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CERMICS, École des Ponts, UPE, Champs-sur-Marne, France.
e-mail: delmas@cermics.enpc.fr

Anne Dutfoy

EDF Research & Development, Industrial Risk Management Department,
Palaiseau, France

e-mail: anne.dutfoy@edf.fr

Richard Fischer

LAMA(UMR 8050), UPEM, UPEC, CNRS, F-77454, Marne-la-Vallée, France
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ability density functions (pdf) with a product form on the domain � =
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d, 0 ≤ x1 ≤ · · · ≤ xd ≤ 1}. Such pdf’s appear in the
random truncation model as the joint pdf of the observations. They are
also obtained as maximum entropy distributions of order statistics with
given marginals. We propose an estimation method based on the approxi-
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probability with respect to the Kullback-Leibler divergence for pdf’s whose
logarithm belong to a Sobolev function class with known regularity. In the
case when the regularity is unknown, we propose an estimation procedure
using convex aggregation of the log-densities to obtain adaptability. The
performance of this method is illustrated in a simulation study.
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1. Introduction

In this paper, we estimate probability density functions (pdf’s) with product
form on the simplex � = {(x1, . . . , xd) ∈ R

d, 0 ≤ x1 ≤ · · · ≤ xd ≤ 1} by a
nonparametric approach given a sample of n independent observations X

n =
(X1, . . . , Xn). We restrict our attention to pdf’s which can be written in the
form:

f0(x) = exp

(
d∑

i=1

�0i (xi)− a0

)
1�(x), for x = (x1, . . . , xd) ∈ R

d, (1.1)

with �0i bounded, centered, measurable functions on I = [0, 1] for all 1 ≤ i ≤ d,
and normalizing constant a0. There are two different approaches to arrive at
probability densities of this form. First, given independent [0, 1]-valued random
variables we take the order statistic and we obtain a vector of dependent random
variables supported on the simplex Δ. Second, given an order statistic with fixed
one-dimensional marginal probability densities the joint probability density with
maximum entropy is the unique density with the previous product form on the
simplex.

The first example is the random truncation model, which was first formulated
in [32], and has various applications ranging from astronomy ([30]), economics
([21], [19]) to survival data analysis ([26], [22], [29]). For d = 2, let (Z1, Z2) be a
pair of independent random variables on I such that Zi has density function pi
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for i ∈ {1, 2}. Let us suppose that we can only observe realizations of (Z1, Z2) if
Z1 ≤ Z2. Let (Z̄1, Z̄2) denote a pair of random variables distributed as (Z1, Z2)
conditionally on Z1 ≤ Z2. Then the joint density function f0 of (Z̄1, Z̄2) is given
by, for x = (x1, x2) ∈ I2:

f0(x) =
1

α
p1(x1)p2(x2)1�(x), (1.2)

with α =
∫
I2 p1(x1)p2(x2)1�(x) dx. Notice that f0 is of the form required in

(1.1):
f0(x) = exp(�01(x1) + �02(x2)− a0)1�(x),

with �0i defined as �0i = log(pi)−
∫
I
log(pi) for i ∈ {1, 2}. According to Corollary

5.7. of [11], f0 is the density of the maximum entropy distribution of order
statistics with marginals f1 and f2 given by:

f1(x1) =
1

α
p1(x1)

∫ 1

x1

p2(s) ds and f2(x2) =
1

α
p2(x2)

∫ x2

0

p1(s) ds.

This brings us to our second motivating example, for general dimension d ≥ 2.
There is an important amount of literature on copula models for order statis-
tics, see e.g. [3]. Following that line of research, [11] gives a necessary and suf-
ficient condition for the existence of a distribution of order statistics with fixed
marginal cumulative distribution functions Fi, 1 ≤ i ≤ d, which has maximum
entropy. Moreover, its explicit expression is given as a function of the marginal
distributions.

Let us suppose, for the sake of simplicity, that all Fi are absolutely continuous
with density function fi supported on I = [0, 1], and that Fi−1 > Fi on (0, 1)
for 2 ≤ i ≤ d. Then the maximum entropy density fF, when it exists, is given
by, for x = (x1, . . . , xd) ∈ R

d:

fF(x) = f1(x1)

d∏
i=2

hi(xi) exp

(
−
∫ xi

xi−1

hi(s) ds

)
1�(x),

with hi = fi/(Fi−1 − Fi) for 2 ≤ i ≤ d. The density fF is of the same form as
f0 in (1.1) with �0i defined as:

�01 = log(f1) +K2 and �0i = log (hi)−Ki +Ki+1 for 2 ≤ i ≤ d,

with Ki, 2 ≤ i ≤ d a primitive of hi chosen such that �0i are centered, and
Kd+1 = c a constant. In order to estimate the joint density f0 = fF, we can
estimate from the data the marginals Fi and fi for i from 1 to d and plug
them into the previous analytical formula. However, this procedure leads to
untractable evaluations of both L2 and Kullback-Leibler risks.

We present an additive exponential series model specifically designed to es-
timate such densities. This exponential model is a multivariate version of the
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exponential series estimator considered in [6] in the univariate setting. Essen-
tially, we approximate the functions �0i by their projections on a family of Jacobi
polynomials (ϕi,k, k ∈ N), which are orthonormal for each 1 ≤ i ≤ d with re-
spect to the i-th marginal of the Lebesgue measure on the support�. The model
takes the form, for θ = (θi,k; 1 ≤ i ≤ d, 1 ≤ k ≤ mi) and x = (x1, . . . , xd) ∈ �:

fθ(x) = exp

(
d∑

i=1

mi∑
k=1

θi,kϕi,k(xi)− ψ(θ)

)
1�(x),

with ψ(θ) = log
(∫

� exp
(∑d

i=1

∑mi

k=1 θi,kϕi,k(xi)
)
dx
)
. Even though the Ja-

cobi polynomials (x �→ ϕi,k(xi), k ∈ N) are orthonormal (with respect to the
Lebesgue measure on �) for each 1 ≤ i ≤ d, if we take i 	= j, the families
(x �→ ϕi,k(xi), k ∈ N) and (x �→ ϕj,k(xj), k ∈ N) are not orthogonal . However,
we construct the Gram matrix of the family (ϕ[i],k, i ∈ 1, ..., d) on the simplex,
where ϕ[i],k is ϕi,k seen as a function of its i-th coordinate on the simplex. We
calculate explicitly the largest and the smallest eigenvalues of this matrix in or-
der to control the stochastic fluctuations of our estimator. The exact definition
and further properties of these polynomials can be found in the Appendix. We
estimate the parameters of the model by θ̂ = (θ̂i,k; 1 ≤ i ≤ d, 1 ≤ k ≤ mi),
obtained by solving the maximum likelihood equations:

∫
�
ϕi,k(xi)fθ̂(x) dx =

1

n

n∑
j=1

ϕi,k(X
j
i ) for 1 ≤ i ≤ d, 1 ≤ k ≤ mi.

Approximation of log-densities by polynomials appears in [18] as an appli-
cation of the maximum entropy principle, while [14] shows existence and con-
sistency of the maximum likelihood estimation. We measure the quality of the
estimator fθ̂ of f0 by the Kullback-Leibler divergence D

(
f0‖fθ̂

)
defined as:

D
(
f0‖fθ̂

)
=

∫
�
f0 log

(
f0/fθ̂

)
.

Convergence rates in Kullback-Leibler divergence of nonparametric density es-
timators have been given by [20] for kernel density estimators, [6] and [33] for
the exponential series estimators, [5] for histogram-based estimators, and [25]
for wavelet-based log-density estimators. Here, we give results for the conver-
gence rate in probability when the functions �0i belong to a Sobolev space with
regularity ri > d for all 1 ≤ i ≤ d. We show that if we take m = m(n) =
(m1(n), . . . ,md(n)) members of the families (ϕi,k, k ∈ N), 1 ≤ i ≤ d, and let mi

grow with n such that (
∑d

i=1 m
2d
i )(
∑d

i=1 m
−2ri
i ) and (

∑d
i=1 mi)

2d+1/n tend to
0, then the maximum likelihood estimator fθ̂m,n

verifies:

D
(
f0‖fθ̂m,n

)
= OP

(
d∑

i=1

(
m−2ri

i +
mi

n

))
.
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Notice that this is the sum of the same univariate convergence rates as in [6].
The fact that the underlying pdf is log-additive on its support explains why the
global d-dimensional risk is reduced to the sum of d one-dimensional estimation
risks. However, the support is a major constraint in our model and this adds
technical difficulties. By choosing mi proportional to n1/(2ri+1), which gives
the optimal convergence rate OP(n

−2ri/(2ri+1)) in the univariate case as shown
in [35], our estimator achieves a convergence rate of OP(n

−2min(r)/(2min(r)+1)).
Recall that in this paper the dimension d is fixed with n. Note that a global
choice mi = n1/(2min(r)+1) also achieves the optimal convergence rate. There-
fore by exploiting the special structure of the underlying density, and carefully
choosing the basis functions, we managed to reduce the problem of estimating
a d-dimensional pdf to that of estimating d one-dimensional pdf’s. We highlight
the fact that this constitutes a significant gain over convergence rates of general
nonparametric multivariate density estimation methods.

In most cases the smoothness parameters ri, 1 ≤ i ≤ d, are not available,
therefore a method which adapts to the unknown smoothness is required to
estimate the density with the best possible convergence rate. Adaptive methods
for function estimation based on a random sample include Lepski’s method,
model selection, wavelet thresholding and aggregation of estimators.

Lepski’s method, originating from [28], consists of constructing a grid of regu-
larities, and choosing among the minimax estimators associated to each regular-
ity the best estimator by an iterative procedure based on the available sample.
This method was extensively applied for Gaussian white noise model, regression,
and density estimation, see [9] and references therein. Adaptation via model se-
lection with a complexity penalization criterion was considered by [8] and [4]
for a large variety of models including wavelet-based density estimation. Loss
in the Kullback-Leibler distance for model selection was studied in [34] and [13]
for mixing strategies, and in [36] for the information complexity minimization
strategy. More recently, bandwidth selection for multivariate kernel density es-
timation was addressed in [17] for Ls risk, 1 ≤ s < ∞, and [27] for L∞ risk.
Wavelet based adaptive density estimation with thresholding was considered in
[24] and [15], where an upper bound for the rate of convergence was given for
a collection of Besov-spaces. Linear and convex aggregate estimators appear in
the more recent work [31] with an application to adaptive density estimation in
expected L2 risk, with sample splitting.

Here we extend the convex aggregation scheme for the estimation of the log-
arithm of the density proposed in [12] to achieve adaptive optimality. We take
the estimator fθ̂m,n

for different values of m ∈ Mn, where Mn is a sequence

of sets of parameter configurations with increasing cardinality. These estima-
tors are not uniformly bounded as required in [12], but we show that they are
uniformly bounded in probability and that it does not change the general re-
sult. The different values of m correspond to different values of the regularity
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parameters. The convex aggregate estimator fλ takes the form:

fλ(x) = exp

( ∑
m∈Mn

λm

(
d∑

i=1

mi∑
k=1

θi,kϕi,k(xi)

)
− ψλ

)
1�(x),

with λ ∈ Λ+ = {λ = (λm,m ∈ Mn), λm ≥ 0 and
∑

m∈Mn
λm = 1} and

normalizing constant ψλ given by:

ψλ = log

(∫
�
exp

( ∑
m∈Mn

λm

(
d∑

i=1

mi∑
k=1

θi,kϕi,k(xi)

))
dx

)
.

To apply the aggregation method, we split our sample X
n into two parts X

n
1

and X
n
2 , with size proportional to n. We use the first part to create the esti-

mators fθ̂m,n
, then we use the second part to determine the optimal choice of

the aggregation parameter λ̂∗
n. We select λ̂∗

n by maximizing a penalized version
of the log-likelihood function. We show that this method gives a sequence of
estimators fλ̂∗

n
, free of the smoothness parameters r1, . . . , rd, which verifies:

D
(
f0‖fλ̂∗

n

)
= OP

(
n− 2min(r)

2min(r)+1

)
.

In summary, we give an adaptive minimax estimator of the joint density of an
order statistic with maximal entropy within the family having the same marginal
distributions. In order to achieve this, we project the log-density on a family
of Jacobi polynomials and estimate their coefficients by maximum likelihood
for different smoothness values. The Jacobi polynomials are a natural choice on
the simplex. As an alternative, wavelet bases on the simplex could be used, but
the computational part is to the best of our knowledge much more involved.
The main difficulty is to control the correlations induced by the fact that the
family of Jacobi polynomials are not orthogonal with respect to the Lebesgue
measure on the simplex �. The algorithm was implemented in [10] on a set of
real data issued from industrial applications. At the last step, we aggregate these
estimators into an adaptive procedure, following the previous non asymptotic
results in [12], and show here that there is no loss in the rate due to adaptation
to the smoothness. Our estimator is a bona-fide probability density and having
the support � of an order statistic.

We considered as a natural choice the Kullback-Leibler divergence, as a loss
function in the context of maximum entropy distributions, hence the log-additive
model for density estimation in this setup. One might consider a more classical
L2-risk and estimate the density under its coordinate-wise product form on
the simplex �. Then a projection on the family of Jacobi polynomials can
be estimated by a least squares procedure for different smoothness values and
analogous results can be established, using the tools developed in this paper.
An aggregation procedure in L2 would similarly provide an adaptive minimax
procedure. However, the resulting estimator might take negative values and
further transformations of such an estimator may change the smoothness or the
dependence structure.
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The rest of the paper is organized as follows. In Section 2 we introduce the
notations used in the rest of the paper. In Section 3, we describe the additive
exponential series model and the estimation procedure, then we show that the
estimator converges to the true underlying density with a convergence rate that
is the sum of the convergence rates for the same type of univariate model, see
Theorem 3.3. We consider an adaptive method with convex aggregation of the
logarithms of the previous estimators to adapt to the unknown smoothness of
the underlying density in Section 4, see Theorem 4.1. We assess the performance
of the adaptive estimator via a simulation study in Section 5. The definition of
the basis functions and their properties used during the proofs are given in
Section 6. The detailed proofs of the results in Section 3 and 4 are contained in
Sections 7, 8 and 9.

2. Notations

Let I = [0, 1], d ≥ 2 and � = {(x1, . . . , xd) ∈ Id, x1 ≤ x2 ≤ . . . ≤ xd} denote
the simplex of Id. For an arbitrary real-valued function hi defined on I with 1 ≤
i ≤ d, let h[i] be the function defined on � such that for x = (x1, . . . , xd) ∈ �:

h[i](x) = hi(xi)1�(x). (2.1)

Let qi, 1 ≤ i ≤ d be the one-dimensional marginals of the Lebesgue measure
on �:

qi(dt) =
1

(d− i)!(i− 1)!
(1− t)d−iti−1 1I(t) dt. (2.2)

If hi ∈ L1(qi), then we have:
∫
� h[i] =

∫
I
hiqi.

For a measurable function f , let ‖f ‖∞ be the usual sup norm of f on its

domain of definition. For f defined on �, let ‖f ‖L2 =
√∫

� f2. For f defined

on I, let ‖f ‖L2(qi)
=
√∫

I
f2qi.

For a vector x = (x1, . . . , xd) ∈ R
d, let min(x) (max(x)) denote the smallest

(largest) component.
Let us denote the support of a probability density g by supp (g) = {x ∈

R
d, g(x) > 0}. Let P(�) denote the set of probability densities on �. For

g, h ∈ P(�), the Kullback-Leibler distance D (g‖h) is defined as:

D (g‖h) =
∫
�
g log (g/h) .

Recall that D (g‖h) ∈ [0,+∞].

Definition 2.1. We say that a probability density f0 ∈ P(�) has a product
form if there exist (�0i , 1 ≤ i ≤ d) bounded measurable functions defined on I
such that

∫
I
�0i qi = 0 for 1 ≤ i ≤ d and a.e. on �:

f0(x) = exp
(
�0(x)− a0

)
1�(x), (2.3)
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with �0 =
∑d

i=1 �
0
[i] and a0 = log

(∫
� exp (�0)

)
, that is

f0(x) = exp

(
d∑

i=1

�0i (xi)− a0

)

for a.e. x = (x1, . . . , xd) ∈ �.

Definition 2.1 implies that supp (f0) = � and f0 is bounded. Let X
n =

(X1, . . . , Xn) denote an i.i.d. sample of size n from the density f0.
For 1 ≤ i ≤ d, let (ϕi,k, k ∈ N) be the family of orthonormal polynomials

on I with respect to the measure qi; see Section 6 for a precise definition of
those polynomials and some of their properties. Recall ϕ[i],k(x) = ϕi,k(xi) for
x = (x1, . . . , xd) ∈ �. Notice that (ϕ[i],k, 1 ≤ i ≤ d, k ∈ N) is a family of normal
polynomials with respect to the Lebesgue measure on �, but not orthogonal.

Let m = (m1, . . . ,md) ∈ (N∗)d and set |m| =
∑d

i=1 mi. We define the R
|m|-

valued function ϕm = (ϕ[i],k; 1 ≤ k ≤ mi, 1 ≤ i ≤ d) and the R
mi -valued

functions ϕi,m = (ϕi,k; 1 ≤ k ≤ mi) for 1 ≤ i ≤ d. For θ = (θi,k; 1 ≤ k ≤ mi, 1 ≤
i ≤ d) and θ′ = (θ′i,k; 1 ≤ k ≤ mi, 1 ≤ i ≤ d) elements of R|m|, we denote the
scalar product:

θ · θ′ =
d∑

i=1

mi∑
k=1

θi,kθ
′
i,k

and the norm ‖θ‖ =
√
θ · θ. We define the function θ ·ϕm as follows, for x ∈ �:

(θ · ϕm)(x) = θ · ϕm(x).

For a positive sequence (an)n∈N, the notation OP(an) of stochastic bounded-
ness for a sequence of random variables (Yn, n ∈ N) means that for every ε > 0,
there exists Cε > 0 such that:

P (|Yn/an| > Cε) < ε for all n ∈ N.

3. Additive exponential series model

In this Section, we study the problem of estimation of an unknown density
f0 with a product form on the set �, as described in (2.3), given the sample
X

n drawn from f0. Our goal is to give an estimation method based on a se-
quence of regular exponential models, which suits the special characteristics of
the target density f0. Estimating such a density with standard multidimensional
nonparametric techniques naturally suffer from the curse of dimensionality, re-
sulting in slow convergence rates for high-dimensional problems. We show that
by taking into consideration that f0 has a product form, we can recover the
one-dimensional convergence rate for the density estimation, allowing for fast
convergence of the estimator even if d is large. The quality of the estimators is
measured by the Kullback-Leibler distance, as it has strong connections to the
maximum entropy framework of [11].
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We propose to estimate f0 using the following additive exponential series
model, for m ∈ (N∗)d:

fθ(x) = exp (θ · ϕm(x)− ψ(θ))1�(x), (3.1)

with ψ(θ) = log
(∫

� exp (θ · ϕm)
)
. This model is similar to the one introduced

in [33], but there are two major differences. First, we have only kept the univari-
ate terms in the multivariate exponential series estimator of [33] since the target
probability density is the product of univariate functions. Second, we have re-
stricted our model to � instead of the hyper-cube Id, and we have chosen the
basis functions ((ϕi,k, k ∈ N), 1 ≤ i ≤ d) which are appropriate for this support.

Remark 3.1. In the general case, one has to be careful when considering a density
f0 with a product form and a support different from �. Let f0

i denote the i-th
marginal density function of f0. If supp (f0

i ) = A ⊂ R for all 1 ≤ i ≤ d, we can
apply a strictly monotone mapping of A onto I to obtain a distribution with a
product form supported on �. When the supports of the marginals differ, there
is no transformation that yields a random vector with a density as in Definition
2.1. A possible way to treat this case consists of constructing a family of basis
functions which has similar properties with respect to supp (f0) as the family
((ϕi,k, k ∈ N), 1 ≤ i ≤ d) with respect to �, which we discuss in detail in Section
6. Then we could define an exponential series model with this family of basis
functions and support restricted to supp (f0) to estimate f0.

Let m ∈ (N∗)d. We define the following function on R
|m| taking values in

R
|m| by:

Am(θ) =

∫
�
ϕmfθ, θ ∈ R

|m|. (3.2)

According to Lemma 3 in [6], we have the following result on Am.

Lemma 3.2. The function Am is one-to-one from R
|m| to Ωm = Am(R|m|).

We denote by Θm : Ωm → R
|m| the inverse of Am. The empirical mean of

the sample X
n of size n is:

μ̂m,n =
1

n

n∑
j=1

ϕm(Xj). (3.3)

In Section 8.2 we show that μ̂m,n ∈ Ωm a.s. when n ≥ 2.

For n ≥ 2, we define a.s. the maximum likelihood estimator f̂m,n = fθ̂m,n
of

f0 by choosing:
θ̂m,n = Θm(μ̂m,n). (3.4)

The loss between the estimator f̂m,n and the true underlying density f0 is

measured by the Kullback-Leibler divergence D
(
f0‖f̂m,n

)
.

For r ∈ N
∗, let W 2

r (qi) denote the Sobolev space of functions in L2(qi), such
that the (r − 1)-th derivative is absolutely continuous and the L2 norm of the
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r-th derivative is finite:

W 2
r (qi) =

{
h ∈ L2(qi);h

(r−1) is absolutely continuous and h(r) ∈ L2(qi)
}
.

The main result is given by the following theorem whose proof is given in Section
8.3.

Theorem 3.3. Let f0 ∈ P(�) be a probability density with a product form, see
Definition 2.1. Assume the functions �0i , defined in (2.3) belong to the Sobolev
space W 2

ri(qi), ri ∈ N with ri > d for all 1 ≤ i ≤ d. Let (Xn, n ∈ N
∗) be

i.i.d. random variables with density distribution f0. We consider a sequence
(m(n) = (m1(n), . . . ,md(n)), n ∈ N

∗) such that limn→∞ mi(n) = +∞ for all
1 ≤ i ≤ d, and which satisfies:

lim
n→∞

|m|2d
(

d∑
i=1

m−2ri
i

)
= 0, (3.5)

lim
n→∞

|m|2d+1

n
= 0. (3.6)

The Kullback-Leibler distance D
(
f0‖f̂m,n

)
of the maximum likelihood estimator

f̂m,n defined by (3.4) to f0 converges in probability to 0 with the convergence
rate:

D
(
f0‖f̂m,n

)
= OP

(
d∑

i=1

m−2ri
i +

|m|
n

)
. (3.7)

Remark 3.4. Let us take (m◦(n) = (m◦
1(n), . . . ,m

◦
d(n)), n ∈ N

∗) with m◦
i (n) =

�n1/(2ri+1)�. This choice constitutes a balance between the bias and the variance
term. Then the conditions (3.5) and (3.6) are satisfied, and we obtain that :

D
(
f0‖f̂m◦,n

)
= OP

(
d∑

i=1

n−2ri/(2ri+1)

)
= OP

(
n−2min(r)/(2min(r)+1)

)
.

Thus the convergence rate corresponds to the least smooth �0i . This rate can also
be obtained with a choice where all mi are the same. Namely, with (m∗(n) =
(v∗(n), . . . , v∗(n)), n ∈ N

∗) and v∗(n) = �n1/(2min(r)+1)�.
For r = (r1, . . . , rd) ∈ (N∗)d, ri > d for 1 ≤ i ≤ d, and a constant κ > 0, let :

Kr(κ) =

{
f0 = exp

(
d∑

i=1

�0[i] − a0

)
∈ P(�); ‖�0i ‖∞ ≤ κ, ‖(�0i )(ri) ‖L2(qi)

≤ κ

}
.

(3.8)
The constants A1 and A2, appearing in the upper bounds during the proof of
Theorem 3.3 (more precisely in Propositions 8.3 and 8.5), are uniformly bounded
on Kr(κ), thanks to Corollary 6.13 and ‖ log(f0)‖∞ ≤ 2dκ+ |log(d!)|, which is
due to (7.6). This yields the following corollary for the uniform convergence in
probability on the set Kr(κ) of densities:
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Corollary 3.5. Under the assumptions of Theorem 3.3, we get the following
result:

lim
K→∞

lim sup
n→∞

sup
f0∈Kr(κ)

P

(
D
(
f0‖f̂m,n

)
≥
(

d∑
i=1

m−2ri
i +

|m|
n

)
K

)
= 0.

Remark 3.6. Since we let ri vary for each 1 ≤ i ≤ d, our class of densities
Kr(κ) is anisotropic, i.e. the multivariate functions are not equally smooth in
all directions. Estimation of anisotropic multivariate functions for Ls risk, 1 ≤
s ≤ ∞, was considered in multiple papers. For a Gaussian white noise model,
[23] obtains minimax convergence rates on anisotropic Besov classes for Ls risk,
1 ≤ s < ∞ ,while [7] gives the minimax rate of convergence on anisotropic Hölder
classes for the L∞ risk. For kernel density estimation, results on the minimax
convergence rate for anisotropic Nikol’skii classes for Ls risk, 1 ≤ s < ∞, can be
found in [17]. These papers conclude in general, that if the considered class has
smoothness parameters r̃i for the i-th coordinate, 1 ≤ i ≤ d , then the optimal

convergence rate becomes n−2R̃/(2R̃+1) (multiplied with a logarithmic factor for

L∞ risk), with R̃ defined by the equation 1/R̃ =
∑d

i=1 1/r̃i. Since R̃ < r̃i for all
1 ≤ i ≤ d, the convergence rate n−2min(r)/(2min(r)+1) is strictly better than the
convergence rate for these anisotropic classes. In the isotropic case, when ri = r
for all 1 ≤ i ≤ d, the minimax convergence rate specializes to n−2r/(2r+d) (which
was obtained in [33] as an upper bound). This rate decreases exponentially when
the dimension d increases. However, by exploiting the multiplicative structure of
the model, we managed to obtain the univariate convergence rate n−2r/(2r+1),
which is minimax optimal, see [35].

4. Adaptive estimation

Notice that the choice of the optimal series of estimators f̂m∗,n with m∗ defined
in Remark 3.4 requires the knowledge of min(r) at least. When this knowledge is
not available, we propose an adaptive method based on the proposed estimators
in Section 3, which can mimic asymptotically the behaviour of the optimal
choice. Let us introduce some notation first. We separate the sample X

n into
two parts Xn

1 and X
n
2 of size n1 = �Cen� and n2 = n− �Cen� respectively, with

some constant Ce ∈ (0, 1). The first part of the sample will be used to create
our estimators, and the second half will be used in the aggregation procedure.
Let (Nn, n ∈ N

∗) be a sequence of non-decreasing positive integers depending
on n such that limn→∞ Nn = +∞. Let us denote:

Nn =
{
�n1/(2(d+j)+1)�, 1 ≤ j ≤ Nn

}
Mn =

{
m = (v, . . . , v) ∈ R

d, v ∈ Nn

}
.

(4.1)

For m ∈ Mn let f̂m,n be the additive exponential series estimator based on the
first half of the sample, namely:

f̂m,n(x) = exp
(
θ̂m,n · ϕm(x)− ψ(θ̂m,n)

)
1�(x),



Fast adaptive estimation of log-additive exponential models 1267

with θ̂m,n given by (3.4) using the sample X
n
1 (replacing n with n1 in the defi-

nition (3.3) of μ̂m,n). Let :

Fn = {f̂m,n,m ∈ Mn}

denote the set of different estimators obtained by this procedure. Notice that
Card (Fn) ≤ Card (Mn) ≤ Nn. Recall that by Remark 3.4, we have that for
r = (r1, . . . , rd) with ri > d and n ≥ n̄, where n̄ is given by:

n̄ = min{n ∈ N, Nn ≥ min(r)− d+ 1}, (4.2)

the sequence of estimators f̂m∗,n, with m∗ = m∗(n) = (v∗, . . . , v∗) ∈ Mn given
by v∗ = �n1/(2min(r)+1)�, achieves the optimal convergence rate

OP(n
−2min(r)/(2min(r)+1)).

By letting Nn go to infinity, we ensure that for every combination of regularity
parameters r = (r1, . . . , rd) with ri > d, the sequence of optimal estimators

f̂m∗,n is included in the sets Fn for n large enough.
We use the second part of the sample X

n
2 to create an aggregate estimator

based on Fn, which asymptotically mimics the performance of the optimal se-
quence f̂m∗,n. We will write �̂m,n = θ̂m,n · ϕm to ease notation. We define the

convex combination �̂λ of the functions �̂m,n, m ∈ Mn:

�̂λ =
∑

m∈Mn

λm�̂m,n,

with aggregation weights λ ∈ Λ+ = {λ = (λm,m ∈ Mn) ∈ R
Mn , λm ≥

0 and
∑

m∈Mn
λm = 1}. For such a convex combination, we define the proba-

bility density function fλ as:

fλ = exp(�̂λ − ψλ)1�, (4.3)

with ψλ = log
(∫

� exp(�̂λ)
)
. We apply the convex aggregation method for log-

densities developed in [12] to get an aggregate estimator which achieves adapt-
ability. Notice that the reference probability measure in this paper corresponds
to d!1�(x)dx. This implies that ψλ here differs from the ψλ of [12] by the con-
stant log(d!), but this does not affect the calculations. The aggregation weights
are chosen by maximizing the penalized maximum likelihood criterion Hn de-
fined as:

Hn(λ) =
1

n2

∑
Xj∈Xn

2

�̂λ(X
j)− ψλ − 1

2
pen (λ), (4.4)

with the penalizing function pen (λ) =
∑

m∈Mn
λm D

(
fλ‖f̂m,n

)
. The convex

aggregate estimator fλ̂∗
n
is obtained by setting:

λ̂∗
n = argmax

λ∈Λ+

Hn(λ). (4.5)
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The main result of this section is given by the next theorem which asserts
that if we choose Nn = o(log(n)) such that limn→∞ Nn = +∞, the series of
convex aggregate estimators fλ̂∗

n
converge to f0 with the optimal convergence

rate, i.e. as if the smoothness was known.

Theorem 4.1. Let f0 ∈ P(�) be a probability density with a product form
given by (2.3). Assume the functions �0i belongs to the Sobolev space W 2

ri(qi),
ri ∈ N with ri > d for all 1 ≤ i ≤ d. Let (Xn, n ∈ N

∗) be i.i.d. random variables
with density f0. Let Nn = o(log(n)) such that limn→∞ Nn = +∞. The convex

aggregate estimator fλ̂∗
n
defined by (4.3) with λ̂∗

n given by (4.5) converges to f0

in probability with the convergence rate:

D
(
f0‖fλ̂∗

n

)
= OP

(
n− 2min(r)

2min(r)+1

)
. (4.6)

The proof of this theorem is provided in Section 9. Similarly to Corollary 3.5,
we have uniform convergence over sets of densities with increasing regularity.
Recall the definition (3.8) of the set Kr(κ). Let Rn = {j, d+1 ≤ j ≤ Rn}, where
Rn satisfies the three inequalities:

Rn ≤ Nn + d, (4.7)

Rn ≤
⌊
n

1
2(d+Nn)+1

⌋
, (4.8)

Rn ≤ log(n)

2 log(log(Nn))
− 1

2
· (4.9)

Corollary 4.2. Under the assumptions of Theorem 4.1, we get the following
result:

lim
K→∞

lim sup
n→∞

sup
r∈(Rn)d

sup
f0∈Kr(κ)

P

(
D
(
f0‖fλ̂∗

n

)
≥
(
n− 2min(r)

2min(r)+1

)
K
)
= 0.

Remark 4.3. For example when Nn = log(n)/(2 log(log(n))), then (4.7), (4.8)
and (4.9) are satisfied with Rn = Nn for n large enough.

5. Simulation study: random truncation model

In this section we present the results of Monte Carlo simulation studies on the
performance of the additive exponential series estimator. We take the example of
the random truncation model introduced in Section 1 with d = 2, which is used
in many applications. This model naturally satisfies our model assumptions.

Let Z = (Z1, Z2) be a pair of independent random variable with density func-
tions p1, p2 respectively such that � ⊂ supp (p), where p(x1, x2) = p1(x1)p2(x2)
is the joint density function of Z. Suppose that we only observe pairs (Z1, Z2)
if 0 ≤ Z1 ≤ Z2 ≤ 1. Then the joint density function f of the observable pairs is
given by, for x = (x1, x2) ∈ R

2 :

f(x) =
p1(x1)p2(x2)∫

� p(y) dy
1�(x).
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This corresponds to the form (1.2).
We will choose the densities p1, p2 from the following distributions:

• Normal(μ, σ2) with μ ∈ R, σ > 0:

fμ,σ2(t) =
1√
2πσ2

e−
(t−μ)2

2σ2 ,

• NormalMix(μ1, σ
2
1 , μ2, σ

2
2 , w) with w ∈ (0, 1):

f(t) = wfμ1,σ2
1
(t) + (1− w)fμ2,σ2

2
(t),

• Beta(α, β, a, b) with 0 < α < β, a < 0, b > 1 :

f(t) =
(t− a)α−1(b− t)β−α−1

(b− a)β−1B(α, β − α)
1(a,b)(t),

• Gumbel(α, β) with α > 0, β ∈ R:

f(t) = α e−α(t−β)−e−α(t−β)

.

The exact choices for densities p1, p2 are given in Table 1. Figure 1 shows the
resulting density functions g1 and g2 for each case.

Table 1

Distributions for the left-truncated model used in the simulation study.

Model p1 p2
Beta Beta(1, 6,−1, 2) Beta(3, 5,−1, 2)

Gumbel Gumbel(4, 0.3) Gumbel(2.4, 0.7)

Normal mix NormalMix(0.2, 0.1, 0.6, 0.1, 0.5) Normal(0.8, 0.2)

Fig 1. Density functions g1, g2 of the left-truncated models used in the simulation study.

To calculate the parameters θ̂m,n, we recall that θ̂m,n is the solution of the
equation (3.4), therefore can be also characterized as:

θ̂m,n = argmax θ∈R|m|θ · μ̂m,n − ψ(θ), (5.1)



1270 C. Butucea et al.

with μ̂m,n defined by (3.3), see Lemma 7.4 . We use a numerical optimisation

method to solve (5.1) and obtain the parameters θ̂m,n. We estimate our model
with m1 = m2 = m̄, and m̄ = 1, 2, 3, 4. We compute the final estimator based
on the convex aggregation method proposed in Section 4. We ran 100 estima-
tions with increasing sample sizes n ∈ {200, 500, 1000}, and we calculated the
average Kullback-Leibler distance as well as the L2 distance between f0 and its
estimator. We used 80% of the sample to calculate the initial estimators, and
the remaining 20% to perform the aggregation. The distances were calculated
by numerical integration. We compare the results with a truncated kernel den-
sity estimator with Gaussian kernel functions and bandwidth selection based on
Scott’s rule. The results are summarized in Table 2 and Table 3.

Table 2

Average Kullback-Leibler distances for the additive exponential series estimator (AESE)
and the truncated kernel estimator (Kernel) based on 100 samples of size n. Variances

provided in parenthesis.

KL n=200 n=500 n=1000
AESE Kernel AESE Kernel AESE Kernel

B 0.0137 0.0524 0.0048 0.0395 0.0028 0.0339

(8.94E-05) (1.73E-04) (9.51E-06) (4.61E-05) (3.50E-06) (2.14E-05)
G 0.0204 0.0249 0.0089 0.0180 0.0050 0.0154

(1.48E-04) (8.03E-05) (2.88E-05) (2.07E-05) (6.70E-06) (1.03E-05)
N 0.0545 0.0774 0.0337 0.0559 0.0259 0.0433

Mix (4.51E-04) (7.29E-05) (1.88E-04) (2.95E-05) (2.50E-05) (1.52E-05)

Table 3

Average L2 distances for the additive exponential series estimator (AESE) and the truncated
kernel estimator (Kernel) based on 100 samples of size n. Variances provided in parenthesis.

L
2 n=200 n=500 n=1000

AESE Kernel AESE Kernel AESE Kernel
B 0.0536 0.2107 0.0200 0.1660 0.0120 0.1429

(1.42E-03) (2.60E-03) (2.27E-04) (8.04E-04) (7.45E-05) (3.52E-04)
G 0.0683 0.0856 0.0297 0.0621 0.0166 0.0522

(1.95E-03) (9.94E-04) (3.61E-04) (2.49E-04) (8.74E-05) (1.19E-04)
N 0.2314 0.3534 0.1489 0.2545 0.1112 0.1952

Mix (1.17E-02) (1.43E-03) (5.53E-03) (6.95E-04) (9.25E-04) (3.83E-04)

We can conclude that the additive exponential series estimator outperforms
the kernel density estimator both with respect to the Kullback-Leibler distance
and the L2 distance. As expected, the performance of both methods increases
with the sample size. The boxplot of the 100 values of the Kullback-Leibler and
L2 distance for the different sample sizes can be found in Figures 2, 4 and 6.
Figures 3, 5 and 7 illustrate the different estimators compared to the true joint
density function for the three cases obtained with a sample size of 1000. We can
observe that the additive exponential series method leads to a smooth estimator
compared to the kernel method.
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Fig 2. Boxplot of the Kullback-Leibler and L2 distances for the additive exponential series
estimator (AESE) and the truncated kernel estimators with Beta marginals.

Fig 3. Joint density functions of the true density and its estimators with Beta marginals.



1272 C. Butucea et al.

Fig 4. Boxplot of the Kullback-Leibler and L2 distances for the additive exponential series
estimator (AESE) and the truncated kernel estimators with Gumbel marginals.

Fig 5. Joint density functions of the true density and its estimators with Gumbel marginals.
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Fig 6. Boxplot of the Kullback-Leibler and L2 distances for the additive exponential series
estimator (AESE) and the truncated kernel estimators with Normal mix marginals.

Fig 7. Joint density functions of the true density and its estimators with Normal mix
marginals.
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Remark 5.1. The additive exponential series model encompasses a lot of pop-
ular choices for the marginals p1, p2. For example, the exponential distribution
is included in the model for mi = 1, and the normal distribution is included for
mi = 2. Thus we expect that if we choose exponential or normal distributions
for p1, p2, we obtain even better results for the additive exponential series esti-
mator, which was confirmed by the numerical experiments (not included here
for brevity).

6. Appendix: Orthonormal series of polynomials

6.1. Jacobi polynomials

The following results can be found in [2] p. 774. The Jacobi polynomials
(
P

(α,β)
k ,

k ∈ N) for α, β ∈ (−1,+∞) are series of orthogonal polynomials with respect to
the measure wα,β(t)1[−1,1](t) dt, with wα,β(t) = (1− t)α(1 + t)β for t ∈ [−1, 1].
They are given by Rodrigues’ formula, for t ∈ [−1, 1], k ∈ N:

P
(α,β)
k (t) =

(−1)k

2kk!wα,β(t)

dk

dtk
[
wα,β(t)(1− t2)k

]
.

The normalizing constants are given by:

∫ 1

−1

P
(α,β)
k (t)P

(α,β)
	 (t)wα,β(t) dt

= 1{k=	}
2α+β+1

2k + α+ β + 1

Γ(k + α+ 1)Γ(k + β + 1)

Γ(k + α+ β + 1)k!
· (6.1)

In what follows, we will be interested in Jacobi polynomials with α = d − i
and β = i − 1, which are orthogonal to the weight function wd−i,i−1(t) =

1[−1,1](t)(1− t)d−i(1 + t)i−1. The leading coefficient of P
(d−i,i−1)
k is:

ω′
i,k =

(2k + d− 1)!

2kk!(k + d− 1)!
· (6.2)

Let r ∈ N
∗. Recall that P

(α,β)
k has degree k. The derivatives of the Jacobi

polynomials P
(d−i,i−1)
k , r ≤ k, verify, for t ∈ I (see Proposition 1.4.15 of [16]):

dr

dtr
P

(d−i,i−1)
k (t) =

(k + d− 1 + r)!

2r(k + d− 1)!
P

(d−i+r,i−1+r)
k−r (t). (6.3)

We also have:

sup
t∈[−1,1]

∣∣∣P (d−i,i−1)
k (t)

∣∣∣ = max

(
(k + d− i)!

k!(d− i)!
,
(k + i− 1)!

k!(i− 1)!

)
. (6.4)
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6.2. Definition of the basis functions

Based on the Jacobi polynomials, we define a shifted version, normalized and
adapted to the interval I = [0, 1].

Definition 6.1. For 1 ≤ i ≤ d, k ∈ N, we define for t ∈ I:

ϕi,k(t) = ρi,k
√
(d− i)!(i− 1)!P

(d−i,i−1)
k (2t− 1),

with

ρi,k =

√
(2k + d)k!(k + d− 1)!

((k + d− i)!(k + i− 1)!)
. (6.5)

Recall the definition (2.2) of the marginals qi of the Lebesgue measure on the
simplex. According to the following Lemma, the polynomials (ϕi,k, k ∈ N) form
an orthonormal basis of L2(qi) for all 1 ≤ i ≤ d. Notice that ϕi,k has degree k.

Lemma 6.2. For 1 ≤ i ≤ d, k, � ∈ N, we have:∫
I

ϕi,kϕi,	 qi = 1{k=	}.

Proof. We have, for k, � ∈ N:

∫
I

ϕi,kϕi,	 qi = ρi,kρi,	

∫ 1

0

P
(d−i,i−1)
k (2t− 1)P

(d−i,i−1)
	 (2t− 1)(1− t)d−iti−1 dt

=
ρi,kρi,	
2d

∫ 1

−1

P
(d−i,i−1)
k (s)P

(d−i,i−1)
	 (s)wd−i,i−1(s) ds

= 1{k=	},

where we used (6.1) for the last equality.

6.3. Mixed scalar products

Recall notation (2.1), so that ϕ[i],k(x) = ϕi,k(xi) for x = (x1, . . . , xd) ∈ �.
Notice that (ϕ[i],k, k ∈ N) is a family of orthonormal polynomials with respect
to the Lebesgue measure on �, for all 1 ≤ i ≤ d.

We give the mixed scalar products of (ϕ[i],k, k ∈ N) and (ϕ[j],	, � ∈ N), 1 ≤
i < j ≤ d with respect to the Lebesgue measure on the simplex �.

Lemma 6.3. For 1 ≤ i < j ≤ d and k, � ∈ N, we have:

∫
�
ϕ[i],k ϕ[j],	 = 1{k=	}

√
(j − 1)!(d− i)!

(i− 1)!(d− j)!

√
(k + d− j)!(k + i− 1)!

(k + d− i)!(k + j − 1)!
·

We also have 0 ≤
∫
� ϕ[i],k ϕ[j],	 ≤ 1 for all k, � ∈ N.
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Proof. By integrating with respect to x	 for � ∈ {1, . . . , d}\{i, j}, we obtain:∫
�
ϕ[i],k ϕ[j],	

=

∫ 1

0

(∫ xj

0

xi−1
i

(i− 1)!

(xj − xi)
j−i−1

(j − i− 1)!
ϕi,k(xi) dxi

)
ϕj,	(xj)

(1− xj)
d−j

(d− j)!
dxj .

We deduce that: ∫
�
ϕ[i],k ϕ[j],	 =

∫
I

rkϕj,	 qj ,

with rk a polynomial defined on I given by:

rk(s) = (j − 1)!

∫ 1

0

ti−1

(i− 1)!

(1− t)j−i−1

(j − i− 1)!
ϕi,k(st) dt.

Notice that rk is a polynomial of degree at most k as ϕi,k is a polynomial with
degree k. Therefore if k < � , we have

∫
� ϕ[i],kϕ[j],	 = 0 since ϕj,	 is orthogonal

(with respect to the measure qj) to any polynomial of degree less than �. Similar
calculations show that if k > �, the integral is also 0.

Let us consider now the case k = �. We compute the coefficient νk of tk in
the polynomial rk. We deduce from (6.2) that the leading coefficient ωi,k of ϕi,k

is given by:

ωi,k = ρi,k
√

(d− i)!(i− 1)! · ω′
i,k2

k = ρi,k
√
(d− i)!(i− 1)!

(2k + d− 1)!

k!(k + d− 1)!
·

Using this we obtain for νk :

νk = (j − 1)!ωi,k

∫ 1

0

tk+i−1

(i− 1)!

(1− t)j−i−1

(j − i− 1)!
dt

= ωi,k
(k + i− 1)!(j − 1)!

(k + j − 1)!(i− 1)!
,

and thus rk has degree k. The orthonormality of (ϕj,k, k ∈ N) ensures that∫
I
rkϕj,k qj = νk/ωj,k. Therefore, we obtain:

∫
�
ϕ[i],kϕ[j],k =

νk
ωj,k

=

√
(j − 1)!(d− i)!

(i− 1)!(d− j)!

√
(k + d− j)!(k + i− 1)!

(k + d− i)!(k + j − 1)!
·

Since (j − 1)!/(i − 1)! ≤ (k + j − 1)!/(k + i − 1)!, and (d − i)!/(d − j)! ≤
(k + d− i)!/(k + d− j)!, we can conclude that 0 ≤

∫
� ϕ[i],kϕ[j],k ≤ 1.

This shows that the family of functions ϕ = (ϕi,k, 1 ≤ i ≤ d, k ∈ N) is not
orthogonal with respect to the Lebesgue measure on �. For k ∈ N

∗, let us
consider the matrix Rk ∈ R

d×d with elements:

Rk(i, j) =

∫
�
ϕ[i],kϕ[j],k. (6.6)
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If Y = (Y1, . . . , Yd) is uniformly distributed on �, then Rk is the correlation
matrix of the random variable (ϕ1,k(Y1), . . . , ϕd,k(Yd)). Therefore it is symmetric
and positive semi-definite. Let ζk,d ≤ . . . ≤ ζk,1 denote the eigenvalues of Rk.
We aim to find a lower bound and an upper bound for these eigenvalues which
is independent of k.

Lemma 6.4. For k ∈ N
∗, the largest eigenvalue ζk,1 and the smallest eigenvalue

ζk,d of Rk are given by:

ζk,1 =
k + d

k + 1
and ζk,d =

k

k + d− 1
,

and we have 1/d ≤ ζk,d ≤ ζk,1 ≤ (d+ 1)/2 ≤ d.

Proof. It is easy to check that the inverse R−1
k of Rk exists and is symmetric

tridiagonal with diagonal entries Di, 1 ≤ i ≤ d and lower (and upper) diagonal
elements Qi, 1 ≤ i ≤ d− 1 given by:

Di =
(k + d− 1)(k + 1) + 2(i− 1)(d− i)

k(k + d)

and

Qi = −
√

i(d− i)(k + i)(k + d− i)

k(k + d)
.

The matrix R−1
k is positive definite, since all of its principal minors have a

positive determinant. In particular, this ensures that the eigenvalues of Rk and
R−1

k are all positive.
It is easy to check that ζ◦ = (k + 1)/(k + d) is an eigenvalue of R−1

k with
corresponding eigenvector w = (w1, . . . , wd) given by, for 1 ≤ i ≤ d:

wi =

√
(d− 1)!

(d− i)!

(k + d− i)!

(k + d− 1)!

(k + i− 1)!

k!

1

(i− 1)!
·

This implies that w is an eigenvector of Rk with eigenvalue ζ−1
◦ . The matrix

Rk has positive elements. We can apply the Perron-Frobenius theorem for pos-
itive matrices: the largest eigenvalue of Rk has multiplicity one and is the only
eigenvalue with corresponding eigenvector x such that x > 0. Since w > 0, we
deduce that ζ−1

◦ is the largest eigenvalue of Rk.

Let ci(ζ), 1 ≤ i ≤ d denote the i-th leading principal minor of the matrix
R−1

k − ζId, where Id is the d-dimensional identity matrix. The eigenvalues of
R−1

k are exactly the roots of the characteristic polynomial cd(ζ). Since R−1
k is

symmetric and tridiagonal, we have the following recurrence relation for ci(ζ),
1 ≤ i ≤ d:

ci(ζ) = (Di − ζ)ci−1(ζ)−Q2
i−1ci−2(ζ),

with initial values c0(ζ) = 1, c−1(ζ) = 0.
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Let Mk be the symmetric tridiagonal matrix d× d with diagonal entries Di,
1 ≤ i ≤ d and lower (and upper) diagonal elements |Qi|, 1 ≤ i ≤ d − 1. Notice
the characteristic polynomial of Mk is also cd(ζ). So Mk and R−1

k have the same
eigenvalues.

It is easy to check that ζ∗ = (k + d − 1)/k is an eigenvalue of Mk with
corresponding eigenvector v = (v1, . . . , vd) given by, for 1 ≤ i ≤ d:

vi =

√
(d− 1)!

(d− i)!

(k + d− 1)!

(k + d− i)!

k!

(k + i− 1)!

1

(i− 1)!
·

(One can check that v′ = (v′1, . . . , v
′
d), with v′i = (−1)i−1vi, is an eigenvector of

R−1
k with eigenvalue ζ∗.)
The matrix Mk has non-negative elements, with positive elements in the

diagonal, sub- and superdiagonal. Therefore Mk is irreducible, and we can ap-
ply the Perron-Frobenius theorem for non-negative, irreducible matrices: the
largest eigenvalue of Mk has multiplicity one and is the only eigenvalue with
corresponding eigenvector x such that x > 0. Since v > 0, we deduce that ζ∗

is the largest eigenvalue of Mk. It is also the largest eigenvalue of R−1
k . Thus

1/ζ∗ = k/(k + d− 1) is the lowest eigenvalue of Rk.
Since ζk,d is increasing in k, we have the uniform lower bound 1/d.

Remark 6.5. We conjecture that the eigenvalues ζk,i of Rk are given by, for
1 ≤ i ≤ d:

ζk,i =
k(k + d)

(k + i)(k + i− 1)
·

6.4. Bounds between different norms

In this Section, we will give inequalities between different types of norms for
functions defined on the simplex �. These inequalities are used during the proof
of Theorem 3.3. Let m = (m1, . . . ,md) ∈ (N∗)d. Recall the notation ϕm and
θ · ϕm with θ = (θi,k; 1 ≤ k ≤ mi, 1 ≤ i ≤ d) ∈ R

|m| from Section 3.
For 1 ≤ i ≤ d, we set θi = (θi,k, 1 ≤ k ≤ mi) ∈ R

mi , ϕi,m = (ϕi,k, 1 ≤ k ≤
mi) and:

θi · ϕi,m =

mi∑
k=1

θi,kϕi,k and θi · ϕ[i],m =

mi∑
k=1

θi,kϕ[i],k,

with ϕ[i],m = (ϕ[i],k, 1 ≤ k ≤ mi). In particular, we have ϕm =
∑d

i=1 ϕ[i],m and

θ · ϕm =
∑d

i=1 θi · ϕ[i],m. We first give lower and upper bounds on ‖θ · ϕm ‖L2 .

Lemma 6.6. For all θ ∈ R
|m| we have:

‖θ‖√
d

≤ ‖θ · ϕm ‖L2 ≤
√
d ‖θ‖ .
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Proof. We have:

‖θ · ϕm ‖2L2 =

d∑
i=1

mi∑
k=1

θ2i,k + 2
∑
i<j

min(mi,mj)∑
k=1

θi,kθj,k

∫
�
ϕ[i],kϕ[j],k, (6.7)

where we used the normality of ϕ[i],k with respect to the Lebesgue measure on
� and Lemma 6.3 for the cross products. We can rewrite this in a matrix form:

‖θ · ϕm ‖2L2 =

max(m)∑
k=1

(θ∗k)
TRkθ

∗
k,

where Rk ∈ R
d×d is given by (6.6) and θ∗k = (θ∗1,k, . . . , θ

∗
d,k) ∈ R

d is defined, for
1 ≤ i ≤ d, 1 ≤ k ≤ max(m), as:

θ∗i,k = θi,k1{k≤mi}.

Since, according to Lemma 6.4, all the eigenvalues of Rk are uniformly larger
than 1/d and smaller than d, this gives:

‖θ‖2

d
=

1

d

max(m)∑
k=1

‖θ∗k ‖
2 ≤ ‖θ · ϕm ‖2L2 ≤ d

max(m)∑
k=1

‖θ∗k ‖
2
= d ‖θ‖2 .

This concludes the proof.

We give an inequality between different norms for polynomials defined on I.

Lemma 6.7. If h is a polynomial of degree less than or equal to n on I, then
we have for all 1 ≤ i ≤ d:

‖h‖∞ ≤
√
2(d− 1)!(n+ d)d ‖h‖L2(qi)

Proof. There exists (βk, 0 ≤ k ≤ n) such that h =
∑n

k=0 βkϕi,k. By the Cauchy-
Schwarz inequality, we have:

|h| ≤
(

n∑
k=0

β2
k

)1/2( n∑
k=0

ϕ2
i,k

)1/2

. (6.8)

We deduce from Definition 6.1 of ϕi,k and (6.4) that:

‖ϕi,k ‖∞ =

√
(2k + d)(k + d− 1)!

k!

·max

(√
(i− 1)!(k + d− i)!

(d− i)!(k + i− 1)!
,

√
(d− i)!(k + i− 1)!

(i− 1)!(k + d− i)!

)
.
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For all 1 ≤ i ≤ d, we have the uniform upper bound:

‖ϕi,k ‖∞ ≤
√
(d− 1)!

√
2k + d

(k + d− 1)!

k!
· (6.9)

This implies that for t ∈ I:

n∑
k=0

ϕ2
i,k(t) ≤

n∑
k=0

‖ϕ2
i,k ‖∞

≤ (d− 1)!

n∑
k=0

(2k + d)

(
(k + d− 1)!

k!

)2

≤ 2(d− 1)!(n+ d)2d.

Bessel’s inequality implies that
∑n

k=0 β
2
k ≤ ‖h‖2L2(qi)

. We conclude the proof

using (6.8).

We recall the notation Sm of the linear space spanned by (ϕ[i],k; 1 ≤ k ≤
mi, 1 ≤ i ≤ d), and the different norms introduced in Section 7.

Lemma 6.8. Let m ∈ (N∗)d and κm =
√
2d!

√∑d
i=1(mi + d)2d. Then we have

for every g ∈ Sm: ‖g‖∞ ≤ κm ‖g‖L2 .

Proof. Let g ∈ Sm. We can write g = θ · ϕm for a unique θ ∈ R
|m|. Let gi =

θi · ϕi,m so that g =
∑d

i=1 g[i], where gi is a polynomial defined on I of degree
at most mi for all 1 ≤ i ≤ d. We have:

‖g‖∞ ≤
d∑

i=1

‖gi ‖∞

≤
√

2(d− 1)!

d∑
i=1

(mi + d)d ‖gi ‖L2(qi)

≤ κm√
d

(
d∑

i=1

‖gi ‖2L2(qi)

)1/2

=
κm√
d
‖θ‖ ≤ κm ‖θ · ϕm ‖L2 = κm ‖g‖L2 ,

where we used Lemma 6.7 for the second inequality, Cauchy-Schwarz for the
third inequality, and Lemma 6.6 for the fourth inequality.

Remark 6.9. For d fixed, κm as a function of m verifies:

κm = O

⎛
⎝
√√√√ d∑

i=1

m2d
i

⎞
⎠ = O(|m|d).
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6.5. Bounds on approximations

Now we bound the L2 and L∞ norm of the approximation error of addi-
tive functions where each component belongs to a Sobolev space. Let m =
(m1, . . . ,md) ∈ (N∗)d, r = (r1, . . . , rd) ∈ (N∗)d such that mi + 1 ≥ ri for

all 1 ≤ i ≤ d. Let � =
∑d

i=1 �[i] with �i ∈ W 2
ri(qi) and

∫
I
�iqi = 0 for

1 ≤ i ≤ d. Let �i,mi be the orthogonal projection in L2(qi) of �i on the
span of (ϕi,k, 0 ≤ k ≤ mi) given by �i,mi =

∑mi

k=1

(∫
I
�iϕi,kqi

)
ϕi,k. Then

�m =
∑d

i=1 �[i],mi
is the approximation of � on Sm given by (7.10). We start

by giving a bound on the L2(qi) norm of the error when we approximate �i by
�i,mi .

Lemma 6.10. For each 1 ≤ i ≤ d, mi + 1 ≥ ri and �i ∈ W 2
ri(qi) , we have:

‖�i − �i,mi ‖
2
L2(qi)

≤ 2−2ri(mi + 1− ri)!(mi + d)!

(mi + 1)!(mi + d+ ri)!
‖�(ri)i ‖

2

L2(qi)
. (6.10)

Proof. Notice that (6.3) implies that the series (ϕ
(ri)
i,k , k ≥ ri) is orthogonal

on I with respect to the weight function vi(t) = (1 − t)d−i+riti−1+ri , and the
normalizing constants κi,k ≥ 0 are given by:

κ2
i,k =

∫ 1

0

(
ϕ
(ri)
i,k (t)

)2
vi(t) dt

= ρ2i,k(d− i)!(i− 1)!

∫ 1

0

(
dri

dtri
P

(d−i,i−1)
k (2t− 1)

)2

vi(t) dt

= ρ2i,k(d− i)!(i− 1)!
((k + d− 1 + ri)!)

2

2d+2ri((k + d− 1)!)2

·
∫ 1

−1

(
P

(d−i+ri,i−1+ri)
k−ri

(s)
)2

wd−i+ri,i−1+ri(s) ds

= (d− i)!(i− 1)!
k!(k + d− 1 + ri)!

(k − ri)!(k + d− 1)!
, (6.11)

where we used the definition of ϕi,k for the second equality, (6.3) for the third
equality and (6.1) for the fourth equality. Notice that κi,k is non-decreasing as
a function of k. Since �i − �i,mi =

∑∞
k=mi+1 βi,kϕi,k, we have:

‖�i − �i,mi ‖
2
L2(qi)

=

∞∑
k=mi+1

β2
i,k ≤ 1

κ2
i,mi+1

∞∑
k=mi+1

κ2
i,kβ

2
i,k

≤ 1

κ2
i,mi+1

∞∑
k=ri

κ2
i,kβ

2
i,k, (6.12)
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where the first inequality is due to the monotonicity of κi,k as k increases.

Thanks to (6.3) and the definition of κi,k, we get that (ϕ
(ri)
i,k /κi,k, k ≥ ri) is an

orthonormal basis of L2(vi). Therefore, we have

∞∑
k=ri

κ2
i,kβ

2
i,k =

∫ 1

0

(
�
(ri)
i (t)

)2
vi(t) dt ≤

(d− i)!(i− 1)!

22ri
‖�(ri)i ‖

2

L2(qi)
, (6.13)

since supt∈I qi(t)/vi(t) = (d− i)!(i−1)!/22ri . This and (6.12) implies (6.10).

Lemma 6.10 yields a simple bound on the L2 norm of the approximation
error �− �m.

Corollary 6.11. For m = (m1, . . . ,md), mi + 1 ≥ ri and �i ∈ W 2
ri(qi) for all

1 ≤ i ≤ d, we get:

‖�− �m ‖L2 = O

⎛
⎝
√√√√ d∑

i=1

m−2ri
i

⎞
⎠ .

Proof. We have:

‖�− �m ‖L2 ≤
d∑

i=1

‖�i − �i,mi ‖L2(qi)
= O

(
d∑

i=1

m−ri
i

)
= O

⎛
⎝
√√√√ d∑

i=1

m−2ri
i

⎞
⎠ ,

where we used (6.10) for the first equality.

Lastly, we bound the L∞ norm of the approximation error.

Lemma 6.12. For each 1 ≤ i ≤ d, mi + 1 ≥ ri > d and �i ∈ W 2
ri(qi), we have:

‖�i − �i,mi ‖∞ ≤ 2−ri
√
2(d− 1)! eri√

2ri − 2d− 1

1

(mi + ri)ri−d− 1
2

‖�(ri)i ‖L2(qi)
. (6.14)

Proof. We first give a lower bound for the constants κi,k, 1 ≤ i ≤ d, d < ri ≤
mi + 1 ≤ k given by (6.11). We have for k ≥ mi + 1:

κi,k

(d− i)!(i− 1)!(k + ri)2ri
=

k!(k + d− 1 + ri)!

(k − ri)!(k + d− 1)!(k + ri)2ri

≥ (k + ri)!

(k − ri)!(k + ri)2ri
≥ (2ri)!

(2ri)2ri
·

Since n! ≥ nn e−n for n ∈ N
∗, we deduce that

κ2
i,k ≥ (d− i)!(i− 1)!(k + ri)

2ri e−2ri . (6.15)
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Since �i − �i,mi =
∑∞

k=mi+1 βi,kϕi,k we have:

‖�i − �i,mi ‖∞ =

∥∥∥∥∥
∞∑

k=mi+1

βi,kϕi,k

∥∥∥∥∥
∞

≤
∞∑

k=mi+1

|βi,k| ‖ϕi,k‖∞

≤

√√√√ ∞∑
k=mi+1

‖ϕi,k‖2∞
κ2
i,k

√√√√ ∞∑
k=mi+1

κ2
i,kβ

2
i,k

≤

√√√√ ∞∑
k=mi+1

2(d− 1)!(k + d)2d

κ2
i,k

√
(d− i)!(i− 1)!

22ri
‖�(ri)i ‖L2(qi)

≤

√√√√ ∞∑
k=mi+1

2(d− 1)!

(d− i)!(i− 1)!

e2ri

(k + ri)2ri−2d

√
(d− i)!(i− 1)!

22ri
‖�(ri)i ‖L2(qi)

≤ 2−ri
√

2(d− 1)! eri
√
2ri − 2d− 1

√
(mi + ri)2ri−2d−1

‖�(ri)i ‖L2(qi)
,

where we used Cauchy-Schwarz for the second inequality, (6.9) and (6.13) for the
third inequality, (6.15) for the fourth inequality, and

∑∞
k=mi+1(k+ri)

−2ri+2d ≤
(2ri − 2d− 1)−1(mi + ri)

−2ri+2d+1 for the fifth inequality.

Corollary 6.13. There exists a constant C > 0 such that for all �i ∈ W 2
ri(qi)

and mi + 1 ≥ ri > d for all 1 ≤ i ≤ d, we have:

‖�− �m ‖∞ ≤ C
d∑

i=1

‖�(ri)i ‖L2(qi)
.

Proof. Notice that for mi + 1 ≥ ri > d, we have:

2−ri
√

2(d− 1)! eri√
2ri − 2d− 1

1

(mi + ri)ri−d− 1
2

≤ 2−ri
√
2(d− 1)! eri√

2ri − 2d− 1

1

(2ri − 1)ri−d− 1
2

,

and that the right hand side is bounded by a constant C > 0 for all ri ∈ N
∗.

Therefore:

‖�− �m ‖∞ ≤
d∑

i=1

‖�i − �i,mi ‖∞ ≤ C
d∑

i=1

‖�(ri)i ‖L2(qi)
.

7. Preliminary elements for the proof of Theorem 3.3

We adapt the results from [6] to our setting, by following their lines of proof.
Even though some results appear to be very similar, for the reader’s convenience
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we repeat the statements and their proofs and carefully use the parameters
from our context (dimension d, particular basis of functions, etc.) Let us recall
Lemmas 1 and 2 of [6].

Lemma 7.1 (Lemma 1 of [6]). Let g, h ∈ P(�). If ‖ log(g/h)‖∞ < +∞, then
we have:

D (g‖h) ≥ 1

2
e−‖log(g/h)‖∞

∫
�
g log2 (g/h) , (7.1)

and for any κ ∈ R:

D (g‖h) ≤ 1

2
e‖log(g/h)−κ‖∞

∫
�
g (log (g/h)− κ)

2
, (7.2)

∫
�

(g − h)2

g
≤ e2(‖log(g/h)−κ‖∞ −κ)

∫
�
g (log (g/h)− κ)

2
. (7.3)

Lemma 7.1 readily implies the following Corollary.

Corollary 7.2. Let g, h ∈ P(�). If ‖ log(g/h)‖∞ < +∞, then we have, for any
constant κ ∈ R:

D (g‖h) ≤ 1

2
e‖log(g/h)−κ‖∞ ‖g‖∞

∫
�
(log (g/h)− κ)

2
, (7.4)

and:
‖g − h‖L2 ≤ ‖g‖∞ e(‖log(g/h)−κ‖∞ −κ) ‖ log (g/h)− κ‖L2 . (7.5)

Recall Definition 2.1 for densities f0 with a product form on �. We give a
few bounds between the L∞ norms of log(f0), �0 and the constant a0.

Lemma 7.3. Let f0 ∈ P(�) given by Definition 2.1. Then we have:

|a0| ≤ ‖�0 ‖∞ + |log(d!)|, ‖ log(f0)‖∞ ≤ 2 ‖�0 ‖∞ + |log(d!)|, (7.6)

|a0| ≤ ‖ log(f0)‖∞, ‖�0 ‖∞ ≤ 2 ‖ log(f0)‖∞ . (7.7)

Proof. The first part of (7.6) can be obtained by bounding �0 with ‖�0 ‖∞ in
the definition of a0. The second part is a direct consequence of this. The first
part of (7.7) can be deduced from the fact that

∫
� �0 = 0. The second part is

again a direct consequence of the first part.

Let m ∈ (N∗)d. Recall the application Am defined in (3.2) and set Ωm =
Am(R|m|). For α ∈ R

|m|, we define the function Fα on R
|m| by:

Fα(θ) = θ · α− ψ(θ). (7.8)

Recall also the additive exponential series model fθ given by (3.1).

Lemma 7.4 (Lemma 3 of [6]). Let m ∈ (N∗)d. The application Am is one-to-one
from R

|m| onto Ωm, with inverse say Θm. Let f ∈ P(�) such that α =
∫
� ϕmf

belongs to Ωm. Then for all θ ∈ R
|m|, we have with θ∗ = Θm(α):

D (f‖fθ) = D (f‖fθ∗)+D (fθ∗‖fθ) . (7.9)

Furthermore, θ∗ achieves maxθ∈R|m| Fα(θ) as well as minθ∈R|m| D (f‖fθ).
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Definition 7.5. Let m ∈ (N∗)d. For f ∈ P(�) such that α =
∫
� ϕmf ∈ Ωm,

the probability density fθ∗ , with θ∗ = Θm(α) (that is
∫
� ϕmf =

∫
� ϕmfθ∗), is

called the information projection of f .

The information projection of a density f is the closest density in the expo-
nential family (3.1) with respect to the Kullback-Leibler distance to f .

We consider the linear space of real valued functions defined on � and gen-
erated by ϕm:

Sm = {θ · ϕm; θ ∈ R
|m|}. (7.10)

Let κm =
√
2d!

√∑d
i=1(mi + d)2d. The following Lemma summarizes Lemmas

6.6 and 6.8.

Lemma 7.6. Let m ∈ (N∗)d. We have for all g ∈ Sm:

‖g‖∞ ≤ κm ‖g‖L2 , (7.11)

For all θ ∈ R
|m|, we have:

‖θ‖√
d

≤ ‖θ · ϕm ‖L2 ≤
√
d ‖θ‖ . (7.12)

Now we give upper and lower bounds for the Kullback-Leibler distance be-
tween two members of the exponential family fθ and fθ′ in terms of the Eu-
clidean distance ‖θ − θ′ ‖. Note that ‖ log(fθ)‖∞ = supx∈� |log(fθ(x))| is finite,
for all θ ∈ R

|m|.

Lemma 7.7. Let m ∈ (N∗)d. For θ, θ′ ∈ R
|m|, we have:

‖ log(fθ/fθ′)‖∞ ≤ 2
√
d κm ‖θ − θ′ ‖, (7.13)

D (fθ‖fθ′) ≤ d

2
e‖log(fθ)‖∞ +

√
d κm ‖θ−θ′‖ ‖θ − θ′ ‖2, (7.14)

D (fθ‖fθ′) ≥ 1

2d
e−‖log(fθ)‖∞ −2

√
d κm ‖θ−θ′‖ ‖θ − θ′ ‖2 . (7.15)

Proof. Since ψ(θ′) − ψ(θ) = log
(∫

� e(θ
′−θ)·ϕm fθ

)
, we get |ψ(θ′)− ψ(θ)| ≤

‖(θ′ − θ) · ϕm ‖∞. This implies that:

‖ log(fθ/fθ′)‖∞ ≤ 2 ‖(θ − θ′) · ϕm ‖∞
≤ 2κm ‖(θ − θ′) · ϕm ‖L2

≤ 2
√
d κm ‖θ − θ′ ‖,

where we used (3.1) for the first inequality, (7.11) for the second and (7.12) for
the third. The proof of (7.14) and (7.15) follows the proof of Lemma 4 in [6]
and is not reproduced.

Now we will show that the application Θm is locally Lipschitz.
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Lemma 7.8. Let m ∈ (N∗)d and θ ∈ R
|m|. If α ∈ R

|m| satisfies:

‖Am(θ)− α‖ ≤ e−(1+‖log(fθ)‖∞)

6d
3
2κm

, (7.16)

Then α belongs to Ωm and θ∗ = Θm(α) exists. Let τ be such that:

6d
3
2 e1+‖log(fθ)‖∞ κm ‖Am(θ)− α‖ ≤ τ ≤ 1.

Then θ∗ satisfies:

‖θ − θ∗ ‖ ≤ 3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖, (7.17)

‖ log(fθ/fθ∗)‖∞ ≤ 6d
3
2 eτ+‖log(fθ)‖∞ κm ‖Am(θ)− α‖ ≤ τ, (7.18)

D (fθ‖fθ∗) ≤ 3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖2 . (7.19)

Proof. Suppose that α 	= Am(θ) (otherwise the results are trivial). Recall Fα

defined in (7.8). We have, for all θ′ ∈ R
|m|:

F := Fα(θ)− Fα(θ
′) = (θ − θ′) · α+ ψ(θ′)− ψ(θ)

= D (fθ‖fθ′)−(θ − θ′) · (Am(θ)− α). (7.20)

Using (7.15) and the Cauchy-Schwarz inequality, we obtain the strict inequality:

F >
1

3d
e−‖log(fθ)‖∞ −2

√
d κm ‖θ−θ′‖ ‖θ − θ′ ‖2 −‖θ − θ′ ‖ ‖Am(θ)− α‖ .

We consider the ball centered at θ: Br = {θ′ ∈ R
|m|, ‖θ − θ′ ‖ ≤ r} with radius

r = 3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖. For all θ′ ∈ ∂Br, we have:

F >

(
eτ−6d

3
2 κm ‖Am(θ)−α‖ eτ+‖log(fθ)‖∞ −1

)
3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖2 .

The right hand side is non-negative as 6d
3
2 e1+‖log(fθ)‖∞ κm ‖Am(θ)− α‖ ≤ τ ≤

1, see the condition on τ . Thus, the value of Fα at θ, an interior point of Br,
is larger than the values of Fα on ∂Br. Therefore Fα is maximal at a point,
say θ∗, in the interior of Br. Since the gradient of Fα at θ∗ equals 0, we have
∇Fα(θ

∗) = α −
∫
� ϕmfθ∗ = 0, which means that α ∈ Ωm and θ∗ = Θm(α).

Since θ∗ is inside Br, we get (7.17). The upper bound (7.18) is due to (7.13) of
Lemma 7.7. To prove (7.19), we use (7.20) and the fact that Fα(θ)−Fα(θ

∗) ≤ 0,
which gives:

D (fθ‖fθ∗) ≤ (θ − θ∗) · (Am(θ)− α) ≤ ‖θ − θ∗ ‖ ‖Am(θ)− α‖
≤ 3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖2 .
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8. Proof of Theorem 3.3

In this Section, we first show that the information projection fθ∗ of f0 onto
{fθ, θ ∈ R

|m|} exists for all m ∈ (N∗)d. Moreover, the maximum likelihood

estimator θ̂m,n, defined in (3.4) based on an i.i.d sample X
n, verifies almost

surely θ̂m,n = Θm(μ̂m,n) for n ≥ 2 with μ̂m,n the empirical mean given by (3.3).
Recall Ωm = Am(R|m|) with Am defined by (3.2).

Lemma 8.1. The mean α =
∫
� ϕmf0 verifies α ∈ Ωm and the empirical mean

μ̂m,n verifies μ̂m,n ∈ Ωm almost surely when n ≥ 2.

Remark 8.2. By Lemma 7.4, this also means that θ̂m,n = argmax θ∈R|m|Fμ̂m,n(θ),

and since Fμ̂m,n(θ) = (1/n)
∑n

j=1 log(fθ(X
j)), the estimator f̂m,n = fθ̂m,n

is the

maximum likelihood estimator of f0 in the model {fθ, θ ∈ R
m} based on X

n.

Proof. Notice that ψ(θ) = log(E[exp(θ · ϕm(U))]) − log(d!), where U is a ran-
dom vector uniformly distributed on �. The Hessian matrix ∇2ψ(θ) is equal to
the covariance matrix of ϕm(X), where X has density fθ. Therefore ∇2ψ(θ) is
positive semi-definite, and we show that it is positive definite too. Indeed, for
λ ∈ R

|m|, λT∇2ψ(θ)λ = 0 is equivalent to E[(λ · ϕm(X))2] = 0, which implies
that λ · ϕm(X) = 0 a.e. on �. Since (ϕ[i],k, 1 ≤ i ≤ d, 1 ≤ k ≤ mi) are linearly
independent, this means λ = 0. Thus ∇2ψ(θ) is positive definite, providing that
θ �→ ψ(θ) is a strictly convex function.

Let ψ∗ : R|m| → R ∪ {+∞} denote the Legendre-Fenchel transformation of
the function θ �→ ψ(θ), i.e. for α ∈ R

|m|:

ψ∗(α) = sup
θ∈R|m|

α · θ − ψ(θ) = sup
θ∈R|m|

Fα(θ).

Suppose that α ∈ Ωm. Then according to Lemma 7.4, ψ∗(α) = Fα(θ
∗) with θ∗ =

Θm(α), thus ψ∗(α) is finite. Therefore Ωm ⊆ Dom (ψ∗), where Dom (ψ∗) = {α ∈
R

|m| : ψ∗(α) < +∞}. By Lemma 7.8, we have that Ωm is an open subset of R|m|.
So, we get Ωm ⊆ int (Dom (ψ∗)), where int (A) is the interior of a set A ⊆ R

|m|.
Inversely, let α ∈ int (Dom (ψ∗)). This insures that θ∗ = argmax θ∈R|m|Fα(θ)
exists uniquely and that ∇Fα(θ

∗) = 0. Therefore, we get:

0 = ∇Fα(θ
∗) = α−

∫
�
ϕmfθ∗ = α−Am(θ∗),

giving α ∈ Ωm. Thus we obtain Ωm = Dom (ψ∗). Set

Υ = int (cv (supp (ϕm(U)))),

where cv (A) is the convex hull of a set A ⊆ R
|m|. Thanks to Lemma 4.1. of [1],

we have Υ = int (Dom (ψ∗)) = Ωm, and thus Υ is non-empty. The proof is com-
plete as soon as we prove that α :=

∫
� ϕmf0 ∈ Υ and μ̂m,n ∈ Υ almost surely

when n ≥ 2. Notice that the probability measures of ϕm(X0), where X0 has
density f0, and ϕm(U) are equivalent, so that Υ = int (cv (supp (ϕm(X0)))).
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This directly implies that α = E[ϕm(X0)] ∈ Υ. To show that μ̂m,n ∈ Υ, since
the probability measures of ϕm(X0) and ϕm(U) are equivalent, it is sufficient
to prove that, when n ≥ 2, (1/n)

∑n
j=1 ϕm(U j) ∈ Υ, with (U1, . . . , Un) inde-

pendent random vectors distributed as U . Let cl (A) denote the closure of a
set A ⊂ R

|m|. Let 1 ≤ i ≤ d. Recall ϕi,m = (ϕi,k, 1 ≤ k ≤ mi). The linear
independence of (ϕi,k, 1 ≤ k ≤ mi) implies that all hyper-plane Hi tangent
to Υi := cv ({ϕi,m(x); x ∈ [0, 1]}) is such that {x ∈ [0, 1]; ϕi,m(x) ∈ H} has
zero Lebesgue measure. This readily implies that the probability for ϕm(U	)
and ϕm(Uj), with � 	= j, to belongs to the same tangent hyper-plane H of Υ is
zero. We get that a.s. (1/n)

∑n
j=1 ϕm(U j) ∈ Υ for all n ≥ 2. Thus, the proof is

complete.

We divide the proof of Theorem 3.3 into two parts: first we bound the error
due to the bias of the proposed exponential model, then we bound the error
due to the variance of the sample estimation. We formulate the results in two
general Propositions, which can be later specified to get Theorem 3.3.

8.1. Bias of the estimator

The bias error comes from the information projection of the true underlying
density f0 onto the family of the exponential series model {fθ, θ ∈ R

|m|}. We
recall the linear space Sm spanned by (ϕ[i],k, 1 ≤ k ≤ mi, 1 ≤ i ≤ d) where
ϕi,k is a polynomial of degree k, and the form of the probability density f0

given in (2.3). For 1 ≤ i ≤ d, let �0i,m be the orthogonal projection in L2(qi)

of �0i on the vector space spanned by (ϕi,k, 0 ≤ k ≤ mi) or equivalently on the
vector space spanned by (ϕi,k, 1 ≤ k ≤ mi), as we assumed that

∫
I
�0i qi = 0.

We set �0m =
∑d

i=1 �
0
[i],m the approximation of �0 on Sm. In particular we have

�0m = θ0 · ϕm for some θ0 ∈ R
|m|. Let:

Δm = ‖�0 − �0m ‖L2 and γm = ‖�0 − �0m ‖∞
denote the L2 and L∞ errors of the approximation of �0 by �0m on the simplex
�.

Proposition 8.3. Let f0 ∈ P(�) have a product form given by Definition 2.1.
Let m ∈ (N∗)d. The information projection fθ∗ of f0 exists (with θ∗ ∈ R

|m| and∫
� ϕmfθ∗ =

∫
� ϕmf0) and verifies, with A1 = 1

2 e
γm+‖log(f0)‖∞ :

D
(
f0‖fθ∗

)
≤ A1Δ

2
m. (8.1)

Proof. The existence of θ∗ is due to Lemma 8.1. Thanks to Lemma 7.4 and (7.4)
with κ = ψ(θ0)− a0, we can deduce that:

D
(
f0‖fθ∗

)
≤ D
(
f0‖fθ0

m

)
≤ 1

2
e‖	

0−	0m‖∞ ‖f0 ‖∞ ‖�0 − �0m ‖2L2

≤ 1

2
eγm+‖log(f0)‖∞ Δ2

m.
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Set:
εm = 6d

5
2κmΔm e(4γm+2 ‖log(f0)‖∞ +1) . (8.2)

We need the following lemma to control ‖ log(f0/fθ∗)‖∞.

Lemma 8.4. If εm ≤ 1, we also have:

‖ log(f0/fθ∗)‖∞ ≤ 2γm + εm ≤ 2γm + 1. (8.3)

Proof. To show (8.3), let f0
m = fθ0 denote the density function in the exponential

family corresponding to θ0, and α0 =
∫
� ϕmf0. For each 1 ≤ i ≤ d, the functions

ϕi,m = (ϕ[i],k, 1 ≤ k ≤ mi) form an orthonormal set with respect to the
Lebesgue measure on �. We set α0

i,m =
∫
� ϕi,mf0 and Ai,m(θ0) =

∫
� ϕi,mfθ0 .

By Bessel’s inequality, we have for 1 ≤ i ≤ d:

‖α0
i,m −Ai,m(θ0)‖ ≤ ‖f0 − f0

m ‖L2 .

Summing up these inequalities for 1 ≤ i ≤ d, we get:

‖α0 −Am(θ0)‖ ≤
d∑

i=1

‖α0
i,m −Ai,m(θ0)‖

≤ d ‖f0 − f0
m ‖L2

≤ d ‖f0 ‖∞ e(‖	
0−	0m‖∞ −(ψ(θ0)−a0)) ‖�0 − �0m ‖L2

≤ d e‖log(f
0)‖∞ +2γm Δm,

where we used (7.5) with κ = ψ(θ0) − a0 for the third inequality and the in-
equality

∣∣ψ(θ0)− a0
∣∣ ≤ γm (due to ψ(θ0)− a0 = log(

∫
exp(�0m − �0)f0)) for the

fourth inequality. The latter argument also ensures that ‖ log(f0/f0
m)‖∞ ≤ 2γm.

In order to apply Lemma 7.8 with θ = θ0, α = α0, we check condition (7.16),
which is implied by:

d e‖log(f
0)‖∞ +2γm Δm ≤ e−(1+‖log(f0

m)‖∞)

6d
3
2κm

·

Since ‖ log(f0
m)‖∞ ≤ ‖ log(f0)‖∞ + ‖ log(f0/f0

m)‖∞ ≤ ‖ log(f0)‖∞ +2γm, this
condition is ensured whenever εm ≤ 1. In this case we deduce, thanks to (7.18)
with τ = 1, that ‖ log(f0

m/fθ∗)‖∞ ≤ εm. By the triangle inequality, we obtain
‖ log(f0/fθ∗)‖∞ ≤ 2γm + εm. This completes the proof.

8.2. Variance of the estimator

We control the variance error due to the parameter estimation by the size of the
sample. We keep the notations used in Section 8.1. In particular εm is defined

by (8.2) and κm =
√
2d!

√∑d
i=1(mi + d)2d. The results are summarized in the

following proposition.
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Proposition 8.5. Let f0 ∈ P(�) have a product form given by Definition 2.1.
Let m ∈ (N∗)d and suppose that εm ≤ 1. Set:

δm,n = 6d
3
2κm

√
|m|
n

e2γm+‖log(f0)‖∞ +2 .

If δm,n ≤ 1, then for every 0 < K ≤ δ−2
m,n, we have:

P

(
D
(
fθ∗‖f̂m,n

)
≥ A2

|m|
n

K

)
≤ exp(‖ log(f0)‖∞)/K. (8.4)

where A2 = 3d e2γm+εm+‖log(f0)‖∞ +τ , and τ = δm,n

√
K ≤ 1.

Proof. Let θ∗ be defined in Proposition 8.3. Let X = (X1, . . . , Xd) denote a
random variable with density f0. Let θ in Lemma 7.8 be equal to θ∗, which
gives Am(θ∗) = α0 = E[ϕm(X)], and for α, we take the empirical mean μ̂m,n.
With this setting, we have:

‖α− α0 ‖2 =

d∑
i=1

mi∑
k=1

(μ̂m,n,i,k − E[ϕi,k(Xi)])
2
.

By Chebyshev’s inequality ‖α− α0 ‖2 ≤ |m|K/n except on a set whose proba-
bility verifies:

P

(
‖α− α0 ‖2 >

|m|
n

K

)
≤ 1

|m|K

d∑
i=1

mi∑
k=1

σ2
i,k.

with σ2
i,k = Var [ϕi,k(Xi)]. We have the upper bound σ2

i,k ≤ ‖f0 ‖∞
∫
� ϕ2

[i],k ≤
e‖log(f

0)‖∞ by the normality of ϕi,k. Therefore we obtain:

P

(
‖α− α0 ‖2 >

|m|
n

K

)
≤ e‖log(f

0)‖∞

K
·

We can apply Lemma 7.8 on the event {‖α− α0 ‖ ≤
√
|m|K/n} if:√

|m|
n

K ≤ e−(1+‖log(fθ∗ )‖∞)

6d
3
2κm

· (8.5)

Thanks to (8.3) we have:

‖ log(fθ∗)‖∞ ≤ ‖ log(f0/fθ∗)‖∞ + ‖ log(f0)‖∞ ≤ 2γm + εm + ‖ log(f0)‖∞ .
(8.6)

Since εm ≤ 1, (8.5) holds if δ2m,n ≤ 1/K. Then except on a set of probability less

than e‖log(f
0)‖∞ /K, the maximum likelihood estimator θ̂m,n satisfies, thanks to

(7.19) with τ = δm,n

√
K:

D
(
fθ∗‖fθ̂m,n

)
≤ 3d e‖log(fθ∗ )‖∞ +τ |m|

n
K ≤ 3d e2γm+εm+‖log(f0)‖∞ +τ |m|

n
K.

(8.7)
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8.3. Proof of Theorem 3.3

Recall that r = (r1, . . . , rd) ∈ N
d is fixed. We assume �0i ∈ W 2

ri(qi) for all

1 ≤ i ≤ d. Corollary 6.11 ensures Δm = O(
√∑d

i=1 m
−2ri
i ) and the boundedness

of γm when mi > ri for all 1 ≤ i ≤ d is due to Corollary 6.13. By Remark 6.9, we
have that κm = O(|m|d). If (3.5) holds, then κmΔm converges to 0. Therefore for
m large enough, we have that εm defined in (8.2) is less than 1. By Proposition
8.3, the information projection fθ∗ of f0 exists. For such m, by Lemma 7.4, we
have that for all θ ∈ R

|m|:

D
(
f0‖fθ

)
= D
(
f0‖fθ∗

)
+D (fθ∗‖fθ) .

Proposition 8.3 and Δm = O(
√∑d

i=1 m
−2ri
i ) ensures that the D

(
f0‖fθ∗

)
=

O(
∑d

i=1 m
−2ri
i ). The condition δm,n ≤ 1 in Proposition 8.5 is verified for n

large enough since γm is bounded and (3.6) holds, giving limn→∞ δm,n = 0.

Proposition 8.5 then ensures that D
(
fθ∗‖f̂m,n

)
= OP(|m| /n). Therefore the

proof is complete.

9. Proof of Theorem 4.1

In this section we provide the elements of the proof of Theorem 4.1. We assume
the hypotheses of Theorem 4.1. Recall the notation of Section 4. We shall stress
out when we use the inequalities (4.7), (4.8) and (4.9) to achieve uniformity in
r in Corollary 4.2.

First recall that �0 from (2.3) admits the following representation: �0 =∑d
i=1

∑∞
k=1 θ

0
i,kϕ[i],k. For m = (m1, . . . ,md) ∈ (N∗)d, let

�0m =

d∑
i=1

mi∑
k=1

θ0i,kϕ[i],k and f0
m = exp(�0m − ψ(θ0m)).

Using Corollary 6.13 and
∣∣ψ(θ0m)− a0

∣∣ ≤ ‖�0m − �0 ‖∞, we get ‖ log(f0
m/f0)‖∞

is bounded for all m ∈ (N∗)d such that mi ≥ ri:

‖ log(f0
m/f0)‖∞ ≤ 2γm ≤ 2γ, (9.1)

with γm = ‖�0m − �0 ‖∞, and γ = C
∑d

i=1 ‖(�0i )(ri) ‖L2(qi)
with C defined in

Corollary 6.13 which does not depend on r or m. For m = (v, . . . , v) ∈ Mn, we
have that an ≤ v ≤ bn, with an, bn given by:

an =
⌊
n1/(2(d+Nn)+1)

⌋
and bn =

⌊
n1/(2(d+1)+1)

⌋
. (9.2)

The upper bound (9.1) is uniform over m ∈ Mn and r ∈ (Rn)
d when (4.8)

holds. Since Nn = o(log(n)), we have limn→+∞ an = +∞. Hence, for n large
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enough, say n ≥ n∗, we have εm ≤ 1 for all m = (v, . . . , v) ∈ Mn with εm given

by (8.2), since κmΔm = O(a
d−min(r)
n ). According to Lemma 8.4 and its proof,

this means that the information projection fθ∗
m

of f0 onto the set of functions
(ϕ[i],k, 1 ≤ i ≤ d, 1 ≤ k ≤ v) verify, by (7.18) with τ = 1, for all m ∈ Mn:

‖ log(fθ∗
m
/f0

m)‖∞ ≤ 1. (9.3)

Recall the notation A0
m =

∫
� ϕmf0 for the expected value of ϕm(X1), μ̂m,n

the corresponding empirical mean based on the sample X
n
1 of size n1 = �Cen�,

and �̂m,n = θ̂m,n · ϕm where θ̂m,n is the maximum likelihood estimate given by
(3.4). Let Tn > 0 be defined as:

Tn =
n1 e

−4γ−4−2 ‖log(f0)‖∞

72d5d!bn(bn + d)2d log(bn)
, (9.4)

with bn given by (9.2) and γ as in (9.1). We define the sets:

Bm,n = {‖A0
m − μ̂m,n ‖

2
> |m|Tn log(bn)/n1} and An =

( ⋃
m∈Mn

Bm,n

)c

.

We first show that with probability converging to 1, the estimators are uniformly
bounded.

Lemma 9.1. Let n ∈ N
∗, n ≥ n∗ and Mn as in (4.1). Then we have:

P(An) ≥ 1−Nn2dn
CTn ,

with CTn defined as:

CTn =
1

2d+ 3

(
1− Tn

2 ‖f0 ‖∞ +C
√
Tn

)
,

with a finite constant C given by (9.9). Moreover, on the event An, we have the

following uniform upper bound for ‖ �̂m,n ‖∞, m ∈ Mn:

‖ �̂m,n ‖∞ ≤ 4 + 4γ + 2 ‖ log(f0)‖∞ . (9.5)

Remark 9.2. Notice that by the definition of bn, limn→∞ Tn = +∞. For n large
enough, we have CTn < −ε < 0 for some positive ε, so that:

lim
n→∞

Nn2dn
CTn = 0. (9.6)

This ensures that limn→∞ P(An) = 1, that is (�̂m,n,m ∈ Mn) are uniformly
bounded with probability converging to 1.

Proof. For m = (v, . . . , v) ∈ Mn fixed, in order to bound the distance between
the vectors μ̂m,n = (μ̂m,n,i,k, 1 ≤ i ≤ d, 1 ≤ k ≤ v) and A0

m = E[μ̂m,n] =
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(α0
i,k, 1 ≤ i ≤ d, 1 ≤ k ≤ v), we first consider a single term

∣∣∣α0
i,k − μ̂m,n,i,k

∣∣∣. By
Bernstein’s inequality, we have for all t > 0:

P
(∣∣α0

i,k − μ̂m,n,i,k

∣∣ > t
)
≤ 2 exp

(
− (n1t)

2/2

n1Var ϕ[i],k(X1) + 2n1t ‖ϕi,k ‖∞ /3

)

≤ 2 exp

⎛
⎝− (n1t)

2/2

n1E

[
ϕ2
[i],k(X

1)
]
+ 2n1t

√
2(d− 1)!(bn + d)d−

1
2 /3

⎞
⎠

≤ 2 exp

(
− n1t

2/2

‖f0 ‖∞ +2t
√

2(d− 1)!(bn + d)d−
1
2 /3

)
,

where we used, thanks to (6.9):

‖ϕi,k ‖∞ ≤
√

(d− 1)!
√
2k + d

(k + d− 1)!

k!
≤
√
2(d− 1)!(bn + d)d−

1
2

for the second inequality, and the orthonormality of ϕ[i],k for the third inequality.

Let us choose t =
√
Tn log(bn)/n1. This gives:

P

⎛
⎝∣∣α0

i,k − μ̂m,n,i,k

∣∣ >
√

Tn log(bn)

n1

⎞
⎠

≤ 2 exp

⎛
⎝− Tn log(bn)/2

‖f0 ‖∞ +2
√

2Tn log(bn)(d−1)!(bn+d)2d−1

9n1

⎞
⎠ (9.7)

≤ 2b
− Tn

2 ‖f0‖∞ +C
√

Tn
n , (9.8)

with C given by:

C = sup
n∈N∗

4

√
2 log(bn)(d− 1)!(bn + d)2d−1

9n1
· (9.9)

Notice C < +∞ since the sequence
√

log(bn)(bn + d)2d−1/9n1 is o(1). For the
probability of Bn,m we have:

P (Bn,m) ≤
d∑

i=1

v∑
k=1

P

(∣∣α0
i,k − μ̂m,n,i,k

∣∣2 >
Tn log(bn)

n1

)

≤
d∑

i=1

v∑
k=1

2b
− Tn

2 ‖f0‖∞ +C
√

Tn
n

≤ 2dnCTn .

This implies the following lower bound on P(An) :

P(An) = 1− P

( ⋃
m∈Mn

Bn,m

)
≥ 1−

∑
m∈Mn

P(Bn,m) ≥ 1−Nn2dn
CTn .
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On An, by the definition of Tn, we have for all m ∈ Mn:

‖A0
m − μ̂m,n ‖ 6d2

√
2d!(v + d)d e2γm+2 ≤

√
bn

Tn log(bn)

n1
6d

5
2

√
2d!(bn + d)d e2γ+2

≤ e−‖log(f0)‖∞ . (9.10)

Notice that whenever (9.10) holds, condition (7.16) of Lemma 7.8 is satisfied
with θ = θ∗m and α = μ̂m,n, thanks to κm ≤

√
d2d!(v + d)d and:

‖ log(fθ∗
m
)‖∞ ≤ ‖ log(fθ∗

m
/f0

m)‖∞ + ‖ log(f0
m/f0)‖∞ + ‖ log(f0)‖∞

≤ 1 + 2γ + ‖ log(f0)‖∞ .

According to Equation (7.18) with τ = 1, we can deduce that on An, we have:

‖ log(f̂m,n/fθ∗
m
)‖∞ ≤ 1 for all m ∈ Mn, n ≥ n∗.

This, along with (9.1) and (9.3), provide the following uniform upper bound for

(‖ �̂m,n ‖∞,m ∈ Mn) on An:

1

2
‖ �̂m,n ‖∞ ≤ ‖ log(f̂m,n)‖∞

≤ ‖ log(f̂m,n/fθ∗
m
)‖∞ + ‖ log(fθ∗

m
/f0

m)‖∞ + ‖ log(f0
m/f0)‖∞ + ‖ log(f0)‖∞

≤ 2 + 2γ + ‖ log(f0)‖∞,

where we used (7.7) for the first inequality.

We also give a sharp oracle inequality for the convex aggregate estimator fλ̂∗
n

conditionally on An with n fixed. The following lemma is a direct application
of Theorem 3.1. of [12] and (9.5).

Lemma 9.3. Let n ∈ N
∗ be fixed. Conditionally on An, let fλ̂∗

n
be given by

(4.3) with λ̂∗
n defined as in (4.5). Then for any x > 0 we have with probability

greater than 1− exp(−x):

D
(
f0‖fλ̂∗

n

)
− min

m∈Mn

D
(
f0‖f̂m,n

)
≤ β(log(Nn) + x)

n2
, (9.11)

with β = 2 exp(6K + 2L) + 4K/3, and L,K ∈ R given by :

L = ‖�0 ‖∞, K = 4 + 4γ + 2 ‖ log(f0)‖∞,

with γ as in (9.1).

Now we prove Theorem 4.1. For n ∈ N
∗ and C > 0, we define the event

Dn(C) as:

Dn(C) =
{
D
(
f0‖fλ̂∗

n

)
≥ C
(
n− 2min(r)

2min(r)+1

)}
.
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Let ε > 0. To prove (4.6), we need to find Cε > 0 such that for all n large
enough:

P (Dn(Cε)) ≤ ε. (9.12)

We decompose the left hand side of (9.12) according to An:

P (Dn(Cε)) ≤ P (Dn(Cε) | An)P(An) + P(Ac
n). (9.13)

The product P (Dn(Cε) | An)P(An) is bounded by:

P (Dn(Cε) | An)P(An) ≤ An(Cε) +Bn(Cε),

with An(Cε) and Bn(Cε) defined by:

An(Cε) = P

(
D
(
f0‖fλ̂∗

n

)
− min

m∈Mn

D
(
f0‖f̂m,n

)
≥ Cε

2

(
n− 2min(r)

2min(r)+1

) ∣∣∣∣An

)
,

Bn(Cε) = P

(
min

m∈Mn

D
(
f0‖f̂m,n

)
≥ Cε

2

(
n− 2min(r)

2min(r)+1

))
.

To bound An(Cε) we apply Lemma 9.3 with x = xε = − log(ε/4):

P

(
D
(
f0‖fλ̂∗

n

)
− min

m∈Mn

D
(
f0‖f̂m,n

)
≥ β(log(Nn) + xε)

n2

∣∣∣∣An

)
≤ ε

4
·

Let us define Cε,1 as:

Cε,1 = sup
n∈N∗

(
β(log(Nn) + xε)

n2n
− 2min(r)

2min(r)+1

)
. (9.14)

SinceNn = o(log(n)), we have Cε,1 < +∞ as the sequence on the right hand side
of (9.14) is bounded. This bound is uniform over regularities in (Rn)

d thanks
to (4.9) Therefore for all Cε ≥ Cε,1, we have An(Cε) ≤ ε/4.

For Bn(Cε), note that if n ≥ n̄ with n̄ given by (4.2), thenm∗ = (v∗, . . . , v∗) ∈
Mn with v∗ = �n1/(2min(r)+1)�. This holds for all r ∈ (Rn)

d due to (4.7).

By Remark 3.4, we have that D
(
f0‖f̂m∗,n

)
= OP(n

−2min(r)/(2min(r)+1)). This

ensure that there exists Cε,2 such that for all Cε ≥ Cε,2, n ≥ n̄ :

Bn(Cε) ≤ P

(
D
(
f0‖f̂m∗,n

)
≥ Cε,2

2

(
n− 2min(r)

2min(r)+1

))
≤ ε

4
·

We also have by (9.6) that there exists ñ ∈ N
∗ such that P(Ac

n) ≤ ε/2 for all
n ≥ ñ. Therefore by setting Cε = max(Cε,1, Cε,2) in (9.13), we have for all
n ≥ max(n∗, n̄, ñ):

P (Dn(Cε)) ≤ An(Cε) +Bn(Cε) + P(Ac
n) ≤

ε

2
+

ε

2
= ε,

which gives (9.12) and thus concludes the proof.
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