on the extinction event E in T̂ (λ),e).

The following result states that the random tree T (λ) can also be seen as the skeleton
of this new two-type GW tree. Its proof, which follows the proof of Lemma 8.4, is left to
the reader.

Lemma 8.12. Let p be a non-degenerate super-critical offspring distribution such that
λc > 0. Then, for λ ∈ (0, λc], the tree T (λ),n is distributed as T (λ).

Remark 8.13. Recall that ζ0(λ) > 1 for λ ∈ (0, λc]. For λ ∈ (0, λc], such that ζ0(λ) is
finite, we consider the function hλ defined by:

hλ(θ) =
1

ζ0(λ)− 1
w(θ)

(
eλθ −1

)
1(0,+∞)(θ).
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Since, by definition,
∫
hλ = 1, we deduce that hλ is a probability density. Let Θ′λ be a

random variable with density hλ. We consider the random tree τΘ′λ and the random
two-type tree τ̂Θ′λ , which conditionally on {Θ′λ = θ} are distributed respectively as τθ and

τ̂θ. Computation similar as in (8.11) gives that for h ∈ N∗ and t ∈ T(h)
f , with k = zh(t),

and Sh ⊂ {u ∈ t; |u| = h} with Sh non empty and ` = ]Sh:

P(rh(τΘ′λ) = t,Sh = Sh) = P(rh(τ) = t) ck−`
(ζh(λ)− c)` − (1− c)`

ζ0(λ)− 1
·

Similar computations as in (8.10) give that:

P(rh(T (λ),n) = t,Sh = Sh) = P(rh(τ) = t)
(ζh(λ)− 1)`

ζ0(λ)
·

Summing over all non-empty subsets Sh of {u ∈ t; |u| = h}, gives that:

P(rh(τΘ′λ) = t) = P(rh(τ) = t)
ζh(λ)k − 1

ζ0(λ)− 1
= P(rh(T (λ),n) = t| root is of type s).

Thus the random tree τΘ′λ is distributed as T (λ),n conditionally on the root being of type
s.

9 Convergence of conditioned sub-critical GW tree

In this section, we consider a sub-critical GW tree τ with general non-degenerate
offspring distribution p = (p(n), n ∈ N) with finite mean µ ∈ (0, 1). To avoid trivial cases,
we assume that p(0) + p(1) < 1. We denote by f the generating function of p. We assume
that there exists κ > 1 such that f(κ) = κ and f ′(κ) < +∞. Since f is strictly convex,
κ, when it exists, is unique. Those assumptions are trivially satisfied if the radius of
convergence of f is infinite. This is also the case for geometric offspring distribution
studied in [1].

Define f̄(t) = f(κt)/κ for t ∈ [0, 1] and note that f̄ is the generating function of a
super-critical offspring distribution p̄ = (p̄(n), n ∈ N) with p̄(n) = κn−1p(n). The mean µ̄
of p̄ is equal to f ′(κ); the fixed point c̄ ∈ (0, 1) of f̄ is given by c̄ = 1/κ; and f̄ ′(c̄) = µ.

We have that p̄ defined by (3.1) (with p replaced by p̄) is equal to p by construction.
Notice that we are in the Schröder case and that p is of type (L0, 0) as p̄(0) > 0. Let τ̄ be
the corresponding super-critical GW tree. It is elementary to check that for h ∈ N∗ and
t ∈ T(h)

f , we have with k = zh(t):

P(rh(τ) = t) = κk−1P(rh(τ̄) = t). (9.1)

Recall that Zn = zn(τ), and set Z̄n = zn(τ̄). Following Section 4, let (cn, n ∈ N) be a

sequence with c0 > 0 such that
(
κZn e−Zn/cn , n ∈ N

)
or equivalently

(
e−Z̄n/cn , n ∈ N

)
is

a martingale. This sequence is increasing positive and unbounded. Furthermore, the
sequence (cn+1/cn, n ∈ N) increases towards µ̄ = f ′(κ).

We consider a sequence (an, n ∈ N∗) of integers such that P(Zn = an) > 0 (see
Remark 1.4). We denote by τn (resp. τ̄n) a GW tree distributed as τ (resp. τ̄ ) conditionally
on {Zn = an} (resp. {Z̄n = an}). Clearly if an = 0 for n large enough, then (τn, n ∈ N∗)
converges in distribution towards τ . So only the case an positive for n ∈ N∗ is of interest.

It is straightforward to deduce from (9.1) that for n ≥ h ≥ 1 and t ∈ T(h)
f :

P(rh(τn) = t) = P(rh(τ̄n) = t). (9.2)

Let θ ∈ (0,+∞). Let τ̄θ be defined as τθ in Definition 5.1 where p has to be replaced by
p̄, and p is then equal to p. When b, the upper bound of the support of p, is finite, we
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denote by τ̄∞ the deterministic regular b-ary tree. Let τ̄0 be defined as the Kesten tree
τ0 in Definition 3.3 where p is equal to p. We deduce from Propositions 6.2, 6.5 and 6.3,
(9.2) and the characterization (2.1) of the convergence in Tf the following result.

Proposition 9.1. Let p be a non-degenerate sub-critical offspring distribution with
generating function f such that b ≥ 2 and suppose that there exists (a unique) κ > 1

such that f(κ) = κ and f ′(κ) < +∞. Let θ ∈ [0,+∞). Assume that limn→∞ an/cn = θ,
an > 0 and τn is well defined for all n ∈ N∗. Then, we have the following convergence in
distribution:

τn
(d)−−−−→
n→∞

τ̄θ. (9.3)

If b is finite, then (9.3) holds also for θ =∞.

In the sub-critical regime, the local convergence of τn and the identification of the
limit if any when 1 is the only root of the equation f(κ) = κ is an open question.

10 Ancillary results

We adapt the proof of Theorem 1 in [16]. Recall that W , conditionally on {W > 0}
has a positive continuous density w on (0,+∞). We shall use the following well known
result.

Lemma 10.1. Let X be a real random variable with a continuous density. Let a < b be
elements of {λ ∈ R; E[eλX ] < +∞}. For z ∈ C such that R(z) ∈ K = [a, b], the Laplace
transform g(z) = E[ezX ] is well defined and we have:

lim
|t|→+∞

sup
u∈K

|g(u+ it)|
g(u)

= 0.

Let t0 > 0. There exists η ∈ (0, 1) such that for all u ∈ K, t ∈ R with |t| ≥ t0, we have:

|g(u+ it)| ≤ (1− η)g(u). (10.1)

Recall the function ϕ̃(z) = E[ezW ] is well defined for z ∈ C such that R(z) ∈ K = {λ ∈
R; E[eλW ] < +∞}. The next Lemma is a direct consequence of (10.1).

Lemma 10.2. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let a < 0 ≤ b such that K0 := [a, b] ⊂ K. Let t0 > 0. There exists η ∈ (0, 1) such
that for all u ∈ K0, t ∈ R with |t| ≥ t0:

|ϕ̃(u+ it)| ≤ (1− η)ϕ̃(u). (10.2)

Proof. Set A = {(u, t); u ∈ K0 and |t| ≥ t0}. According to (10.1), with X replaced by W
conditioned on {W > 0}, there exists η′ ∈ (0, 1) such that |ϕ̃(u+ it)−c| ≤ (1−η′)(ϕ̃(u)−c)

for all (u, t) ∈ A. Taking η = η′(1− c/ϕ̃(a)) ∈ (0, 1) so that η′c ≤ (η′−η)ϕ̃(u) for all u ∈ K0,
we get for all (u, t) ∈ A:

|ϕ̃(u+ it)| ≤ |ϕ̃(u+ it)− c|+ c ≤ (1− η′)(ϕ̃(u)− c) + c = (1− η′)ϕ̃(u) + η′c ≤ (1− η)ϕ̃(u).

This gives the result.

The next lemma, see Lemma 16 in [18], is used for the Fourier inversion formula of
w∗`. Set

K′ = {λ ∈ R; ϕ̃′(λ) < +∞}. (10.3)

Notice that K′ ⊂ K and K′
⋃
{λc} = K.
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Lemma 10.3. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let a < 0 ≤ b such that K0 := [a, b] ⊂ K. If ` ∈ N∗ is such that ` > 1/α, then we
have:

sup
u∈K0

∫
R

|ϕ̃(u+ it)− c|` dt < +∞. (10.4)

If α < +∞ and if K0 ⊂ K′, then we have:

sup
u∈K0

∫
R

|ϕ̃′(u+ it)| dt < +∞. (10.5)

Notice that the proof of Lemma 10.3 insures that ϕ̃(u + it) − c is not L1 if ` ≤ 1/α.
This dichotomy appears already in the proof of Lemma 9 from [12]. Recall that, as p is
super-critical, we write m = f ′(c) ∈ [0, 1).

Proof. The inequality (10.4) in the Böttcher case is given in Lemma 16 in [18]. So, we now
consider the Schröder case, that is m > 0. In this case, there exists an analytic function S

defined on
◦
D = {z ∈ C, |z| < 1} such that the convergence limn→+∞m−n(fn(z)−c) = S(z)

holds uniformly on any compact subset of
◦
D, see [6] Corollary 3.7.33. Since the functions

are analytic, we also deduce that limn→+∞m−nf ′n(z) = S′(z) holds uniformly on any

compact subset of
◦
D. We deduce from (4.1) and Remark 4.2 that ϕ̃(z) = fk

(
ϕ̃(µ−kz)

)
and thus for k ∈ N∗ and z ∈ C such that ϕ′(µ−kR(z)) < +∞:

ϕ̃′(z) = µ−kf ′k
(
ϕ̃(µ−kz)

)
ϕ′(µ−kz). (10.6)

There exists ε ∈ (0, 1), such that for all z ∈
◦
D with |z−c| < ε(1−c) and k ∈ N∗, we have

|fk(z)−c| ≤ mk/ε and |f ′k(z)| ≤ mk/ε. Since 0 ∈ K0, we get that if u ∈ K0, then uµ−k ∈ K0.
Thanks to Lemma 10.1 (with X replaced by W conditionally on {W > 0}), we can take

k0 ∈ N large enough so that |ϕ̃(µ−ku+ it)− c| ≤ ε(1− c), and thus ϕ̃(µ−ku+ it) ∈
◦
D, for

all k ≥ k0, u ∈ K0 and t ≥ µk0 . Then, for k ≥ k0 ≥ 0 and u ∈ K0, we get, with µks = t,
that: ∫ µk+k0+1

µk+k0
|ϕ̃(u+ it)− c|` dt =

∫ µk+k0+1

µk+k0
|fk(ϕ̃(µ−k(u+ it)))− c|` dt

= µk
∫ µk0+1

µk0
|fk(ϕ̃(µ−ku+ is))− c|` ds

≤ µk0+1ε−`(µm`)k, (10.7)

as well as, using (10.6),∫ µk+k0+1

µk+k0
|ϕ̃′(u+ it)| dt = µ−k

∫ µk+k0+1

µk+k0
|f ′k(ϕ̃(µ−k(u+ it)))| |ϕ̃′(µ−k(u+ it))| dt

=

∫ µk0+1

µk0
|f ′k(ϕ̃(µ−ku+ is))| |ϕ̃′(µ−ku+ is)| ds

≤ µk0+1ε−1mk sup
u∈K0

ϕ̃′(u). (10.8)

We deduce from (10.8) that the integral
∫
R
|ϕ̃′(u+ it)| dt is uniformly bounded for u ∈ K0

as supu∈K0
ϕ̃′(u) is finite since K0 ⊂ K′, and from (10.7) that the integral

∫
R
|ϕ̃(u+ it)−

c|` dt is uniformly bounded for u ∈ K0 as soon as µm` = µ1−`α < 1 that is ` > 1/α.

3Notice Corollary 3.7.3 stated for z ∈ c+ (1− c)
◦
D in fact holds for z ∈

◦
D according to Lemma 3.7.2 in [6],

as limn→∞ fn(z) = c for z ∈
◦
D.
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We give a similar result on the integrability of ϕ̃j , the Laplace transform of −Wj =

−Zj/cj . See (166) in [18] and a variant of Lemmas 2 and 3 in [12], see also Lemmas
8 and 9 in [17]. By construction the process M = (Mn = e−Wn , n ∈ N) is a positive
bounded martingale with respect to the filtration (Fn = σ(Z0, . . . , Zn), n ∈ N). It is
closed as it converges a.s. towards M∞ = e−W . Let g be a convex non-negative
function defined on (0,+∞). We deduce that Ng = (Ng

n = g(Mn), n ∈ N) is a positive sub-
martingale which converges a.s. towards Ng

∞ = g(M∞). By Jensen inequality, we get that
Ng
n ≤ E[g(M∞)|Fn]. If E[g(M∞)] < +∞, then we get that: Ng is uniformly integrable,

Ng converges in L1 towards Ng
∞, limn→∞E[Ng

n] = supn∈NE[Ng
n] = E[Ng

∞] < +∞. For
λ ∈ K, consider the positive convex function g(x) = x−λ defined on (0, 1) and set
ϕ̃n(λ) = Ng

n = E[eλWn ]. We deduce that limn→+∞ ϕ̃n(λ) = supn∈N ϕ̃n(λ) = ϕ̃(λ). Using
monotone convergence, we get that ϕ̃n(z) = E[ezWn ] converges uniformly on compacts
subsets of {z ∈ C; R(z) ∈ K} towards ϕ̃(z) as n goes to infinity.

For λ ∈ K′, consider the positive convex function g(x) = − log(x)x−λ defined on (0, 1)

and notice that ϕ̃′n(λ) = Ng
n . Arguing as for g, we get that ϕ̃′n(z) converges uniformly on

compacts subsets of {z ∈ C; R(z) ∈ K′} and that for λ ∈ K′:

lim
n→+∞

ϕ̃′n(λ) = sup
n∈N

ϕ̃′n(λ) = ϕ̃′(λ). (10.9)

Lemma 10.4. Let p be a non-degenerate super-critical offspring distribution with finite
mean and type (L0, r0). Let a < 0 ≤ b such that K0 := [a, b] ⊂ K. Let t1 ∈ (0, πc0/L0).
There exists δ ∈ (0, 1) such that for all u ∈ K0, t ∈ R, n ∈ N∗, with t1 ≤ |t| ≤ πcn/L0:

|ϕ̃n(u+ it)| ≤ (1− δ)ϕ̃n(u). (10.10)

If α > 1, we have:

sup
u∈K0,n∈N∗

∫
[±πcn/L0]

|ϕ̃n(u+ it)− c| dt < +∞. (10.11)

If α < +∞ and K0 ⊂ K′, we have:

sup
u∈K0,n∈N∗

∫
[±πcn/L0]

|ϕ̃′n(u+ it)| dt < +∞. (10.12)

Proof. Let t1 ∈ (0, πc0/L0). Because of the periodicity L0, we deduce that for all n ∈ N∗,
u ∈ K0, 0 < |t| < 2πcn/L0, we have |ϕ̃n(u+ it)|/ϕ̃n(u) < 1. Thanks to Lemma 10.2, there
exists η ∈ (0, 1), such that for all u ∈ K0, |t| ≥ t1, we have |ϕ̃(u+ it)| ≤ (1− η)ϕ̃(u). Using
the uniform convergence on compact subsets of {z ∈ C; R(z) ∈ K} of ϕ̃n towards ϕ̃ and
ϕ̃ > c on K0, we deduce that for all t2 > t1, there exists η′ ∈ (0, 1) such that for all u ∈ K0,
n ∈ N∗, min(t2, πcn/L0) ≥ |t| ≥ t1, we have:

|ϕ̃n(u+ it)| ≤ (1− η′)ϕ̃n(u). (10.13)

Set t1 = πc0/L0, t2 = πc0µ/L0 and Jn = [πc0/L0, πc0cn/L0cn−1] ⊂ [t1,min(t2, πcn/L0)].
Using the uniform convergence on compacts of {z ∈ C,R(z) ∈ K} of ϕ̃n towards ϕ̃ and
ϕ̃(0) = 1, we deduce from (10.13) that there exists ε > 0 and r0 ∈ (0, 1) such that for
all u ∈ K0 with |u| ≤ ε, n ∈ N∗, |t| ∈ Jn, we have |ϕ̃n(u + it)| ≤ r0 < 1. Thus, there
exists k0 ∈ N such that supK0

|u|cn−k0/cn ≤ ε for all n ≥ k0. Thus for all k, n ∈ N∗ with
k + k0 ≤ n, u ∈ K0, |t| ∈ Jn, we have:∣∣∣∣ϕ̃k (uckcn + it

)∣∣∣∣ ≤ r0 < 1. (10.14)

EJP 24 (2019), paper 15.
Page 33/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP272
http://www.imstat.org/ejp/


Expansive GW trees

We consider now the Schröder case, that is m > 0. According to the beginning of the
proof of Lemma 10.3, there exists a finite constant B such that for all z ∈ C such that
|z| ≤ r0 and n ∈ N∗, we have:

|fn(z)− c| ≤ Bmn and |f ′n(z)| ≤ Bmn. (10.15)

For k ∈ {1, . . . , n}, set Jn,k = {t ∈ R, πcnc0/L0ck ≤ |t| ≤ πcnc0/L0ck−1}, so that t ∈ Jn,k
implies |t|ck/cn ∈ Jn as the sequence (ck/ck−1, k ∈ N∗) is non-decreasing. For k, n ∈ N∗
with k + k0 ≤ n, u ∈ K0, t ∈ Jn,k, we deduce from (10.14) and (10.15) that:

|ϕ̃n(u+ it)− c| =
∣∣∣∣fn−k (ϕ̃k (uckcn + it

ck
cn

))
− c

∣∣∣∣ ≤ Bmn−k. (10.16)

and, with R0 = supn∈N∗ supu∈K0
|ϕ̃′n (u)|, that:

|ϕ̃′n(u+ it)| = ck
cn

∣∣∣∣f ′n−k (ϕ̃k (uckcn + it
ck
cn

))∣∣∣∣ ∣∣∣∣ϕ̃′k (uckcn + it
ck
cn

)∣∣∣∣ ≤ ck
cn
Bmn−kR0.

(10.17)
Notice that R0 = supu∈K0

ϕ̃′(u) and it is finite if K0 ⊂ K′.
As cn/ck−1 ≤ µn−k+1, we get that |Jn,k| ≤ πc0cn/L0ck−1 ≤ πc0µ

n−k+1/L0. This
implies that for k + k0 ≤ n:∫
Jn,k

|ϕ̃n(u+ it)− c| dt ≤ Bπc0µ

L0
(µm)n−k and

∫
Jn,k

|ϕ̃′n(u+ it)| dt ≤ R0
Bπc0µ

L0
mn−k.

Since [±πcn/L0] ⊂ [±πc0µk0/L0] ∪
⋃n−k0
k=1 Jn,k, we deduce that for all u ∈ K0:∫

[±πcn/L0]

|ϕ̃n(u+ it)− c| dt ≤ πc0
L0

(
µk0 sup

n∈N∗
ϕ̃n(supK0) + µk0c +Bµ

n−k0∑
k=1

(µm)n−k

)
(10.18)

and∫
[±πcn/L0]

|ϕ̃′n(u+ it)| dt ≤ πc0R0

L0

(
µk0 sup

n∈N∗
ϕ̃′n(supK0) +Bµ

n−k0∑
k=1

mn−k

)
. (10.19)

The the upper bound (10.18) gives (10.11) when α > 1 that is µm < 1, and the upper
bound (10.19) gives (10.12) when α < +∞ and K0 ⊂ K′.

We now prove (10.11) in the Böttcher case, that is m = 0 and α = +∞. Notice
then that sup|z|≤r0 |fn(z)| ≤ Bεn0 for any n ∈ N∗ and ε0 > 0 with some finite constant B
depending only on ε0. Then we obtain (10.11) using similar arguments as in the Schröder
case.

We now prove (10.10) in the Schröder case. There exists η′′ ∈ (0, 1/2) such that c <
(1− 2η′′)2ϕ̃(a). We can choose an integer k′0 ≥ k0 such that c+Bmk

′
0 < (1− η′′)2ϕ̃(a). We

can also choose n0 ≥ k′0 large enough so that cn0
> c0µ

k′0 and infn≥n0
ϕ̃n(a) ≥ (1−η′′)ϕ̃(a).

Notice that for n ≥ k′0:[
πc0µ

k′0

L0
,
πcn
L0

]
⊂
[
πcnc0
L0cn−k′0

,
πcn
L0

]
=

n−k′0⋃
k=1

Jn,k.

Using (10.16), we get that for k ∈ N∗, n ≥ n0 with k + k′0 ≤ n, u ∈ K0, t ∈ Jn,k:

|ϕ̃n(u+ it)| ≤ c +Bmn−k ≤ c +Bmk
′
0 ≤ (1− η′′)2ϕ̃(a) ≤ (1− η′′)ϕ̃n(a) ≤ (1− η′′)ϕ̃n(u).

This gives that |ϕ̃n(u+ it)| ≤ (1 − η′′)ϕ̃n(u) for all u ∈ K0, t ∈
[
πc0µ

k′0

L0
, πcnL0

]
and n ≥ n0.

This and (10.13) with t2 = πcn0
/L0 > πc0µ

k′0/L0 complete the proof of (10.10) in the
Schröder case.

The proof of (10.10) in the Böttcher case is similar and left to the reader.
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11 Results in the Harris case

We present detailed proofs of the results, because even if they correspond to an
adaptation of the results known in the Böttcher case (see [17] and [18]), we believe that
the adaptation is not straightforward since in particular the Fourier inversion of w∗` is
not valid if `α ≤ 1. We keep notations from Sections 2.3 and 4. Recall b defined in (2.4)
is the supremum of the support of the offspring distribution p. We assume b <∞ (Harris
case). Following [16] or [10], we define the (right) Böttcher constant βH ∈ (1,+∞) by:

b = µβH .

11.1 Preliminaries

Since b is finite, the radius of convergence Rc of f is infinite. According to Remark
4.2, we deduce that λc = +∞, that is W has all its exponential moments and that for
every z ∈ C, with ϕ̃(z) = E[ezW ] = ϕ(−z):

ϕ̃(z) = f(ϕ̃(z/µ)). (11.1)

We define the function b̃ on its domain by:

b̃(z) = log(z) +

+∞∑
n=0

b−n−1 log

(
fn+1(z)

fn(z)b

)
. (11.2)

According to Lemma 2.5 in [16], for every δ ∈ (0, 1), there exists a constant θ = θ(δ) ∈
(0, π) such that b̃ is analytic on the open set:

D̃(δ) = {z ∈ C; 1 + δ < |z| < δ−1, | arg(z)| < θ}. (11.3)

Notice that the function b̃ is analytic and positive on (1,∞) and satisfies on (1,∞):

b̃ ◦ f = b b̃. (11.4)

According to Lemma 2.6 in [16], the function b̃ satisfies:

(sb̃′(s))′ > 0 on (1,∞), lim
s→1+

sb̃′(s) = 0 and lim
s→+∞

sb̃′(s) = 1. (11.5)

In particular, the function b̃ is increasing on (1,+∞).

We set ψ̃ = b̃ ◦ ϕ̃ on (0,+∞). We directly recover Proposition 1 in [10], where
it is assumed that c = 0. (We could have used directly the results from [10] using
the generating function f̃ given by the so-called Sevastyanov transform of f : f̄(z) =

[f(c + (1 − c)z) − c]/(1 − c), where f̄ ′(1) = µ, f̄ ′(0) = f ′(c) and (11.1) also holds with
f replaced by f̄ . But this approach breaks down, when considering the upper large
deviation for Zn, see Section 11.4.)

Lemma 11.1. The function ψ̃ is analytic, increasing and strictly convex on (0,+∞), and

ψ̃(s) = ψ̃(µs)/b on (0,+∞), lim
s→0+

ψ̃′(s) = 0 and lim
s→+∞

ψ̃′(s) = +∞. (11.6)

Proof. Since ϕ̃ is analytic on C and ϕ̃((0,+∞)) = (1,+∞), we get that ψ̃ is analytic
on (0,+∞). It is clear that ψ̃ is increasing as the composition of two increasing func-
tions. Moreover, using (11.5) as well as ϕ̃′(s)2 < ϕ̃′′(s)ϕ̃(s) thanks to Cauchy-Schwartz
inequality, we have for every s ∈ (0,+∞),
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ψ̃′′(s) = ϕ̃′′(s)b̃′(ϕ̃(s)) + ϕ̃′(s)2b̃′′(ϕ̃(s))

≥ ϕ̃′(s)2

ϕ̃(s)

(
b̃′(ϕ̃(s)) + ϕ̃(s)b̃′′(ϕ̃(s))

)
> 0.

We deduce that ψ̃ is strictly convex on (0,+∞). The functional equation ψ̃(s) = ψ̃(µs)/b

is a direct consequence of (11.1) and (11.4). Then use that W has an unbounded support
to get that lims→+∞ ϕ̃′(s)/ϕ̃(s) = +∞ and deduce the limits of ψ̃′ using (11.5).

Recall Definition (11.3) of D̃(δ). According to Lemma 2.5 in [16], there exists ε =

ε(δ) ∈ (0, b̃(δ)) such that for all z ∈ D̃(δ), we have:

fn(z) = p(b)−1/(b−1) eb
nb̃(z)

(
1 +O(e−εb

n

)
)
. (11.7)

We have the following result (see Lemma 13 in [18]).

Lemma 11.2. For all s ∈ (1,+∞) and all n ∈ N∗, we have:

fn(s) < p(b)−1/(b−1) exp
{
bnb̃(s)

}
.

Proof. We set

b̃N (z) =
1− b−N

b− 1
log(p(b)) + log(z) +

N−1∑
n=0

b−n−1 log

(
fn+1(z)

p(b)fn(z)b

)
for z ∈

⋃
δ>0 D̃(δ). Notice that b̃N (s) = b−N log(fN (s)) for all s > 0. For s > 0, we have:

b−N log(fN (s)) = b̃N (s) = b̃(s)− b−N

b− 1
log(p(b))−

∑
n≥N

b−n−1 log

(
fn+1(s)

p(b)fn(s)b

)
that is

log(fN (s)) = bN b̃(s)− 1

b− 1
log(p(b))− bN

∑
n≥N

b−n−1 log

(
fn+1(s)

p(b)fn(s)b

)
.

For s > 1, we have p(b)fn(s)b < fn+1(s) so that:

log(fN (s)) < bN b̃(s)− 1

b− 1
log(p(b)).

This gives the result.

11.2 Right tail of w

We denote by g̃ the inverse of ψ̃′, which is one to one on (0,+∞) by Lemma 11.1. For
a given v > 0, the maximum of uv − ψ̃(u) for u ≥ 0 is uniquely reached at g̃(v):

max
u≥0

(
uv − ψ̃(u)

)
= g̃(v)v − ψ̃(g̃(v)). (11.8)

We define the function M̃ for v ∈ (0,+∞) by:

M̃(v) = v−βH/(βH−1) max
u≥0

(
uv − ψ̃(u)

)
. (11.9)

According to Proposition 2 in [10], the function M̃ is analytic on (0,+∞). It is positive
and multiplicatively periodic with period µβH−1 = b/µ, thanks to the functional equation
in (11.6) and the definition of βH , (see also Proposition 3 in [10]).
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Mimicking the proof of Theorem 1 in [18] (see also Remark 3 therein), we set for
x ∈ [b/µ,∞):

r̃(x) =

⌊
log(x)

log(b/µ)

⌋
and ỹ(x) = x

(µ
b

)r(x)

= xµ−r(x)(βH−1) = xb−r(x)(βH−1)/βH ,

(11.10)
so that r̃(x) ≥ 0 and ỹ(x) ∈ [1, b/µ). Notice that r̃(x)→ +∞ as x→ +∞. Let ` ∈ N∗. We
define the positive functions for y > 0:

M̃1,`(y) =
p(b)−`/(b−1)√

2π`σ̃2(y/`)
y(βH−2)/2(βH−1) and M̃2,`(y) = M̃1,`(y)

y1/(βH−1)

g̃(y/`)
,

where σ̃2(y) = ψ̃′′(g̃(y)) > 0. For ` ∈ N∗ and x ∈ [b/µ,+∞), we set:

M̃1,`(x) = M̃1,`(ỹ(x)) and M̃2,`(x) = M̃2,`(ỹ(x)).

By construction x 7→ ỹ(x) is multiplicative periodic with period µ/b = bβH−1. We deduce
that, for fixed ` ∈ N∗, the functions M̃1,` and M̃2,` are multiplicative periodic with period
µ/b, positive, bounded and bounded away from 0.

We first state an upper bound on w∗` whose proof is postponed to Section 11.5.

Lemma 11.3. Let p be a non-degenerate super-critical offspring distribution with b <

+∞. For all u1 ≥ 0, there exists a finite constant C such that for all ` ∈ N∗, x ≥ b/µ and
u ∈ [0, u1], we have with r = r̃(x) and y = ỹ(x):

w∗`(x) ≤ C`

x
br e−uyb

r

fr(ϕ̃(u))`. (11.11)

We now state a slightly more general result than Remark 3 in [18]. (Notice in Remark
3 in [18] that there is a misprint in (21) and (22) where the power of x in the exponential
should be negative.)

Lemma 11.4. Let p be a non-degenerate super-critical offspring distribution with b <

+∞. Let ` ∈ N∗. As x↗ +∞, we have:

w∗`(x) ∼ M̃1,`(x)x(2−βH)/2(βH−1) exp
{
−`−1/(βH−1) xβH/(βH−1)M̃(x/`)

}
, (11.12)

w`(x) ∼ w∗`(x), (11.13)

P`(W ≥ x) ∼ M̃2,`(x)x−βH/2(βH−1) exp
{
−`−1/(βH−1) xβH/(βH−1)M̃(x/`)

}
. (11.14)

Using Lemma 3.6.11 in [6], we could derive similar formula as (11.12) for the j-th
derivative of w, for j < α. The proof of Lemma 11.4 is given in Sections 11.6 and 11.7.

11.3 Proof of Lemma 4.4 in the Harris case

Let ` ∈ N∗. Using (4.6) and that f (b)(c)/b! = p(b), we get for x ≥ b/µ:

1

µ
w∗`(x/µ) =

∑
s=(s1,...,s`)∈(N∗)`

w(x)∗|s|1
∏̀
i=1

f (si)(c)

si!
= p(b)`w∗b`(x) +R`(x), (11.15)

where

R`(x) =
∑

s=(s1,...,s`)∈(N∗)`

1{|s|1<`b} w(x)∗|s|1
∏̀
i=1

f (si)(c)

si!
·

Using (11.11), we get for u > 0 with r = r̃(x) and y = ỹ(x) defined in (11.10):

R`(x) ≤ C e−uyb
r ∑
s=(s1,...,s`)∈(N∗)`

1{|s|1<`b} b
|s|1fr(ϕ̃(u))|s|1

∏̀
i=1

si
x

f (si)(c)

si!
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≤ C ′

x`
e−uyb

r

fr(ϕ̃(u))`b−1,

for some finite constant C ′ (depending on u1 and independent of x and u ∈ [0, u1]). Using
Lemma 11.2, we get that for all u > 0, n ∈ N∗:

fn(ϕ̃(u)) ≤ p(b)−1/(b−1) exp
{
bnψ̃(u)

}
.

Since ϕ̃(u) ≥ 1, this gives with some constant C ′′ (depending on u1 and independent of x
and u ∈ [0, u1]):

R`(x) ≤ C ′′

x`
eΓ(x,u) with Γ(x, u) = (b`− 1)brψ̃(u)− uybr.

We set u∗ = g̃(y/b`). We get:

Γ(x, u∗) = br+1`
[
ψ̃(u∗)− u∗ y

b`

]
− brψ̃(u∗)

= −br+1`
( y
b`

)βH/(βH−1)

M̃
( y
b`

)
− brψ̃(u∗)

= −`−1/(βH−1)b−1/(βH−1)xβH/(βH−1)M̃

(
x

µ`

)
− brψ̃(u∗)

= −`1/(βH−1)

(
x

µ

)βH/(βH−1)

M̃

(
x

µ`

)
− br|ψ̃(u∗)|,

where we used (11.8) and (11.9) for the second equality; that y = xb−r(βH−1)/βH , M̃ is
multiplicative periodic with period b/µ for the third one; and b = µβH and ψ̃ is positive for
the last one. For x ∈ [b/µ,+∞), we have (y/b`) ∈ [1/b`, 1/µ`) and thus, as ` is fixed and g̃
continuous positive, u∗ = g̃(y/b`) belongs to an interval, say [a, b], with 0 < a < b < +∞.
This implies that c0 = inf{x∈[b/µ,+∞)} |ψ̃(u∗)| > 0. Notice also that c2 = inf{x>0} M̃1,`(x)

is positive as M̃1,` is bounded away from 0. Thus, using (11.12), we deduce that:

R`(x) ≤ C ′′

c2
w∗`(x/µ) e

−` log(x)−brc0−
2−βH

2(βH−1)
log(x/µ)

for x large enough. Recall r = r̃(x) defined in (11.10). As x → +∞ we have r =

r̃(x)→ +∞ and log(x) ∼ r̃(x) log(b/µ). Thus, we obtain R`(x) = o(w∗`(x/µ)) as x→ +∞.
Plugging this in (11.15) we get that:

lim
x→+∞

µ
w∗b`(x)

w∗`(x/µ)
p(b)` = 1.

From the definition of ρθ,` in (4.5), we deduce that limθ→+∞ ρθ,`(b, . . . b) = 1. This ends
the proof of Lemma 4.4 in the Harris case.

11.4 Upper large deviations for Zn

Recall Definition (4.2) of K and notations from Section 10, and in particular Definition
(10.3) of K′. In the Harris case, we have K = K′ = R. We recall that for j ∈ N∗,
ϕ̃j(z) = E[ezWj ] = fj(e

z/cj ), with Wj = Zj/cj , is well defined for z ∈ C and that ϕ̃j
converges uniformly on the compacts of C towards ϕ̃ as j goes to infinity. Elementary
computations give that limu→+∞ ϕ̃′j(u)/ϕ̃j(u) = bj/cj .

We consider the functions ψ̃j = b̃ ◦ ϕ̃j defined on some open neighborhood of (0,+∞)

in C for j ∈ N∗. Following Lemma 11.1, it is easy to check that the functions ψ̃j are
analytic on (0,+∞), positive, increasing, strictly convex and that:

lim
x→0+

ψ̃′j(x) = 0 and lim
x→+∞

ψ̃′j(x) =
bj

cj
·
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Let g̃j be the inverse of ψ̃′j defined on (0, bj/cj). In particular, for a given positive

v < bj/cj , the minimum of ψ̃j(u)−uv for u ≥ 0 is uniquely reached at g̃j(v). Using that ψ̃j
converges uniformly, on compacts sub-sets of a neighborhood in C of (0,+∞), towards
ψ̃, that b̃ and thus ψ̃j and ψ̃ are analytic, we get that for any compact of (0,+∞) and j
large enough, the strictly convex functions ψ̃j and their derivatives converge uniformly
towards the strictly convex function ψ̃ and its derivatives. We deduce that for any
compact K of (0,+∞) and j large enough (more precisely j such that bj/cj > sup(K)),
g̃j is well defined on K and converges uniformly towards g̃ on K.

We consider the following general setting. Let ` ∈ N∗ and an ∈ [`cn/c0, `b
n) such that

lim supn→∞ an/`b
n < 1. Since b > µ > cr+1/cr for all r ∈ N, we deduce that the sequence

(cn−lb
l, 0 ≤ l ≤ n) is increasing. Therefore, the integer ln = sup{l ∈ {0, . . . , n}, cn−l`bl ≤

c0an} is well-defined and strictly less than n. Set jn = n− ln ≥ 1 and yn such that:

an = yn cjn `b
ln , (11.16)

so that yn ∈ [1/c0, bcjn−1/c0cjn). Notice that the conditions limn→∞ an/cn = +∞ and
an < `bn imply that limn→∞ ln = +∞. The sequence (jn, n ∈ N∗) may be bounded or not.

As cr+1/cr < b for all r ∈ N, we deduce that yn < bcjn−1/c0cjn < bjn/cjn . Thus, we
can define ũ∗n,` = g̃jn(yn) and σ̃2

n,` = ψ̃′′jn(ũ∗n,`) > 0.

Lemma 11.5. Let p be a non-degenerate super-critical offspring distribution with b <∞
and type (L0, r0). Let ` ∈ N∗. Assume that limn→∞ an/cn =∞ and lim supn→∞ an/`b

n <

1. Then, we have, with limn→∞ ε̃n,` = 0:

P`(Zn = an) =
L0 p(b)−`/(b−1)

cjn

√
2π `bln σ̃2

n,`

exp
{
`bln(ψ̃jn(ũ∗n,`) + ũ∗n,`yn)

}
(1+ ε̃n,`)1{an=`rn0 (mod L0)}.

The proof, detailed in Section 11.8 is in the spirit of the proof of (175) in [18]. We
end this section with the following strong ratio limit.

Lemma 11.6. Let p be a non-degenerate super-critical offspring distribution with b <∞
and type (L0, r0). Let ` ∈ N∗. Assume that limn→∞ an/cn = ∞, lim supn→∞ an/`b

n < 1,
and an = `rn0 (mod L0) for all n ∈ N∗. Then, we have:

lim
n→∞

P`bh(Zn−h = an)

P`(Zn = an)
= p(b)−(bh−1)`/(b−1). (11.17)

Proof. Let ` ∈ N∗. Assume that an ∈ [`cn/c0, `b
n) and an = `rn0 (mod L0) for all n ∈ N∗

and lim supn→∞ an/`b
n < 1. An estimation of P`(Zn = an) is given in Lemma 11.5. We

now give an estimation of P`′(Zn′ = an) with n′ = n − h for some h ∈ N∗ and `′ = bh`.
Recall (11.16) and the definition of ln, jn and yn. We have:

an = y′ncj′n `
′bl
′
n = y′ncj′n `b

l′n+h,

with j′n + l′n = n′ = n− h and l′n = sup{l ∈ {0, . . . , n′ = n− h}, cn−h−l`bl+h ≤ c0an}. From
the definition of l′n, we deduce that l′n = ln − h so that `′bl

′
n = `bln , j′n = jn and thus

y′n = yn. This gives that g̃jn(yn) = g̃j′n(y′n) and thus ũ∗n′,`′ = ũ∗n,` as well as σ̃2
n′,`′ = σ̃2

n,`.
Thanks to Remark 1.4, we have P`bh(Zn−h = an) > 0 and P`(Zn = an) > 0 for n large.
We deduce (11.17) from Lemma 11.5.

11.5 Proof of Lemma 11.3

Let ` ∈ N∗ be fixed. We deduce from Lemma 10.3 and the Fourier inversion formula
for xw∗`(x) that for x > 0, v ∈ R:

w∗`(x) = − i`

2πx

∫
R

ϕ̃′(v + is) (ϕ̃(v + is)− c)`−1 e−(v+is)x ds. (11.18)
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We now follow closely the proofs from (120) to (148) of [18]. Recall notations for r̃(x)

and ỹ(x) given in (11.10). Using (10.6) and (11.1), we get with r = r̃(x), y = ỹ(x) and
setting u = µ−rv and t = µ−rs:

w∗`(x)= − i`µ
−r

2πx

∫
R

ϕ̃′
(
v + is

µr

)
f ′r

(
ϕ̃

(
v + is

µr

)) (
fr

(
ϕ̃

(
v + is

µr

))
− c

)`−1

e−(v+is)x ds

= − i`

2πx

∫
R

H(u+ it) dt, (11.19)

where
H(z) = ϕ̃′(z) f ′r (ϕ̃(z)) (fr (ϕ̃(z))− c)

`−1
e−zb

ry . (11.20)

Since ϕ̃(z)−c = E[ezW 1{W>0}], we deduce that |ϕ̃(z)−c| ≤ ϕ̃(R(z))−c. The Stevastyanov
transformation of the generating function f given by f̄(z) = [f(c+ (1− c)z)− c]/[1− c] is a
generating function, and the r-th iterate of f̄ is f̄r(z) = [fr(c+(1−c)z)−c]/[1−c]. Since f̄r
is a generating function, we get that |f̄r(z)| ≤ f̄r(|z|) and thus |fr(c+z)−c| ≤ fr(c+|z|)−c.
Using this last equality with z replaced by ϕ̃(z)− c, we get that:

|fr(ϕ̃(z))− c| ≤ fr(c + |ϕ̃(z)− c|)− c ≤ fr(ϕ̃(R(z)))− c ≤ fr(ϕ̃(R(z))). (11.21)

Since |f ′r(z)| ≤ f ′r(|z|) ≤ brfr(|z|)/|z|, we get:

|H(z)| ≤ 1

ϕ̃(R(z))
|ϕ̃′(z)| brfr (ϕ̃(R(z)))

`
e−R(z)bry .

Since ϕ̃(u) ≥ 1 and C := supu≤u1

∫
|ϕ̃′(u+ it)| dt < +∞, thanks to (10.5), we deduce that:∫

R

H(u+ it) dt ≤ Cbrfr (ϕ̃(u))
`
e−ub

ry .

Then use (11.19) to conclude.

11.6 Proof of (11.12) in Lemma 11.4

We keep notations from Section 11.5. Set u0 = g̃(1/`), u1 = g̃(b/(`µ)) and K = [u0, u1].
Since u0 > 0, we have ϕ̃(u0) > 1. Let δ ∈ (0, 1) be such that 1 + δ < ϕ̃(u0) < ϕ̃(u1) < δ−1.
From the continuity of ϕ̃ on C, and the fact that ϕ̃(K) ⊂ D̃(δ), we deduce there exists
t0 > 0 such that for all (u, t) ∈ K ′ := K × [−t0, t0], we have ϕ̃(u+ it) ∈ D̃(δ), and thus ψ̃ is
analytic on an open neighborhood of {u+ it; (u, t) ∈ K ′}. Since ψ̃(u) > 0 and ψ̃′′(u) > 0

for u > 0, we can take t0 small enough so that R(ψ̃(u+ it)) > 0 for (u, t) ∈ K ′ and:

t0 sup
(v,s)∈K′

|ψ̃′′′(v + is)| ≤ inf
v∈K

ψ̃′′(v). (11.22)

Recall H defined in (11.20). We shall study the asymptotics of
∫
R
H(u+ it) dt for large x.

Condition (11.22) will be used later on to study the main part of
∫
|t|≤t0 H(u+ it) dt.

First step: the tail part

We first consider the tail part:

I(t0) =

∣∣∣∣∣
∫
|t|≥t0

H(u+ it) dt

∣∣∣∣∣ .
As ϕ̃(u0) > 1, we can take η small enough so that (1− η)ϕ̃(u0) + ηc > 1 and (10.2) holds
on A = {(u, t); u ∈ K and |t| ≥ t0}. Using the first inequality in (11.21), we get for all
(u, t) ∈ A:

|fr(ϕ̃(u+ it))− c| ≤ fr((1− η)ϕ̃(u))− c ≤ fr((1− η)ϕ̃(u)).
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We get for all (u, t) ∈ A that |ϕ̃(u+ it)| ≤ |ϕ̃(u + it) − c| + c ≤ (1 − η)ϕ̃(u) and, using
|f ′r(z)| ≤ f ′r(|z|) ≤ brfr(|z|)/|z|, that:

|f ′r(ϕ̃(u+ it))| ≤ |f ′r ((1− η)ϕ̃(u))| ≤ br
fr((1− η)ϕ̃(u))

(1− η)ϕ̃(u)
·

Using (11.20) and then Lemma 11.2, we deduce that for all (u, t) ∈ A:

|H(u+ it)| ≤ 1

(1− η)ϕ̃(u)
|ϕ̃′(u+ it)| brfr ((1− η)ϕ̃(u))

`
e−ub

ry

≤ 1

(1− η)ϕ̃(u0)
|ϕ̃′(u+ it)| brp(b)−`/(b−1) e`b

r b̃((1−η)ϕ̃(u))−ubry .

Since b̃ is increasing, there exists ε′ > 0 (depending on u0, u1 and t0) such that for u ∈ K,

b̃ ((1− η)ϕ̃(u))) ≤ b̃(ϕ̃(u))− ε′ = ψ̃(u)− ε′.

We get that for all (u, t) ∈ A:

|H(u+ it)| ≤ p(b)−`/(b−1)

(1− η′)ϕ̃(u0)
|ϕ̃′(u+ it)| br e`b

rψ̃(u)−ubry−`brε′ .

Using (10.5) in Lemma 10.3, we get, for some finite constant c (depending on u0, u1, t1
and `), that for all u ∈ K and x > 0:

I(t0) ≤ c br e`b
rψ̃(u)−ubry−`brε′ . (11.23)

Second step: the main part

We now consider the main part J(t0) =
∫
|t|≤t0 H(u+ it) dt. An integration by part gives:

J(t0) =
1

`

[
(fr (ϕ̃(u+ it))− c)

`
e−(u+it)ybr

]t=t0
t=−t0

+
iybr

`
J1(t0),

with

J1(t0) =

∫
[±t0]

(fr (ϕ̃(u+ it))− c)
`
e−(u+it)ybr dt.

Arguing as in the first step, we get:∣∣∣∣J(t0)− iybr

`
J1(t0)

∣∣∣∣ ≤ p(b)−`/(b−1)

`
e`b

rψ̃(u)−ubry−`brε′ . (11.24)

Now J1(t0) is handled as in [18] from (128) to (139). By definition of δ and t0, we get
that ϕ̃(u+ it) ∈ D̃(δ) for (u, t) ∈ K ′. Use (11.7), R(ψ̃(u+ it)) > 0 for (u, t) ∈ K ′ and that
limr→+∞ |fr(z)| = +∞ on D̃(δ), to get there exists ε > 0 such that, uniformly in u ∈ K:

J1(t0) = p(b)−`/(b−1)
(

1 +O(e−εb
r

)
)
D(u), (11.25)

with

D(u) =

∫ t0

−t0
eb
r(`ψ̃(u+it)−(u+it)y) dt.

We have for (u, t) ∈ K ′:

ψ̃(u+ it) = ψ̃(u) + itψ̃′(u)− t2

2
ψ̃′′(u) + h(t, u),
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with |h(t, u)| ≤ t3C+
3 /6, and C+

3 = sup(v,s)∈K′ |ψ̃′′′(v+ is)| < +∞. Let C−2 = infv∈K |ψ̃′′(v)|
which is a positive constant as ψ̃ is increasing and strictly convex on (0,+∞). Recall that
by definition of t0, see (11.22), we have t0C

+
3 ≤ C

−
2 .

We define ũ∗` as g̃(y/`), so that ũ∗` ∈ [u0, u1] and we set σ̃2
` = ψ̃′′(ũ∗` ). We get:

`ψ̃(ũ∗` + it)− (ũ∗` + it)y = `ψ̃(ũ∗` )− ũ∗`y −
t2

2
`σ̃2
` + `h(t, ũ∗` ),

with |h(t, ũ∗` )| ≤ t3C+
3 /6 and |h(t, ũ∗` )| ≤ t2σ̃2

`/6 for t ∈ [−t0, t0]. For x large enough (and
thus r large enough), we consider the decomposition D(ũ∗` ) = D1 +D2 with:

D1 =

∫ rb−r

−rb−r
eb
r(`ψ̃(ũ∗`+it)−(ũ∗`+it)y) dt.

Using that |h(t, ũ∗` )| ≤ r3b−3r/2C+
3 /6 for |t| ≤ rb−r/2, we get with s =

√
`brσ̃2

` t:

D1 = eb
r(`ψ̃(ũ∗` )−ũ∗`y)

∫ rb−r/2

−rb−r/2
e−`b

rσ̃2
` t

2/2+`brh(t,ũ∗` ) dt

= eb
r(`ψ̃(ũ∗` )−ũ∗`y)

∫ rb−r/2

−rb−r/2
e−`b

rσ̃2
` t

2/2 dt
(

1 +O(r3b−r/2)
)

=
1√
`brσ̃2

`

eb
r(`ψ̃(ũ∗` )−ũ∗`y)

∫ rσ̃`
√
`

−rσ̃`
√
`

e−s
2/2 ds

(
1 +O(r3b−r/2)

)
= I ×

(
1 +O(r3b−r/2)

)
,

with

I =

√
2π√
`brσ̃2

`

exp
{
br
(
`ψ̃(ũ∗` )− ũ∗`y

)}
.

We now give an upper bound on |D2|. Since |h(t, ũ∗` )| ≤ t2σ̃2
`/6, we deduce that for

t ∈ [−t0, t0]:

R
(
`ψ̃(ũ∗` + it)− (ũ∗` + it)y

)
≤ `ψ̃(ũ∗` )− u∗`y − `

t2

3
σ̃2
` .

This implies that:

|D2| ≤ eb
r(`ψ̃(ũ∗` )−ũ∗`y)

∫
|t|∈[rb−r/2,t0]

e−`b
rσ̃2
` t

2/3 dt

≤ 2t0 eb
r(`ψ̃(ũ∗` )−ũ∗`y) e−` r

2σ̃2
`/3

= I ×O(r3b−r/2).

This gives that D(ũ∗` ) = I ×
(
1 +O(r3b−r/2)

)
. Use (11.25), (11.23), (11.24) to get that:∫

R

H(ũ∗` + it) dt =
iybr

`
p(b)−`/(b−1) I ×

(
1 +O(r3b−r/2)

)
.

Then use (11.19), the definition of ũ∗` , which implies that

ũ∗` (y/`)− ψ̃(ũ∗` ) = max
u≥0

((uy/`)− ψ̃(u)) = (y/`)βH/(βH−1)M̃(y/`)

with y = y(x), and then the periodicity of M̃ to conclude.
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11.7 Proof of (11.13) and (11.14) in Lemma 11.4

From (4.4), we get w`(x) = w∗`(x) +R(x), with:

R(x) =

`−1∑
j=1

(
`

j

)
c`−jw∗j(x).

Using (11.11) and then Lemma 11.2, we deduce there exits a finite constant c such that
for all x ≥ b/µ and u ∈ K:

R(x) ≤ c

x
br e−uyb

r

fr(ϕ̃(u))`−1 ≤ c

x
p(b)−(`−1)/(b−1)br e(`−1)brψ̃(u)−uybr .

Taking u = ũ∗` and I defined in Section 11.6, we get that R(x) = I × O(e−b
rψ̃(ũ∗` )/2) =

o(w∗`(x)). This implies that w`(x) ∼ w∗`(x) as x goes to infinity. This gives (11.13).
An exact computation using (4.4) and (11.18) leads to:

w`(x) = − i`c

2πx

∫
R

ϕ̃′(v + is) ϕ̃(v + is)`−1 e−(v+is)x ds.

By definition, we have P`(W ≥ x) =
∫ +∞
x

w`(x
′) dx′. Arguing as in Section 11.6, with in

particular the integration by part (in s) for the main part, it is easy to get that:

P`(W ≥ x) ∼ − i`c

2πx

∫
R

ϕ̃′(v + is)

v + is
ϕ̃(v + is)`−1 e−(v+is)x ds

as well as (11.14). The details are left to the reader.

11.8 Proof of Lemma 11.5

Recall an = yncjn`b
ln > 0. Using Fourier inversion formula, we have for v > 0:

P`(Zn = an) =
L0

2π

∫
[±π/L0]

fn
(
ev+is

)`
e−(v+is)an ds

=
L0

2π

∫
[±π/L0]

(
fn
(
ev+is

)` − c`
)

e−(v+is)an ds

since either a ≥ 1 and thus c = 0, or a = 0 and an = 0 (mod L0). Setting v = u/cjn > 0,

s = t/cjn and Hl,j(z) = fl (ϕ̃j(z))
` − c`, we get using ln + jn = n:

P`(Zn = an) =
L0

2πcjn

∫
[±cjnπ/L0]

Hln,jn(u+ it) e−(u+it)yn`b
ln
dt. (11.26)

We now make explicit the range of the possible choice for u we shall consider. Without
loss of generality, we can assume that there exists δ0 > 0 such that supn∈N∗ an/`b

n <

1− δ0. The restriction to R of the domain of definition of g̃j is Dj = (0, bj/cj). Set Fj =

[1/c0, bcj−1/c0cj ] for j ≥ 2 and F1 = [1/c0, (1− δ0)b/c1]. From the uniform convergence
of g̃j towards g̃ on compact sets of (0,∞) and the fact that Fj ⊂ Dj for all j ∈ N∗ and⋃
j∈N∗ Fj ⊂ [1/c0, b/c1], we deduce that there exists 0 < u0 < u1 < +∞ such that for all

j ∈ N∗ and all y ∈ Fj , we have g̃j(y) ∈ K := [u0, u1]. Since yn ∈ Fjn , we deduce that the
sequence (ũ∗n,`, n ∈ N∗) belongs to K.

11.8.1 Preliminary upper bounds

Using the continuity of ϕ̃j and their uniform convergence towards ϕ̃ as j goes to infinity,
we get that there exists t0 > 0, δ ∈ (0, 1) such that for all (u, t) ∈ K ′ := K×[−t0, t0] and j ∈
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N∗, we have ϕ̃j(u+ it) ∈ D̃(δ) and m0 = inf{R(ψ̃j(u+ it); (u, t) ∈ K ′, j ∈ N∗} > 0. We set
C̃+

3 = supj∈N∗ sup(u,t)∈K′ |ψ̃′′′j (u+ it)| which is a finite constant since the derivative of ψ̃j
converges uniformly on K ′ towards the derivative of ψ̃. Let C̃−2 = infj∈N∗ infu∈K |ψ̃′′j (u)|
which is a positive constant since the derivative of ψ̃j converges uniformly on K towards
the derivative of ψ̃ and that ψ̃j as well as ψ̃ are increasing and strictly convex on (0,+∞).
Taking a smaller t0 if necessary, we can assume that:

t0C̃
+
3 ≤ C̃

−
2 . (11.27)

We deduce from (11.7) and the definition of ψ̃j and ϕ̃j that there exits ε > 0 and a
finite constant C such that for all l, j ∈ N∗, (u, t) ∈ K ′:

fl(ϕ̃j(u+ it)) = p(b)−1/(b−1) eb
lψ̃j(u+it) (1 +R(u, t, l, j))

and sup(u,t)∈K′,j∈N∗ |R(u, t, l, j)| ≤ C e−εb
l

. Since m = inf{ψ̃j(u); u ∈ K, j ∈ N∗} > 0,
taking ε smaller than m if necessary, we get that:

Hl,j(u+ it) = p(b)−`/(b−1) e`b
lψ̃j(u+it) (1 +R′(u, t, l, j))

and sup(u,t)∈K′,j∈N∗ |R′(u, t, l, j)| ≤ C ′ e−εb
l

for some finite constant C ′. Since fl(ϕ̃(u)) >

1 > c for u > 0, we deduce from Lemma 11.2 that for all l, j ∈ N∗, u ∈ (0,+∞):

0 < Hl,j(u) ≤ fl(ϕ̃j(u))` ≤ p(b)−`/(b−1) exp
{
`blψ̃j(u)

}
. (11.28)

11.8.2 The tail part

We first bound the tail of the integral which appears in (11.26):

Il,j(t0) =

∣∣∣∣∣
∫
|t|∈[t0,cjπ/L0]

Hl,j(u+ it) e−(u+it)y`bl dt

∣∣∣∣∣,
where y belongs to [1/c0, bcj−1/c0cj). Using an integration by parts, we get:∫

|t|∈[t0,cjπ/L0]

Hl,j(u+ it) e−(u+it)y`bl dt = I+1
1 − I−1

1 + I2,

where, for ε ∈ {+1,−1}

Iε1 =

[
iHj,l(u+ it)

e−(u+it)y`bl

y`bl

]δ cjπL0

δt0

and I2 = −i
∫
|t|∈[t0,cjπ/L0]

H ′l,j(u+it)
e−(u+it)y`bl

y`bl
dt.

Set Aj = {(u, t) ∈ R2; u ∈ K, t0 ≤ |t| ≤ cjπ/L0}. According to (10.10), there exists
δ ∈ (0, 1) such that for all j ∈ N∗ and (u, t) ∈ Aj:

|ϕ̃j(u+ it)| ≤ (1− δ)ϕ̃j(u). (11.29)

Taking δ small enough, we can assume that m1 = inf{(1 − δ)ϕ̃j(u); j ∈ N∗, u ∈ K} > 1.

We have Hl,j(z) = g(1)− g(0) =
∫ 1

0
g′(s) ds, with g(s) = fl(sϕ̃j(z) + (1− s)c)`. We get:

|g′(s)| ≤ |ϕ̃j(z)− c| `fl(s(1− δ)ϕ̃j(u) + (1− s)c)`−1f ′l (s(1− δ)ϕ̃j(u) + (1− s)c).

We deduce that for all l, j ∈ N∗ and z = u+ it with (u, t) ∈ Aj:

|Hl,j(z)| ≤ |ϕ̃j(z)− c| fl((1− δ)ϕ̃j(u))` − c`

1− c
≤ 2ϕ̃j(u)

fl((1− δ)ϕ̃j(u))`

1− c
·
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Using Lemma 11.2, we get there exists a constant C such that for all l, j ∈ N∗ and
(u, t) ∈ Aj:

|Hl,j(z)| ≤ C exp
{
`blb̃((1− δ)ϕ̃j(u))

}
.

Using that b̃ is analytic and increasing on (1,+∞) and m1 > 1, we deduce that there
exists ε′ > 0 such that for all j ∈ N∗, u ∈ K:

b̃((1− δ)ϕ̃j(u)) ≤ ψ̃j(u)− ε′.

We deduce that for all l, j ∈ N∗, (u, t) ∈ Aj:

|Hl,j(u+ it)| dt ≤ C exp
{
`blψ̃(u)− `blε′

}
.

This gives that for all u ∈ K, l, j ∈ N∗:

|I±1
1 | ≤

2C

y`bl
e`b

l(ψ̃(u)−uy)−`blε′ . (11.30)

We have H ′l,j(z) = `ϕ̃′j(z)f
′
l (ϕ̃j(z)) fl (ϕ̃j(z))

`−1. For (u, t) ∈ Aj , we have using (10.9),

(11.29) and f ′l (|z|) ≤ blfl(|z|)/|z|:

|H ′l,j(u+ it)| ≤ `

m1
|̃ϕ′j(u+ it)|blfl ((1− δ)ϕ̃j(u))

`
.

Arguing as in the upper bound on I±1 , we get there exists a finite constant C such that
for all l, j ∈ N∗, u ∈ K

|I2| ≤
C

y
e`b

l(ψ̃(u)−uy)−`blε′
∫

[±cjπ/L0]

|ϕ̃′j(u+ it)| dt.

Then use (10.12), to conclude that |I2| ≤ (C/y) e`b
l(ψ̃(u)−uy)−`blε′ for some finite constant

C. This and (11.30) give there exists a finite constant C such that for all l, j ∈ N∗, u ∈ K:

Il,j(t0) ≤ C

y
e`b

l(ψ̃(u)−uy)−`blε′ . (11.31)

11.8.3 The main part

The main part is handled as in [18] from (168) to (172), see also [16]. For (u, t) ∈ K ′, we
have ϕ̃j(u+ it) ∈ D̃(δ) and we deduce from (11.7), that there exists ε > 0 such that for
(u, t) ∈ K ′, l, j ∈ N∗:∫ t0

−t0
Hl,j(u+ it) e−(u+it)y`bl dt = p(b)−`/(b−1)

(
1 +O(e−εb

l

)
)
D(j, l, u),

and

D(j, l, u) =

∫ t0

−t0
e`b

l(ψ̃j(u+it)−(u+it)y) dt.

where O(e−εb
l

) = R(u, t, j, l, y) and there exists some finite constant C such that for all

l ∈ N∗, we have supj∈N∗ supy∈Fj ,(u,t)∈K′ |R(u, t, j, l, y)| ≤ C e−εb
l

. We have for (u, t) ∈ K ′:

ψ̃j(u+ it) = ψ̃j(u) + itψ̃′j(u)− t2

2
ψ̃′′j (u) + hj(t, u),
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with |hj(t, u)| ≤ t3C̃+
3 /6, Recall that ũ∗n,` belongs to K. With the definition of ũ∗n,`, we get

that:

ψ̃jn(ũ∗n,` + it)− (u∗n,` + it)yn = ψ̃jn(ũ∗n,`)− u∗n,`yn −
t2

2
σ̃2
n,` + hjn(t, ũ∗n,`),

with σ̃2
n,` = ψ̃′′jn(ũ∗n,`), |hjn(t, ũ∗n,`)| ≤ t3C̃

+
3 /6.

We consider the decomposition D(jn, ln, ũ
∗
n,`) = D1 +D2 with:

D1 =

∫ lnb
−ln/2

−lnb−ln/2
e`b

ln(ψ̃jn (ũ∗n,`+it)−(ũ∗n,`+it)y) dt.

Using that |hjn(t, ũ∗n,`)| ≤ l3nb−3ln/2C̃+
3 /6 for |t| ≤ lnb−ln/2, we get:

D1 = e`b
ln(ψ̃jn (ũ∗n,`)−ũ

∗
n,`yn)

∫ lnb
−ln/2

−lnb−ln/2
e−`b

ln σ̃2
n,`t

2/2+`blnhjn (t,ũ∗n,`) dt

= e`b
ln(ψ̃jn (ũ∗n,`)−ũ

∗
n,`yn)

∫ lnb
−3ln/2

−lnb−ln/2
e−`b

ln σ̃2
n,`t

2/2 dt
(

1 +O(l3nb
−3ln/2)

)
=

1√
`bln σ̃2

n,`

e`b
ln(ψ̃jn (ũ∗n,`)−ũ

∗
n,`yn)

∫ lnσ̃n,`
√
`

−lnσ̃n,`
√
`

e−s
2/2 ds

(
1 +O(l3nb

−3ln/2)
)

= In ×
(

1 +O(l3nb
−3ln/2)

)
,

with

In =

√
2π√

`bln σ̃2
n,`

e`b
ln(ψ̃jn (ũ∗n,`)−ũ

∗
n,`yn) .

We now give an upper bound for |D2|. Thanks to (11.27), we have |hjn(t, ũ∗n,`)| ≤
t2σ̃2

n,`/6 for t ∈ [−t0, t0]. We deduce that for t ∈ [−t0, t0]:

R
(
ψ̃jn(ũ∗n,` + it)− (ũ∗n,` + it)yn

)
≤ ψ̃jn(ũ∗n,`)− ũ∗n,`yn −

t2

3
σ̃2
n,`.

This implies that:

|D2| ≤ e`b
ln(ψ̃jn (ũ∗n,`)−ũ

∗
n,`yn)

∫
|t|∈[lnb−ln/2,t0]

e−`b
ln σ̃2

n,`t
2/3 dt

≤ 2t0 e`b
ln(ψ̃jn (ũ∗n,`)−ũ

∗
n,`yn) e−`l

2
nσ̃

2
n,`/3

= In ×O(l3nb
−3ln/2).

11.8.4 Conclusion

To conclude, we deduce from (11.31) with y = yn that:∫
|t|∈[t0,cjnπ/L0]

|Hln,jn(ũ∗n,` + it) e−(ũ∗n,`+it)yn`b
ln | dt = In ×O(e−εb

ln/2)

This implies that:∫ cjn
π

L0

−
cjn

π

L0

Hln,jn(ũ∗n,` + it) e−(ũ∗n,`+it)yn`b
ln
dt = p(b)−`/(b−1)In ×

(
1 +O(l3nb

−3ln/2)
)
.

Then use (11.26) to conclude.
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12 Results in the Bötcher case

We present mostly the results without proof as their correspond either to a slight
generalization of [17] and [18] or can be proven by mimicking the proof in the Harris
case presented in Section 11. Recall the Böttcher constant β ∈ (0, 1) is defined by a = µβ ,
where a is the minimum of the support of p. We assume a ≥ 2.

12.1 Preliminaries

We define the function b on its domain which is a subset of {z ∈ C; 0 < |z| < 1} by:

b(z) = log(z) +

∞∑
n=0

a−n−1 log

(
fn+1(z)

fn(z)a

)
. (12.1)

According to Lemma 10 in [18], for every δ ∈ (0, 1), there exists a constant θ = θ(δ) ∈
(0, π) such that b is analytic on the open set:

D(δ, θ) = {z ∈ C; 0 < |z| < 1− δ, | arg(z)| < θ}. (12.2)

On (0, 1), the function b is analytic, negative and satisfies b ◦ f = ab. We also have, see
Lemma 14 in [18] that:

(sb′(s))′ > 0 for s ∈ (0, 1), lim
s↗1

sb′(s) = +∞ and lim
s↘0

sb′(s) = 1.

Recall that ϕ denotes the Laplace transform of W . We also consider the function ψ = b◦ϕ
defined on (0,+∞). According to Lemma 17 in [18], the function ψ is analytic on (0,+∞)

strictly decreasing, strictly convex and such that:

lim
x→0+

ψ′(x) = −∞ and lim
x→+∞

ψ′(x) = 0.

Let g be the inverse of −ψ′. In particular, for a given v > 0, the minimum of ψ(u) + uv

for u ≥ 0 is uniquely reached at g(v):

min
u≥0

(ψ(u) + uv) = ψ(g(v)) + g(v)v. (12.3)

12.2 Left tail of w

We define the function M for v ∈ (0,+∞) by:

M(v) = −vβ/(1−β) min
u≥0

(ψ(u) + uv) . (12.4)

The function M is analytic on (0,+∞), see Proposition 3 in [10], positive and multiplica-
tively periodic with period µ1−β . For x ∈ (0, a/µ], we set:

r(x) =

⌊
log(x)

log(a/µ)

⌋
and y(x) = x

(µ
a

)r(x)

, (12.5)

so that y(x) ∈ (a/µ, 1]. For ` ∈ N∗ and y > 0, we define the positive functions:

M1,`(y) =
p(a)−`/(a−1)√

2π`σ2(y/`)
y(2−β)/2(1−β) and M2,`(y) =M1,`(y)

y−1/(1−β)

g(y/`)
,

where σ2(y) = ψ′′(g(y)) > 0. For ` ∈ N∗ and x ∈ (0, a/µ], we set:

M1,`(x) =M1,`(y(x)) and M2,`(x) =M2,`(y(x)).

EJP 24 (2019), paper 15.
Page 47/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP272
http://www.imstat.org/ejp/


Expansive GW trees

By construction x 7→ y(x) is multiplicative periodic with period a/µ = a1−β. We deduce
that M1,` and M2,` are multiplicative periodic with period a/µ = a1−β , positive, bounded
and bounded away from 0.

Let P` be the distribution of
∑`
i=1Wi, with (Wi, i ∈ N∗) independent random variables

distributed as W . Since a > 0 and thus c = 0, we get that W has density w and that∑`
i=1Wi has density w∗`. Mimicking very closely the proof in [18] stated for ` = 1, it is

not very difficult to check the following result. The verification is left to the reader.

Lemma 12.1. Let p be a non-degenerate super-critical offspring distribution with finite
mean and a ≥ 2. Let ` ∈ N∗. As x↘ 0, we have:

w∗`(x) ∼ w`(x) ∼M1,`(x)x(β−2)/2(1−β) exp
{
−`1/(1−β) x−β/(1−β)M(x/`)

}
, (12.6)

P`(W ≤ x) ∼M2,`(x)xβ/2(1−β) exp
{
−`1/(1−β) x−β/(1−β)M(x/`)

}
. (12.7)

Using (118), (119), (122) (with f replaced by f`), (123) and (78) in [18], we also get
the following upper bound, see also Lemma 11.3 in the Harris case.

Corollary 12.2. Let p be a non-degenerate super-critical offspring distribution with
finite mean and a ≥ 2. There exists a finite constant C such that for all ` ∈ N∗, x > 0 and
u ≥ 0, we have with r = r(x), y = y(x):

w∗`(x) ≤ Cµr euya
r

ϕ(u)
fr(ϕ(u))`. (12.8)

12.3 Proof of Lemma 4.4 in the Böttcher case

Mimicking the arguments given in Section 11.3, it is easy, using Corollary 12.2 to get
that:

lim
x→0+

µ
w∗a`(x)

w∗`(x/µ)
p(a)` = 1.

From the definition of ρθ,` in (4.5), we deduce that limθ→0+ ρθ,`(a, . . . a) = 1. This ends
the proof of Lemma 4.4 in the Böttcher case.

12.4 Lower large deviations for Zn

For j ∈ N∗, let ϕj denote the Laplace transform of Wj = Zj/cj: ϕj(u) = E[e−uWj ] =

fj(e
−u/cj ) for u ∈ C+, where C+ = {u ∈ C, R(u) ≥ 0}. Notice that ϕj converges uni-

formly on the compacts of C+ towards ϕ, the Laplace transform of W , as j goes to infinity.
We also have that ϕ′j(u)/ϕj(u) = −E[Wj e−uWj ]/E[e−uWj ] so that limu→+∞ ϕ′j(u)/ϕj(u) =

−aj/cj .
We consider the functions ψj = b ◦ ϕj defined on (0,+∞) for j ∈ N∗ and the function

ψ = b ◦ ϕ. According to Lemma 17 in [18], the function ψ is analytic on (0,+∞) strictly
decreasing, strictly convex and such that limx→0+ ψ

′(x) = −∞ and limx→+∞ ψ′(x) = 0.
Mimicking the proof of Lemma 17 in [18], it is easy to check that the functions ψj are
analytic on (0,+∞) strictly decreasing, strictly convex and such that:

lim
x→0+

ψ′j(x) = −∞ and lim
x→+∞

ψ′j(x) = −aj

cj
·

Let gj (resp. g) be the inverse of −ψ′j (resp. −ψ′) on (aj/cj ,+∞) (resp. on (0,+∞)).
In particular, for a given v > aj/cj , the minimum of ψj(u) + uv for u ≥ 0 is uniquely
reached at gj(v). Using that ψj converges uniformly on compact of C+ towards ψ, that
b and thus ψj and ψ are analytic, we get that for any compact of (0,+∞), the strictly
convex functions ψj and their derivatives converge uniformly towards the strictly convex
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function ψ and its derivatives. We deduce that for any compact of (0,+∞), gj converges
uniformly towards g.

We consider the following general setting. Let ` ∈ N∗ and an ∈ (`an, `cn/c0] such that
lim infn→∞ an/`a

n > 1. Since a < cr+1/cr < µ for all r ∈ N, we deduce that the sequence
(cn−la

l, 0 ≤ l ≤ n) is decreasing. Therefore, the integer ln = sup{l ∈ {0, . . . , n}, cn−l`al ≥
c0an} is well-defined and strictly less than n. Set jn = n− ln ≥ 1 and

an = yn cjn `a
ln ,

with yn ∈ (acjn−1/c0cjn , 1/c0]. Notice that the conditions limn→∞ an/cn = 0 and an > `an

imply that limn→∞ ln = +∞. The sequence (jn, n ∈ N∗) may be bounded or not.

As a < cr+1/cr for all r ∈ N, we deduce that yn > acjn−1/c0cjn > ajn/cjn . Thus, we
can define u∗n,` = gjn(yn) and σ2

n,` = ψ′′jn(u∗n,`). Mimicking very closely the proof of (175)
in [18] (which is stated for ` = 1 and limn→∞ jn = ∞), it is not very difficult to check
the following slightly more general result. The verification, which can also be seen as a
direct adaptation of the detailed proof of Lemma 11.5, is left to the reader.

Lemma 12.3. Let p be a non-degenerate super-critical offspring distribution with fi-
nite mean, a ≥ 2 and type (L0, r0). Let ` ∈ N∗. Assume that limn→∞ an/cn = 0 and
lim infn→∞ an/`a

n > 1. Then, we have, with limn→∞ εn,` = 0:

P`(Zn = an)

=
L0 p(a)−`/(a−1)

cjn

√
2π `aln σ2

n,`

exp
{
`aln(ψjn(u∗n,`) + u∗n,`yn)

}
(1 + εn,`(1))1{an=`rn0 (mod L0)}.

We end this section with the following strong ratio limit, whose proof is similar to the
proof of Lemma 11.6.

Lemma 12.4. Let p be a non-degenerate super-critical offspring distribution with finite
mean and a ≥ 2. Assume that limn→∞ an/cn = 0, lim infn→∞ an/`a

n > 1 and an =

`rn0 (mod L0) for all n ∈ N∗. Then, we have:

lim
n→∞

P`ah(Zn−h = an)

P`(Zn = an)
= p(a)−(ah−1)`/(a−1). (12.9)

12.5 Proof of Proposition 6.5 in the Böttcher case

For h ∈ N, we have P(rh(τ) = rh(ta)) = p(a)(ah−1)/(a−1). We deduce from (2.6) and
the convergence characterization (2.1), using that ta has a.s. an infinite height, that the
proof of Proposition 6.5 is complete as soon as we prove the following strong ratio limit.

Lemma 12.5. Let p be a non-degenerate super-critical offspring distribution with finite
mean and such that a ≥ 2. Assume that limn→+∞ an/cn = 0 and that P(Zn = an) > 0 for
every n ∈ N (which implies that an ≥ an). Then, we have for h, k ∈ N∗:

lim
n→∞

Pk(Zn−h = an)

P(Zn = an)
= p(a)−(ah−1)/(a−1)1{k=ah}. (12.10)

In fact, it is enough to prove (12.10) for k = ah as P(Zh = ah) = p(a)−(ah−1)/(a−1). It
is also enough to consider the two cases: limn→∞ an/a

n = 1 and lim infn→∞ an/a
n > 1.

The case limn→∞ an/a
n = 1 is handled as in the Harris case, see the first part of the

proof of Proposition 6.3 in Section 6.2. The case lim infn→∞ an/a
n > 1 is a consequence

of Lemma 12.4.
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